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Diffractive structure function in a quasiclassical approximation

Yuri V. Kovchegov and Larry McLerran
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455

~Received 4 March 1999; published 9 August 1999!

We derive an expression for the diffractiveF2 structure function which should be valid at smallx for
quasielastic scattering on a hadron and for quasielastic scattering on a large nucleus. This expression includes
multiple rescatterings of the quark-antiquark pair produced by the virtual photon off the sources of color charge
in a quasiclassical approximation. We find that there is a relation between such diffractive production and
inclusive processes. In the former, one averages over all colors of sources before squaring the amplitude, and
in the latter one first squares the amplitude and then averages it in the hadron or nuclear wave function. We
show that in the limit of a large virtuality of the photonQ2 the diffractive structure function becomes linearly
proportional to the gluon distribution of the hadron or nucleus, therefore proving that in this sense diffraction
is a leading twist effect.@S0556-2821~99!02915-X#

PACS number~s!: 12.38.Bx, 12.38.Cy, 24.85.1p
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I. INTRODUCTION

In recent papers by Buchmu¨ller, Hebecker, and collabora
tors @1–3# diffractive processes are considered where a
tual photon scatters on a hadron or a nucleus, producing
jets out of a quark and antiquark in the virtual photon’s wa
function, and a rapidity gap between the quark-antiquark p
and the hadron~nucleus! with which the virtual photon scat
ters. In the final state the hadron~nucleus! forms a cluster of
diffractively produced soft particles. The process is illu
trated in Fig. 1~A!. Buchmüller, Hebecker, and colleague
@1–3# make the provocative claim that such processes m
be computed in a semiclassical description of smallx pro-
cesses where the effect of the hadron is taken into accou
classical sources of color charge@4–10#. They claim that
such diffractive processes may be computed by first com
ing the amplitude of the process, then averaging it over
various color orientations of the source, and finally squar
the amplitude to obtain the cross section. That way the sq
ing of the amplitude and averaging in the hadron~nuclear!
wave function are done in the order opposite to what o
usually does when calculating total~inclusive! cross section.

In this same theory@1–3#, the structure functions for dee
inelastic scattering are computed using the same distribu
of classical sources. The only difference is that the amplit
is first squared and then averaged over color. If these
scriptions are true, then there is a subtle and deep rela
between the structure functions computed in deep inela
scattering and diffractive virtual photon production of jets

In this paper, we find that we can derive this relation fo
restricted class of diffractive processes with a rapidity g
where the hadron encountered remains intact@see Fig. 1~B!#.
We shall call such processes quasielastic virtual photo
duction. Although it might be possible to extend our metho
to the more general case where the hadron fragments
soft particles, we are unable to do so with our current te
nique.

We shall present two types of arguments. The first is
intuitive argument similar to that invoked in Glauber scatt
ing. We shall pursue the argument in the context of a la
nucleus where one has a simple picture of the source
0556-2821/99/60~5!/054025~8!/$15.00 60 0540
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color charge arising from the nucleon valence quark dis
bution. We will then later generalize the argument to a h
ron where the sources are largely gluonic and arise from
proper renormalization group treatment of the hadronic w
function.

We shall perform this analysis when the averaging o
color sources is Gaussian in the same sense as was disc
in @4–10#, or more generally local in transverse space. If t
renormalization group analysis after including the QCD ev
lution in rapidity @8–10# yields the weight function for aver
aging over sources which is not local, as it well might b
then our prescription would fail to impose the condition of
diffractive rapidity gap on the process at hand and should
understood in the sense of a quasiclassical approxima
only.

We derive explicit expressions for the quasielastic str
ture function of a nucleus or a hadron. This structure fu
tion is analogous of the diffractive structure function
Buchmüller, Hebecker, and colleagues. We shall refer to it
F2

D with the caveat that we are capable at present of desc
ing those processes which are quasielastic for the hadron
also derive an expression for the structure function for d

FIG. 1. ~A! Diffractive deep inelastic scattering with a rapidit
gap.~B! The same process with the hadron remaining intact in
final state~quasielastic photoproduction!. The interaction is roughly
illustrated by an exchange of some color singlet particle~Pomeron!.
©1999 The American Physical Society25-1
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YURI V. KOVCHEGOV AND LARRY McLERRAN PHYSICAL REVIEW D 60 054025
inelastic scatteringF2, showing thatF2 and F2
D are related

by an interchange of color averaging and squaring of
amplitude.

