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Covariant analysis of the light-front quark model
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A manifestly covariant formalism is used as a guide to construct a covariant extension of the light-front
quark model. Our analysis demonstrates in detail that covariance necessarily requires the inclusion of zero-
mode contributions. The main goal of this paper is to use this technique in order to extend the standard
light-front formalism such that all form factors that are necessary to represent the Lorentz structure of a
hadronic matrix element can be calculated on the same footing. The form factors that have been calculated in
the standard approach are reproduced, except for those that describe transitions that involve vector mesons. The
covariant approach permits also the calculation of the scalar form factor for transitions between pseudoscalar
mesons, and the form factora2(q2) for transitions between pseudoscalar and vector mesons, which is not
possible in the standard light-front formalism. The practical application of the covariant extension of the
light-front quark model is successful only if the formulas for form factors are evaluated with standard light-
front vertex functions. The latter violate the conditions for strict Lorentz covariance of the formalism. In order
to explore the predictive power of this approach, we calculate various properties of pseudoscalar and vector
mesons in theu-, d-, s-quark sector. We find good agreement with all available data for electroweak transitions.
@S0556-2821~99!03215-4#

PACS number~s!: 12.39.Ki, 13.20.2v, 13.25.2k, 13.40.2f
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I. INTRODUCTION

The relativistic constituent quark model~RQM! is based
on the light-front formalism@1# and provides a conceptuall
simple, phenomenological framework for the determinat
of hadronic form factors and coupling constants. It is
attractive feature of the light-front formalism that it permits
consistent relativistic treatment of a relativistic compos
system. In the RQM hadrons are composed of vale
quarks and the equation of motion of the boundqq̄ meson
and the boundqqq baryon in the light-front formalism is a
relativistic Schro¨dinger equation with an effective confinin
potential. Instead of calculating these wave functions
terms of a phenomenological potential, very often one st
with a phenomenological wave function, which depends o
parameter 1/b which essentially determines the confineme
scale, i.e., the ‘‘size’’ of the bound state. The only para
eters of the model are the constituent masses of the qu
and the wave function parameterb, which can be fixed by a
fit to the data. In this work we shall deal only with the qua
model description of mesons.

In recent years the RQM has become a useful and pop
tool to investigate various electroweak properties of light a
heavy mesons@2–6#, based upon relativistic approximatio
methods for the relevant matrix elements. In our past w
we have explored the quality and power of the RQM in t
u-, d-, s-quark sector@7# for which a large body of precise
data exists. We found that the RQM permits a reliable p
diction of data on the electroweak transitions of pseudosc
and vector mesons~see also Ref.@6#!.

However, only selected properties ofqq̄ mesons can be
analyzed unambiguously in the RQM, for it is well know
@8–10# that the light-front calculation of the matrix eleme
of a one-body current generates a four-vector structure th
in general not covariant, since it contains a spurious dep
dence on the orientation of the light front. The light front
0556-2821/99/60~5!/054026~18!/$15.00 60 0540
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defined in terms of the lightlike four vectorv by the invari-
ant equation (vx)50. The special casev5(1,0,0,21) cor-
responds to the light front or null plane (vx)5x15x01x3

50.
This problem is closely associated with the violation

rotational invariance in the computation of the matrix e
ment of a one-body current@11,12#. Because of the fact tha
the angular momentum operator contains interactions,
current operator cannot satisfy the requirement of rotatio
invariance without containing interaction dependent pa
i.e., two-body currents. Moreover, this condition and curre
conservation impose essential dynamic consistency co
tions on the representations of the current operator and
qq̄ bound-state wave function. The matrix element of the f
current, which is the sum of a one-body current plus tw
body currents, is completely covariant. While such a prec
treatment is beyond the limit of the phenomenology of t
RQM using as input one-body currents, there is an exc
tional case which will be treated in detail. The matrix el
ment of a one-body current transforms covariantly only u
der kinematic Lorentz transformations, which keep the lig
front invariant, but lacks complete Lorentz covarianc
Consequently the matrix element acquires a spuriousv de-
pendence. In practical applications of the light-front form
ism it is usually assumed that this problem can be avoided
the rule, that hadronic form factors should be calculated o
from the plus components of the matrix elements of the
spective currents, which, as we shall show, are essent
free of spurious contributions for transitions involving pse
doscalar mesons, but this is no longer true for vector mes

In order to treat the complete Lorentz structure of a h
ronic matrix element the authors of Ref.@8# have developed
a method to identify and separate spurious contributions
to determine the physical, i.e.,v independent contributions
to the hadronic form factors and coupling constants. In t
work we shall use a manifestly covariant framework as
©1999 The American Physical Society26-1
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WOLFGANG JAUS PHYSICAL REVIEW D 60 054026
guide to develop a basically different technique to deal w
this problem. A similar procedure has been used in R
@13# to investigate the relation between the standard cov
ant quantum field theory and light-front field theory. In o
approach the structure of aqq̄ meson bound state will be
approximated by a covariant model vertex function, inste
of a wave function, and a hadronic matrix element of a o
body current, that is represented by a one-loop diagram,
be computed in two different ways: In the convention
space-time formalism the matrix element is covariant a
consists of a Feynman momentum loop integral, which
be evaluated by standard methods. The corresponding l
front matrix element can be obtained from the moment
loop integral by a light-front decomposition of the loop m
mentum, and carrying out the integration over the min
component (p25p02p3) by means of contour methods.
is important to require that the contour can be chosen s
that only the singularities associated with the quark propa
tors contribute, while the meson vertex function is free
singularities within the contour. There is indeed a class
covariant meson vertex functions that have this prope
they are characterized by an asymmetry in the variable
the constituentqq̄ pair. The integration over the minus com
ponent of the loop momentum defines the correspond
light-front vertex functions. If they are used to calculate ha
ronic matrix elements, both procedures must lead to the s
form factors, consequently thev dependence of the light
front approach and the mechanism that causes the disap
ance of allv dependent contributions can be studied in d
tail. In particular we shall show that covariance requires
inclusion of the effect of zero modes. Hadronic form facto
and coupling constants can be calculated consistently in
covariant model in terms of asymmetric light-front vert
functions.

The main goal of the present work is to use this covari
technique in order to extend the conventional light-front f
malism such that all form factors that are necessary to
resent the Lorentz structure of a hadronic matrix eleme
can be calculated on the same footing, preserving the s
plicity that distinguishes the light-front approach. It is impo
tant to note that the expressions for form factors that h
been obtained in the RQM in the past@2–7# are reproduced
in the covariant approach, except for those that describe t
sitions which involve mesons of spin 1, polarized in the lo
gitudinal direction. The fact that transition form factors f
particles of spin 1 or higher are sensitive to the violation
rotational invariance in the light-front formalism is we
known, and has been discussed in the context of calculat
of the electromagnetic form factors for the deuteron@12,14#,
and ther meson@15#. We shall investigate this problem fo
the first time for transitions between states of spin 1 and s
0. In particular, we shall show that the conventional lig
front formulas for the vector coupling constantf V ~see, e.g.,
Ref. @7#! and the axial-vector form factorA1(q2) ~see, e.g.,
Ref. @16#!, which is one of the form factors for semilepton
transitions between pseudoscalar and vector mesons, co
unphysical admixtures. In this work formulas will be give
that are free of spuriousv dependent contributions.

For practical applications it is of interest that, aside fro
05402
h
s.
i-

d
-

an
l
d
n
ht-

s

ch
a-
f
f
;

of

g
-
e

ar-
-
e
s
is

t
-
p-
t,
-

e

n-
-

f

ns

in
-

ain

a clean treatment of the subtleties in connection with p
ticles of spin 1, the covariant approach permits also the
culation of the scalar form factor for transitions betwe
pseudoscalar mesons, and the form factora2(q2) for transi-
tions between pseudoscalar and vector mesons, which is
possible in the conventional light-front approach. These fo
factors are required, for instance, for the analysis of tauo
B decays.

In Sec. II we present a brief summary of the basic form
ism and an outline of the covariant analysis. The latter
motivated by the fact that the Lorentz decomposition o
light-front amplitude, which represents a hadronic matrix
ement, necessarily requires for its construction the vectov,
i.e., it depends on the light front. In Sec. III we investigate
simple model to discover the mechanism that leads to
cancellation of allv dependence of a light-front amplitude
whereby zero-mode contributions play a central role. A g
eral method is developed that permits the calculation of
physical form factors. This program is performed in Sec. I
In Sec. V we discuss the problem associated with the cho
of the appropriate vertex function, and explore the predict
power of the covariant extension of the light-front qua
model by calculating various properties of pseudoscalar
vector mesons in theu-, d-, s-quark sectors and comparin
the predictions with the available data. Finally, we brie
discuss the heavy quark limit of our model. We conclude t
work in Sec. VI with a summary of our analysis.

