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Covariant analysis of the light-front quark model
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A manifestly covariant formalism is used as a guide to construct a covariant extension of the light-front
quark model. Our analysis demonstrates in detail that covariance necessarily requires the inclusion of zero-
mode contributions. The main goal of this paper is to use this technique in order to extend the standard
light-front formalism such that all form factors that are necessary to represent the Lorentz structure of a
hadronic matrix element can be calculated on the same footing. The form factors that have been calculated in
the standard approach are reproduced, except for those that describe transitions that involve vector mesons. The
covariant approach permits also the calculation of the scalar form factor for transitions between pseudoscalar
mesons, and the form facter_(g?) for transitions between pseudoscalar and vector mesons, which is not
possible in the standard light-front formalism. The practical application of the covariant extension of the
light-front quark model is successful only if the formulas for form factors are evaluated with standard light-
front vertex functions. The latter violate the conditions for strict Lorentz covariance of the formalism. In order
to explore the predictive power of this approach, we calculate various properties of pseudoscalar and vector
mesons in the-, d-, s-quark sector. We find good agreement with all available data for electroweak transitions.
[S0556-2820199)03215-4

PACS numbsgs): 12.39.Ki, 13.20-v, 13.25-k, 13.40—f

[. INTRODUCTION defined in terms of the lightlike four vectas by the invari-
ant equation ¢x)=0. The special case=(1,0,0~1) cor-
The relativistic constituent quark mod@RQM) is based responds to the light front or null planewk)=x"=x°+x3
on the light-front formalisnj1] and provides a conceptually =0.
simple, phenomenological framework for the determination This problem is closely associated with the violation of
of hadronic form factors and coupling constants. It is anrotational invariance in the computation of the matrix ele-
attractive feature of the light-front formalism that it permits a ment of a one-body currefit1,12. Because of the fact that
consistent relativistic treatment of a relativistic compositethe angular momentum operator contains interactions, the
system. In the RQM hadrons are composed of valenceurrent operator cannot satisfy the requirement of rotational
quarks and the equation of motion of the boupgl meson invariance without containing interaction dependent parts,
and the boundjqg baryon in the light-front formalism is a i.e., two-body currents. Moreover, this condition and current
relativistic Schrdinger equation with an effective confining conservation impose essential dynamic consistency condi-
potential. Instead of calculating these wave functions irtions on the representations of the current operator and the
terms of a phenomenological potential, very often one startgq bound-state wave function. The matrix element of the full
with a phenomenological wave function, which depends on &urrent, which is the sum of a one-body current plus two-
parameter 18 which essentially determines the confinementbody currents, is completely covariant. While such a precise
scale, i.e., the “size” of the bound state. The only param-treatment is beyond the limit of the phenomenology of the
eters of the model are the constituent masses of the quark®QM using as input one-body currents, there is an excep-
and the wave function paramet@r which can be fixed by a tional case which will be treated in detail. The matrix ele-
fit to the data. In this work we shall deal only with the quark ment of a one-body current transforms covariantly only un-
model description of mesons. der kinematic Lorentz transformations, which keep the light-
In recent years the RQM has become a useful and populdront invariant, but lacks complete Lorentz covariance.
tool to investigate various electroweak properties of light andConsequently the matrix element acquires a spuriowte-
heavy meson$2-6|, based upon relativistic approximation pendence. In practical applications of the light-front formal-
methods for the relevant matrix elements. In our past worksm it is usually assumed that this problem can be avoided by
we have explored the quality and power of the RQM in thethe rule, that hadronic form factors should be calculated only
u-, d-, ssquark sectoff 7] for which a large body of precise from the plus components of the matrix elements of the re-
data exists. We found that the RQM permits a reliable prespective currents, which, as we shall show, are essentially
diction of data on the electroweak transitions of pseudoscaldree of spurious contributions for transitions involving pseu-
and vector mesonsee also Refl.6]). doscalar mesons, but this is no longer true for vector mesons.
However, only selected properties @ff mesons can be In order to treat the complete Lorentz structure of a had-
analyzed unambiguously in the RQM, for it is well known ronic matrix element the authors of Rg8] have developed
[8-10] that the light-front calculation of the matrix element a method to identify and separate spurious contributions and
of a one-body current generates a four-vector structure that t& determine the physical, i.ew independent contributions
in general not covariant, since it contains a spurious deperto the hadronic form factors and coupling constants. In this
dence on the orientation of the light front. The light front is work we shall use a manifestly covariant framework as a
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guide to develop a basically different technique to deal witha clean treatment of the subtleties in connection with par-
this problem. A similar procedure has been used in Refsticles of spin 1, the covariant approach permits also the cal-
[13] to investigate the relation between the standard covariculation of the scalar form factor for transitions between
ant quantum field theory and light-front field theory. In our pseudoscalar mesons, and the form faeto¢g?) for transi-
approach the structure of @q meson bound state will be tions between pseudoscalar and vector mesons, which is not
approximated by a covariant model vertex function, insteadPossible in the conventional light-front approach. These form
of a wave function, and a hadronic matrix element of a onefactors are required, for instance, for the analysis of tauonic
body current, that is represented by a one-loop diagram, ca decays. _ _

be computed in two different ways: In the conventional N Sec. Il we present a brief summary of the basic formal-
space-time formalism the matrix element is covariant andSm and an outline of the covariant analysis. The latter is
consists of a Feynman momentum loop integral, which Ca,rpotwated by the fact that the Lorentz decomp_osmon.of a
be evaluated by standard methods. The corresponding lightght-front amplitude, which represents a hadronic matrix el-
front matrix element can be obtained from the momentunfMent, necessarily requires for its construction the vestor
loop integral by a light-front decomposition of the loop mo- € it depends on 'Fhe light front. In Sec_. Il we investigate a
mentum, and carrying out the integration over the minussimple model to discover the mechanism that leads to the
component o~ =p®—p®) by means of contour methods. It cancellation of allw dependenpe of a light-front amplitude,

is important to require that the contour can be chosen sucyhereby zero-mode contributions play a central role. A gen-
that only the singularities associated with the quark propaga€'@l method is developed that permits the calculation of the
tors contribute, while the meson vertex function is free ofPhysical form factors. This program is performed in Sec. IV.
singularities within the contour. There is indeed a class ofn Sec. V we discuss the problem associated with the choice
covariant meson vertex functions that have this property©f the appropriate vertex function, and explore the predictive
they are characterized by an asymmetry in the variables dfower of the covariant extension o.f the light-front quark
the constituentjq pair. The integration over the minus com- model by calculgtlng various properties of pseudoscala'r and
ponent of the loop momentum defines the correspondiny€ctor mesons in the-, d-, s-quark sectors and comparing
light-front vertex functions. If they are used to calculate hadthe predictions with the available data. Finally, we briefly
ronic matrix elements, both procedures must lead to the sanféScuss the heavy quark limit of our model. We conclude this
form factors, consequently the dependence of the light- Work in Sec. VI with a summary of our analysis.

front approach and the mechanism that causes the disappear-

ance of allo dependent contributions can be studied in de- Il. BASIC FORMALISM AND OUTLINE

tail. In particular we shall show that covariance requires the OF THE COVARIANT ANALYSIS

inclusion of the effect of zero modes. Hadronic form factors
and coupling constants can be calculated consistently in thig .
covariant model in terms of asymmetric light-front vertex .
functions.

