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Chiral symmetry and the delta-nucleon transition form factors
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The three complex form factors entering the>Ny* vertex are calculated ©(&°) in the framework of a
chiral effective theory with explici (1232) degrees of freedom included. It is shown that theddehavior
of the form factors is governed byN, A loop effects. Predictions are given for thé dependence of the
three transition multipole$11(g?), E2(q?), C2(g?). Furthermore, the role of the presently unknown low
energy constants that affect the values of the multipole ratios Ef)Rénd CMR@?) is elucidated.
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[. INTRODUCTION and whether this point is kinematically accessible at present
or future electron scattering machines is a further issue of
The electromagnetic transition of tig(1232) resonance current debate and interest, el@].
to the nucleomM —N+y* is of particular interesfl—-4] as far From a theorist’s perspective, the treatment of the electro-
as our understanding of the structure of the latter is conmagneticNA transition may be grouped into two categories.
cerned. Historically(e.g.,[5]), this reaction raised a lot of (1) Calculations of the electromagnetidN y* vertex with
interest because it allowed one to probe the issue of whethdis associated three complex form fact@er se using dif-
the nucleon or its first resonance is “deformed”—the reasorferent theoretical frameworks that aspire to fundamentally
being that apart from the dominant magnetic dipd1() based descriptions of thé-A system. The chiral Bag model
transition electromagnetic selection rules also allow an electe.g.,[9]), quark models with meson exchange curréptg.,
tric (E2) and a Coulomb@2) quadruple transition, which [10]), lattice gauge theorye.qg.,[11]), and effective chiral
vanish in simple models of the nucleon with spherical sym-Lagrangiange.g.,[12,13)) constitute such attempts.
metry. Accordingly, the amount of deformation can be quan- (2) Direct theoretical treatmenfg,3] of the full scattering
tified by the multipole ratios EMR(?)=E2(g%)/M1(q?)  processese.g., eN—e'Nm,eN—e'Ny) in the A(1232)
and CMR@%)=C2(q®)/M1(g?), which acquire a four- resonance region, either based on phenomenological
momentum(squared dependence in the case of virtual pho- Lagrangians supplemented with a method of choice to unita-
tonsq?+0. rize the amplitudes or dispersion relations. A point of strong
By the late 1990s there was a nearly uniform consensus inontention therein is the issue of separation of background vs
the physics community that indeed there exists a small quadesonance contributions. For a recent summary of the status
rupole component in the electromagnetid transition[4,6].  of the resulting EMR and CMR extractions we refer to the
In the case of real photons one nowadays believes talk by Workman[14].
R EMR(0)]~ —1/%- - - —4%, but a more precise determi-  In the present work we calculate thg1232) toN radia-
nation of this fundamental property of the nucleon has beetive transition A—N+y* in the region of small(i.e., Q?
surprisingly elusive and hotly contested throughout the past 0.2 Ge\?) photon virtuality, utilizing a recently devel-
decade, both among theorists and among experimentalists.dped effective chiral Lagrangian approddb,16 that sys-
is our hope that the ongoing experimefif$ of the electro- tematically incorporates the spontaneous and the explicit
production ofA(1232) with the resulting better information breaking of the chiral symmetry of QCD. A small scale
on theg? dependence of thMA-transition form factors, as  ={p,m,, s} denoting, collectively, small momenta, the pion
well as on EMR@?), CMR(g?), will lead to a clear picture mass, and the delta-nucleon mass splitting is used to estab-
of the underlying physics and enable us to identify the relish a systematic power counting, thus telling us precisely
evant degrees of freedom for several different regimes ofvhich diagrams and vertices have to be included if we want
momentum transfer. A dramatic change of the physics unto calculate up to a certain order & This approach allows
derlying the electromagnetNA transition is very much ex- for an efficient inclusion of a\(1232) degrees of freedom
pected fromperturbativeQCD, which predicts for “large”  consistent with the underlying chiral symmetry of QCD and
Q%*=-¢? that EMR@Q?)—+1. At which finite Q* the s referred to as the “small scale expansio(8SBE [15,16],
crossover from a negative to a positive EMR should happeronstituting a phenomenological extension of heavy baryon
chiral perturbation theorl17]. The formalism can be used to
calculate both the vertex as well as full scattering

