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Diffractive structure function in a quasiclassical approximation
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We derive an expression for the diffractif, structure function which should be valid at smalffor
guasielastic scattering on a hadron and for quasielastic scattering on a large nucleus. This expression includes
multiple rescatterings of the quark-antiquark pair produced by the virtual photon off the sources of color charge
in a quasiclassical approximation. We find that there is a relation between such diffractive production and
inclusive processes. In the former, one averages over all colors of sources before squaring the amplitude, and
in the latter one first squares the amplitude and then averages it in the hadron or nuclear wave function. We
show that in the limit of a large virtuality of the phot@? the diffractive structure function becomes linearly
proportional to the gluon distribution of the hadron or nucleus, therefore proving that in this sense diffraction
is a leading twist effecf.S0556-282(199)02915-X]

PACS numbel): 12.38.Bx, 12.38.Cy, 24.85p

[. INTRODUCTION color charge arising from the nucleon valence quark distri-
bution. We will then later generalize the argument to a had-

In recent papers by Buchitier, Hebecker, and collabora- ron where the sources are largely gluonic and arise from a
tors [1-3] diffractive processes are considered where a virfroper renormalization group treatment of the hadronic wave
tual photon scatters on a hadron or a nucleus, producing twiinction.
jets out of a quark and antiquark in the virtual photon's wave \We shall perform this analysis when the averaging over
function, and a rapidity gap between the quark-antiquark paifolor sources is Gaussian in the same sense as was discussed
and the hadrofinucleus with which the virtual photon scat- in [4—10l, or more generally local in transverse space. If the
ters. In the final state the hadrémucleus forms a cluster of ~renormalization group analysis after including the QCD evo-
diffractively produced soft particles. The process is illus-Iution in rapidity[8—10 yields the weight function for aver-
trated in Fig. 1A). Buchmiler, Hebecker, and colleagues aging over sources which is not local, as it well might be,
[1-3] make the provocative claim that such processes majfi€n our prescription would fail to impose the condition of a
be computed in a semiclassical description of smatro-  diffractive rapidity gap on the process at hand and should be
cesses where the effect of the hadron is taken into account #§derstood in the sense of a quasiclassical approximation
classical sources of color char§é—10. They claim that only.
such diffractive processes may be computed by first comput- We derive explicit expressions for the quasielastic struc-
ing the amplitude of the process, then averaging it over théure functlon of a nucleus ora ha}dron. This structure func-
various color orientations of the source, and finally squaringion is _analogous of the diffractive structure function of
the amplitude to obtain the cross section. That way the squaBuchmuler, Hebecker, and colleagues. We shall refer to it as
ing of the amplitude and averaging in the hadfoncleay F? with the caveat that we are capable at present of describ-
wave function are done in the order opposite to what onéng those processes which are quasielastic for the hadron. We
usually does when calculating tot@hclusive) cross section. also derive an expression for the structure function for deep

In this same theorj/1-3], the structure functions for deep
inelastic scattering are computed using the same distributior
of classical sources. The only difference is that the amplitude f_J%

f_//%
is first squared and then averaged over color. If these pre:
scriptions are true, then there is a subtle and deep relatior
between the structure functions computed in deep inelastic
scattering and diffractive virtual photon production of jets.
In this paper, we find that we can derive this relation for a
restricted class of diffractive processes with a rapidity gap

where the hadron encountered remains intset Fig. 1B)].

We shall call such processes quasielastic virtual photopro- |, ye hadron v
duction. Although it might be possible to extend our methods

to the more general case where the hadron fragments intc

soft particles, we are unable to do so with our current tech- A B

nique.

We shall present two types of arguments. The first is an FIG. 1. (A) Diffractive deep inelastic scattering with a rapidity
intuitive argument similar to that invoked in Glauber scatter-gap.(B) The same process with the hadron remaining intact in the
ing. We shall pursue the argument in the context of a largginal state(quasielastic photoproductiprThe interaction is roughly
nucleus where one has a simple picture of the sources dfustrated by an exchange of some color singlet partiElemeroi.

rapidity gap rapidity gap
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inelastic scatterind-,, showing that~, and FZD are related k-q v
by an interchange of color averaging and squaring of the
amplitude.