II. BASIC FORMALISM AND OUTLINE
OF THE COVARIANT ANALYSIS

As an introduction of our covariant analysis we sh
briefly compare the calculation of the pseudoscalar de
constant and of the electroweak form factors of pseudosc
mesons in a manifestly covariant framework with the res
of the corresponding calculation in the light-front formalism

The composite meson state is represented by theqq̄
bound-state vertex operatorG, which in a covariant formal-
ism is the solution of the Bethe-Salpeter equation

G5UGG, ~2.1!

whereU is the irreducibleqq̄ kernel in a field-theoretic de
scription of theqq̄ interaction. The full statement of the sym
bolic operator product of Eq.~2.1! includes the integration
over all four components of the relative momentump5p18
2p2 , wherep18 ,p2 denote the four momenta of the constit
ent quarks with massesm18 and m2 , respectively, and the
total four momentum of the meson state is given byp18
1p25P8, with P825M 82, where M 8 is the mass of the
meson. The Green’s functionG describes the propagation o
the two off-shell quarks. We assume that the solution of
Bethe-Salpeter equation has the form

G5g5H0~p18
2,p2

2!. ~2.2!

This simple ansatz is not essential for the covariant analy
which could be based equally well on the most general v
tex operator which has the matrix structure ofg5 and
6-2
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COVARIANT ANALYSIS OF THE LIGHT-FRONT QUARK MODEL PHYSICAL REVIEW D60 054026
g5(gP8). In writing down Eq.~2.2! we have omitted obvi-
ous color and flavor operators, andH0(p18

2,p2
2) is the scalar

vertex function.
The pseudoscalar decay constantf P for a qq̄ meson is

given by the matrix element of the axial vector curre
which we express in the general form

^0uq̄9gmq8uP8&5 iPm8& f P . ~2.3!

The matrix element~2.3! is given in the one-loop approxi
mation as a momentum integral

Am5
Nc

~2p!4 E d4p18
H08

N18N2
tr@gmg5~p” 181m18!g5~2p” 21m2!#

52
Nc

~2p!4 E d4p18
H08

N18N2
4@m2Pm8 1~m182m2!p1m8 #,

~2.4!

where

N185p18
22m18

21 i e and N25p2
22m2

21 i e,

andNc denotes the number of colors. The pseudoscalar
cay constant can be derived from Eq.~2.4! as

& f P52 i
~P8A!

P82 , ~2.5!

and we have used (P8A) to denote the scalar product of th
four vectorsPm8 andAm .

The most general form of the hadronic matrix element
the vector current must be expressed in terms of two fo
factors

^P9uq̄9gmq8uP8&5PmF1~q2!1qmF2~q2!. ~2.6!

The pseudoscalar mesons have momentaP8, P9, and P
5P81P9, q5P82P9. The matrix element~2.6! is given,
again in the one-loop approximation, as a momentum in
gral

Bm5 i
Nc

~2p!4 E d4p18
H08H09

N18N19N2
Sm , ~2.7!

where

Sm5tr@g5~p” 191m19!gm~p” 181m18!g5~2p” 21m2!#

52p1m8 @M 821M 922q222N22~m182m2!2

2~m192m2!21~m182m19!2#

1qm@q222M 821N182N1912N212~m182m2!2

2~m182m19!2#

1Pm@q22N182N192~m182m19!2# ~2.8!

and
05402
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H08[H08~p18
2,p2

2! and H09[H09~p19
2,p2

2!,

and it has been used thatp181p25P8, p191p25P9, p18
2p195q, and N195p19

22m19
21 i e. The form factors in the

one-loop approximation are given by

F1~q2!5
q2~PB!2~qP!~qB!

q2P22~qP!2

and

F2~q2!5
P2~qB!2~qP!~PB!

q2P22~qP!2 . ~2.9!

In order to make a comparison with the correspond
one-loop expressions obtained in the light-front formalism
is necessary to introduce light-front momenta. The fo
momentum of the meson of massM 8 in terms of light-front
components is P85(P82,P81,P'8 ), where P865P80

6P83 and P825P81P822P'8
25M 82. The appropriate

variables for the internal motion of the constituents, (x,p'8 ),
are defined by

p18
15xP81, p2

15~12x!P81

p1'8 5xP'8 1p'28 , p2'5~12x!P'8 2p'8 ,

and the kinematic invariant mass is

M08
25

p'8
21m18

2

x
1

p'8
21m2

2

12x
. ~2.10!

The pseudoscalar decay constantf P and the vector form
factor F1(q2) have been derived first forqq̄ mesons, whose
constituents have equal mass, by Terentev@1# using Hamil-
tonian light-front dynamics~see also Ref.@17#!. We have
extended the model of Ref.@1# and derived the formulas tha
are valid for any pseudoscalar meson in Refs.@7,16#.

The pseudoscalar decay constant for the meson of m
M 8 is given by@7#

f P5&
Nc

8p3 E
0

1

dxE d2p'8
h08

x~12x!~M 822M08
2!

3@~12x!m181xm2#. ~2.11!

For the determination of form factors it is crucial to im
pose the conditionq150, which at this stage of the calcula
tion means that form factors are known only for spacel
momentum transferq252q'

2 <0. The vector form factor
F1(q2) for the transition between an initial pseudoscalar m
son with internal variables and masses of its constitu
quarks (x,p'8 ,m18 ,m2) and a final pseudoscalar meson wi
the corresponding quantities (x,p'9 ,m19 ,m2) has been ob-
tained in@16,17# as
6-3
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WOLFGANG JAUS PHYSICAL REVIEW D 60 054026
F1~q2!

5
Nc

16p3 E
0

1

dxE d2p'8
h08h09

~12x!x2~M 822M08
2!~M 922M09

2!

3$xM08
21xM09

21~12x!q22~12x!~m182m19!2

2x~m182m2!22x~m192m2!2%, ~2.12!

whereM08
2 is given by Eq.~2.10!, p'9 5p'8 2(12x)q' and

M09
25

p'9
21~12x!m19

21xm2
2

x~12x!
. ~2.13!

The light-front vertex functionsh08 and h09 depend on the
internal variables (x,p'8 ) and (x,p'9 ), respectively, and will
be specified later.

In order to compare the results of the two methods
shall evaluate the four-momentum integrals~2.4! and ~2.7!
by use of the light-front decomposition of the fou
momentum vector, where

d4p185
1

2
P81dp18

2dxd2p'8 . ~2.14!

In general, it is not possible that, given the vertex funct
H0(p18

2,p2
2), a light-front vertex functionh0(x,p'8 ) can be

found such that the one-loop formulas~2.5! and ~2.9! agree
with the corresponding light-front expressions~2.11! and
~2.12!. One expects that such an agreement can be achi
only if two-body currents are included such that the to
current operator is compatible with the light-front vert
function. The interaction-dependent parts of the current
generated by the exchange of gluons between the consti
quarks, and the treatment of such a process goes beyon
valence quark picture, which is the basic assumption of
approach used in this paper. However, there is a well-kno
exception: If it is assumed that the vertex functionH0 has no
poles in the upper complexp18

2 plane, then the covarian
calculation of meson properties and the calculation in
framework of the light-front formalism give identical resul
already at the one-loop level. The four-momentum integr
~2.4! and ~2.7!, expressed in terms of light-front variable
are carried out by contour methods in the complexp18

2

plane. Closing the contour in the upperp18
2 plane@under the

conditionq150 for the amplitudeBm of Eq. ~2.7!# ensures
that the momentum integrals are given by the respective r
dues of the spectator quark pole, corresponding to put
quark 2 on the mass shell. We shall usep̂18 , p̂19 , and p̂2 to
denote the restricted four vectors

p̂25S m2'
2

p2
1 ,p2

1 ,p2'D ,

p̂185P82 p̂2 , ~2.15!

p̂195 p̂182q,

wherem2'
2 5p2'

2 1m2
2. It follows from Eq. ~2.15! that
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N̂25 p̂2
22m2

250,

N̂185 p̂18
22m18

25x~M 822M08
2!, ~2.16!

N̂195 p̂19
22m19

25x~M 922M09
2!,

and the vertex operators at the spectator quark pole are g
by

Ĝ85g5H08~ p̂18
2,p̂2

2! and Ĝ95g5H09~ p̂19
2,p̂2

2!.
~2.17!

Note that the contour integration ofAm andBm is zero unless
0<x<1, and we shall denote the resulting expressions
Âm and B̂m . They are given by

Âm52 i
Nc

16p3 E0

1

dxE d2p'8
h08

~12x!N̂18

34@m2Pm8 1~m182m2! p̂1m8 #, ~2.18!

B̂m5
Nc

16p3 E0

1

dxE d2p'8
h08h09

~12x!N̂18N̂19
Ŝm , ~2.19!

where

h08[h08~N̂18!5H08~ p̂18
2,p̂2

2!,

h09[h09~N̂19!5H09~ p̂19
2,p̂2

2! ~2.20!

are the corresponding light-front vertex functions, andŜm is
the traceSm , Eq. ~2.8!, expressed in terms of the restricte
four vectors of Eq.~2.15!.

A peculiar property of the integralsÂm and B̂m is their
dependence on the light front, defined by the lightlike fo
vector vm5(2,0,0'), which is explicitly revealed by their
decomposition into four vectors, as given by

Âm5 i&~Pm8 f P1vmgP!, ~2.21!

B̂m5PmF1~q2!1qmF̂2~q2!1vmF3~q2!. ~2.22!