*Email address: ggellas@atlas.cc.uoa.gr amplitudes—here we focus on the former. Clearly, as we are
"Email address: th.hemmert@fz-juelich.de dealing with alow energyeffective theory, they?> depen-
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values! Accordingly, our final applications will be discussed  This article is structured as follows. In the next section we
in this spirit. briefly review the essentials of the “small scale expansion”
The most general form of thA—N+v* radiative decay and its power counting. In Sec. lll, we discuss the most
amplitude that complies with Lorentz covariance, gauge ingeneral form of the Pauli-reduced transition amplitude which
variance, and parity conservation is described by three formg consistent with th€(&3) calculation in the SSE. We then
factors. We begin our discussion from the widely used form proceed, in Sec. IV, to calculate the loop as well as chiral
counterterm contributions. The resulting expressions for the
2 — form factors are identified in Sec. V, while those for the
91(9°)(de, — £q,,) . . ,
multipoles in Sec. VI. Numerical values for the EMRR],
CMR(g?) using presently availabléheoretical input are

: e —
iM rAel»Ny: - mu(pN) Vs

2
+ 92(q )(pN. €9, —Pn- g€, furnished in Sec. VII. In the same section we give numerical
2My as well as analytical results fécomplex slopes of the three

95(9?) form factors. We summarizg and offer our perspective for
+ My (q-equ—qzeﬂ) uk(pa)- (1)  future efforts in the concluding section. Finally, we devote

an appendix to the discussion of technical matters.

Here My is the nucleon massqy , denotes the relativistic
four-momentum of the nucleon and delta, andande,, are
the photon momentum and polarization vectors, respectively. I ?H'RAL LAGRANGIANS .
The delta is described via a Rarita-Schwinger spin(pa) AND THE "SMALL SCALE EXPANSION
with free Lorentz indexu. TheM 1, E2, andC2 multipoles A. Heavy baryon ChPT
allowed in3*—1" electromagnetic transitions can be cast

as linear combinations of the form factogs, g,, andgs QCD, being a strongly coupled theory at Igaf the order

[20] of 1 GeV) energies, renders traditional perturbative expan-
) sions in the coupling constant inadequate. Chiral perturba-

. . . 3 .
bln this W(t).rk Wg sstgclizy fthe raltljlatlv?ra/.ertex mt(f t) n tt;]e f gon theory(ChPT) offers an alternative perturbative expan-
above-mentione ormalism. This constitutes the 1irs, ion, namely, one that is realized in terms of the external

order where pion-nucleon and pion-delta loop graphs entehomenta involved in a given physical process. The original

. 3 .
the \./lertex. AS. will be shoy/v\r; Iatgrh ?\@(Sh) CI?|CL:|atI0n strategy was based on the notion that at low energies an
entalls corrections up W(1/AY), wit Ay the chiral sym-  ofective theory of QCD will involve only the nearly mass-
metry breaking scale. One.of the mam.tasks during this Ca'ress(i.e., the Goldstone bosons: pions, pttegrees of free-
culation has been the consistent matching between the resulig ,, [22,23. Accordingly, chiral perturbation theory has
of our perturbative calculation and the most general verteX,een very successful with respect to applications in the me-
parametrization as given, for example, in Ef). In orderto g4, sector. With the inclusion of baryons, however, the sys-
provide for a stringent test of our new predictions with €X-tematic power counting of ChPT fails, since baryon masses
periment we note that a complementary calculation of thg, 5(=1 GeV) cannot join the set of the expansion param-

full pion photoprod_u%ti_on_ amplitude in th&(1232) region eters{external momenta) .} as they are by no means small
to the same order i is in progresg21]. and remain finite in the chiral limit.

There have been previous analyses of the radiative transi- 5 systematic power counting can, nevertheless, be de-
tion in a similar theoretical approach by Butteral.[12]and  fineq through a splitting of the nucleonic field degrees of
by Napsuciale and Lucig13]. Our work differs from the  freedom into heavy-light modes and integrating out the