We analyze the largeQ2 limit of the expression we obtain
for the diffractive structure functionF2

D . The result is very
interesting. The diffractive structure function of the hadr
or nucleus turns out to be linearly proportional to the glu
distribution of the hadron or nucleus:F2

D(xB j ,Q
2)

;xB jG(xB j ,Q
2). That way we prove that due to the multip

rescattering effects diffraction becomes a leading twist ef
@11#, in the sense that diffractive structure function is n
suppressed by extra powers ofQ2 with respect to the tota
structure function. At large enoughQ2 diffractive structure
function should depend on center of mass energy for d
inelastic scattering or, equivalently, on BjorkenxB j , in the
same way as the structure functionF2. This statement is
confirmed by recent data from the DESYep collider HERA
@12#.

The outline of the paper is the following: In Sec. II w
construct the light cone wave function of a virtual photo
This will be useful as we shall derive the scattering amp
tude by convoluting this wave function with the propaga
of the quark-antiquark pair through the hadron which
cludes multiple scatterings of theqq̄ pair on the gluons~clas-
sical sources! which constitute the hadron.

In Sec. III we analyze diffractive scattering from a larg
nucleus and derive an expression forF2. This example illus-
trates all the essential points of the more general anal
where a hadron is treated as the sum of sources arising
a renormalization group treatment of the hadron wave fu
tion. We show how in the largeQ2 limit due to the multiple
rescattering effects diffractive structure function behaves
a leading twist expression.

In Sec. IV we generalize scattering off a nucleus to
hadron. We argue that if the weight function which is used
color average the sources is Gaussian, the result of the
vious analysis is essentially reproduced. If the averaging p
cedure is local~but not Gaussian!, we shall see how the
result above generalizes. We have not been able to gener
to a nonlocal~in transverse coordinates! averaging proce-
dure.

In Sec. V we summarize our results, and compare with
case of deep inelastic scattering~DIS! by deriving expres-
sions for the total inclusive cross section andF2 in the qua-
siclassical limit.

II. LIGHT CONE WAVE FUNCTION OF A VIRTUAL
PHOTON

Here we are going to calculate the wave function
quark-antiquark fluctuations of a virtual photon. The diagr
is shown in Fig. 2. Without any loss of generality we c
work in a frame where the transverse momentum of the
tual photon is zero, so that the momentum of the photo
given by qm5(q1 ,2Q2/2q1 ,0) with Q2 the virtuality of
the photon. The light cone momentum of the virtual phot
q1 is very large, so that in the spirit of the eikonal appro
mation we will neglect all the inverse powers ofq1 in the
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calculations below. However, we will keep all the inver
powers ofQ2, therefore resumming all the ‘‘higher twist’
terms.

Using the light cone perturbation theory with the Fey
man rules from@13# one can write down the following ex
pressions for the value of the amplitude in Fig. 2:

c rr 8
l

~k,z!5ef

Az~12z!

k21mf
21Q2z~12z!

ũr~q2k! e (l)
•g v r 8~k!,

~1!

with r and r 8 being quark and antiquark helicities corr
spondingly,r 561, l is the photon’s polarization,l561,
mf is the quark’s mass, andef is its electric charge (f de-
notes quark’s flavor!. We definedz5k1 /q1 as the fraction
of the photon light cone momentum carried by the quark. W
will calculate separately the cases of a transverse and lo
tudinal polarization of the photon. We start with transver
polarization eT,m

l 5(0,0,el), with el5(11l i )/A2. After

plugging in the explicit expressions forũr andv r 8 a straight-
forward calculation yields

c rr 8
T l

~k,z!5ef

1

k21mf
21Q2z~12z!

$d rr 8k•el@r ~122z!

1l#1rd r ,2r 8mf~11rl!%. ~2!