The main goal of the present work is to use this covarian
technique in order to extend the conventional light-front for- . .
malism such that all form factors that are necessary to rep- The composite meson state Is represen?ed by qge
resent the Lorentz structure of a hadronic matrix elemen%)our?d's'[ate vertex operatb which in a covariant formal-
can be calculated on the same footing, preserving the sinfSM IS the solution of the Bethe-Salpeter equation
plicity that distinguishes the light-front approach. It is impor-
tant to note that the expressions for form factors that have
been obtained in the RQM in the pd&t7] are reproduced

in the covariant approach, except for those that describe tran-_"~" - — i
sitions which involve mesons of spin 1, polarized in the lon-Scription of thegq interaction. The full statement of the sym-

gitudinal direction. The fact that transition form factors for bolic operator product of E¢2.1) mclgdes the mtegratllon
particles of spin 1 or higher are sensitive to the violation of0Ver all four components of the relative momentipe p;
rotational invariance in the light-front formalism is well —P2: wherep; ,p, denote the four momenta of the constitu-
known, and has been discussed in the context of calculatior®t quarks with masses; and m,, respectively, and the
of the electromagnetic form factors for the deutefd®, 14,  total four momentum of the meson state is given fby
and thep meson[15]. We shall investigate this problem for +p,=P’, with P’>=M’?, where M’ is the mass of the
the first time for transitions between states of spin 1 and spimeson. The Green'’s functidd describes the propagation of
0. In particular, we shall show that the conventional light-the two off-shell quarks. We assume that the solution of the
front formulas for the vector coupling constaiyt (see, e.g., Bethe-Salpeter equation has the form
Ref.[7]) and the axial-vector form factok,(q?) (see, e.g.,
Ref.[16]), which is one of the form factors for semileptonic = 75Ho(p12,p§). (2.2
transitions between pseudoscalar and vector mesons, contain
unphysical admixtures. In this work formulas will be given This simple ansatz is not essential for the covariant analysis,
that are free of spurious dependent contributions. which could be based equally well on the most general ver-
For practical applications it is of interest that, aside fromtex operator which has the matrix structure ¢f and

As an introduction of our covariant analysis we shall
efly compare the calculation of the pseudoscalar decay
constant and of the electroweak form factors of pseudoscalar
{nesons in a manifestly covariant framework with the result
of the corresponding calculation in the light-front formalism.

I=UGr, 2.1

H\_/hereu is the irreducibleqq kernel in a field-theoretic de-

054026-2
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vs(yP"). In writing down Eg.(2.2) we have omitted obvi-
ous color and flavor operators, ahtj)(piz,pg) is the scalar
vertex function.

The pseudoscalar decay constdptfor a qq meson is

given by the matrix element of the axial vector current,

which we express in the general form
(0[q"y,a'|P")=iP,v2fp. (2.3

The matrix element2.3) is given in the one-loop approxi-
mation as a momentum integral

N¢ Hg
A= Gyt | APEre B i) 3~ B )]

N¢ 4.1 Ho ! ! !
= | APiRgN, APt (M- MR, )
1
(2.4

where

=p;?—m;®+ie and N,=pi—ms+ie,
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Ho=Ho(pi%p3) and Hg=Hg(pi%p3),

and it has been used that+p,=P’, pi+p,=P", p;
—pi=q, andNj=p}j?—m|?+ie. The form factors in the

'one-loop approximation are given by

g*(PB)—(qP)(gB)
Fl(qz): quz_(qp)z
and
P%(gB)—(qP)(PB
F(q2)= (aB)—(gP)(PB) 29

q°P*~(qP)®

In order to make a comparison with the corresponding
one-loop expressions obtained in the light-front formalism it
is necessary to introduce light-front momenta. The four-
momentum of the meson of mabt’ in terms of light-front
components is P'=(P’'~,P'",P]), where P'*=pP'°
+P’% and P'?=P'*P'~— P’2 M’2. The appropriate
variables for the internal motion of the constituents,p( ),

andN, denotes the number of colors. The pseudoscalar deare defined by

cay constant can be derived from Eg.4) as

(P A)

V2fp=—i—Fmz, (2.5

and we have used™( A) to denote the scalar product of the

four vectorsP/’L andA,, .

The most general form of the hadronic matrix element of
the vector current must be expressed in terms of two form

factors

(P"[q"y,a'|P"y=P,Fi(d)+q,Faa?). (2.6

The pseudoscalar mesons have momenta P”, and P

p:/l+=XPr+’ p;rz(l_x)Pr+
Py, =xP +p;_, pp=(1-xP —p;,
and the kinematic invariant mass is
12 12 12 2
p,~tm~ p,otm;
12 _
Mg ” 1% (2.10

The pseudoscalar decay constéptand the vector form
factor F1(q?) have been derived first fajq mesons, whose
constituents have equal mass, by Terertdwsing Hamil-
tonian light-front dynamicgsee also Ref[17]). We have

again in the one-loop approximation, as a momentum inteayended the model of RefL] and derived the formulas that

=P'+P”, q=P’'—P". The matrix element2.6) is given,
gral
B, =i (2 o [ o 1NHN',,4,32 @7
where
S,=trl ys(p1+mp)y,(p1+my) ys(—pot my)]
ZZPiM[M'2+M”2_q2_2N2_(m1_m2)2
—(mf{—my)?+(m;—m})?]
+0,[0%—2M"2+Nj— N7+ 2N,+2(m;—m,)?
~(mj—mj)?]
+P,[0%=Nj = Nj— (m]—m})?] (28
and

are valid for any pseudoscalar meson in RETs16].
The pseudoscalar decay constant for the meson of mass
M’ is given by[7]
h!
2 0
fe=v2g 3f dxfd X(l—X)(M’Z—Méz)

X[(1—=x)m;+Xm,].

(2.1

For the determination of form factors it is crucial to im-
pose the conditio™ =0, which at this stage of the calcula-
tion means that form factors are known only for spacelike
momentum transfeqzz—qfso. The vector form factor
F,(g?) for the transition between an initial pseudoscalar me-
son with internal variables and masses of its constituent
quarks &,p| ,m;,m,) and a final pseudoscalar meson with
the corresponding quantitie,p’ ,m],m,) has been ob-
tained in[16,17] as
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F1(a?) N,=p2—m3=0,
NC 1 5 h(,)hg 112 12 12 12
_Wfo dxf d pi(l_X)XZ(M/Z_M(I)Z)(MIIZ_MSZ) Nl_pl _ml _X(M _MO )’ (216)
X{XM{Z+XME2+(1—x)g%— (1—x)(m; —mj)? Nj=pi—mi?=x(M"2~Mg?),
—x(mi—mz)z—x(m’l’—mz)z}, (2.12 gnd the vertex operators at the spectator quark pole are given
y

whereM? is given by Eq.(2.10, p/ =p| —(1—x)q, and . an . y avp an
V24 (1 - I'"=ysHo(P1%p2) and I'"=ysHg(p1%,p3).
62:pL (1=x)my“+xm; 213 (2.17
X(1—X)

Note that the contour integration &f, andB, is zero unless
The light-front vertex functionsh, and h, depend on the sts 1, and we shall denote the resulting expressions by

internal variablesX,p|) and (,p!), respectively, and will A, and B, . They are given by
be specified later.

In order to compare the results of the two methods we A ——j N FdXJ d%p’ ho
shall evaluate the four-momentum integré®s4) and (2.7) ( 1673 Jo L(l—x)N’
by use of the light-front decomposition of the four- .
momentum vector, where x4[m2pb+(m1_m2)mﬂ], (2.18
4 /_1 ’+ - ’ 1 I
d*p; 5P dp; dxdp] . (2.14 B,= Nc3J dXJ d2p! hohAo 3, (2.19
. _ _ _ 167~ Jo (1—x)N;Nj
In general, it is not possible that, given the vertex function
Ho(p;2,p3), a light-front vertex functiorhy(x,p|) can be  where
found such that the one-loop formuléa.5) and(2.9) agree R
with the corresponding light-front expressioki2.11) and ho=ho(N;) =H4(P12,p3),
(2.12. One expects that such an agreement can be achieved
only if two-body currents are included such that the total hy=hg(Ny)=H{(ps2, b3 (2.20

current operator is compatible with the light-front vertex

function. The interaction-dependent parts of the current ar@re the corresponding light-front vertex functions, é}ﬂis

generated by the exchange of gluons between the constitueiie traceS,, Eq. (2.8), expressed in terms of the restricted
quarks, and the treatment of such a process goes beyond thfr vectors of Eq(2.15.

valence quark picture, which is the basic assumption of the
approach used in this paper. However, there is a We||-knOWIae
exception: If it is assumed that the vertex functlép has no vector w,=(2,0,0,), which is explicitly revealed by their

poles in the upper compleg;  plane, then the covariant decomposition into four vectors, as given by

calculation of meson properties and the calculation in the

framework of the light-front formalism give identical results A =iVZ(P' fptw,gp) (2.2

. “ ulptT®,9p), .

already at the one-loop level. The four-momentum integrals

(2.4) and (2.7), expressed in terms of light-front variables, 2 2 & 5 2
. . _ = + + . .