We analyze the larg®? limit of the expression we obtain
for the diffractive structure functioff . The result is very
interesting. The diffractive structure function of the hadron . r
or nucleus turns out to be linearly proportional to the gluon
distribution of the hadron or nucleustD(xBj ,Q?9)
~XgjG(Xg; ,Q?). That way we prove that due to the multiple
rescattering effects diffraction becomes a leading twist effec
[11], in the sense that diffractive structure function is not
suppressed by extra powers @f with respect to the total
structure function. At large enoudg®? diffractive structure
function should depend on center of mass energy for deeR]
inelastic scattering or, equivalently, on Bjorkag;, in the
same way as the structure functiény. This statement is
confirmed by recent data from the DE®Y collider HERA

FIG. 2. Light cone wave function of a virtual photon.

Lalculations below. However, we will keep all the inverse
powers ofQ?, therefore resumming all the “higher twist”
terms.

Using the light cone perturbation theory with the Feyn-
an rules from{13] one can write down the following ex-
pressions for the value of the amplitude in Fig. 2:

[12]. \ _ 2172) ~ o
. - - lﬂrr’(klz)_ef 2 df(q k)f ")’Vr’(k)-
The outline of the paper is the following: In Sec. Il we k2+mZ+Q%z(1-2)
construct the light cone wave function of a virtual photon. (D)

This will be useful as we shall derive the scattering ampli-

tude by convoluting this wave function with the propagatorwith r and r’ being quark and antiquark helicities corre-
of the quark-antiquark pair through the hadron which in-spondingly,r==+1, \ is the photon’s polarizationy =+ 1,
cludes multiple scatterings of thggy pair on the gluongclas- My is the quark’s mass, ane is its electric charge f( de-
sical sourceswhich constitute the hadron. notes quark’s flavor We definedz=k, /g, as the fraction

In Sec. Il we analyze diffractive scattering from a large Of the photon light cone momentum carried by the quark. We
nucleus and derive an expression For. This example illus-  Will calculate separately the cases of a transverse and longi-
trates all the essential points of the more general analysig!dinal polarization of the photon. We start with transverse
where a hadron is treated as the sum of sources arising fropplarization €} ,=(0,0€"), with €' =(1+\i)/\2. After
a renormalization group treatment of the hadron wave funcplugging in the explicit expressions far andv, a straight-
tion. We show how in the Iarg@2 limit due to the multiple  forward calculation yields
rescattering effects diffractive structure function behaves like
a leading twist expression.

In Sec. IV we generalize scattering off a nucleus to a w:r?(k,z)zef P
hadron. We argue that if the weight function which is used to k“+mi+Q°z(1-z
c_olor average f[he sources is Gaussian, the result of_the pre- FNTErS, m(1+r0)). )
vious analysis is essentially reproduced. If the averaging pro- '
cedure is local(but not Gaussian we shall see how the
result above generalizes. We have not been able to generali
to a nonlocal(in transverse coordinatesveraging proce-
dure.

In Sec. V we summarize our results, and compare with the
case of deep inelastic scatterifiglS) by deriving expres- iﬁA (x,2)= f
sions for the total inclusive cross section dngdin the qua- LA
siclassical limit.

){5rr/k-e*[r(1—22)

E?(?r reasons which will become apparent later we want to
obtain the virtual photon’s wave function in transverse coor-
dinate space. Performing a Fourier transform of &,

2

T)ze“k'xw?mk,z), &)

we obtain

IIl. LIGHT CONE WAVE FUNCTION OF A VIRTUAL o e o
PHOTON l/frr,(X,Z)ZE{b“n/lf -V[r(1—22)+\]