For reasons which will become apparent later we want
obtain the virtual photon’s wave function in transverse co
dinate space. Performing a Fourier transform of Eq.~2!,

c rr 8
l

~x,z!5E d2k

~2p!2
e2 ik•xc rr 8

l
~k,z!, ~3!

we obtain

c rr 8
T l

~x,z!5
ef

2p
$d rr 8i e

l
•¹x@r ~122z!1l#

1rd r ,2r 8mf~11rl!%K0~xa!, ~4!

wherea25Q2z(12z)1mf
2 andx5uxu. Defining

FT~x,y,z!5
Nc

2 (
l,r ,r 8, f

c rr 8
T l

~x,z! c rr 8
* T l

~y,z!, ~5!

we derive

FIG. 2. Light cone wave function of a virtual photon.
5-2



e

ve
a

-

to
ic
e
on
n
tl

to
n
tr

is
al

n
ry
th

w
b

hed

lex
the
ely
he
pli-
he

ing

a-

the

ir.

ain

to

by

tart

DIFFRACTIVE STRUCTURE FUNCTION IN A . . . PHYSICAL REVIEW D60 054025
FT~x,y,z!52Nc(
f

aEM
f

p

3S a2
x•y

xy
K1~xa!K1~ya!@z21~12z!2#

1mf
2K0~xa!K0~ya! D . ~6!

Whenx5y the object in Eq.~6! becomes just a square of th
transverse virtual photon’s wave function.

To calculate the longitudinal contribution to the wa
function we write down an expression for the longitudin
polarization by requiring thate251 ande•q50. We end up
with eL,m

l 5(q1 /Q , Q/2q1 ,0). Similarly to the above one
obtains

c rr 8
L

~k,z!5ef

1

k21mf
21Q2z~12z!

2Qd rr 8z~12z!. ~7!

Fourier transformation of Eq.~7! yields

c rr 8
L

~x,z!5
ef

2p
d rr 8z~12z!2QK0~xa!, ~8!

which results in

FL~x,y,z!52Nc(
f

aEM
f

p
@4Q2z2~12z!2K0~xa!K0~ya!#.

~9!

Equations~6! and ~9! provide us with the square of the vir
tual photon’s wave function~cf. @17#!:

F~x,y,z!5FT~x,y,z!1FL~x,y,z!. ~10!

III. DIFFRACTIVE STRUCTURE FUNCTION

In the calculation of the quark-antiquark propaga
through the nucleus we will make use of the quasiclass
approximation@15,16#, which restricts the interactions of th
qq̄ pair with the nucleons to nothing more than a two-glu
exchange with the nucleon in covariant gauge. Light co
(A250) gauge analysis of the process is a bit more sub
but leads to the same formulation of the classical limit@6#.

As was stated above, in order to calculate diffractive~or
elastic! production of the quark-antiquark pair one has
average the production amplitude in the nuclear wave fu
tion. After one does that all the one-gluon exchange con
butions would cancel, resulting in two-gluon exchange~vir-
tual! interactions being the only possibility. The amplitude
depicted in Fig. 3. There the gluon lines can hook in
possible ways to the quark lines~see Fig. 4!. Similarly to the
wave functions, the propagator is calculated in the eiko
approximation; i.e., theqq̄ pair is assumed to have a ve
large light cone momentum, inverse powers of which in
amplitude will be neglected.

In order to calculate the quark-antiquark propagator
have to start at the lowest order case of one nucleon
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summing the diagrams shown in Fig. 4. The vertical das
line there indicates the final state of theqq̄ pair. Because the
color averaging is done in the amplitude and the comp
conjugate amplitude independently, the propagators in
amplitude and the complex conjugate amplitude effectiv
factorize. That way we can do the summation just in t
amplitude and the answer for the complex conjugate am
tude will be the same. That is why in Fig. 4 we show t
lowest order interactions only in the amplitude.

To evaluate diagrams in Fig. 4, similarly to@15,16# we
start by defining the normalized quark-nucleon scatter
cross section

V~ l!5
1

s

ds

d2l
, ~11!

where l is the momentum transfer. The Fourier transform
tion of V( l) is defined by

Ṽ~x!5E d2l e2 i l•xV~ l!. ~12!

Then, as one can easily see, the diagrams in Fig. 4 give
following factors: A and B give2(1/2)Ṽ(0) each, and C
gives Ṽ(x), wherex is the transverse separation of the pa
Defining

ṽ~x!5
4

x2
@12Ṽ~x!# ~13!

and adding all the contributions of graphs in Fig. 4 we obt

A1B1C52@Ṽ~0!2Ṽ~x!#52
1

4
x2ṽ~x!. ~14!

Now to obtain a contribution to the propagator we have
multiply this result byrs51/l, to take into account the
density of nucleons and quark-nucleon cross section and
the length of the path along thez direction of the quark-
antiquark pair in the nuclear matterL. l is the mean free path
of the pair in the nucleus. One can easily see that if we s

FIG. 3. Diffractive quark-antiquark production in DIS.