are carried out by contour methods in the complex B,=PuF(07)+0,Fo(a) + 0, Fs(a7) 2.22

plane...CIos+ing the contour in'the upper plane[under the =01 the formulas fko Eq.(2.19, andIABM, Eq.(2.19, it
conditionq™ =0 for the amplitudeB,, of Eq. (2.7)] ensures ;51 pe shown thage+ 0 andF 5(qg2) # 0. Therefore, not only
that the momentum integrals are given by the respective resi- A %A andB +B. . but sincew . is a fixed vector. the
dues of the spectator quark pole, corresponding to puttin wr R w7 By, DULSINCEW, edv '

quark 2 on the mass shell. We shall yse p/, andp, to our-vector structure ofk# and B# is obviously not covari-
denote the restricted four vectors ant. In fact, in going from the manifestly covariant one-loop

integralsA,,, Eq.(2.4), andB,,, Eq.(2.7), to the light-front

A peculiar property of the integrald,, and B, is their
pendence on the light front, defined by the lightlike four

L mi N integraIsAM and BM by means of ap; integration, the

P2= E'pZ Par | associated zero-mode problem has been ignored. We shall
show in Sec. Il that zero modes are required in order to

pI=P —p,, (2.15  eliminate the spurious dependence and to obtain a covari-
ant result.

pl=pi—q, Nevertheless, one can already determine the pseudoscalar
decay constanfp and the vector form factoF,(g?) from

wherem3, =p3, +ma. It follows from Eq.(2.15 that the plus components &, andB,,, respectively,
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At=iP'*vifp (2.23 and this formula agrees with E(R.17).
The form factorF,(g?) can be calculated from the trans-
B*=P*Fi(q?), (2.24  verse component cﬁﬂ, but it containsw dependent, spuri-

ous admixtures, and is different frofy(g%). We shall work
and the result coincides with the standard expressions, Egeut a method which will permit us to cancel the spurious

(2.11), (2.12), of the light-front formalism. They will be seen parts of the light-front amplitude&,, andB,, . The modified
to be free of spurious contributions, which explains the speampjitudes are free of additional form factors lige andF,
cial role of the plus component of the matrix element of agnq the physical form factdf,(g2) can be determined un-

Hadronic matrix elements are often expressed in terms of

gq bound-state wave functions, and for completeness sake
we shall briefly describe their relationship to the respective 1. A MANIFESTLY COVARIANT ANALYSIS
vertex operators. The covariant Bethe-Salpeter wave func-

tion ®(p, ,p,) is related to the vertex operator defined in Eq. 1€ formulas forfp, Eq.(2.5), in terms of the amplitude

2.2 by A, and forF(q?) andF,(g?), Eq.(2.9), in terms of the
' amplitude B, have been derived from the respective one-
D (p},pa)=S(pHI'S(—p,) loop Feynman diagrams, whereby a manifestly covariant

framework has been prescribed. For the special class of ver-
 (Pr+my) ys(—patmy) o o tex functionsHy(pZ,p3), which have no poles in the upper
- (p£2_m12)(p§_m§) Ho(P1".P2)- complexp; plane, the associated light-front vertex functions
can be defined uniquely, and the corresponding light-front
(229 formalism must be able to reproduce not onfly and
2 e -
The light-front version of the covariant Bethe-Salpeter wave 1(d°), aszwe have verified in Sec. I, but also the form
S - factor F,(q“). Moreover, it must be possible to prove ex-
function is defined by . .
actly that all dependence on the light front, i.e.,altlepen-
dence, disappears.

i - !
‘I’(X,pi)ng dp;” ®(p1,p2) (2.26
. . A. An explicit model calculation
with p;+p,=P’ and P] =0. Under the condition that the
vertex functionH; has no poles in the upper complex~
plane we find

We shall first develop a strategy to deal with thelepen-
dence of the light-front formalism in the context of a simple
covariant model, which permits explicit analytic calculations

) , at each step of the following analysis. The starting point is a
_(i)1+m1)7’5(_f’2+m2)h P g Y 9p

W(x,p}) J(N%), (2.27  Multipole ansatz for thejq bound-state vertex function for a
(1—x)N;P'+ pseudoscalar meson
—— o g
where the light-front vertex functiom; is given by Eq. Ho(pi,p§)=N—n, 3.0

(2.20. This representation can be used, for example, to re-
derive the result found by Brodsky and Lepddé&] that the
pseudoscalar decay constdptis determined by theyP) ys

part of the wave functior2.27): whereN, = pf—A2+ ie, and A andg are constant param-

eters. The vertex functio(8.1) is not symmetric in the four
1 momenta of the constituent quarks, and can hardly be con-
W(x,pL)— — (¥YP") ysthqq(X.P1), (2.28  sidered a realistic approximation ofcgq bound state. We
V2 regard it only as a convenient cutoff prescription which
makes the one-loop integrals finite. For our purpose it is
where sufficient to consider only the case of a monopole form of
the vertex function, i.e.n=1, since our results do not de-

o1 + ' pend on the value ofi. Covariant models of this type have
Yaa(xP1) = Etr{y s¥(x.p1)} been used also in RefEl5,19.
In principle the momentum integrals can be calculated in
(1—x)m;+xm, terms of the usual space-time components by the standard
=V2——————hy. (229  Feynman parameter method, and all our results can be
(1-x)Ny checked in this manner. However, we are mainly interested

] ) ] here in the evaluation of the momentum integrals by use of
The pseudoscalar decay constant is obviously given by |ight-front variables, and in the reason why they depend on
w. If, for example, the matrix elemel®.6) is calculated in

N, [t - ; .
_ / / one-loop order with the model vertex functi¢® 1) one finds
fp_ﬁfo dxf d*pL el x,PL) (230 the amr?litude @
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. Nc 4.1 g g” — - —iam? 1
b#—l (277)4fd plmsﬂ, (3.2 f dp"——— p’—m +I€ —ZWJO dae ip—+
1 1
where the tracs, is given by Eq.(2.8). If the p; ~ integra- X p—+5'(a - ?5(p+)]-
tion is carried out by contour methods as before, we arrive at
the light-front amplitudeﬁ , which is given by Eq(2.19 37

with light-front vertex funct|ons corresponding to the model g, further applications it is useful to decompose the inte-

(3.9) grand ofb,,, Eq. (3.2, as follows:
g g 1 3 1 1 ( 1 1)
ho(Nj)=— and hg(N)=—, (33 NANINNGING  (A'2=mi?)(A"2-mi?) No | N} Nj
N} N’y
X L1 3.8
N, N S

where Ny =N;+m;?— A’? and N\ =Nj+m]?— A"2. The
light-front amplitudeb,, can be decomposed according to Using Eqs.(3.6) and (3.7) and carrying out ther integrals
Eq. (2.22, i.e., it also depends om. We shall explain now gives

why the momentum integrals,, and bM are different. | 1 1

Obviously there are terms &, which depend linearly on ___ dp,” _ (3.9
N,, such that the factdy, in the denominator of Eq3.2) is 27 ! N;N,Nj p;NQN’l"
cancelled, and all poles are in the lower comptgx plane
at . ’— Ay — ’ ”
I ,~ P pl s(py” m;?
P1 ’ " "2 2
P 2m N1N2N1 pa N N” py (M2 —mi?)  mj?
.. mi-—ie (3.10
i =g 3.9 :
1

i.e., one finds again the respective residues at the spectator
quark pole in terms of the restricted quantities defined in
wherem? =m{*+pi?, A"+ piZ,m?+pi? A"+ pi2. The Egs.(2.15 and(2.16 and, as expected, a term proportional
expression forbM is obtained by closing the contour in the to 8(p;”). Equation(3.10 shows that it is the dependence
upper complexp;~ plane and contains no contribution from of the numerator op;~ which generates the zero-mode con-
these poles. However, integrals of this type are associateibution proportional tos(p;*), which is absent, however,
with zero modes and have been discussed first by the authoifsp; ~ is combined with a factor proportional @, . This
of Ref. [20], who argued that these pole contributions arecan be seen more clearly, if the following integrals are con-
strictly zero forp;*#0, but forp; " =0 the pole(3.4) is at  sidered:
infinity, and cannot be avoided by closing the contour either

from above or below. In this case tipg ™ integration must N} N
yield a result proportional té@(p; *). In Ref.[20] a method —f P — =, (3.1)
has been indicated by which @ ~ integral can be repre- N1N2Nj P, NiNJ
sented as a sum of the contribution due to the standard con-
tour method and a zero-mode contribution. i 5 N, s(p;* mﬁ
The following integral representation is used: —f dp; — S= o .
2m NiNoN3 - pININY m?—mif mg?
. (3.12
: :fmd eia(pz—m2+ie) (3 5) R
pZ—mi+ie Jo O ' ' Note thatN,=0 and the integra(3.12 consists only of a