From the formulas forÂm , Eq. ~2.18!, andB̂m , Eq. ~2.19!, it
can be shown thatgPÞ0 andF3(q2)Þ0. Therefore, not only
is ÂmÞAm and B̂mÞBm , but sincevm is a fixed vector, the
four-vector structure ofÂm and B̂m is obviously not covari-
ant. In fact, in going from the manifestly covariant one-lo
integralsAm , Eq. ~2.4!, andBm , Eq. ~2.7!, to the light-front
integrals Âm and B̂m by means of ap18

2 integration, the
associated zero-mode problem has been ignored. We
show in Sec. III that zero modes are required in order
eliminate the spuriousv dependence and to obtain a cova
ant result.

Nevertheless, one can already determine the pseudos
decay constantf P and the vector form factorF1(q2) from
the plus components ofÂm and B̂m , respectively,
6-4



Eq
n
pe
f a

s
a
iv
n
q

v

r

-

us

-

e-
ant
ver-
r
ns
ont

m
x-

le
ns
s a
a

-

on-

ch
is
of
-
e

in
dard

be
ted
of

on
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Â15 iP81& f P , ~2.23!

B̂15P1F1~q2!, ~2.24!

and the result coincides with the standard expressions,
~2.11!, ~2.12!, of the light-front formalism. They will be see
to be free of spurious contributions, which explains the s
cial role of the plus component of the matrix element o
current in light-front calculations.

Hadronic matrix elements are often expressed in term
qq̄ bound-state wave functions, and for completeness s
we shall briefly describe their relationship to the respect
vertex operators. The covariant Bethe-Salpeter wave fu
tion F(p18 ,p2) is related to the vertex operator defined in E
~2.2! by

F~p18 ,p2!5S~p18!GS~2p2!

5
~p” 181m18!g5~2p” 21m2!

~p18
22m18

2!~p2
22m2

2!
H08~p18

2,p2
2!.

~2.25!

The light-front version of the covariant Bethe-Salpeter wa
function is defined by

C~x,p'8 !5
i

2p E dp18
2F~p18 ,p2! ~2.26!

with p181p25P8 and P'8 50. Under the condition that the
vertex functionH08 has no poles in the upper complexp18

2

plane we find

C~x,p'8 !5
~p”̂ 181m18!g5~2p”̂ 21m2!

~12x!N̂18P81
h08~N̂18!, ~2.27!

where the light-front vertex functionh08 is given by Eq.
~2.20!. This representation can be used, for example, to
derive the result found by Brodsky and Lepage@18# that the
pseudoscalar decay constantf P is determined by the (gP)g5
part of the wave function~2.27!:

C~x,p'8 !˜
1

&
~gP8!g5cqq̄~x,p'8 !, ~2.28!

where

cqq̄~x,p'8 !5
21

2&
tr$g1g5C~x,p'8 !%

5&
~12x!m181xm2

~12x!N̂18
h08 . ~2.29!

The pseudoscalar decay constant is obviously given by

f P5
Nc

8p3 E
0

1

dxE d2p'8 cqq̄~x,p'8 ! ~2.30!
05402
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The form factorF̂2(q2) can be calculated from the trans

verse component ofB̂m , but it containsv dependent, spuri-
ous admixtures, and is different fromF2(q2). We shall work
out a method which will permit us to cancel the spurio
parts of the light-front amplitudesÂm andB̂m . The modified
amplitudes are free of additional form factors likegP andF3
and the physical form factorF2(q2) can be determined un
ambiguously in one-loop order.

III. A MANIFESTLY COVARIANT ANALYSIS

The formulas forf P , Eq. ~2.5!, in terms of the amplitude
Am , and forF1(q2) and F2(q2), Eq. ~2.9!, in terms of the
amplitudeBm have been derived from the respective on
loop Feynman diagrams, whereby a manifestly covari
framework has been prescribed. For the special class of
tex functionsH0(p1

2,p2
2), which have no poles in the uppe

complexp1
2 plane, the associated light-front vertex functio

can be defined uniquely, and the corresponding light-fr
formalism must be able to reproduce not onlyf P and
F1(q2), as we have verified in Sec. II, but also the for
factor F2(q2). Moreover, it must be possible to prove e
actly that all dependence on the light front, i.e., allv depen-
dence, disappears.

A. An explicit model calculation

We shall first develop a strategy to deal with thev depen-
dence of the light-front formalism in the context of a simp
covariant model, which permits explicit analytic calculatio
at each step of the following analysis. The starting point i
multipole ansatz for theqq̄ bound-state vertex function for
pseudoscalar meson

H0~p1
2,p2

2!5
g

NL
n , ~3.1!

whereNL5p1
22L21 i e, and L and g are constant param

eters. The vertex function~3.1! is not symmetric in the four
momenta of the constituent quarks, and can hardly be c
sidered a realistic approximation of aqq̄ bound state. We
regard it only as a convenient cutoff prescription whi
makes the one-loop integrals finite. For our purpose it
sufficient to consider only the case of a monopole form
the vertex function, i.e.,n51, since our results do not de
pend on the value ofn. Covariant models of this type hav
been used also in Refs.@15,19#.

In principle the momentum integrals can be calculated
terms of the usual space-time components by the stan
Feynman parameter method, and all our results can
checked in this manner. However, we are mainly interes
here in the evaluation of the momentum integrals by use
light-front variables, and in the reason why they depend
v. If, for example, the matrix element~2.6! is calculated in
one-loop order with the model vertex function~3.1! one finds
the amplitude
6-5
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bm5 i
Nc

~2p!4 E d4p18
g8g9

NL8 N18N2N19NL9
Sm , ~3.2!

where the traceSm is given by Eq.~2.8!. If the p18
2 integra-

tion is carried out by contour methods as before, we arriv
the light-front amplitudeb̂m , which is given by Eq.~2.19!
with light-front vertex functions corresponding to the mod
~3.1!

h08~N̂18!5
g8

N̂L8
and h09~N̂19!5

g9

N̂L9
, ~3.3!

where N̂L8 5N̂181m18
22L82 and N̂L9 5N̂191m19

22L92. The

light-front amplitudeb̂m can be decomposed according
Eq. ~2.22!, i.e., it also depends onv. We shall explain now
why the momentum integralsbm and b̂m are different.

Obviously there are terms ofSm which depend linearly on
N2 , such that the factorN2 in the denominator of Eq.~3.2! is
cancelled, and all poles are in the lower complexp18

2 plane
at

p18
25

m'
2 2 i e

p18
1 , ~3.4!

wherem'
2 5m18

21p1'8
2 ,L821p1'8

2 ,m19
21p1'9

2 ,L921p1'9
2 . The

expression forb̂m is obtained by closing the contour in th
upper complexp18

2 plane and contains no contribution fro
these poles. However, integrals of this type are associ
with zero modes and have been discussed first by the au
of Ref. @20#, who argued that these pole contributions a
strictly zero forp18

1Þ0, but for p18
150 the pole~3.4! is at

infinity, and cannot be avoided by closing the contour eit
from above or below. In this case thep18

2 integration must
yield a result proportional tod(p18

1). In Ref. @20# a method
has been indicated by which ap18

2 integral can be repre
sented as a sum of the contribution due to the standard
tour method and a zero-mode contribution.

The following integral representation is used:

i

p22m21 i e
5E

0

`

daeia~p22m21 i e!. ~3.5!

The formal p2 integration of this expression results ind
functions:

E dp2
i

p22m21 i e
52pE

0

`

dae2 iam'
2

3H 1

p1 d~a!1
1

a
d~p1!J , ~3.6!
05402
at
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E dp2
p2

p22m21 i e
522pE

0

`

dae2 iam'
2 1

p1

3H 1

p1 d8~a!2
1

a2 d~p1!J .

~3.7!

For further applications it is useful to decompose the in
grand ofbm , Eq. ~3.2!, as follows:

1

NL8 N18N2N19NL9
5

1

~L822m18
2!~L922m19

2!

1

N2
S 1

NL8
2

1

N18
D

3S 1

NL9
2

1

N19
D . ~3.8!

Using Eqs.~3.6! and ~3.7! and carrying out thea integrals
gives

i

2p
E dp18

2
1

N18N2N19
5

1

p2
1N̂18N̂19

, ~3.9!

i

2p
E dp18

2
p18

2

N18N2N19
5

p̂18
2

p2
1N̂18N̂19

2
d~p18

1!

p2
1~m1'8

2 2m1'9
2 !

ln
m1'9

2

m1'8
2

,

~3.10!

i.e., one finds again the respective residues at the spec
quark pole in terms of the restricted quantities defined
Eqs.~2.15! and ~2.16! and, as expected, a term proportion
to d(p18

1). Equation~3.10! shows that it is the dependenc
of the numerator onp18

2 which generates the zero-mode co
tribution proportional tod(p18

1), which is absent, however
if p18

2 is combined with a factor proportional top18
1 . This

can be seen more clearly, if the following integrals are co
sidered:

i

2p
E dp18

2
N18

N18N2N19
5

N̂18

p2
1N̂18N̂19

, ~3.11!

i

2p
E dp18

2
N2

N18N2N19
5

N̂2

p2
1N̂18N̂19

1
d~p18

1!

m1'8
2 2m1'9

2
ln

m1'9
2

m1'8
2

.

~3.12!