aforementioned references in the following aspects. former. The cost of this procedure is to burden the effective
The most crucial difference is that we address fven  yoscrintion with additional, higher order contact interactions.
fazctors and not just the real-photon point. This entd#a  Generalizing recent developments in heavy quark effective
q° dependence in our expressions dbylthe presence of an  heorieg(see, e.g[24,25) heavy fermion methods were first
additional form fazcto_r ¢s), or, equivalently, our caleulation  anplied to baryon chiral perturbation theory by Jenkins and
yields the CMR(), in addition to the EMR§%). Manohar[26]. The basic premise is the adoption of a non-
SSE systematically keeps track oML/(i.e., relativistio  yejativistic mode of description, which entails a restriction to
corrections to lower order couplings. These corrections havg,r.velocities of the formv,,~(1+|4},),/8<1. On an

not been included in previous analy$é2,13. We also find operational level this means that all momentum dependence
that our identification of the form factors differs from the one j, the theory is only governed bnonrelativistig soft mo-

used in[13] at the real photon point. mentak . defined via
M 1

P,=Mov,+k,, 2

ISimilar calculations using the SSE have been performed for the
electromagnetic form factors of the nucleon and good agreement ] ] o
with experimental data has been found in B8<0.2 Ge\? re- Wherep,, is a typical nucleon relativistic four-momentum

gime[18,19. andM, corresponds to the nucleon mass in the chiral limit.
2Equivalent forms, obtained via use of the equations of motion,The range of validity of the resulting effective theory de-
can be found in the vast literature on this subject. mands that each componekf<A,, with the chiral sym-
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metry breaking scale being,~1 GeV. This approach is Ay=P TPy, By=P TPy, Cy=P,T\P, .
commonly referred to as heavy baryon chiral perturbation (8
theory (HBChPT).
In the construction of the effective theory we will follow We note that each matrix consists of an infinite string of
the systematics laid out §27]. The general philosophy is to terms of increasing chiral power, analogous to Eq(4).2
take the fully relativistic theory as the starting point and then Now one shifts the fields and integrates out the heavy
perform a systematic nonrelativistic reduction. This procecomponentH. The resulting(nonrelativistig effective La-
dure automatically guarantees the propevl orrections to ~ grangian reads
the couplings in higher order Lagrangian terms. Alterna- L
tively, one could start from a general Lagrangian within the L& =N( AN+ YoB 1 70C n 1 ByN. 9)
nonrelativistic framework, but then has to implement the so
called “reparametrization invariance.” The latter approachFor the case of S(2) the explicit form of this effective La-
is, for example, quite common in the field of heavy quarkgrangian for spin 1/2 nucleons has been worked out up to
effective theorie$28]. n=3 by several groupée.g.,[31,32,19). Generalizations to
We now briefly sketch the derivation of tiieonrelativis-  even higher orders are under wg83]. The important point
tic) chiral Lagrangians for matter fields. For details we referto note is that the inverse of matr is calculated pertur-

the extensive literature of reviews.g.,[16,17,29). batively, which confines the resulting effective Lagrangian to
We start from the chiral relativistic S@) Lagrangian for the nonrelativistic regime.
nucleons:
T 3 B. Small scale expansion

N= Ul ® HBChPT, as described above, has been quite successful

with the relativistic nucleon isospinor field for scattering processes off a single nucleon near threshold
(for reviews seq17,34)). At higher energies, however, the
Uy contribution from nucleon resonances likg§1232) can no
zﬂN:(l/I ) longer be parametrized via higher order nucleon-nucleon
n

couplings inC'{?), '}, etc. At some point, i.e., once explicit
propagation of a nucleon or meson resonance has to be in-
cluded, the above-described contact interaction approach
Ta=T® 7@y ... 4) breaks down. So if one is interested in kinematic conditions
N N N ; T . P
of such dynamic resonance contributions or in investigations
'gwto the low energy structure of nucleon resonances, it be-
comes mandatory to include low lying resonances as explicit
degrees of freedom in the effective Lagrangian, ). In
particular this means the inclusion of the spin 3/2 nucleon
- resonance\ (1232) in the case of an 3P) analysis.
F(Nl): iD— Mo+ %ﬁws, (5) Th_e first efforts towards this direction were performed by
2 Jenkins and Manoh4B85]. In the present work, however, we
follow a specific generalization of the construction method
where D.M denotes the chiral covariant derivative. The pa-of Ref.[27] (as outlined above which is called the “small
rameterg, corresponds to the axial vector coupling constantscale expansion’[15,16,19,36,3F The main difference to
(in the chiral limiyp and the chiral tensou, describes the HBChPT lies in the fact thathe chiral power counting is
coupling of an odd number of pions with nucleon. For moremodified in a phenomenologically inspired fashidn the