zero-mode contribution. Combining all the terms of the de-

) . ) . ] composition(3.8) and using Egs(3.12 and(2.14) the com-
The formalp™ integration of this expression results #  plete momentum integral is given by

functions:

fd4 ’ N2
. 2m* ] @ PINININ,N]N],
J p f dae iami
pP—m?+ie
1 ld n CCRA
1 1 164T2(A’2—m’2)(A”2—m”2) fO yin W:
il Z s(nt 1 1 1ACA1
X +5(01)+a5(p )}, (3.6 (313
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where " (wp]) X
1 = = A
2 " ’ /" (Q)P) 2
C(l)lz Co(ml,m1):(1_Y)m12+ym12_Y(1_Y)q2, 1 (0! x pq
) WPy e
o o 0 o o o ) A== (p10)—(aP) P2 ¢ &
Car=C°(A",A"),C{,=C"(my,A"),C1,=C"(A",m]). q (© a
The same result is obtained if the four-momentum integral is C{'=(p;P)—P?AM — (qP)AY = —N,+Z,,
carried out using standard Feynman parameters. where
From the arguments given above it is plausible that the . pla,
terms proportional tqaiﬂ, q.N2, and piMNz in the inte- 22:N1+m12—m§+(1—2x)M’2+[q2+(qP)] .
grands of the one-loop amplitudés, ,B,, are either missed q(3 18

or not completely accounted for if thp;  integration is - N . .
carried out by the contour method. The lost information is'\IOte that only the coefficient which is combined wi), ,

() 5/ i
signaled by the appearance of a spuriausdependence, namerC? A,,d'epe.nds o, . We have shown in SeC_'J”A
which is expected to disappear if the respective zero-modthat, whileNy is given by Eq.(2.16), terms that contaiiN,

contributions are included correctly. are associated with zero-mode contributions, which we can
Note that the zero-mode contributions proportional toinclude exactly in this particular case by the replacement
,+ . . . “

6(p1") have been interpreted {i21] as residues of virtual N,—Z,. (3.19

pair creation processes in the lingjt —O0.
This replacement is equivalent to setti@§"’=0, and due to
B. Effective inclusion of zero-mode contributions this prescription the decompositid8.16 becomes covari-
ant, i.e., free of anyw dependence. We shall prove in the
Appendix that in the framework of the simple mod&l1)
We present in this subsection an alternative and morgne prescriptior(3.19 accounts exactly for the relevant zero-

practical method to deal with the dependence of the ||ght' mode Contribution, given by Ec{slal i'e_, the integrated
front formalism, which is manifest in the decomposition of fynctionz,, Eq. (A8), is equal to Eq(3.13.

the amplitudedh,, Eq.(2.20), andB,,, Eq.(2.22, account The amplitudeA,, can be handled in the same weégx-

for the missing zero-mode contributions and thus restore thgept that there is ng dependendeand it follows thatgpe
covariance of the amplitudes. For this purpose we shall in—=q

vestigate the various parts of the integrancégf, which is We shall need also the tensor decomposition

essentially given by the tracéﬂ. We start with the four
vectorbiﬂ, which is given in terms of the internal variables

and necessary condition for covariance

p1.P1, =0, AP +P,P AP +(P,A,+q,P,)AY

x andp| by Eqg.(2.15. However, in order to separate iis 1
dependent parts one needs its decomposition with regard to +0,0,A + W(Pﬂwﬁ »,P,)BY
P, g andw, which is inferred from symmetry considerations
tobe T + c®y c
L Q L Q ((J)P) (quV w;LQV) 1 (wP)Zw,u.wV 2
2.1 a1 27 (1)
fo dxf d pi_l—xplﬂ_ fo dxf d pi—l_X(PMAl (3.20
1 where
(1) (1) '
+q,A7+ (wP) 0,Cy )- A )2 (pJ_qu)z
1 1
(3.14 d
(2) — (A(1)y2
where Az =A%
I IAYNZEN A(2)=A5_1)A(l) y
I\, A,, hO(Nl)hO Nl
QEQ(Nl,Nl)ZA—A” (3.15) 1
N1N7 AP =(Al)2—- ?Af) : (3.2
An equation such as E¢3.14 will be written in the follow- B2 AL _ AR
. . : 1= 1 '
ing as a relation between integrands as
(qP)
1 cP=APCH+ AP,
p1, =P Al +q,AM + ) 0,C". (316 g
(qP)?
(2) (1)y2 2 (2
The coefficients in Eq93.14 and(3.16 are given by c (Ci)7+| P q A
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The coefficientB(f) plays a special role since, on the one (e o (qP) @

hand, it is combined witlw , , on the other hand, it contains A 'Na— A Zy+ ?—Al ) (3.29
the termxN, which according to Eq(3.12 takes the value

which givesC{?)=0. In this manner one finds how the term
p1,N,, which is part of the trac&,, is modified by the

sincexa(p,*)=0, and which means that there are no sero-effective inclusion of the relevant zero-mode contribution:

mode contributions associated wié§?), which is therefore
given by its value at the spectator quark pole:

xN,=0, (3.22

p:’L#NZi PMA_(Ll)Nz‘i‘ q#Agl)Nz‘F CI)MC(ll)NZ

X (gP)
S A (3.23 | AP Zt S AR (329

"

i.e., the coefficienB{* does not vanish. Note also that, if \ynere Eq«(3.22 and the prescriptiof3.24) have been used.
P’ is calculated by contracting the teng8r20, Eq. (323 Tpe coefficientC{? is of second order irp; ™. It can be

for B{?) must be used in order to obtain the result given bygiscussed in a similar way, but we do not explicitly consider
Eq. (2.16. The role OfB(lz) will be discussed below. here terms of higher order.

Again, the coefficienC(lz’ is cancelled if the correspond- For the practical applications considered in this work we
ing zero-mode contribution is included, which can beshall need also the decomposition of the following tensor
achieved in this case by the replacement product:

P1uP1P10= (9P et 0Pyt 0,aP ) AY +(0,,00 1 0,000, 9,00, A + PP P LAS
+(P,P,0,+P,0,Put0,P,P)AY +(0,0,Putq,P, 00+ P,L0,0,)AY +0,0,0,AL

+ (w—P)(PMP,,wa+ P,0,P,+w,P,P,)BY

1
+ m[(quv_l— q,upv)wa+ ( P,u,qa+ qupa)wv+ ( qua+ qvpa)w,u,]B(Zs)

1 1
3 3
+ m(gﬂvwa-i_guawv-i_gvawy)C& >+ m(quqvwa+ququa+wuqvqa)c(2 )+O(w2)+0(w3), (32@

where we have omitted all terms that are of second and third

X
order inw,,, and the coefficients are given by 3(13)25(5(12)—'“52)), (3.28
3)_ 2 3)_ 2
AP APAR | AP ADAR)
R x (qP)
() (2) . = (2)
AP =ADAR AP =ADAD B> —(2 —qz—) Bit 5 —q2—A1 , (3.29

2 L -
AD=ALAR AR =ADAD S ADAR (327  whereB{ is given by Eq.(3.23. The coefficientC(® and
q C® are cancelled by their associated zero-mode contribu-
tions, which are accounted for by the replacements

BY = ADBY - APAR  B=ALCE - APAL, :
APN,—APZ,,

(3) (D a(2) (3) (D A(2) (qP) (D) a(2)

Cy/=C{’AY, CY/=Ci A7 +2—A’A}.
a @R, A2 CLONEING

AN, AT Z,+2 — A5V AT . (3.30
The w dependent terms of Ed3.26) can be analyzed in q
analogy to the discussion of Eg&8.16 and (3.20. Again o . G ~3)
the coefficientsB{>) and BS®) are not associated with zero- The prescription$3.30 obviously giveCy™=C;"'=0. Con-
mode contributions and are given by their values at the spesequently, the tensq‘:riuf)isz is modified in the following
tator quark pole: way:
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C b Ry, APRL+P P APR IV. CALCULATION OF COUPLING CONSTANTS AND
PR S T2 D et v T2 FORM FACTORS IN A MANIFESTLY COVARIANT
. X FRAMEWORK
+(P,9,+d,P, AN, +q,q,APN,

The technique, which was developed in the last section in

+ dependent terms a manifestly covariant framework, provides a general
method for the analysis of the covariant structure of a one-
_,gMA(lZ)Z2 loop amplitude in the light-front formulation. It permits us to

identify and separate that part of the structure which depends
(qP) on the light front, i.e., on the four vect@s. The spuriouso
+09,4, APZ, 42— APAP depende_nce can be ehmmat_eq exe_lctly if the Ilght—froqt ver-
q tex function obeys the identities given by E®.32. This
(33D method will be used to determine coupling constants and
form factors for pseudoscalar and vector mesons. These cal-
culations will be a straightforward application of the formu-
where Eq(3.22 and the prescription8.30 have been used. las and rules that have been derived in Sec. Ill.