FIG. 4. Calculation of the quark-antiquark propagator.
5-3
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YURI V. KOVCHEGOV AND LARRY McLERRAN PHYSICAL REVIEW D 60 054025
including more and more nucleons, interacting with theqq̄
pair, the answer for the propagator will be just an expon
tiation of the lowest order result. Since in light cone pert
bation theory one has to also include the diagram with
interactions, the final answer for the propagator of the pai
the nuclear matter will be

expS 2
x2ṽ~x!L

4l
D . ~15!

One should note here that our convention is different fr
@15#, sinces in our case is the quark-nucleon cross secti
the same as in@16#.

An important fact to note is that in the two-gluon e
change, no net transverse momentum is carried to the so
The gluon coming in has the same transverse momentum
the gluon going out. Additionally, the longitudinal mome
tum transfer is very small, of the order ofe2Dy whereDy is
the rapidity gap between the source and the quark-antiq
pair. This rapidity gap will in general be large. Therefore t
source barely changes its momentum in the interaction.

In the language of the Fock space wave functions one
see that the Fock space wave function of the target nucle
essentially the same after the interaction as it was bef
Therefore with probability close to one, the hadronic wa
function is unchanged. Therefore the procedure of averag
over the sources before squaring the amplitude projects
the quasielastic piece of the interaction. In the final st
there is a quark-antiquark jet, a large rapidity gap, and fin
a nucleus with its momentum largely unchanged.

Of course we expect that a real nucleus having sm
binding energies will fragment. Presumably quasielas
means here only no inelastic particle production in the c
tral rapidity region. On the other hand, for a real hadro
where we imagine the sources as gluons arising from
proper renormalization group treatment of the hadron w
function, quasielastic means no fragmentation of the had

This leaves open the question of how one treats truly
fractive processes where one allows for some fragmenta
of the hadron into pions which have momentum close to
hadron initial momentum. Presumably one can find a re
tionship to the quasielastic calculation, but we have not b
able to do so.

In order to write down the final answer for theqq̄ pro-
duction cross section it is convenient to work in the r
frame of the nucleus. Analogous to@15# we assume that the
virtual photon ~or the quark-antiquark pair! reaches the
nucleus at light cone timet5x250. Then, if we definet1
as the time when the virtual photon splits into the qua
antiquark pair in the amplitude andt2 as the time when the
virtual photon splits into the quark-antiquark pair in the co
plex conjugate amplitude, one should consider four case

~a! t1.0,t2.0; ~16a!

~b! t1,0,t2.0; ~16b!

~c! t1.0,t2,0; ~16c!
05402
-
-
t

n

,

ce.
as

rk

n
is

e.
e
g
ut
e
y

ll
c
-
,
a
e
n.
f-
n

e
-
n

t

-

-

~d! t1,0,t2,0. ~16d!

The corresponding cross sections will be

ds (a)

d2k dz
5

1

p~2p!3 E d2b d2x d2y e2 ik•(x2y) F~x,y,z!,

~17a!

ds (b)

d2k dz
52

1

p~2p!3 E d2b d2x d2y e2 ik•(x2y) F~x,y,z!

3expS 2
x2ṽ~x!AR22b2

2l
D , ~17b!

ds (c)

d2k dz
52

1

p~2p!3 E d2b d2x d2y e2 ik•(x2y) F~x,y,z!

3expS 2
y2ṽ~y!AR22b2

l
D , ~17c!

ds (d)

d2k dz
5

1

p~2p!3 E d2b d2x d2y e2 ik•(x2y) F~x,y,z!

3expS 2
x2ṽ~x!AR22b2

2l
D

3expS 2
y2ṽ~y!AR22b2

2l
D , ~17d!

with F(x,y,z) given by Eq.~10!. HereR is the radius of the
nucleus, which we assume to be spherical, andb is the im-
pact parameter. Adding together the contributions given
Eqs.~17! we find the expression for the quark-antiquark pr
duction cross section in deep inelastic scattering on
nucleus:

dsD

d2k dz
5

1

p~2p!3 E d2b d2x d2y e2 ik•(x2y) F~x,y,z!

3F12expS 2
x2ṽ~x!AR22b2

2l
D G

3F12expS 2
y2ṽ~y!AR22b2

2l
D G . ~18!