and

being a string of general nucleon-nucleon transition matrice
F(N“) of increasing chiral powen [30]. For example, to lead-
ing order one obtains the well-known structure

details we refer t¢30]. SSE approach one expands in the small scale

The second step is a redefinition of the relativistic nucleon={soft momentan,, , 5o}, where §,=M ,— M, corresponds
fields via to the delta-nucleon mass splitting in the chiral limit,

iMevexet whereas in HBChPT one expands in the quantjy

N=e"0" P, iy, ={soft momentan,}.* The chiral power counting of HB-

_ ChPT as an expansion of all quantities in a power series
H=eMo"" Py, (6)

with the velocity-dependent projection operatds =3 (1
+y). N is typically called the “light” field, whereadH is
commonly referred to as the “heavy” field. The relativistic

3Technically speaking, the matricedy,By start with chiral
powern=1, while Cy begins withn=0:C{"’=2M,. This appear-
ance of a large mass ternMg>A , in Cy is also the reason why

Lagrangian, Eq(3), then takes the general form the H fields are denoted “heavy” and ultimately get integrated out.
_ _ _ “4In strict HBChPT &, counts as a quantity of orde®. This is
Ln=NAWN+ (HByN+H.c.)—HC\H, (7) formally correct but can lead to poor convergence properties in the
perturbation series. For more details we refer to the discussion in
where the matricegly ,By,Cy are defined via [37] regarding the spin polarizabilities of the nucleon.
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n; : ~ ~ ~ ~
governed_ _bw_ is taken over _by the SSE as an expansion of Ay= A+ YODLAYOC:GlDNA“‘ YOBZYOCZ13A.
all quantities in a power series governed &Y In the fol-
lowing we only briefly discuss the construction of the rel-
evant SW2) Lagrangians with explicit pion, nucleon, and An=An+ voBlLvoCn *But voB invoCa Ban s
delta degrees of freedom and their couplings to arbitrary ex-
ternal fields. For details we refer the interested reader to _ _ o
[15,16,19. Asn=Aan+ ¥0Dla YoCn ‘Bu+ ¥oBLvoC s Ban (15)
The starting point this time is a set of coupled relativistic
SU(2) Lagrangians of relativistic nucleon and delta fieldsand

N
— % -1 At
Ln= NN Cn=Cn—CnaC i Y0Cna Yo,
£A:EMFZV¢V’ ’BNZBN—FCNACX]-BANI
Lan= T+ H.C., (10) ~ )
e A Dna=Dns+CnaCr By - (16)

where each baryon matriky,X=N,A,AN, is a string of o . ) .
terms of increasing power in", analogous to Eq4). For The explicit form of the effective Lagranglan, Ed4), in
the spin 3/2, isospin 3/2 delta field we utilize a Rarita-the SSE has been worked outtie=2 in Ref.[16]. For n
Schwinger-isospurion notation, as laid out in the Appendixes=1 one finds
of Ref. [16]. In the Rarita-Schwinger formulation for spin
3/2 fields one encounters the well-known redundancy of de- AP =AB=iyv.D+g,S-u
grees of freedom, which calls for six projection operators N N AT
before one is able to isolate the “light” spin 3/2 component
T, from the “heavy” oneG,, : z(NlA)=Af\JlA)=QﬁNAWL,

T,=eMovxprpil v, (12)
with AP = AP =~ (iv-D = 56&+9:S-u)g,,,

17

1

p?é%)wzgw_ 3V %(Wy#vﬁvﬂyym. (12 In addition to the structures alread_y di.scussed in Sec. IlA
one encounters the Pauli-Lubanski spin vecgrand the

The “heavy” spin 3/2 fieldG,, is a five-component object. 7NA,7AA bare coupling parameterg,y,.g;. Further-

An explicit representation can be found 6] but is not ~MOre, the chiral tensors, ,u,, parametrize the coupling of
needed here. an odd number of pions to adA and aAA transition cur-