We can now complete the expression of the light-front
ampIitudeB#, as given by Eq(2.19, by adding the effect of
zero-mode contributions, which can be included by means of
the replacement&3.19 and(3.25. However, the tensor de-
compositions that are used to construct the modified ampli-

tudeB,, still contain theB coefficientsB{*’, Eg.(3.23, B®)
andBYY, Egs.(3.28, (3.29, and exact agreement with the ~ The matrix element for transitions between pseudoscalar
covariant amplitudeB,,, Eqg. (2.7), is possible only if the mesons, Eq(2.6), must be expressed in terms of the form
residualw dependence, which is still manifest in terms of factors F;(q?) and F,(q?). The resulting one-loop ampli-
theseB coefficients, can be proven to be spurious too. It wagyde in the light-front formalism, denoted Bs , is given by

shown that zero modes do not affect Bieoefficients, there- Eq. (2.19 and must be decomposed according to @2.
fore a different mechanism must be operative to neutralize The vector form factolF;(g?) can be calculated in the

their effect. The covariant formalism solves this problem
quite simply by means of the identities

A. The form factors for transitions between pseudoscalar
mesons

following way:

! , Q ! , Q Fug?)=——r 4.1
jodxf dzpll—xB(ZZ):fodxf dply— 81 HO= (apy -

1 Q
= 2 /— (3)2
fodxfd pil—sz 0,

(3.32

i.e., it is determined b8 *. We have shown in Sec. Il B that
the vector form factor has no spuriousdependence, it co-
incides with the result obtained in the standard light-front

whereQ=Q(N; ,N}) has been defined in E¢3.15. These approach, Eq(2.12. , .
identities can be proven for the model vertex functidrs), The form factorF5(q“) can be calculated according to
as we show in the Appendix, but they are valid for general

vertex functions, which must necessarily be functiondléf

andNj, as we have verified numerically. -

Identities of thg type given in qu3.32) are, thgrefore, the Fo(q?)= Ez{(qg)_(qp) @} (4.2
necessary condition for the covariance of the light-front for- q (wP)
malism. With this last step we have finally provided all the
material required to derive unique and consistent light-front
formulas for coupling constants and form factors that are , 5 ,
independent ofs. We shall work out this program in the next @nd depends ow. The physical form factoF,(q7), which
section. In particular, we know now the conditions that re-is independent ofv, is obtained if the amplitud&, in Eq.
store the covariance of the light-front amplitu&;, Eq. (4.2is modified by including the effect of the relevant zero-
(2.19, and can derive within the light-front formalism not mode contributions, which can be achieved by replacing all
only the form factorF1(g?), but alsoF,(q?), such that the terms linear inN, in the numerator of the integrand 8,
original results, Eq(2.9), are reproduced exactly. according to Eqs(3.19 and(3.25. The result is
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Fz(qz)—

e K Kt

+2(m]—my)[(1— x)m1+xm2]+4E( pl2+2
q?

pL a.
q?

+2xM2—2(mj—my,)(m; + mg)]] .

PHYSICAL REVIEW D 60 054026

{ 2x(1—x)M'2—2p/?>~2m;m,

(pLay)
q2

2 ’ 2
)+4(quu
q

—5 - [M"2=(1=x)(@*+(qP))— (1-2x)M 2

4.3

The consistency of the expressmn R)j(qz) can be checked (P”;1J3,[q" Y, (1- vs)d'|P")

easily, since foM’=M" andm;=m] and 8’ =" current

conservation requires,(g%)=0. This condition can be
shown to be true, for all vertex functions that will be consid-

ered in Sec. VA by means of the substitutign =p,
+1/2(1-x)q, , which transforms the integrand of E@..3)

= Ig(q )G[LVD[BS* VPan
—f(g®) ek —a.(9*)(e*P)P,~a_(g*)(e*P)q,,
(4.4)

into an odd function op, and the momentum integral van- wheree=¢(J3) is the polarization vector of the vector me-

ishes.

B. The form factors for transitions between pseudoscalar and
vector mesons

son with (P”)=0. The form factors defined in E¢4.4) are
related to the convention used most frequently by

V(g?)=—(M'+M")g(g?),
A(gH)=—(M'+M")"(g?),

Ax(gH)=(M'+M"a,(g?), (4.5

The most general form of the matrix element for the tran-yhere M’ and M” are the masses of the initial and final
sition between a pseudoscalar meson with four momenturmesons, respectively.

P’ and a meson with four momentuR{’ and spin 1 is rep-

resented in terms of the appropriate form fac{d§]:

{F (— ¢2+m2)rﬂ(pl+ml)’)/,u(l ¥s)(Pytmy)pex”

The matrix element4.4) is given in one-loop approxima-
tion in analogy to Eq(2.19 as a light-front integral

uvs

1677

The pseudoscalar vertex operaior=1"'(p;,p,) has been
defined in Eq.2.17), and for the vector vertex operatﬁf;
=1"(p}.p,) for 3S,-state mesons we use the ansatz

g+ r=—hg) y,~ D,,<”' Po), (8" (47

where the vertex functiomg is defined in analogy to Eg.

(2.20. In a manifestly covariant formalism bottf, and D"
are necessarily functions & =x(M"”—Mj}), and they will

be specified later. We shall need only the transverse polar- we” 16

ization vector

2
é(i)zs(i) (PH+8LPI’08L>Y

(4.6
(1= N;Nj

e, (2)==(1+0)V2. (4.9

The longitudinal polarization vectors(0) and £(0) have
been given in Ref[16], and we shall use only the property
that they have a nonvanishing plus component.

With Eqg. (4.7) the light-front integral4.6) can be rewrit-
ten as

where
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S,,=1tr

1
(%—W(ﬁ{—ﬁz)y( 1+mp)y, (1= ys)(B1+my)ys(— Pt my)

= 2i €1, P1“PP(M] —M{) + P1“QP (M + m{ —2my) +q*PPm} - %(4%—3%— P.)i€,apoP1 "0 P”
+29,,{m(q? = Nj = Nf = mi? = m?) —my(M"2 = Nj =N, — m/?—m3)
mj(M'2=N; = N,—m}2—m3) — 2m;m;m,}
+8p1,P1,(Mo—my) = 2(P,0,+0,P,+2q,9,)m;+2p;,P,(m; —m]
+2p;,9,(3m; —mj—2m,) + 2P ,p; (m;+m7) +2q,,p1,(3m; + m]—2m,)
+%(4%‘3%—Pv>{2%[M’2+M"2 02— 2R+ 2(m; — my) (M} +my)]
+ 0,107~ 2M 2+ N = R+ 2R, — (mf -+ m) 2 2mf - m,)?)+ P [~ R{ =R —(mi+ w2} (410

The decomposition of the amplitudd.9) into four vectors is more complicated than the representation given irf4e),
sinceéw depends not only on the four vectdPsandq, but also onw:

B e* "=i€, 058" "PUOPY(02) +i€, 050" PUGP((e* @)R1(G%) + (% P)Ry(G?))
—&e%f(g®)—(e*P)P,a. (99— (e*P)q,a_—(s*®)P,Rs(q?)
—(e*)q,Ry(d) — (e*P)w,Rs(0%) — (£* @) w ,Re(G?). (4.11

The form factorsR;(g?) are all spurious. In the standard light-front approach as, e.g., i R&f.the form factorgy(g?) and
a.(g?) are determined by the transverse decay mode according to the equation

B, 0 e* (£)=i€,,np0te* P qPy(g®) — (¥ P)(wP)a. (¢?), (4.12

where we have used thébe(+))=(wq)=w?=0. Equation(4.12 is free of spurious terms, and the expressionsyiar’)
anda. (g°) are identical with those given in RdfL6], which we include here for the sake of completeness:

2hghg pia, 2 (pla.)?
2y= d? ¢ 1—X)M}+ XM+ (M} —m}) ——+ — | p/2+ . (41
)= =5 [ ax Pl e | (L mi xS (413
2 2 hoho pﬁh
a,(g9)= 3 dIOL— (2x—1)[(1—x)m;+xmy]—[2xmp+m]+(1—2x)m]
16m (1—x)N;Nj

(1 X)q?+pla,

(1—x)q2D" (pLp| +[xmy+ (1—x)mi][xm2—(1—x)m’l’])]_ (4.14

In our former work[16] we have attempted to derive the form facf¢g?) from the plus component of E¢4.11) for the
longitudinal decay mode according to the equation

B, 0" e*"(0)=i€,,qp0"e* "P0Pg(q%) — (e* ©)T(q%) — (£* P)(wP)a, (4% — (¢* w)(wP)Rs(4?), (4.19

where we have used thébe(0))=e"(0)#0. Since the form factorg(q?) anda, (g?) are known, the form factor deter-

mined by means of Eq4.15 obviously is the combinatiorﬁ+(wP)R3 instead off. Consequently, the formula fak,(q?)
used, e.g., in Refd2—6] contains spurious contributions. The physical form fadt@?), which is independent of, is

obtained if the light-front integraﬁw is modified by the inclusion of the effect of zero modes. This can be achieved if the

trace(4.10) is rewritten by use of the tensor decompositiéd<.6), (3.20, and(3.26), and by replacing all terms linear M,
according to Egs(3.19, (3.29, and(3.31. Collecting all terms proportional tg,,, gives the result
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f(q?)= CJ sz [2x(m2—mi)(M62+Mgz)—4xm'l’M(’)2
(1—xRNY

+2(1=x)m;(qP) +2m,q%— 2xmy(M ' 2+ M"2) 4+ 2(m; — my) (m} + m})?

va(m-mp)| o2 PL g o+ (qP) P
2 72+ ’ 2
—4% 2XM'2+ 2xM42— g2~ (qP) - 2(q +(qP))piqi—z(mi—m'l’)(mi—mz) ] (4.16
q 4

The physical form factoa_(q?) is obtained in the same manner. Collecting all terms proportiongl,®, andq,q, and
combining them in the appropriate way gives the form faeto(q?) as

I /I

d?p) [2(2x 3)[(L—x)m]+xmy]
(1 x)N;Nj

a-(q2)=

1673

FJJ_ (pqu)

+ P! Ch

—8(m;—my)

1 [(14—12)m]—2m]—(8—12X)m,]

— | [M"2+M"2=g?+2(mj—my) (M} +m,) [(AY + AP — ALY) + Z,(3AT — 2A — 1)

+ = [X(q2+(qP)) 2M'2-2p! g, —2mj{(m]+my) — 2m,(m; —my) (AP + AP — 1)

pL (pﬁh)

+(aP)| = +

(4A%Y 3)) ] (4.17)

C. The vector decay constant AWSV:‘Q{%?W(Sw)p;rlJr(ew)wﬂrz}’ (4.22)

The vector decay constaffit, is defined by the matrix

element of the vector current where the terms proportional tq andr, are spurious. The
standard procedurg.g., in Ref[16]) uses the plus compo-
(0[9"y,q'|P;133)=¢,(J3)V2fy. (4.18  nent of Eq.(4.21) for the longitutinal decay mode to evaluate

the vector decay constant, and picks up the combindtjon
The matrix element can be represented in one-loop order by pr+, r,, which obviously contains spurious contributions,

a Ilght -front momentum integral, which we shall denote asj,gtead off, . The physical coupling constafy is obtained,

A ve” if the w dependence of the light-front integn&lws” is re-
moved by including the appropriate zero-mode contributions.

~ 1dx , ho 5 v (419 The necessary prescriptions are analogous to those derived in
v 0 pl(l—x)N’ ur® s L5 Sec. llIB, except that there is nq dependence. In the

1 present case one requires only the replacement

where Ry R+ mi2— m2+ (1— 2x)M 2.
1 .
(420 /2 ’ ’
fy= 3 dX PL R Mg™—my(m;—my)

and we have used the vertex operator 16 -state mesons, w
Eq. (4.7). The decomposition of the integraﬁlws”, Eq. m 4+ m
(4.18 into four vectors depends on the light front in the —pl2+ 1—2PL2 (4.22
following way: D’
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D. The g? dependence of the hadronic form factors M64_(m12_ mg)Z 1/2 M'2— Mcl)z
r_ 12
Form factors have been calculated in this section in the 0_[ 4'\/'63 } [Méz—(mi—m2)2]1’2¢(M° ),
light-front approach under the condition™ =0, i.e., for (5.2
spacelike momentum transfgf= —qf$0, whereas physi-
cal decays occur in the timelike regiod=0. However, we "=Mg+mi+m,, (5.3

have proposed in Ref2] to rewrite the form factor as an

explicit function ofg? and analytically continue from time- and a similar equation fang . The orbital wave function is

like to spacelike momentum transfer. For the multipole formassumed to be a simple function of the kinematic invariant

(3.1) of the vertex function this method is seen to reproducemass as

exactly the form factor that can be derived, in this case, also

by the standard space-time methods for all valgésWe qS(M(’)Z):N’ exp(—M()Z/Sﬁ’z), (5.9

shall use this procedure in practical applications in order to

determine hadronic form factors for physical valuesof where N’ is the normalization constant and the parameter
1/B' determines the confinement scale.

V. APPLICATIONS The formulas for coupling constants and form factors
have been derived in a manifestly covariant framework.
However, if these formulas are evaluated with the symmetric

It has been shown in Sec. Il B that if the light-front ver- light-front vertex function(5.2), the covariance conditions
tex functionsh/, andh?} are functions ol andN}, respec- (3-32 are violated, i.e., the integrals of E€B.32 are non-
tively, the identities(3.32 guarantee that the formulas for 2€r0- Consequently, some residualdependence is intro-
coupling constants and form factors given in Sec. IV areduced into these expressions if E¢5-2) and(5.3) are used
entirely free of spurious contributions. As an ansatz for the fOr the vertex function. This remaining dependence is
vertex function one could choose, for instance, a multipoldninimal in the sense that only th coefficientsB{™ in the

: : o tensor decomposition.20 and (3.26 are included in the
fe(;rg:)rgiitilgl qur'rf?'l)’ but with N, replaced byN, ] or an form factors. The practical application of this approach will

be discussed in Sec. VB.
R For the sake of completeness, we mention that we have
ho=N’ exp( ) ,

A. Choice of light-front vertex function

(5.1)  tried also to eliminate allv dependence by simply omitting
all B coefficients that are implicitly contained in the light-
front formulas for coupling constants and form factors. Due

wherea’ andN' are appropriate parameters. to the identities(3.32 the formulas withoutB coefficients

Using the formulas of Sec. IV we have tentatively calcu-are exactly equivalent to the original formulas, given in Sec.
lated various properties of light mesons on the basis of théV, in @ manifestly covariant framework, but give different

exponential form(5.1) and settingd” =M+ m; +m, in Eq. results if t_he standar_d I|ght-front vertex function, E(S.Z)_

(4.7) for the vertex operator of a vector meson of miks. and (5.3),_ is us_ed. W_|th this approach the data can be fitted

The results are rather unsatisfactory and cannot compete wifff!ly partially, in particular we found that the values for the

those given, e.g., in Ref§6,7]. For instance, it is not pos- COUPling constanty, . and gk, are about 20% lower

sible to obtain an acceptable approximation for the electrothan the experimental data.

magnetic form factor of the pion for low values gf. Even

!

if a more general pseudoscalar vertex operator than the one B. Pionic and kaonic processes
given in Eq.(2.17 is used, the results are not essentially In Refs.[6,7] the standard light-front quark model has
improved.