Note thatN̂250 and the integral~3.12! consists only of a
zero-mode contribution. Combining all the terms of the d
composition~3.8! and using Eqs.~3.12! and~2.14! the com-
plete momentum integral is given by

i

~2p!4 E d4p18
N2

NL8 N18N2N19NL9

5
1

16p2~L822m18
2!~L922m19

2!
E

0

1

dyln
C11

0 CLL
0

C1L
0 CL1

0 ,

~3.13!
6-6
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where

C11
0 5C0~m18 ,m19!5~12y!m18

21ym19
22y~12y!q2,

CLL
0 5C0~L8,L9!,C1L

0 5C0~m18 ,L9!,CL1
0 5C0~L8,m19!.

The same result is obtained if the four-momentum integra
carried out using standard Feynman parameters.

From the arguments given above it is plausible that
terms proportional top1m8 , qmN2 , and p1m8 N2 in the inte-
grands of the one-loop amplitudesAm ,Bm are either missed
or not completely accounted for if thep18

2 integration is
carried out by the contour method. The lost information
signaled by the appearance of a spuriousv dependence
which is expected to disappear if the respective zero-m
contributions are included correctly.

Note that the zero-mode contributions proportional
d(p18

1) have been interpreted in@21# as residues of virtua
pair creation processes in the limitq1

˜0.

B. Effective inclusion of zero-mode contributions
and necessary condition for covariance

We present in this subsection an alternative and m
practical method to deal with thev dependence of the light
front formalism, which is manifest in the decomposition
the amplitudesÂm , Eq. ~2.21!, andB̂m , Eq. ~2.22!, account
for the missing zero-mode contributions and thus restore
covariance of the amplitudes. For this purpose we shall
vestigate the various parts of the integrand ofB̂m , which is
essentially given by the traceŜm . We start with the four
vector p̂1m8 , which is given in terms of the internal variable
x andp'8 by Eq. ~2.15!. However, in order to separate itsv
dependent parts one needs its decomposition with regar
P, q, andv, which is inferred from symmetry consideration
to be

E
0

1

dxE d2p'8
V

12x
p̂1m8 5E

0

1

dxE d2p'8
V

12x S PmA1
~1!

1qmA2
~1!1

1

~vP!
vmC1

~1!D ,

~3.14!

where

V[V~N̂18 ,N̂19!5
h08~N̂18!h09~N̂19!

N̂18N̂19
. ~3.15!

An equation such as Eq.~3.14! will be written in the follow-
ing as a relation between integrands as

p̂1m8 8PmA1
~1!1qmA2

~1!1
1

~vP!
vmC1

~1! . ~3.16!

The coefficients in Eqs.~3.14! and ~3.16! are given by
05402
is

e

s

e

re

e
-

to

A1
~1!5

~v p̂18!

~vP!
5

x

2
,

A2
~1!5

1

q2 S ~ p̂18q!2~qP!
~v p̂18!

~vP!
D 5

x

2
2

p'8 q'

q2 , ~3.17!

C1
~1!5~ p̂18P!2P2A1

~1!2~qP!A2
~1!52N̂21Z2 ,

where

Z25N̂181m18
22m2

21~122x!M 821@q21~qP!#
p'8 q'

q2 .

~3.18!
Note that only the coefficient which is combined withvm ,
namelyC1

(1) , depends onp̂18
2 . We have shown in Sec. III A

that, whileN̂18 is given by Eq.~2.16!, terms that containN̂2
are associated with zero-mode contributions, which we
include exactly in this particular case by the replacemen

N̂2˜Z2 . ~3.19!

This replacement is equivalent to settingC1
(1)50, and due to

this prescription the decomposition~3.16! becomes covari-
ant, i.e., free of anyv dependence. We shall prove in th
Appendix that in the framework of the simple model~3.1!
the prescription~3.19! accounts exactly for the relevant zer
mode contribution, given by Eq.~3.13!, i.e., the integrated
function Z2 , Eq. ~A8!, is equal to Eq.~3.13!.

The amplitudeÂm can be handled in the same way~ex-
cept that there is noq dependence! and it follows thatgP
50.

We shall need also the tensor decomposition

p̂1m8 p̂1n8 8gmnA1
~2!1PmPnA2

~2!1~Pmqn1qmPn!A3
~2!

1qmqnA4
~2!1

1

~vP!
~Pmvn1vmPn!B1

~2!

1
1

~vP!
~qmvn1vmqn!C1

~2!1
1

~vP!2 vmvnC2
~2! ,

~3.20!
where

A1
~2!52p'8

22
~p'8 q'!2

q2 ,

A2
~2!5~A1

~1!!2,

A3
~2!5A1

~1!A2
~1! ,

A4
~2!5~A2

~1!!22
1

q2 A1
~2! , ~3.21!

B1
~2!5A1

~1!C1
~1!2A1

~2! ,

C1
~2!5A2

~1!C1
~1!1

~qP!

q2 A1
~2! ,

C2
~2!5~C1

~1!!21FP22
~qP!2

q2 GA1
~2! .
6-7
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The coefficientB1
(2) plays a special role since, on the on

hand, it is combined withvm , on the other hand, it contain
the termxN̂2 which according to Eq.~3.12! takes the value

xN̂250, ~3.22!

sincexd(p18
1)50, and which means that there are no ze

mode contributions associated withB1
(2) , which is therefore

given by its value at the spectator quark pole:

B1
~2!5

x

2
Z22A1

~2! , ~3.23!

i.e., the coefficientB1
(2) does not vanish. Note also that,

p̂18
2 is calculated by contracting the tensor~3.20!, Eq. ~3.23!

for B1
(2) must be used in order to obtain the result given

Eq. ~2.16!. The role ofB1
(2) will be discussed below.

Again, the coefficientC1
(2) is cancelled if the correspond

ing zero-mode contribution is included, which can
achieved in this case by the replacement
hi

-
e

05402
-

y

A2
~1!N̂2˜A2

~1!Z21
~qP!

q2 A1
~2! , ~3.24!

which givesC1
(2)50. In this manner one finds how the ter

p̂1m8 N̂2 , which is part of the traceŜm , is modified by the
effective inclusion of the relevant zero-mode contribution

p̂1m8 N̂28PmA1
~1!N̂21qmA2

~1!N̂21vmC1
~1!N̂2

˜qmFA2
~1!Z21

~qP!

q2 A1
~2!G , ~3.25!

where Eq.~3.22! and the prescription~3.24! have been used
The coefficientC2

(2) is of second order inp̂18
2 . It can be

discussed in a similar way, but we do not explicitly consid
here terms of higher order.

For the practical applications considered in this work
shall need also the decomposition of the following ten
product:
p̂1m8 p̂1n8 p̂1a8 8~gmnPa1gmaPn1gnaPm!A1
~3!1~gmnqa1gmaqn1gnaqm!A2

~3!1PmPnPaA3
~3!

1~PmPnqa1PmqnPa1qmPnPa!A4
~3!1~qmqnPa1qmPnqa1Pmqnqa!A5

~3!1qmqnqaA6
~3!

1
1

~vP!
~PmPnva1PmvnPa1vmPnPa!B1

~3!

1
1

~vP!
@~Pmqn1qmPn!va1~Pmqa1qmPa!vn1~Pnqa1qnPa!vm#B2

~3!

1
1

~vP!
~gmnva1gmavn1gnavm!C1

~3!1
1

~vP!
~qmqnva1qmvnqa1vmqnqa!C2

~3!1O~v2!1O~v3!, ~3.26!
ibu-
where we have omitted all terms that are of second and t
order invm , and the coefficients are given by

A1
~3!5A1

~1!A1
~2! , A2

~3!5A2
~1!A1

~2! ,

A3
~3!5A1

~1!A2
~2! , A4

~3!5A2
~1!A2

~2! ,

A5
~3!5A1

~1!A4
~2! , A6

~3!5A2
~1!A4

~2!2
2

q2 A2
~1!A1

~2! , ~3.27!

B1
~3!5A1

~1!B1
~2!2A1

~1!A1
~2! , B2

~3!5A1
~1!C1

~2!2A2
~1!A1

~2! ,

C1
~3!5C1

~1!A1
~2! , C2

~3!5C1
~1!A4

~2!12
~qP!

q2 A2
~1!A1

~2! .

The v dependent terms of Eq.~3.26! can be analyzed in
analogy to the discussion of Eqs.~3.16! and ~3.20!. Again
the coefficientsB1

(3) and B2
(3) are not associated with zero

mode contributions and are given by their values at the sp
tator quark pole:
rd

c-

B1
~3!5

x

2
~B1

~2!2A1
~2!!, ~3.28!

B2
~3!5S x

2
2

p'8 q'

q2 DB1
~2!1

x

2

~qP!

q2 A1
~2! , ~3.29!

whereB1
(2) is given by Eq.~3.23!. The coefficientsC1

(3) and
C2

(3) are cancelled by their associated zero-mode contr
tions, which are accounted for by the replacements

A1
~2!N̂2˜A1

~2!Z2 ,

A4
~2!N̂2˜A4

~2!Z212
~qP!

q2 A2
~1!A1

~2! . ~3.30!