Here we are going to calculate the wave function of
quark-antiquark fluctuations of a virtual photon. The diagram
is shown in Fig. 2. Without any loss of generality we can 2 ~N2opa 2 _ -
work in a frame where the transverse momentum of the vir/V'€"€a&"=Q°z(1=2)+mf andx= [x|. Defining
tual photon is zero, so that the momentum of the photon is N
given by q,=(d, ,—Q%2q. ,0) with Q? the virtuality of Po(Xy,2)= -2 TN x 2) % TNy 2), 5
the photon. The light cone momentum of the virtual photon xy:2)= 3 A%,f Yt (%2) e " 09:2) ©
g. is very large, so that in the spirit of the eikonal approxi-
mation we will neglect all the inverse powers @f in the  we derive

+r6, —pme(1+rN)}Ko(xa), 4
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f q

Pem
Pr(xy,2)=2Ne 2, — = v &
X.y g
X azx—yKl(xa)Kl(ya)[22+(1—2)2]
FIG. 3. Diffractive quark-antiquark production in DIS.
+m?Ko(xa)Ko(ya) |. 6
rKo(xa)Ko(ya) © summing the diagrams shown in Fig. 4. The vertical dashed

line there indicates the final state of thq pair. Because the
color averaging is done in the amplitude and the complex
conjugate amplitude independently, the propagators in the
amplitude and the complex conjugate amplitude effectively
factorize. That way we can do the summation just in the
amplitude and the answer for the complex conjugate ampli-
tude will be the same. That is why in Fig. 4 we show the

Whenx=Yy the object in Eq(6) becomes just a square of the
transverse virtual photon’s wave function.

To calculate the longitudinal contribution to the wave
function we write down an expression for the longitudinal
polarization by requiring tha¢’=1 ande-q=0. We end up
with € ,=(9./Q,Q/2q. ,0). Similarly to the above one

obtains lowest order interactions only in the amplitude.
To evaluate diagrams in Fig. 4, similarly {45,16 we
oo, (K,z)=e 2Q6,,z(1-z). (7)  Start by defining the normalized quark-nucleon scattering
" k?+m?+Q%z(1-2) cross section
Fourier transformation of E(7) yields v 1 do an
. e odi’
W (X,2)= Eérr,z(l—z)ZQKo(xa), (8)
wherel is the momentum transfer. The Fourier transforma-
which results in tion of V(I) is defined by
f
o ~ .
PL(XY.2)=2Ne 2 —[4Q°Z(1-2)?Ko(xa)Ko(ya)]. V(x)= f d’le V(). (12
T

C)
_ . . ~ Then, as one can easily see, the diagrams in Fig. 4 give the
Equations(6) and (9) provide us with the square of the vir- following factors: A and B give—(l/2)\7(0) each, and C

tual photon’s wave functiokcf. [17)): givesV(x), wherex is the transverse separation of the pair.
D (x,y,2)=DP1(X,y,2) + DL (X,Y,2). (10  Defining

~ 4 ~
lll. DIFFRACTIVE STRUCTURE FUNCTION V00 = [1-V(0] (13)

In the calculation of the quark-antiquark propagator
through the nucleus we will make use of the quasiclassic
approximatior{15,1€], which restricts the interactions of the

qapair with the nucleons to nothing more than a two-gluon _ _ 1
exchange with the nucleon in covariant gauge. Light cone A+B+C=—[V(0)—-V(X)]=— ZXZ;/(X)- (14
(A_=0) gauge analysis of the process is a bit more subtle,

buxgad:st(;t?tz dsz;rgoe Lorﬂué?(tjlgp tgfégﬁ: Cllaatzsﬁz#rg:‘?(];e Now to obtain a contribution to the propagator we have to
W Ve, | u : ! multiply this result bypo=1/\, to take into account the

T e bttt JeS1Y f NLClOnS and arcrucleon o Secion and by
tion ,gfter on% does that allpthe one-gluon exchange contri:[he length of the path along tfedirection of the quark-

iy o 9 o antiquark pair in the nuclear matter\ is the mean free path
butions would cancel, resulting in two-gluon excharigie-

tal) interactions being the only possibility. The amplitude is of the pair in the nucleus. One can easily see that if we start
depicted in Fig. 3. There the gluon lines can hook in all