Making use of the definition of theF2 structure function

F25
Q2

4p2aEM

~sT1sL! ~19!

together with Eqs.~6!,~9!,~10!, we derive the following for-
mula for the diffractive structure function:
5-4
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DIFFRACTIVE STRUCTURE FUNCTION IN A . . . PHYSICAL REVIEW D60 054025
F2
D5Q2

Nc

p~2p!3 (
f

Zf
2 E d2b d2x E

0

1

dz$a2K1
2~xa!@z2

1~12z!2#1mf
2K0

2~xa!14Q2z2~12z!2K0
2~xa!%

3F12expS 2
x2ṽ~x!AR22b2

2l
D G2

, ~20!

whereZf
25aEM

f /aEM for each quark flavor. Here we shou
note that, in the logarithmic approximation of smallx ~large
Q2),

ṽ~x!

l
5

2p2as

Nc
r xB jG~xB j ,1/x2! ~21!

@see Eq.~4.7! of @16# as well as@19##. Now as is the strong
coupling constant,r is the density of nuclear matter, norma
ized to give the atomic numberA when integrated over the
whole nucleus.xB jG(xB j ,Q

2) is the gluon distribution in a
nucleon, which we take at the lowest order inas ~see the
next section!. Using Eq.~21! one can see now that in th
large Q2 limit the differential cross section of Eq.~18! be-
comes proportional to the square of the gluon distribut
function of the hadron or nucleus, reducing to an old a
well known result@20#.

However, the largeQ2 limit of F2
D is more interesting. Let

us assume for simplicity of the calculations~only in this
section! that our target is a large cylindrical nucleus with t
radiusR and the length 2R along the axis. Then the impac
parameter integration in Eq.~20! becomes trivial giving just
a prefactor ofpR2. Using the representation of the modifie
Bessel function1 K1(j),

K1~j!5
j

4E0

`dt

t2
e2t2j2/4t, ~22!

in Eq. ~20!, assuming that the dominating values ofz are
small, and performing thez and t integrations, we obtain

F2
D5

NcR
2

3p2 (
f

Zf
2E

1/Q2

` dx2

~x2!2

3F12expS 2
asp

2NcR
2

x2xB jG~xB j ,1/x2!D G 2

,

~23!

wherexB jG(xB j ,Q
2) is now the gluon distribution function

of the whole nucleus. In the leading logarithmic approxim
tion we assume that the gluon distribution is a slowly va
ing function ofQ2. That way it will effectively play the role
of the upper cutoff of thex integration in Eq.~23!. Perform-
ing the integration in Eq.~23! we obtain the following ex-
pression for the diffractive structure function at largeQ2 :

1We thank D. Kharzeev for showing us this trick.
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F2
D~xB j ,Q

2!5
as

6p (
f

Zf
2xB jG~xB j ,Q

2!. ~24!

A little more careful estimate would introduce a factor
2 ln 2 in front ofxB jG on the right hand side of Eq.~24!. One
should note here that the exact coefficient cannot be
cisely fixed by this method, since to be able to usexB jG as a
cutoff in Eq. ~23! one should reach the kinematic region
large gluon distributions. This would correspond to evolvi
xB jG(xB j ,Q

2) with some QCD evolution. However, in th
strict sense, ourxB jG should be taken only at the lowes
order inas @see Eq.~31! below#. Nevertheless, our qualita
tive conclusions should not be altered by introducing evo
tion in the gluon distributions.

That way we see that the diffractive structure function
the largeQ2 limit is linear in xB jG with no Q2 suppression.
Because of the multiple rescattering effects, theF2

D structure
function becomes a leading twist expression; i.e., it is
suppressed by powers ofQ2. By resumming higher twist
terms we obtained an answer which is effectively lead
twist. This result agrees with the previous predictions
@11,21,24#. Equation~24! shows that the diffractive structur
function depends on energy in the same way as the struc
function F2 at largeQ2. This result agrees with the recen
ZEUS data@12#.

IV. GENERALIZING TO HADRONS

To generalize the considerations above to the case
hadron, we first recognize that the renormalization gro
treatment proposed in@8–10# replaces the gluon distribution
of a hadron by a set of sources which include both vale
quarks and sea gluons. If we go to small enoughx, the gluon
density per unit area is large enough so that one can u
weak coupling analysis. In this respect, the situation is
tirely parallel to that for a nucleus.