The prescriptions~3.30! obviously giveC1
(3)5C2

(3)50. Con-

sequently, the tensorp̂1m8 p̂1n8 N̂2 is modified in the following
way:
6-8
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p̂1m8 p̂1n8 N̂28gmnA1
~2!N̂21PmPnA2

~2!N̂2

1~Pmqn1qmPn!A3
~2!N̂21qmqnA4

~2!N̂2

1v dependent terms

˜gmnA1
~2!Z2

1qmqnH A4
~2!Z212

~qP!

q2 A2
~1!A1

~2!J ,

~3.31!

where Eq.~3.22! and the prescriptions~3.30! have been used
We can now complete the expression of the light-fro

amplitudeB̂m , as given by Eq.~2.19!, by adding the effect of
zero-mode contributions, which can be included by mean
the replacements~3.19! and ~3.25!. However, the tensor de
compositions that are used to construct the modified am
tudeB̂m still contain theB coefficientsB1

(2) , Eq. ~3.23!, B1
(3)

andB2
(3) , Eqs.~3.28!, ~3.29!, and exact agreement with th

covariant amplitudeBm , Eq. ~2.7!, is possible only if the
residualv dependence, which is still manifest in terms
theseB coefficients, can be proven to be spurious too. It w
shown that zero modes do not affect theB coefficients, there-
fore a different mechanism must be operative to neutra
their effect. The covariant formalism solves this proble
quite simply by means of the identities

E
0

1

dxE d2p'8
V

12x
B2

~2!5E
0

1

dxE d2p'8
V

12x
B1

~3!

5E
0

1

dxE d2p'8
V

12x
B2

~3!50,

~3.32!

whereV[V(N̂18 ,N̂19) has been defined in Eq.~3.15!. These
identities can be proven for the model vertex function~3.3!,
as we show in the Appendix, but they are valid for gene
vertex functions, which must necessarily be functions ofN̂18

and N̂19 , as we have verified numerically.
Identities of the type given in Eq.~3.32! are, therefore, the

necessary condition for the covariance of the light-front f
malism. With this last step we have finally provided all t
material required to derive unique and consistent light-fr
formulas for coupling constants and form factors that
independent ofv. We shall work out this program in the nex
section. In particular, we know now the conditions that
store the covariance of the light-front amplitudeB̂m , Eq.
~2.19!, and can derive within the light-front formalism no
only the form factorF1(q2), but alsoF2(q2), such that the
original results, Eq.~2.9!, are reproduced exactly.
05402
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IV. CALCULATION OF COUPLING CONSTANTS AND
FORM FACTORS IN A MANIFESTLY COVARIANT

FRAMEWORK

The technique, which was developed in the last section
a manifestly covariant framework, provides a gene
method for the analysis of the covariant structure of a o
loop amplitude in the light-front formulation. It permits us t
identify and separate that part of the structure which depe
on the light front, i.e., on the four vectorv. The spuriousv
dependence can be eliminated exactly if the light-front v
tex function obeys the identities given by Eq.~3.32!. This
method will be used to determine coupling constants a
form factors for pseudoscalar and vector mesons. These
culations will be a straightforward application of the form
las and rules that have been derived in Sec. III.

A. The form factors for transitions between pseudoscalar
mesons

The matrix element for transitions between pseudosc
mesons, Eq.~2.6!, must be expressed in terms of the for
factors F1(q2) and F2(q2). The resulting one-loop ampli

tude in the light-front formalism, denoted asB̂m , is given by
Eq. ~2.19! and must be decomposed according to Eq.~2.22!.

The vector form factorF1(q2) can be calculated in the
following way:

F1~q2!5
~vB̂!

~vP!
, ~4.1!

i.e., it is determined byB̂1. We have shown in Sec. III B tha
the vector form factor has no spuriousv dependence, it co-
incides with the result obtained in the standard light-fro
approach, Eq.~2.12!.

The form factorF̂2(q2) can be calculated according to

F̂2~q2!5
1

q2 F ~qB̂!2~qP!
~vB̂!

~vP!
G , ~4.2!

and depends onv. The physical form factorF2(q2), which

is independent ofv, is obtained if the amplitudeB̂m in Eq.
~4.2! is modified by including the effect of the relevant zer
mode contributions, which can be achieved by replacing
terms linear inN̂2 in the numerator of the integrand ofB̂m
according to Eqs.~3.19! and ~3.25!. The result is
6-9
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F2~q2!5
Nc

16p3 E0

1

dxE d2p'8
h08h09

~12x!N̂18N̂19
H 22x~12x!M 8222p'8

222m18m2

12~m192m2!@~12x!m181xm2#14
~qP!

q2 S p'8
212

~p'8 q'!2

q2 D 14
~p'8 q'!2

q2

22
p'8 q'

q2
@M 922~12x!„q21~qP!…2~122x!M 82

12xM08
222~m182m2!~m181m19!#J . ~4.3!
id

-

n
tu

-

al

-

The consistency of the expression forF2(q2) can be checked
easily, since forM 85M 9 and m185m19 and b85b9 current
conservation requiresF2(q2)50. This condition can be
shown to be true, for all vertex functions that will be cons
ered in Sec. V A by means of the substitutionp'8 5p'

11/2(12x)q' , which transforms the integrand of Eq.~4.3!
into an odd function ofp' and the momentum integral van
ishes.

B. The form factors for transitions between pseudoscalar and
vector mesons

The most general form of the matrix element for the tra
sition between a pseudoscalar meson with four momen
P8 and a meson with four momentumP9 and spin 1 is rep-
resented in terms of the appropriate form factors@16#:
.

la

05402
-

-
m

^P9;1J3uq̄9gm~12g5!q8uP8&

5 ig~q2!emnab«* nPaqb

2 f ~q2!«m* 2a1~q2!~«* P!Pm2a2~q2!~«* P!qm ,

~4.4!

where«5«(J3) is the polarization vector of the vector me
son with («P9)50. The form factors defined in Eq.~4.4! are
related to the convention used most frequently by

V~q2!52~M 81M 9!g~q2!,

A1~q2!52~M 81M 9!21f ~q2!,

A2~q2!5~M 81M 9!a1~q2!, ~4.5!

where M 8 and M 9 are the masses of the initial and fin
mesons, respectively.

The matrix element~4.4! is given in one-loop approxima
tion in analogy to Eq.~2.19! as a light-front integral
B̂mn«* n5
Nc

16p3 E0

1

dxE d2p'8
$Ĝ8~2p”̂ 21m2!Ĝn9~p”̂ 191m19!gm~12g5!~p”̂ 181m18!%«̂* n

~12x!N̂18N̂19
. ~4.6!
y

The pseudoscalar vertex operatorĜ85Ĝ8( p̂18 ,p̂2) has been

defined in Eq.~2.17!, and for the vector vertex operatorĜn9

5Ĝn9( p̂19 ,p̂2) for 3S1-state mesons we use the ansatz

Ĝn9«̂* n52h09H gn2
1

D9
~ p̂192 p̂2!nJ «̂* n, ~4.7!

where the vertex functionh09 is defined in analogy to Eq
~2.20!. In a manifestly covariant formalism bothh09 andD9

are necessarily functions ofN̂195x(M 92M09), and they will
be specified later. We shall need only the transverse po
ization vector

«̂~6 !5«~6 !5S 2

P91 «'P'9 ,0,«'D ,
r-

«'~6 !56~1,6 i !/&. ~4.8!

The longitudinal polarization vectors«~0! and «̂(0) have
been given in Ref.@16#, and we shall use only the propert
that they have a nonvanishing plus component.

With Eq. ~4.7! the light-front integral~4.6! can be rewrit-
ten as

B̂mn«* n52
Nc

16p3 E0

1

dxE d2p'8
h08h09

~12x!N̂18N̂19
Ŝmn«̂* n,

~4.9!

where
6-10
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Ŝmn5trH S gn2
1

D9
~ p̂192 p̂2!nD ~p”̂ 191m19!gm~12g5!~p”̂ 181m18!g5~2p”̂ 21m2!J

52i emnab$ p̂18
aPb~m192m18!1 p̂18

aqb~m191m1822m2!1qaPbm18%2
1

D9
~4p̂1n8 23qn2Pn!i emabrp̂18

aqbPr

12gmn$m2~q22N̂182N̂192m18
22m19

2!2m18~M 922N̂192N̂22m19
22m2

2!

2m19~M 822N̂182N̂22m18
22m2

2!22m18m19m2%

18p̂1m8 p̂1n8 ~m22m18!22~Pmqn1qmPn12qmqn!m1812p̂1m8 Pn~m182m19!

12p̂1m8 qn~3m182m1922m2!12Pmp̂1n8 ~m181m19!12qmp̂1n8 ~3m181m1922m2!

1
1

2D9
~4p̂1n8 23qn2Pn!$2p̂1m8 @M 821M 922q222N̂212~m182m2!~m191m2!#

1qm@q222M 821N̂182N̂1912N̂22~m181m19!212~m182m2!2#1Pm@q22N̂182N̂192~m181m19!2#%. ~4.10!

The decomposition of the amplitude~4.9! into four vectors is more complicated than the representation given in Eq.~4.4!,
sinceB̂mn depends not only on the four vectorsP andq, but also onv:

B̂mn«* n5 i emnab«* nPaqbg~q2!1 i emrabvrPaqb
„~«* v!R1~q2!1~«* P!R2~q2!…

2«m* f̂ ~q2!2~«* P!Pma1~q2!2~«* P!qmâ22~«* v!PmR3~q2!