acjind adding all the contributions of graphs in Fig. 4 we obtain

possible ways to the quark linésee Fig. 4 Similarly to the
wave functions, the propagator is calculated in the eikonal R {
approximation; i.e., theq pair is assumed to have a very § § % § § ;
large light cone momentum, inverse powers of which in the
amplitude will be neglected.
In order to calculate the quark-antiquark propagator we A ? ¢
have to start at the lowest order case of one nucleon by FIG. 4. Calculation of the quark-antiquark propagator.
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including more and more nucleons, interacting with e (d) 7<0,7,<0. (160
pair, the answer for the propagator will be just an exponen-

tiation of the lowest order result. Since in light cone pertur-The corresponding cross sections will be

bation theory one has to also include the diagram without
interactions, the final answer for the propagator of the pair in

. do®
the nuclear matter will be

s 2 )3fd2bd2xd2ye”"(xy)(I)(x,y,z),
a T

p( XZ\7(X)L) (179
exp — an . (15

do(® 1
One should note here that our convention is different from 2 -
. : . . d“k dz m(2m
[15], sincec in our case is the quark-nucleon cross section,

the same as ifil6]. y p( X2V (X) \/W)
exp ————|,

3 f d?b d?x d?y e ' V) d(x,y,2)

An important fact to note is that in the two-gluon ex- ox (17b
change, no net transverse momentum is carried to the source.

The gluon coming in has the same transverse momentum as

the gluon going out. Additionally, the longitudinal momen-  do(® 1 o 2 e k()

tum transfer is very small, of the order ef Y whereAy is 42K dz: - m(2m)° f db dx d%y e Y d(x,y,2)
the rapidity gap between the source and the quark-antiquark

pair. This rapidity gap will in general be large. Therefore the p( B v (y) m)
A’ 1

source barely changes its momentum in the interaction. X ex
In the language of the Fock space wave functions one can

see that the Fock space wave function of the target nucleus is

essentially the same after the interaction as it was before. (@) 1

Therefore with probability close to one, the hadronic wave > =

function is unchanged. Therefore the procedure of averaging d*kdz  m(2m

over the sources before squaring the amplitude projects out x 52 2

the quasielastic piece of the interaction. In the final state xexp( — M)

there is a quark-antiquark jet, a large rapidity gap, and finally 2\

a nucleus with its momentum largely unchanged.
gely Unehang . p(_yZV(yNﬁ?—_bf)

(1790

g f d?b d’x d?y e F V) d(x,y,2)

Of course we expect that a real nucleus having small

binding energies will fragment. Presumably quasielastic 2\

means here only no inelastic particle production in the cen-

tral rapidity region. On the other hand, for a real hadronwith ®(x,y,z) given by Eq.(10). HereR is the radius of the

where we imagine the sources as gluons arising from &ucleus, which we assume to be spherical, brs the im-

proper renormalization group treatment of the hadron waveact parameter. Adding together the contributions given by

function, quasielastic means no fragmentation of the hadrorggs.(17) we find the expression for the quark-antiquark pro-
This leaves open the question of how one treats truly difduction cross section in deep inelastic scattering on a

fractive processes where one allows for some fragmentatiofucleus:

of the hadron into pions which have momentum close to the

hadron initial momentum. Presumably one can find a rela-

(17d

D
tionship to the quasielastic calculation, but we have not been do = ! f d2b d?x d?y e K N P (x,y,2)
able to do so. d’kdz w(2m)3
In order to write down the final answer for tlgy pro- o~ >
duction cross section it is convenient to work in the rest % 1—exp< _X v(x)yR"—b H
frame of the nucleus. Analogous [tb5] we assume that the 2\

virtual photon (or the quark-antiquark pairreaches the
nucleus at light cone time=x_=0. Then, if we definer;

as the time when the virtual photon splits into the quark-
antiquark pair in the amplitude ang as the time when the

virtual photon splits into the quark-antiquark pair in the com-paking use of the definition of thE, structure function
plex conjugate amplitude, one should consider four cases:

X . (18

2\

p( y%y)JRZ—bZ)
l—exp ———mm——

(a) 71>0,7,>0; (163 FZ_Q—2(0T+UL) (19

Ameapy
(b) 7,<0,7,>0; (16b)
together with Eqs(6),(9),(10), we derive the following for-
(¢) 71>0,7,<0; (160 mula for the diffractive structure function:
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N 1 a
Fo=Q>—— 3 77 f d?b d?x j dz{a?K2(xa)[ 22 F20xe Q)= 5, 2 ZPeG0x Q%) (29
m(2m)° f 0
+(1—-2)2]+ m?K3(xa) + 4Q%Z%(1—z)?K3(xa)} A little more careful estimate would introduce a factor of

2In 2 in front ofxg;G on the right hand side of E¢24). One
should note here that the exact coefficient cannot be pre-
cisely fixed by this method, since to be able to Mg as a
cutoff in Eq. (23) one should reach the kinematic region of
whereZ?= at,,/ ag\ for each quark flavor. Here we should large gluon distributions. This would correspond to evolving
note that, in the logarithmic approximation of smalilarge  Xg;G(Xgj,Q?) with some QCD evolution. However, in the

X (20

2\

p( xZ\V/(x)\/RZ—bZH2
l-exp ——————m1 | ,

Q?), strict sense, ouxg;G should be taken only at the lowest
order inag [see Eq.(31) below]. Nevertheless, our qualita-
V(X) 2mlaq ) tive conclusions should not be altered by introducing evolu-
>N, P XgjG(Xgj, 1) (21)  tion in the gluon distributions.

That way we see that the diffractive structure function in

[see Eq(4.7) of [16] as well ag19]]. Now a is the strong e largeQ? limit is linear inxg;G with no Q? suppression.
coupling constantp is the density of nuclear matter, normal- Because of the multiple rescattering effects, Fjestructure

ized to give the atomic numbek when integrated over the function becomes a Ieadlnzg twist expression; i.e., it is not
whole nucleusxg;G(xg;,Q?) is the gluon distribution in a Suppressed by powers @°. By resumming higher twist
nucleon, which we take at the lowest orderdq (see the [e€rms we obtained an answer which is effectively leading
next section Using Eq.(21) one can see now that in the twist. This result agrees with the previous predictions of
large Q2 limit the differential cross section of Eq18) be-  [11,21,24. Equation(24) shows that the diffractive structure
comes proportional to the square of the gluon distributiofunction depends on energy in the same way as the structure
function of the hadron or nucleus, reducing to an old andunction F, at largeQ?. This result agrees with the recent

well known resulf20]. ZEUS datd[12].
However, the larg®? limit of FE is more interesting. Let
us assume for simplicity of the calculatiorisnly in this IV. GENERALIZING TO HADRONS

section that our target is a large cylindrical nucleus with the
radiusR and the length R along the axis. Then the impact
parameter integration in E§20) becomes trivial giving just
a prefactor ofrR?. Using the representation of the modified
Bessel functiohK(£),

To generalize the considerations above to the case of a
hadron, we first recognize that the renormalization group
treatment proposed if8—10 replaces the gluon distribution
of a hadron by a set of sources which include both valence
quarks and sea gluons. If we go to small enougtine gluon

density per unit area is large enough so that one can use a
Ky (&)= § wﬂ e—t—§2/4t, (22) weak coupling analysis. In this respect, the situation is en-
4Jo t2 tirely parallel to that for a nucleus.
The essential difference is that the function which we use
in Eq. (20), assuming that the dominating values ©hre  to average over sources changes. If we use a Gaussian dis-

small, and performing the andt integrations, we obtain tribution of sources,
N.R? = dx? j p( f p2(X) )
b__°¢ 2 dplexp — | d®xz——|, 25
& 37722 4 L/Qz(xz)2 e 2A(y) 29

agT 2 then it is an easy exercise to show that the results of the last
l1—exp — ZXZXBjG(XBj AR | section are reproduced. To do this we use the fact that the
2NR factor A(y) is the charge squared per unit afaa defined in
(23) [5]), with y~Inx, the space-time rapidity, and the
Dokshitzer-Gribov-Lipatov-Altarelli-ParisiDGLAP) equa-
wherexg;G(Xg;j ,Q?) is now the gluon distribution function tions[22]. As was discussed in some detail by McLerran and
of the whole nucleus. In the leading logarithmic approxima-Venugopalan if5] the propagator of a single quark through
tion we assume that the gluon distribution is a slowly vary-the nucleus can be represented as a path ordered exponential
ing function of Q2. That way it will effectively play the role  (Wilson line)
of the upper cutoff of the integration in Eq(23). Perform-
ing the integration in Eq(23) we obtain the following ex- (=, )
pression for the diffractive structure function at laQé : P exp{ | L+dx+A(x+)),