The essential difference is that the function which we u
to average over sources changes. If we use a Gaussian
tribution of sources,

E @dr#expS 2E d2x
r2~x!

2L~y! D , ~25!

then it is an easy exercise to show that the results of the
section are reproduced. To do this we use the fact that
factorL(y) is the charge squared per unit area~as defined in
@5#!, with y; ln x1 the space-time rapidity, and th
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP! equa-
tions @22#. As was discussed in some detail by McLerran a
Venugopalan in@5# the propagator of a single quark throug
the nucleus can be represented as a path ordered expon
~Wilson line!

P expS i E
x1

`

dx18 A2~x18 ! D , ~26!

where the fieldA2 is the gluon field taken in covarian
gauge. Direct calculation of the path ordered integral done
5-5
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YURI V. KOVCHEGOV AND LARRY McLERRAN PHYSICAL REVIEW D 60 054025
@5# yields for the propagator of the quark-antiquark p
through the hadron@see formula~119! in @5##

g~x!5exp@a2pCFx2 ln~x2LQCD
2 ! A L~y!#, ~27!

where the no-interaction contribution was included in t
propagator in Eq.~27!. A is the atomic number of the
nucleus. Using the fact that

AL~y!5
AR22b2r

CF
E

xB j

1

dx8 G~x8,1/x2!, ~28!

with r5 A/(4/3)pR3 the nucleon number density in th
nucleus, we obtain

g~x!5expS a2pAR22b2x2 ln~x2LQCD
2 !

3rE
xB j

1

dx8 G~x8,1/x2! D . ~29!

To establish the correspondence between the result of
~29! and theqq̄ propagators from Sec. III one should ma
use of the double logarithmic limit of the DGLAP equatio

]

] ln~Q2/LQCD
2 !

xB jG~xB j ,Q
2!5

aNc

p E
xB j

1

dx8 G~x8,Q2!.

~30!

In the quasiclassical calculation of the previous section
gluon distribution function were taken only at the two-glu
level. Noting that in that two-gluon exchange approximati
the gluon distribution is given by

xB jG~xB j ,Q
2!5

aCF

p
ln

Q2

LQCD
2

, ~31!

one can easily see that Eq.~29! reduces to

g~x!5expS 2
ap2AR22b2

Nc
x2rxB jG~xB j ,1/x2! D ,

~32!

which matches the exponents employed in derivation of E
~18! and~20! if one substitutes Eq.~21! into them. That way
we showed that the result derived for the structure funct
of a nucleus@Eq. ~20!# is, probably, also valid for a hadron

There are two assumptions here. First is that one can
the DGLAP equations and the second is that the distribu
of sources is local and Gaussian. These are true when o
at high enough momentum transfer so that the density
gluon dN/d2pTdy per unit area is small. This distribution a
largepT goes as 1/pT

2 . As the transverse momentum is low
ered therefore the density becomes large and our assu
tions break down.

The greatest complication in the smallpT region (pT
2 less

than or of the order of the color charge density of gluon
unit area! is that the Gaussian distribution changes to a p
sumably non-Gaussian and nonlocal~in transverse space!
05402
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form. In the exchanges of gluons between the produced
of quark-antiquark pair, some transverse momentum can
absorbed by the source. For local Gaussian distributions

^r~x1!•••r~xN!& ~33!

factorizes into a product of terms such as

^r~x1!r~x2!& ; d (2)~x12x2!. ~34!

The locality of this product and its translational invarian
are what guarantee that the source absorbs no momentu

If there is nonlocality in the Gaussian averaging, then o
couples together sources at different transverse coordin
There will be overall no transverse momenta transferred
the sum of sources, but there may be momenta transferre
the individual sources at their respective transverse coo
nates.~We have a picture in mind where we have coa
grained in transverse coordinate. Each coordinate cell c
tains a separate source.! If this is the case, then the Foc
space wave function of the hadron has been modified so
what from its original form as in the amplitude one has
distributed the transverse momentum among its various c
stituents.

The problem has therefore become immensely more c
plicated. One should note, however, that this can only aff
the soft transverse momentum part of the hadron wave fu
tion, so that perhaps this does not spoil the wave function
much. It may also turn out that the nonlocalities in t
renormalization-group-improved distribution function fo
sources is small.