2~«* v!qmR4~q2!2~«* P!vmR5~q2!2~«* v!vmR6~q2!. ~4.11!

The form factorsRi(q
2) are all spurious. In the standard light-front approach as, e.g., in Ref.@16#, the form factorsg(q2) and

a1(q2) are determined by the transverse decay mode according to the equation

B̂mnvm«* n~6 !5 i emnabvm«* nPaqbg~q2!2~«* P!~vP!a1~q2!, ~4.12!

where we have used that„v«(6)…5(vq)5v250. Equation~4.12! is free of spurious terms, and the expressions forg(q2)
anda1(q2) are identical with those given in Ref.@16#, which we include here for the sake of completeness:

g~q2!52
Nc

16p3 E0

1

dxE d2p'8
2h08h09

~12x!N̂18N̂19
H ~12x!m181xm21~m182m19!

p'8 q'

q2
1

2

D9
F p'8

21
~p'8 q'!2

q2 G J , ~4.13!

a1~q2!5
Nc

16p3 E0

1

dxE d2p'8
2h08h09

~12x!N̂18N̂19
H ~2x21!@~12x!m181xm2#2@2xm21m191~122x!m18#

p'8 q'

q2

22
~12x!q21p'8 q'

~12x!q2D9
~p'8 p'9 1@xm21~12x!m18#@xm22~12x!m19# !J . ~4.14!

In our former work@16# we have attempted to derive the form factorf (q2) from the plus component of Eq.~4.11! for the
longitudinal decay mode according to the equation

B̂mnvm«* n~0!5 i emnabvm«* nPaqbg~q2!2~«* v! f̂ ~q2!2~«* P!~vP!a1~q2!2~«* v!~vP!R3~q2!, ~4.15!

where we have used that„v«(0)…5«1(0)Þ0. Since the form factorsg(q2) anda1(q2) are known, the form factor deter
mined by means of Eq.~4.15! obviously is the combinationf̂ 1(vP)R3 instead off. Consequently, the formula forA1(q2)
used, e.g., in Refs.@2–6# contains spurious contributions. The physical form factorf (q2), which is independent ofv, is
obtained if the light-front integralB̂mn is modified by the inclusion of the effect of zero modes. This can be achieved i
trace~4.10! is rewritten by use of the tensor decompositions~3.16!, ~3.20!, and~3.26!, and by replacing all terms linear inN̂2
according to Eqs.~3.19!, ~3.25!, and~3.31!. Collecting all terms proportional togmn gives the result
054026-11
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f ~q2!5
Nc

16p3 E0

1

dxE d2p'8
h08h09

~12x!N̂18N̂19
H 2x~m22m18!~M08

21M09
2!24xm19M08

2

12~12x!m18~qP!12m2q222xm2~M 821M 92!12~m182m2!~m181m19!2

18~m182m2!F p'8
21

~p'8 q'!2

q2 G12~m181m19!„q21~qP!…
p'8 q'

q2

24
q2p'8

21~p'8 q'!2

q2D9
F2xM8212xM08

22q22~qP!22„q21~qP!…
p'8 q'

q2
22~m182m19!~m182m2!G J . ~4.16!

The physical form factora2(q2) is obtained in the same manner. Collecting all terms proportional toqmPn and qmqn and
combining them in the appropriate way gives the form factora2(q2) as

a2~q2!5
Nc

16p3 E0

1

dxE d2p'8
h08h09

~12x!N̂18N̂19
H 2~2x23!@~12x!m181xm2#

28~m182m2!F p'8
2

q2
12

~p'8 q'!2

q4 G2@~14212x!m1822m192~8212x!m2#
p'8 q'

q2

1
4

D9
S @M 821M 922q212~m182m2!~m191m2!#~A3

~2!1A4
~2!2A2

~1!!1Z2~3A2
~1!22A4

~2!21!

1
1

2
@x„q21~qP!…22M 8222p'8 q'22m18~m191m2!22m2~m182m2!#~A1

~1!1A2
~1!21!

1~qP!F p'8
2

q2
1

~p'8 q'!2

q4 G ~4A2
~1!23!D J . ~4.17!
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C. The vector decay constant

The vector decay constantf V is defined by the matrix
element of the vector current

^0uq̄9gmq8uP;1J3&5«m~J3!& f V . ~4.18!

The matrix element can be represented in one-loop orde
a light-front momentum integral, which we shall denote
Âmn«n:

Âmn«n5
Nc

16p3 E0

1

dxE d2p'8
h08

~12x!N̂18
ŝmn«̂n, ~4.19!

where

ŝmn5tr H gm~p”̂ 181m18!Fgn2
1

D8
~ p̂182 p̂2!nG~2p”̂ 21m2!J ,

~4.20!

and we have used the vertex operator for3S1-state mesons
Eq. ~4.7!. The decomposition of the integralÂmn«n, Eq.
~4.18! into four vectors depends on the light front in th
following way:
05402
by
s

Âmn«n5&$«m f̂ V1~«v!Pm8 r 11~«v!vmr 2%, ~4.21!

where the terms proportional tor 1 and r 2 are spurious. The
standard procedure~e.g., in Ref.@16#! uses the plus compo
nent of Eq.~4.21! for the longitutinal decay mode to evalua
the vector decay constant, and picks up the combinationf̂ V
1P81r 1 , which obviously contains spurious contribution
instead off V . The physical coupling constantf V is obtained,
if the v dependence of the light-front integralÂmn«n is re-
moved by including the appropriate zero-mode contributio
The necessary prescriptions are analogous to those deriv
Sec. III B, except that there is noq dependence. In the
present case one requires only the replacement

N̂2˜N̂181m18
22m2

21~122x!M 82.

The result forf V is

f V5
Nc

8p3 E0

1

dxE d2p'8
&h08

~12x!N̂18
H xM08

22m18~m182m2!

2p'8
21

m181m2

D8
p'8

2J . ~4.22!
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D. The q2 dependence of the hadronic form factors

Form factors have been calculated in this section in
light-front approach under the conditionq150, i.e., for
spacelike momentum transferq252q'

2 <0, whereas physi-
cal decays occur in the timelike regionq2>0. However, we
have proposed in Ref.@2# to rewrite the form factor as an
explicit function ofq2 and analytically continue from time
like to spacelike momentum transfer. For the multipole fo
~3.1! of the vertex function this method is seen to reprodu
exactly the form factor that can be derived, in this case, a
by the standard space-time methods for all valuesq2. We
shall use this procedure in practical applications in orde
determine hadronic form factors for physical values ofq2.

V. APPLICATIONS

A. Choice of light-front vertex function

It has been shown in Sec. III B that if the light-front ve
tex functionsh08 andh09 are functions ofN̂18 andN̂19 , respec-
tively, the identities~3.32! guarantee that the formulas fo
coupling constants and form factors given in Sec. IV a
entirely free of spuriousv contributions. As an ansatz for th
vertex function one could choose, for instance, a multip
form @as in Eq.~3.1!, but with NL replaced byN̂L# or an
exponential form

h085N8 expS N̂18

a8
D , ~5.1!

wherea8 andN8 are appropriate parameters.
Using the formulas of Sec. IV we have tentatively calc

lated various properties of light mesons on the basis of
exponential form~5.1! and settingD95MV1m181m2 in Eq.
~4.7! for the vertex operator of a vector meson of massMV .
The results are rather unsatisfactory and cannot compete
those given, e.g., in Refs.@6,7#. For instance, it is not pos
sible to obtain an acceptable approximation for the elec
magnetic form factor of the pion for low values ofq2. Even
if a more general pseudoscalar vertex operator than the
given in Eq. ~2.17! is used, the results are not essentia
improved.

It seems that the main problem in the manifestly covari
calculation of meson properties is the inevitable occurre
of light-front vertex functions, likeh08 of Eq. ~5.1!, which are

functions ofN̂185x(M 822M08
2), and that are not symmetri

in the variables of the two quarks. This property is a con
quence of the asymmetric treatment of the constituent qu
of theqq̄ bound state by means of a vertex function like E
~3.1!.

The picture becomes quite different and surprisingly
curate if the standard light-front vertex functions, which a
symmetric in the variables of the constituentqq̄ pair, are
used instead. Different choices are possible@6#, but for the
calculation reported in Sec. V B we have preferred to use
vertex operators which we have derived for1S0- and
3S1-state mesons in Ref.@7#, and which are given by Eqs
~2.17! and ~4.7! with
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h085FM08
42~m18

22m2
2!2

4M08
3 G1/2 M 822M08

2

@M08
22~m182m2!2#1/2f~M08

2!,

~5.2!

D95M091m191m2 , ~5.3!

and a similar equation forh09 . The orbital wave function is
assumed to be a simple function of the kinematic invari
mass as

f~M08
2!5N8 exp~2M08

2/8b82!, ~5.4!

where N8 is the normalization constant and the parame
1/b8 determines the confinement scale.

The formulas for coupling constants and form facto
have been derived in a manifestly covariant framewo
However, if these formulas are evaluated with the symme
light-front vertex function~5.2!, the covariance conditions
~3.32! are violated, i.e., the integrals of Eq.~3.32! are non-
zero. Consequently, some residualv dependence is intro
duced into these expressions if Eqs.~5.2! and ~5.3! are used
for the vertex function. This remainingv dependence is
minimal in the sense that only theB coefficientsBn

(m) in the
tensor decompositions~3.20! and ~3.26! are included in the
form factors. The practical application of this approach w
be discussed in Sec. V B.