X

(26)

where the fieldA_ is the gluon field taken in covariant
We thank D. Kharzeev for showing us this trick. gauge. Direct calculation of the path ordered integral done in
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[5] yields for the propagator of the quark-antiquark pairform. In the exchanges of gluons between the produced jets
through the hadrofhsee formula119) in [5]] of quark-antiquark pair, some transverse momentum can be

5 absorbed by the source. For local Gaussian distributions,
‘)’(X):eXF{aZWCFXZ|n(X2AQCD) AA(Y)], 27

where the no-interaction contribution was included in the (p(X1)- - p(Xn)) (33
propagator in Eq.(27). A is the atomic number of the
nucleus. Using the fact that
factorizes into a product of terms such as
R2—Db?%p (1 )
—J I G265, (28 (p(x)p(X)) ~ 8D (X1~ Xy). (34
Bj

AA(y)= C.

The locality of this product and its translational invariance
are what guarantee that the source absorbs no momentum.
If there is nonlocality in the Gaussian averaging, then one

with p= A/(4/3)7R® the nucleon number density in the
nucleus, we obtain

couples together sources at different transverse coordinates.
y(x)zex;{ a?mRP= 022 In(x*A % cp) There will be overall no transverse momenta transferred to
the sum of sources, but there may be momenta transferred to
1 the individual sources at their respective transverse coordi-
pr dx’ G(x’,l/xz)). (29 nates.(We have a picture in mind where we have coarse
*Bj grained in transverse coordinate. Each coordinate cell con-

. tains a separate sourgdf this is the case, then the Fock
To establish Ee correspondence between the result of Eg'pace wave function of the hadron has been modified some-
(29) and theqq propagators from Sec. lIl one should make hat from its original form as in the amplitude one has re-
use of the double logarithmic limit of the DGLAP equation gjstributed the transverse momentum among its various con-

stituents.
d Xg:G(Xg;,Q2) = achl dx’' G(x',Q?) The problem has therefore become immensely more com-
P '”(QZ/Aéco) Bj 2 7 Bj T Jxg; e plicated. One should note, however, that this can only affect

(30)  the soft transverse momentum part of the hadron wave func-
tion, so that perhaps this does not spoil the wave function so
In the quasiclassical calculation of the previous section thenuch. It may also turn out that the nonlocalities in the
gluon distribution function were taken only at the two-gluon renormalization-group-improved distribution function for
level. Noting that in that two-gluon exchange approximationsources is small.

the gluon distribution is given by As a practical matter, the transverse momentum scale of
interest for the nonlinearities is presumably the virtuality of
, aCeg Q7 the photonQ?. If one is at largeQ?, then nonlinearities and
XgjG(Xgj, Q%)= T'”Az ' (32) nonlocality are not important. In this case, the exponential
Qcp factors in Eq.(20) linearize, and one is back to the simple
one can easily see that EQ9) reduces to two-gluon exchange model for diffractive processes. Such a
model has been derived in the literatd@9] from various
am?\JRZ—b? considerations different than those above.
y<x>=exp( - XPXeiGlXe 167) |,
¢ (32) V. TOTAL INCLUSIVE CROSS SECTION