As a practical matter, the transverse momentum scal
interest for the nonlinearities is presumably the virtuality
the photonQ2. If one is at largeQ2, then nonlinearities and
nonlocality are not important. In this case, the exponen
factors in Eq.~20! linearize, and one is back to the simp
two-gluon exchange model for diffractive processes. Suc
model has been derived in the literature@20# from various
considerations different than those above.

V. TOTAL INCLUSIVE CROSS SECTION

In the calculation outlined above we have derived the
pressions for diffractive~elastic! quark-antiquark pair pro-
duction and structure function in DIS on a nucleus in t
quasiclassical approximation@Eqs.~18!,~20!#. Our results in-
clude all higher twist effects at the classical level. As w
noted above the classical limit in our case is understood
modeling the interactions by no more than two gluons
nucleon. Quantitatively that results inas

2A1/3 being the ex-
pansion parameter. That way our calculation could be und
stood as resumming all powers of this parameter.

We should note here that similar results were obtained
Buchmüller, McDermott, and Hebecker in@2#. However, our
expressions in Eqs.~18!,~20! give a more explicit power of
the exponential in the propagator of the pair through
nucleus.

We should also note that using the techniques outlin
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above and used previously in@15# one can also calculate th
total ~inelastic! qq̄ production cross section. Theqq̄ propa-
gator calculation is a little more difficult. In the framewor
of the quasiclassical approach one has to also include
e
s

o
nc
tio
on
on
to
th
on

.

s.

05402
e-

gluon exchanges, which leave the nucleon in the color o
state, therefore breaking it apart. Without giving any deta
we state the results@18#. The quark-antiquark total produc
tion cross section is
ds

d2k dz
5

1

p~2p!3 E d2b d2x d2y e2 ik•(x2y) F~x,y,z!F 12expS 2
x2ṽ~x!AR22b2

2l
D 2expS 2

y2ṽ~y!AR22b2

2l
D

1expS 2

H x2ṽ~x!1y2ṽ~y!1~1/2!~x2y!2ṽF1

2
~x2y!G2~1/2!~x1y!2ṽF1

2
~x1y!G JAR22b2

2l
D G . ~35!
the
ne
nc-

g on

s,

or-

ec-

d
s-

OE
This formula reduces to a similar formula derived in@2# @Eq.
~32!# only in the logarithmic limit, when we can neglect th
x dependence inṽ(x). The nuclear structure function in thi
quasiclassical limit is

F25Q2
2Nc

p~2p!3 (
f

Zf
2 E d2b d2x E

0

1

dz$a2K1
2~xa!

3@z21~12z!2#1mf
2K0

2~xa!14Q2z2~12z!2K0
2~xa!%

3F12expS 2
x2ṽ~x!AR22b2

2l
D G , ~36!

which agrees with the previously derived expressions@see
@5,14# and references therein#. In the limit of largeQ2, Eq.
~36! provides us with the usual leading twist result

]F2

] ln~Q2/Q0
2!

5
as

3p (
f

Zf
2 xB jG~xB j ,Q

2!. ~37!

That way we have established a procedure of inclusion
higher twist terms in the nuclear or hadronic structure fu
tions and cross sections in the quasiclassical approxima
In both cases of diffractive and total inclusive cross secti
the calculation is simple and follows the same prescripti
One has to convolute the wave functions of a virtual pho
with the propagator of the quark-antiquark pair through
nucleus. For the case of total inclusive cross section
f
-
n.
s
.

n
e
e

should first square the propagator and then average it in
nuclear wave function. In the case of diffractive process o
has to first average the propagator in the nuclear wave fu
tion and then square it.

The relationship between the expressions~20! and ~36!
can be shown in a different way@23#. Let us rewrite the total
and elastic cross sections for the deep inelastic scatterin
a hadron or a nucleus in terms of theS matrix at a given
impact parameter of the collision,S(b), as@23#

s tot52E d2b@12S~b!#, ~38a!

sel5E d2b@12S~b!#2. ~38b!

Now one can see that the diffractive~quasielastic! cross sec-
tions of a quark-antiquark pair interacting with the nucleu
which was used in Eq.~20!, corresponds to the formula
~38b!, whereas the total inclusive cross section used in f
mula ~36! corresponds to Eq.~38a!. Equations~38a! and
~38b! show how easily the quasielastic and total cross s
tions could be obtained from one another.
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