For the sake of completeness, we mention that we h
tried also to eliminate allv dependence by simply omitting
all B coefficients that are implicitly contained in the ligh
front formulas for coupling constants and form factors. D
to the identities~3.32! the formulas withoutB coefficients
are exactly equivalent to the original formulas, given in S
IV, in a manifestly covariant framework, but give differen
results if the standard light-front vertex function, Eqs.~5.2!
and ~5.3!, is used. With this approach the data can be fit
only partially, in particular we found that the values for th
coupling constantsgrpp and gK* Kp are about 20% lower
than the experimental data.

B. Pionic and kaonic processes

In Refs. @6,7# the standard light-front quark model ha
been investigated and the predicted electroweak propertie
pseudoscalar and vector mesons in theu-, d-, s-quark sector
were found to be in good agreement with the experimen
data. The covariant analysis of the light-front formalism p
sented in this work extends the standard approach, and
mits the calculation of all form factors, that represent t
Lorentz structure of a hadronic matrix element, on the sa
footing. We shall update some of the results of our past w
@7#, however, we are mainly interested in the quality of t
additional predictions that are possible on the basis of
formulas, collected in Sec. IV, and as emphasized in S
V A, we shall use for these calculations the standard lig
front vertex function, given by Eqs.~5.2! and ~5.3!.

The values of the free parameters of the light-front qu
model, that have been chosen in Ref.@7#, have to be modi-
fied, since the covariant approach leads to a different form
for the vector decay constantf V , Eq. ~4.22!. Therefore, we
6-13
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fix again the parametersm5mu5md , bp andbr by fitting
the pion decay constantf p592.460.2 MeV @22#, the r de-
cay constantf r /M r5150 MeV @23#, and the charge radiu
of the pion@24#, which will be given below.

Similarly, the parametersms , bK , andbK* are fixed by
fitting the decay constantf K5113.461.1 MeV @22#, theK*
decay constant f K* /MK* 5152 MeV @25#, and the
Kp-transition radius@26#. We shall use the values for mass
and wave function parameters listed in Table I.

A comparison of the values for quark masses with
parametrization of Ref.@7# shows that only the value form
5mu5md is slightly changed, and it might be interesting
note that the corresponding modification of the electrom
netic form factor of the pionFp(q2) leads to an almost per
fect agreement between the prediction and the data for s
values ofq2. The experimental data have been reanalyze
Ref. @24#, based on the parametrization

Fp~q2!5
1

12q2/L1
21sq4/L2

4 . ~5.5!

In the following we compare the results of the fit to the da
with the values for the parametersL1 and L2 , which we
have derived fromF1(q2), Eq. ~2.12!, by taking the first and
second derivative at zero-momentum transfer:

L15H 719.3 MeV ~ this work!,

72064 MeV ~Ref. @24# !,

sL25H 21473 MeV ~ this work!,

2~14202190
1690! MeV ~Ref. @24# !.

The rates for the radiative transitionsV˜Pg, which we
have calculated in Ref.@7#, are modified also due to th
changed values for the vector meson parametersbV . The
rate is given by

G5
1

3
agVPg

2 FMV
22M P

2

2MV
G3

, ~5.6!

where the coupling constantgVPg5g(0) can be calculated
with Eq. ~4.13!. We have summarized the results for a s
lected set of radiative transitions in Table II. We note,
particular, that the predicted rate for the transitionr1

˜p1g is in agreement with the experimental result of R
@27#, but disagrees with the average value of the Part
Data Group@22#.

In Ref. @2# we have investigated also the pionic deca
r1

˜p1p0 and K* 1
˜(Kp)1, and have calculated th

coupling constantgVPp0 by means of a soft pion theorem du
to Das, Mathur, and Okubo@28#

4ugVPp0u5u f ~0!2~MV
22M P

2 !a1~0!u, ~5.7!

where a1(0) and f (0) are given by Eqs.~4.14! and
~4.16!. @Note, that if this relation refers togr1p1p0 the fac-
tor 4 in Eq. ~5.5! must be replaced by the factor 2.# The
comparison of the predicted coupling constants with the
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perimental data gives an impression of the quality of the n
formula for f (q2). The numerical results are

gr1p1p056.02 ~6.0660.01!,

gK* Kp[)gK* 1K1p055.54 ~5.5760.03!.

The experimental coupling constants are given in paren
ses. The values for coupling constants, which we have
culated in Ref.@2# in the standard light-front approach a
about 10% smaller, and the differences are even larger if
alternative methods, mentioned in Sec. V A, are used.

Next, we shall consider the case ofKl3 decays,K1

˜p0l 1n andK0
˜p1l 2n, whose hadronic structure is, ac

cording to Eq.~2.6!, described by the form factorsF1(q2)
andF2(q2), which are given in the light-front quark mode
by Eqs.~2.12! and~4.3!. Very oftenKl3 decays are analyze
in terms of the form factorsF1(q2) andF0(q2). The scalar
form factorF0(q2) is defined by

F0~q2!5F1~q2!1
q2

MK0
2

2Mp1
2 F2~q2!. ~5.8!

The first derivatives ofF1(q2) and F0(q2) determine the
vector radiusr 1,Kp and the scalar radiusr 0,Kp , respectively,
which are usually accounted for by the slope parameters

l15
1

6
r 1,Kp

2 Mp1
2 and l05

1

6
r 0,Kp

2 Mp1
2 . ~5.9!

The ratio of the form factors atq250 is denoted byj

j5F2~0!/F1~0!, ~5.10!

and the quantitiesl0 , l1 , andj are, according to Eqs.~5.8!
and ~5.10!, related by

l05l11
Mp1

2

MK0
2

2Mp1
2 j. ~5.11!

TABLE I. Quark massesmQ and wave function parametersbP

andbV for (q,Q̄) pseudoscalar and vector mesons. The light qu
mass ismq5mu,d50.26 GeV.

(qQ̄) meson mQ ~GeV! bP ~GeV! bV ~GeV!

p,r 0.26 0.3088 0.2600
K,K* 0.37 0.3884 0.2770

TABLE II. Rates and decay constants for the radiative dec
V˜Pg.

V˜Pg gVPg ~GeV21! G theor ~keV! Gexpt ~keV!

r1
˜p1g 0.810 81.3 6867 @22#

816464 @27#

K* 1
˜K1g 0.867 54.4 5065 @22#

K* 0
˜K0g 21.314 124.3 117610 @22#
6-14
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In Table III we compare the results of our calculation w
the data, wherever possible, and with the corresponding
sults obtained by the use of chiral perturbation the
~ChPT!, where we rely on the detailed discussions in R
@29#. We note in particular, that the recent calculation
higher-order corrections@30# indicates an even larger rang
of uncertainty of the ChPT predictions forl1 andl0 , than
the one quoted in Table III.

Finally, we consider the Callan-Treiman relation@32#,
which is also a soft-pion result, that relates the form fact
of Kl3 andKl2 decays, namely

@F1~MK
2 !1F2~MK

2 !#M
p
2 505

f K

f p
51.22760.012.

~5.12!

The form factorsF1(q2) andF2(q2) are given by Eqs.~2.12!
and~4.3!, and can be analytically continued from timelike
spacelike momentum transfer using the method propose
Ref. @2#. The relation~5.12! involves the form factors con
tinued to zero pion mass. The form factorF1(q2) does not
explicitly depend on the pion mass, and we findF1(MK

2 )
51.4963. The form factorF2(q2) has an explicit depen
dence onMp , and we find

F2~MK
2 !520.2441——˜

Mp
2

50

20.2753.

While the dependence of the constituent massm and the
parameterbp on Mp is unknown, it seems reasonable
assume that these quantities are gently varying function
Mp

2 . Consequently, the light-front quark model predicts

@F1~MK
2 !1F2~MK

2 !#M
p
2 5051.221

in agreement with Eq.~5.12!.

C. Covariance in the heavy quark limit

In Ref. @33# a covariant light-front model for heavy me
sons was constructed within the framework of the hea
quark effective theory. An important feature of this covaria
model is the requirement, that the vertex function for a he
meson must be a function of (vpq), wherevm is the four
velocity of the heavy meson with massMH , i.e., the four
momentum of the meson isP85MHv, and pq is the four
momentum of the light quark with massmq , which is on its
mass-shell, i.e.,pq

25mq
2. The mass of the heavy quark

mQ .

TABLE III. The parameters forKl3 decays.