which matches the exponents employed in derivation of Egs. |n the calculation outlined above we have derived the ex-
(18) and(20) if one substitutes Eq21) into them. That way  pressions for diffractive(elastio quark-antiquark pair pro-
we showed that the result derived for the structure functiorjuction and structure function in DIS on a nucleus in the
of a nucleudEq. (20)] is, probably, also valid for a hadron. quasiclassical approximatidigs.(18),(20)]. Our results in-
There are two assumptions here. First is that one can usgude all higher twist effects at the classical level. As was
the DGLAP equations and the second is that the distributiomoted above the classical limit in our case is understood as
of sources is local and Gaussian. These are true when onedsodeling the interactions by no more than two gluons per
at high enough momentum transfer so that the density ohucleon. Quantitatively that results w¢A*° being the ex-
gluondN/d?prdy per unit area is small. This distribution at pansion parameter. That way our calculation could be under-
large pr goes as 1. As the transverse momentum is low- stood as resumming all powers of this parameter.
ered therefore the density becomes large and our assump- We should note here that similar results were obtained by
tions break down. Buchmiller, McDermott, and Hebecker i2]. However, our
The greatest complication in the smpl} region (p% less  expressions in Eqg18),(20) give a more explicit power of
than or of the order of the color charge density of gluon petthe exponential in the propagator of the pair through the
unit area is that the Gaussian distribution changes to a prenucleus.
sumably non-Gaussian and nonlodal transverse spage We should also note that using the techniques outlined
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above and used previously 5] one can also calculate the gluon exchanges, which leave the nucleon in the color octet
total (inelastio qq production cross section. They propa-  state, therefore breaking it apart. Withput giving any details
gator calculation is a little more difficult. In the framework we state the resultsl8]. The quark-antiquark total produc-
of the quasiclassical approach one has to also include on&on cross section is

do . xz’\’/(x)\/Rz—bz) p( yZ(/(y)\/Rz—bz)
_ 2h 42y J2y a—ik-(x=Y) _ _ _ _ -
dz m(2m) f d“b d*x d“y e Nd(xy,z)| 1 exp( o ex N
1 1
{xZT/(x)+yZ\7(y)+(1/2)(x—y)2\7 E(x—y)}—(1/2)(x+y)2\7 S (x+y) JRZ—p?

+exp| — (35

2\

This formula reduces to a similar formula derived 2} [Eq.  should first square the propagator and then average it in the
(32)] only in the logarithmic limit, when we can neglect the nuclear_wave function. In the case Qf diffractive process one
x dependence iw(x). The nuclear structure function in this has to first average the propagator in the nuclear wave func-

uasiclassical limit is tion and then square it. .
d The relationship between the expressi@¢@8) and (36)

can be shown in a different wd3]. Let us rewrite the total

2N 1 . . . . )
F,=Q? £ > 72 f d?b d?x f dz{a’K3(xa) and elastic cross sections for the deep inelastic scattering on
m(2m)3 T 0 a hadron or a nucleus in terms of tiSematrix at a given
K[Z2+ (1—2)2]+ mK2(xa) + 4Q%3(1— 2)°K2(xa)} impact parameter of the collisios(b), as[23]
B3 (x) T2 0i0=2 | dbl1-5(b)] (384
x| 1—exp — ———| |, (36)
2\
which agrees with the previously derived expressifsee a'e|=J d®b[1-S(b)]%. (38b
[5,14] and references therdinin the limit of largeQ?, Eq. _ _ _ _
(36) provides us with the usual leading twist result Now one can see that the diffractiyguasielastigcross sec-

tions of a quark-antiquark pair interacting with the nucleus,

5 X which was used in Eq(20), corresponds to the formula

m: P Ef Z; xgjG(Xgj,Q%). (37)  (38b), whereas the total inclusive cross section used in for-
0 mula (36) corresponds to Eq(383. Equations(389 and

That way we have established a procedure of inclusion of389 Show how easily the quasielastic and total cross sec-

higher twist terms in the nuclear or hadronic structure funcioNS could be obtained from one another.

tions and cross sections in the quasiclassical approximation.
In both cases of diffractive and total inclusive cross sections
the calculation is simple and follows the same prescription. The authors would like to thank Genya Levin, Alfred
One has to convolute the wave functions of a virtual photorMueller, and Raju Venugopalan for many insightful sugges-
with the propagator of the quark-antiquark pair through thetions and commentaries. This work was supported by DOE
nucleus. For the case of total inclusive cross section ongrant DE-FG02-87ER40328.
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