. . . ._been investigated and the predicted electroweak properties of
It seems that the main problem in the manifestly covanang/

lculat f ties is the inevitabl seudoscalar and vector mesons inuhed-, s-quark sector
calculation of meson properties I the inevitable 0CCUTeNntyqre found to be in good agreement with the experimental

of light-front vertex functions, liké, of Eq..(5.1), which are  yata The covariant analysis of the light-front formalism pre-
functions ofN;=x(M’2—Mg?), and that are not symmetric sented in this work extends the standard approach, and per-
in the variables of the two quarks. This property is a consemits the calculation of all form factors, that represent the
quence of the asymmetric treatment of the constituent quarkisorentz structure of a hadronic matrix element, on the same
of theqq bound state by means of a vertex function like Eq.footing. We shall update some of the results of our past work
(3.1. [7], however, we are mainly interested in the quality of the
The picture becomes quite different and surprisingly ac-additional predictions that are possible on the basis of the
curate if the standard light-front vertex functions, which areformulas, collected in Sec. IV, and as emphasized in Sec.
symmetric in the variables of the constitued pair, are VA, we shall use for these calculations the standard light-
used instead. Different choices are possiléie but for the  front vertex function, given by Eq$5.2) and(5.3).
calculation reported in Sec. V B we have preferred to use the The values of the free parameters of the light-front quark
vertex operators which we have derived fd6,- and  model, that have been chosen in Réf], have to be modi-
33,-state mesons in Ref7], and which are given by Egs. fied, since the covariant approach leads to a different formula
(2.17 and (4.7) with for the vector decay constafi, Eq. (4.22. Therefore, we
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fix again the parameters=m,=my, B, and B, by fitting TABLE 1. @ark massesn, and wave function parametegs

the pion decay constarit,=92.4+0.2 MeV [22], thep de-  andpy for (q,Q) pseudoscalar and vector mesons. The light quark
cay constant,/M,=150MeV [23], and the charge radius mass ismy=m, 4=0.26 GeV.

of the pion[24], which will be given below. —

Similarly, the parametems\, B« , and Bk« are fixed by (qQ) meson Mg (GeV) Br (GeV) By (GeV)
fitting the decay constarf, =113.4-1.1 MeV [22], the K*
decay constant fyx /Mgx=152MeV [25], and the ™ 0.26 0.3088 0.2600
K mr-transition radiu$26]. We shall use the values for masses KK 0.37 0.3384 0.2770
and wave function parameters listed in Table I.

A comparison of the values for quark masses with th
parametrization of Ref.7] shows that only the value fan
=m,=my is slightly changed, and it might be interesting to
note that the corresponding modification of the electromag- g,+,+.0=6.02 (6.06=0.01),
netic form factor of the piorF _(g?) leads to an almost per- g
fect agreerznent between the prediction and the data for smally, , , =v3g,«+x+,0=5.54 (5.57+0.03.
values ofg”. The experimental data have been reanalyzed in
Ref.[24], based on the parametrization The experimental coupling constants are given in parenthe-

ses. The values for coupling constants, which we have cal-
(5.5 culated in Ref[2] in the standard light-front approach are
1—q2/A§+sq4/A‘2" ' about 10% smaller, and the differences are even larger if the
alternative methods, mentioned in Sec. V A, are used.
In the following we compare the results of the fit to the data Next, we shall consider the case #f; decays,K™*
with the values for the parameters; and A,, which we  — 7% %y andK®— 771~ v, whose hadronic structure is, ac-
have derived fronF,(g?), Eq.(2.12, by taking the firstand  cording to Eq.(2.6), described by the form factois,(q?)

eperimental data gives an impression of the quality of the new
formula for f(g?). The numerical results are

F.(0%)=

second derivative at zero-momentum transfer: andF,(g?), which are given in the light-front quark model
by Egs.(2.12 and(4.3). Very oftenK,; decays are analyzed
B [ 719.3 MeV  (this work), in terms of the form factor§,(q?) andFq(q?). The scalar
1717204 MeV (Ref. [24]), form factorFo(q?) is defined by
2
A :[—1473 MeV (this work), Fo(qz):Fl(quﬁFz(qz)_ 5.8
27| = (1420539 MeV (Ref. [24]). Ko™ Vg

The first derivatives ofF ;(q%) and Fo(q?) determine the
vector radius ;- and the scalar radiugyk ,, respectively,
which are usually accounted for by the slope parameters

The rates for the radiative transitions— P+, which we
have calculated in Refl.7], are modified also due to the
changed values for the vector meson paramegkrs The

rate is given by 1 1
Ne==r2 M2 andNo==r3.M2.. (5.9
1 M2—M213 6 - 6 v
I'==aglp| ——" (5.6)
37V 2my | The ratio of the form factors aj?=0 is denoted by

where the coupling constagt,p,=g(0) can be calculated E=F,(0)/F(0), (5.10
with Eqg. (4.13. We have summarized the results for a se-

lected set of radiative transitions in Table Il. We note, inand the quantitiexq, A, , and¢ are, according to Eq$5.8)
particular, that the predicted rate for the transitipn ~ and(5.10, related by
— oty is in agreement with the experimental result of Ref.

[27], but disagrees with the average value of the Particle s
Data Group[22]. No=Aot pr— o & (5.13

In Ref. [2] we have investigated also the pionic decays KO ™

pT—mt 7% and K* *—(Km)*, and have calculated the
coupling constangy p,0 by means of a soft pion theorem due

2

TABLE Il. Rates and decay constants for the radiative decays

to Das, Mathur, and Okubj®8] V=P
1
4|gvao|=|f(0)—(M\2,—M,zg)aJr(O)l, (57) V—Py vpy (GeV™Y)  Tiheor (keV) I‘expt (keV)
ptomty 0.810 81.3 687 [22]
where a,(0) and f(0) are given by Egs.4.14 and 81+4+4 [27]
(4.16. [Note, that if this relation refers tg,+ ,+ 0 the fac-  K** K"y 0.867 54.4 565 [22]
tor 4 in Eq. (5.5 must be replaced by the factor]2ZThe = k*0_ K0y -1.314 124.3 11710 [22]

comparison of the predicted coupling constants with the ex
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TABLE lll. The parameters foK,; decays. It is easy to prove that this condition for covariance,
found in [33], is equivalent to the requirement, which we
This work ChPT[29] Experiment established in Sec. lll B that the light-front vertex function of
F,(0) 09620 0.9610.008 [31] g manif?stly (_:ovariant formalis_mAml_Jst necessar_ily be a func-
- 0.0269 0.03%#0.003 0.0279-0.0027K%) [26]  tion of N7 . Since we can rewrit®l; in the following way:
0.0286+0.0022K ) [22] 12, 2
A 0.0161 0.01%0.004 N/ = 2 2y _ 2_P1 +mq 2 2
0 : : : N;=X(M{—Mg) =XMj— —————mg+mj
& -0.125 —0.16+0.06 —0.11+0.09(K ;) [22] 1
—0.33:0.14(K,,5) [22] = —2Mu(vpg) + ME—md +m?, (5.13

In Table Ill we compare the results of our calculation with where we have used the relation

the data, wherever possible, and with the corresponding re-

sults obtained by the use of chiral perturbation theory (VPg) = ,
(ChPT), where we rely on the detailed discussions in Ref. 2(1=x)My

[29]. We note in particular, that the recent calculation of . =~ ) _

higher-order correctionf30] indicates an even larger range N1 i indeed a linear function ofv{p).

of uncertainty of the ChPT predictions far, and\,, than If heavy meson properties and transitions between heavy
the one quoted in Table IIl. mesons are calculated in the framework of the covariant ex-

Finally, we consider the Callan-Treiman relati¢p82], tension of the light-front formalism in combination with the
which is also a soft-pion result, that relates the form factorsstandard light-front vertex function, Eg®.2) and(5.3), the

p 2+ mi+(1-x)°M7

of K3 andK,, decays, namely exponential form5.4) of the vertex function guarantees that
in the limit where the heavy quark mass goes to infinity, the
5 ) fk light-front integrals receive contributions only for values of
[F1(Mi) +Fa(Mk)Im2-0= [ 1.227+0.012. 1—x in the neighborhood of (£x)=m,/mq, where it is

(5.12  justified to setM? —M{?=N}/x equal toN; . Then, the rea-

) ) . soning that led to E(5.2) can be used also to prove that the
The form factors=;(q%) andF(g°) are given by Eqs2.12 light-front vertex functiorh;, Eq.(5.2), becomes a function

and(4.3), and can be analytically continued from timelike to of (vp,). We can at once conclude that, while the extended

spacelike moment.um transfer using the method proposed 'ﬁbht—front quark model lacks manifest covariance if used to
Ref. [2]. The relgtlon(5.12> involves the form Zfactors CON" describe light mesons as we did in Sec. V B, manifest cova-
tmugd' to zero pion mass. The form factei(q”) Fioes QOt riance is recovered in the heavy quark limit.

explicitly depend on the pion mass, and we fiRg(M) Therefore, the covariant analysis presented in this work
=1.4963. The form factoF,(q7) has an explicit depen- ,yoyides also an ideal framework to derive unique expres-
dence onM ., and we find sions for form factors in the heavy quark limit.