This work ChPT@29# Experiment

F1(0) 0.9620 0.96160.008 @31#

l1 0.0269 0.03160.003 0.027960.0027(Ke3
0 ) @26#

0.028660.0022(Ke3
1 ) @22#

l0 0.0161 0.01760.004
j 20.125 20.1660.06 20.1160.09(Km3

0 ) @22#

20.3360.14(Km3
1 ) @22#
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It is easy to prove that this condition for covarianc
found in @33#, is equivalent to the requirement, which w
established in Sec. III B that the light-front vertex function
a manifestly covariant formalism must necessarily be a fu
tion of N̂18 . Since we can rewriteN̂18 in the following way:

N̂185x~MH
2 2M0

2!5xMH
2 2

p'8
21mq

2

12x
2mQ

2 1mq
2

522MH~vpq!1MH
2 2mQ

2 1mq
2, ~5.13!

where we have used the relation

~vpq!5
p'8

21mq
21~12x!2MH

2

2~12x!MH
,

N̂18 is indeed a linear function of (vpq).
If heavy meson properties and transitions between he

mesons are calculated in the framework of the covariant
tension of the light-front formalism in combination with th
standard light-front vertex function, Eqs.~5.2! and~5.3!, the
exponential form~5.4! of the vertex function guarantees th
in the limit where the heavy quark mass goes to infinity, t
light-front integrals receive contributions only for values
12x in the neighborhood of (12x).mq /mQ , where it is
justified to setMH

2 2M08
25N̂18/x equal toN̂18 . Then, the rea-

soning that led to Eq.~5.2! can be used also to prove that th
light-front vertex functionh08 , Eq. ~5.2!, becomes a function
of (vpq). We can at once conclude that, while the extend
light-front quark model lacks manifest covariance if used
describe light mesons as we did in Sec. V B, manifest co
riance is recovered in the heavy quark limit.

Therefore, the covariant analysis presented in this w
provides also an ideal framework to derive unique expr
sions for form factors in the heavy quark limit.

VI. CONCLUDING REMARKS

The RQM, based originally on the light-front formalism
has been extended in Ref.@2# to the treatment of decay pro
cesses with a timelike momentum transfer. In the pres
work we have further extended the range of applicability
the RQM and used a manifestly covariant formalism a
guide to derive formulas for all form factors that are requir
to represent the Lorentz decomposition of the hadronic m
trix elements of the electroweak current in one-loop ord
However, the practical application of this covariant exte
sion of the light-front quark model is successful only if th
formulas for form factors are evaluated with standard lig
front vertex functions, which are symmetric in the variabl
of the constituentqq̄ pair. The latter violate the condition
for the strict Lorentz covariance of the formalism. We ha
indicated that manifest covariance is recovered in the he
quark limit, since the vertex functions become asymmetric
the variables of the heavy-lightqq̄ pair in accordance with
the conditions for covariance.

In order to explore the predictive power of this approac
we have calculated various properties of pseudoscalar
vector mesons in theu-, d-, s-quark sector. The good agree
6-15
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ment with the data for electroweak transitions, which h
been found on the basis of the standard light-front meth
in Ref. @7#, is not only confirmed, but even improved, sin
some form factors for transitions which involve vector m
sons are modified in the covariant analysis.

We have derived also those form factors which cannot
evaluated in the standard approach. We have, for exam
calculated the scalar form factor forKl3 decays and found
that the prediction is consistent with the available expe
mental data. Likewise, the form factora2(q2), which ap-
pears in the Lorentz decomposition of the matrix element
transitions between pseudoscalar and vector mesons,
been calculated. Both form factors are relevant, e.g., for
analysis of the properties of semileptonic decays ofB me-
sons in the channelB˜Mtnt , where M5p,r,D,D* ,
which will be measured at theB factories which are currently
under construction. The investigation of this decay chan
has been started in Ref.@34#, where the covariant extensio
of the light-front quark model has been applied to the de
B˜ptnt , and excellent agreement with the results of latt
calculations and light-cone sum rules has been found.
plan to investigate further hadronic properties in this mann

Note added.After the completion of this work I becam
aware of several publications that are related to my pape
simple connection between the covariant Feynman form
ism and time-ordered perturbation theory in the infinite m
mentum frame has been investigated by Schmidt@35#. A
discussion of the problems with vertex functions to be u
in a covariant analysis is given too. Brodsky and Hwang@36#
find that zero-mode contributions are not only crucial to o
tain the correct results for electroweak form factors, but
provide a new perspective on the physics of semilepto
decays. Their result for the charge form factor of a neu
composite system composed of two charged scalars as
rived from the minus component of the one-loop amplitu
is equivalent to Eq.~3.10!. The zero-mode contribution ap
pears in@36# as the contribution of the annihilation of theqq̄
pair of the initial Fock state to the electromagnetic curren
the limit q1

˜0; in this work this contribution is effectively
accounted for by means of the prescription~3.19!. The
charge form factor can be calculated also from the plus c
ponent of the amplitude, and the prescription~3.19! guaran-
tees that the two determinations of the charge form factor
equal. Zero modes are discussed also by Choi and Ji@37#. In
Ref. @38# the form factors forKl3 decays are investigated
The method used to calculateF1(q2) is the same as in my
work, but the approach proposed to determine the sec
form factor givesF̂2(q2), as defined in Eq.~2.22! of the
present paper, and not the physical form factorF2(q2). A
related light-cone formalism for the calculation of spin
form factors has been given by Brodsky and Hiller@39#.
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APPENDIX: THE PRESCRIPTION „3.19… AND THE
IDENTITIES „3.32… IN THE MODEL OF SEC. III A

In the framework of the model vertex function of E
~3.1! the prescription~3.19! states that the integrated fun
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tion Z2 , denoted byI @Z2#, is equal to the zero-mode contr
bution, given by Eq.~3.13!. The integralI @Z2# is defined by

I @Z2#5
1

16p3 E0

1

dxE d2p'8
Z2

~12x!N̂18N̂19N̂L8 N̂L9
, ~A1!

whereZ2 is defined by Eq.~3.18!, N̂L8 5N̂181m18
22L82 and

N̂L9 5N̂191m19
22L92.

The following identity is useful:

1

N̂18N̂19N̂L8 N̂L9
5

1

~L822m18
2!~L922m19

2!

3S 1

N̂18
2

1

N̂L8
D S 1

N̂19
2

1

N̂L9
D . ~A2!

We evaluate thep'8 integral by the standard Feynman para
eter method. Combining denominators, changing the m
mentum variable top'5p'8 2y(12x)q' , and eliminating
terms linear inp' by symmetric integration gives

I @Z2#5
1

16p2~L822m18
2!~L922m19

2!
E

0

1

dxE
0

1

dy~12x!

3H ~L822m18
2!S 1

CLL
2

1

CL1
D

1@m18
22m2

21~122x!M 822y~12x!„q21~qP!…#

3S 1

C11
1

1

CLL
2

1

C1L
2

1

CL1
D J , ~A3!

where

C115C~m18 ,m19!

5~12x!~12y!m18
21~12x!ym19

21xm2
2

2x~12x!@~12y!M 821yM92#2~12x!2y~12y!q2,

CLL5C~L8,L9!, C1L5C~m18 ,L9!, CL15C~L8,m19!.
~A4!

For the final step it is helpful to change variables fromx,y to
u,v, where the two sets are related by

x5uv, y5
12u

12uv
, ~12x!dxdy5ududv. ~A5!

The functionC11, expressed in the new variables, is

C115u~12v !m18
21~12u!m19

21uvm2
22uv@u~12v !M 82

1~12u!M 92#2u~12u!~12v !q2, ~A6!

and the integrand of Eq.~A3! can be cast into a simple form
if it is used that
6-16
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u@m18
22m2

21~122x!M 822y~12x!„q21~qP!…#

5u@m18
22m2

21~122uv !M 822~12u!„q21~qP!…#

52
dC11

dv
[2C118 52C1L8

52CLL8 2u~L822m18
2!

52CL18 2u~L822m18
2!. ~A7!

The integration of Eq.~A3! with respect tov can now be
performed with the result

I @Z2#5
1

16p2~L822m18
2!~L922m19

2!
E

0

1

du ln
C11

0 CLL
0

C1L
0 CL1

0 ,

~A8!

where C11
0 5C11uv50 , etc. This expression forI @Z2# is the

same integral as given by Eq.~3.13!. The prescriptions~3.25!
and ~3.31! can be proven in the same manner.

This procedure can be used also to prove the identitie
Eq. ~3.32!. It will be sufficient to consider the first identity
which means that the integrated functionB1

(2) @B1
(2) is defined

by Eq.~3.23!#, which we shall denote in analogy to Eq.~A1!
by I @B1

(2)#, must be equal to zero. We split the integral
follows:

I @B1
~2!#5

1

2
I @xZ2#2I @A1

~2!#, ~A9!
. D

J

,

05402
of

where A1
(2) has been defined in Eq.~3.21!. The integral

I @A1
(2)# can be calculated by the Feynman parameter meth

as indicated above, with the result

I @A1
~2!#5

1

32p2~L822m18
2!~L922m19

2!

3E
0

1

dxE
0

1

dy~12x!ln
C11CLL

C1LCL1
. ~A10!

The integralI @xZ2# is given by Eq.~A3! with an additional
factor of x in the integrand. The substitution~A5! and the
modification of the integrand according to Eq.~A7! permits
an easy partial integration in the variablev with the result

I @Z2#5
1

16p2~L822m18
2!~L922m19

2!

3E
0

1

duE
0

1

dvu ln
C11CLL

C1LCL1
, ~A11!

and if Eq.~A10! for I @A1
(2)# is changed according to Eq.~A5!

we find the result

I @B1
~2!#50. ~A12!

The remaining identities of Eq.~3.32! can be proven in the
same manner.
ys.
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