MZ=0
FZ(Mi) —_0.2441 —0.2753. VI. CONCLUDING REMARKS

The RQM, based originally on the light-front formalism,
has been extended in R¢R] to the treatment of decay pro-
sses with a timelike momentum transfer. In the present
ork we have further extended the range of applicability of
the RQM and used a manifestly covariant formalism as a

While the dependence of the constituent masand the
parameters,. on M. is unknown, it seems reasonable to
assume that these quantities are gently varying functions
MZ2. Consequently, the light-front quark model predicts

F(M2)+E-(M2) T2 _~=1.221 guide to derive formulas for all form factors that are required
[Fa(Mi) 2 K)]Mﬂ’o to represent the Lorentz decomposition of the hadronic ma-
in agreement with Eq(5.12 trix elements of the electroweak current in one-loop order.

However, the practical application of this covariant exten-
sion of the light-front quark model is successful only if the
formulas for form factors are evaluated with standard light-

In Ref.[33] a covariant light-front model for heavy me- front vertex functions, which are symmetric in the variables
sons was constructed within the framework of the heavyof the constituentjq pair. The latter violate the conditions
quark effective theory. An important feature of this covariantfor the strict Lorentz covariance of the formalism. We have
model is the requirement, that the vertex function for a heavyndicated that manifest covariance is recovered in the heavy
meson must be a function of/p,), wherev,, is the four  quark limit, since the vertex functions become asymmetric in
velocity of the heavy meson with masé,;, i.e., the four the variables of the heavy-ligltfq pair in accordance with
momentum of the meson B'=Myv, andp, is the four  the conditions for covariance.

C. Covariance in the heavy quark limit

momentum of the light quark with mass,, which is on its In order to explore the predictive power of this approach,
mass-shell, i.e.pézmg. The mass of the heavy quark is we have calculated various properties of pseudoscalar and
Mg. vector mesons in the-, d-, s-quark sector. The good agree-
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ment with the data for electroweak transitions, which hagion Z,, denoted byi[Z,], is equal to the zero-mode contri-

been found on the basis of the standard light-front methodbution, given by Eq(3.13. The integral[Z,] is defined by
in Ref.[7], is not only confirmed, but even improved, since

some form factors for transitions which involve vector me- 1 1 7
sons are modified in the covariant analysis. I[Z,]= 3 j dxf d?p] ——, (A1)
We have derived also those form factors which cannot be 167> Jo (1—=x)NJNINJN}

evaluated in the standard approach. We have, for example,
calculated the scalar form factor fét,53 decays and found ; ; NN 12_A12
that the prediction is consistent With3 the available experi-\iv,r)er(?%2 ° I(,jzefme”c: Py EAEA8, Ny =Ny emy = A and
mental data. Likewise, the form factar_(q?), which ap- Ny =Ny+my o A_ o

pears in the Lorentz decomposition of the matrix element for e following identity is useful:
transitions between pseudoscalar and vector mesons, has

been calculated. Both form factors are relevant, e.g., for the 1 1

analysis of the properties of semileptonic decayBahe- e o A T2_ 2\ A2 2
sons in the channeB—Mrv,, where M=1,p,D,D*, N1N3NANZ (A m; ") (A m; %)
which will be measured at th factories which are currently
under construction. The investigation of this decay channel
has been started in RdB4], where the covariant extension
of the light-front quark model has been applied to the decay

B—m7v,, and excellent agreement with the results of Iattic:eWe evaluate the’ intearal by the standard Fevnman param-
calculations and light-cone sum rules has been found. We ! g y y b

plan to investigate further hadronic properties in this manner(.Eter method. Combining denominators, changing the mo-

. ng aenoml Jing th
Note addedAfter the completion of this work | became MeNtum variable tq, =pi —y(1-x)q, , and eliminating

aware of several publications that are related to my paper. A8rMS linear inp, by symmetric integration gives

simple connection between the covariant Feynman formal-

1 1

N; Ny

1 1
— . (A2)
N7 N}

X

; . : . R 1 1 1

ism and time-ordered perturbation theory in the infinite mo- 1[Z,]= J' dxf dy(1—x)
mentum frame has been investigated by Schrig®]. A 2 16m2(A2—mi?) (A2 —m}?) Jo 0
discussion of the problems with vertex functions to be used

in a covariant analysis is given too. Brodsky and HwgB®§] x[ (Alz_m,z)(i_ i)

find that zero-mode contributions are not only crucial to ob- PACua Caa

tain the correct results for electroweak form factors, but to
provide a new perspective on the physics of semileptonic
decays. Their result for the charge form factor of a neutral
composite system composed of two charged scalars as de- X
rived from the minus component of the one-loop amplitude

is equivalent to Eq(3.10. The zero-mode contribution ap-
pears in 36] as the contribution of the annihilation of tiyg
pair of the initial Fock state to the electromagnetic current in
the limit ™ —0; in this work this contribution is effectively

+[mp2—m3+(1-2x)M'2=y(1—x)(q?+(qP))]

1 N 1 1 1 )} (A3)
Cuu Caa Cin Caa)

where

_ ' "
C1=C(my,mj

accounted for by means of the prescripti¢®.19. The =(1—x)(1—y)m;2+ (1= x)ym;2+xm3
charge form factor can be calculated also from the plus com- ! ! 2
ponent of the amplitude, and the prescripti@9 guaran- —X(1=x)[(1=y)M"2+yM"?]—(1—x)?y(1-Yy)q?,

tees that the two determinations of the charge form factor are
equal. Zero modes are discussed also by Choi af@liin ¢, , =C(A’,A"), Ciy =C(mj,A"), Cp=C(A’",m)).
Ref. [38] the form factors forK|; decays are investigated. (A4)
The method used to calculakg (g?) is the same as in my

work, but the approach proposed to determine the secondor the final step it is helpful to change variables framto
form factor givesF,(q?), as defined in Eq(2.22 of the  u,v, where the two sets are related by

present paper, and not the physical form fadfg(g?). A

related light-cone formalism for the calculation of spin-1 1-u
form factors has been given by Brodsky and Hilla8]. 1-uv’

(1-x)dxdy=ududv. (A5)
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APPENDIX: THE PRESCRIPTION (3.19 AND THE +(1—u)M”2]—u(1—u)(l—v)qz, (A6)

IDENTITIES (3.32 IN THE MODEL OF SEC. Il A

In the framework of the model vertex function of Eq. and the integrand of E4A3) can be cast into a simple form,
(3.1) the prescription(3.19 states that the integrated func- if it is used that
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u[mi?—m3+(1-2x)M"2=y(1-x)(q+(qP))]

=u[mp?—m3+(1-2uv)M’'2—(1—u)(g?+(qP))]

dC11
T dv Cra=

—Ci\
CAA U(AIZ /2)

=—C);—Uu(A'?—m}?). (A7)

The integration of Eq(A3) with respect tov can now be

performed with the result

11C%A

AC ,
(A8)

1

I[Z>]=

(Alz )(AUZ mHZ)f d

where Cflz Ciyv=0, etc. This expression fol{Z,] is the
same integral as given by E@.13. The prescription$3.25
and(3.31) can be proven in the same manner.

This procedure can be used also to prove the identities of
Eq. (3.32. It will be sufficient to consider the first identity,

which means that the integrated functd{f’ [B{?) is defined
by Eq.(3.23], which we shall denote in analogy to Hé\1)

PHYSICAL REVIEW D60 054026

where A{?) has been defined in Eq3.21). The integral
I[A(lz)] can be calculated by the Feynman parameter method,
as indicated above, with the result

I[AP]= !
1 327 Z(A/Z mIZ)(ANZ /12)
11CAA
fdxf dy(1—x)In C Cu (A10)

The integrall[xZ,] is given by Eq.(A3) with an additional
factor of x in the integrand. The substitutiai5) and the
modification of the integrand according to H&\7) permits
an easy partial integration in the varialewith the result

1
16’172(/\,2 mIZ)(AnZ //2)

I[Z2]=

11CAA

duf dvuln ————
f CiaCar’

and if Eq.(A10) for I[ A{®)] is changed according to EGA5)
we find the result

(A11)

by I[B{?)], must be equal to zero. We split the integral as

follows:

I[By"]= %'[Xzz]_l[A(lz)]: (A9)

I[B¥]=0. (A12)

The remaining identities of Eq3.32 can be proven in the
same manner.
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