Suppressing all spin-isospin indices, the coupled set ofent, wherea®)) corresponds to the chiral covariant deriva-
relativistic Lagrangians in Eq10) can then be written as  tive acting on a spin-3/2—isospin-3/2 field. Withj=1,2,3

we denote explicit isospin indices a@t),= 28 —i/3€'1 7
Ln=NAWN+(HByN+H.c)—HC\H, corresponds to the isospin 3/2 projector. For more details we
refer to[16].
Ly=TA,T+(GB,T+H.c)—GC,G, At n=2 we are only interested iANvy vertices, as will

be discussed in Sec. IVA. The relevant relativistic
O(€?) ANy contact terms can be parametrized in terms of

Lan=TAsWN+GCByANN+HDy, T+HCWG+H.c. the low energy constantiECs) b,, bg as follows:

(13
. . N . Y ib; — ,
Now one integrates out thg heavy nuclgon and hegvy L(Azh)lv:4|v| Y9 TY1Yu Y7, st i
delta componentsl,G and finds the resultingnonrelativis- 0
tic) effective Lagrangian with explicit nucleon and delta b
. . 6 — v,
fields: - z_l\/l(z)l;biu[gp.v—’_yG’)/,u.‘yv] 75fi+prl;bN+ H.c.,

LE=TAT+NANH[TAGWN+Hel,  (14) (18

with wheref??=31Tr[ f#*7'] denotes the isovector photon compo-
nent andy, ¢ are the so-called off-shell coupling constants.

Performing the transition to the heavy baryon fields for
SFor notational simplicity we suppress all explicit isospin indices.the vertices of interest to our calculation one fifdé]
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3)

~(2) . by ) tributing to A() and possible M corrections related to the
ANL= g P ST (19 O(s?)ANy vertices. The latter are given by
which is independent of the couplings ,bg,ye. In the ra- Lisfﬁ(jf:ﬁ( YB{Myed DY

diative decay of the\(1232) the fact that there is ridwave
multipole allowed precludes the possibility of having an
O(e) ANy vertex. The parametds, therefore denotes the
leading yNA coupling and carries the main strength of the
M1 ANy transition[15,16,31. ( X .
While the desired analysis for=2 is quite simple, the ~Structures d(sanoted a8\’ . Dya which only start contrib-
situation an=3 is more complex. In fact, there is no agree-Uting atO(e”). We therefore construct these matrices, but
ment in the literature about number and/or structure of th&@nly for the vertices of interest in our calculation. Using Eq.
subleadingANy vertices(e.g., compare Ref$12,13,9). In _(18). and the orthogonaht_y properties qf the light-heavy pro-
the next subsection we shall explicitly construct the jection operator$16] we find (ellipses signify terms that are

=3 ANy vertices according to the SSE approach. irrelevant to the present analykis

+yoBI& v O BT, (20)

where the superscripts denote the SSE dimension. The perti-

nent coupling matrices can be found[it6], exceptfor the
T(2) 2)

_ _ i(by+2bg) .
C. Construction of O(&°%) vertices DF\‘ZA):—4MO p_p(3323)ﬂy5f Ipr"" o ED&ZA)Y_F o
Referring to the SSE master formula, E¢s4)—(16), the (21)
relevant LagrangianC (As,\),y contains terms which have two
separate origins—the dimension-6 contact interactions corand (for the b, pard
|
- . -
_ p(3323!)'v VP
(1+3y) P (v +v?) = N3y P{3 v
ib _ 12uv, ,p 12uv, . p p
B(A2’\)lb1:_1 (1+y)P3'v +\/§VP(21) (yP+vP) 75f:p, (22)

Mol —(1+3y)PH v+ By PH (v +v0)

(1+y)PEZ (v +vP) — By P v’

where we have suppressed isospin indices. In a similar manner one obtains the contribBﬁ’@nassociated withbg. The
complete 1M corrections at?(e®) which had to be constructed via E@0) then read

ixeq D1t 2bs— . b;—2bs— . by — o
(3)fixed__ ~1 6 < i 1 6k Kj 1 k Kji ~ji
LAqu*——4Mg N(S-D)vFf,,. TH+ o pr#+v"§3,28-D”Ti“+—ZMSNfPBJrSPngS,ZD#T{‘. (23)

Interestingly, one observes that the off-shell coupliggsys drop out in the final result.
Finally we have to determine the dimension48A counterterms contained i (3A) as mandated by E¢14). Once more we
have to start from that part of the most general relativiét{e®) Lagrangian that contains all allowegNA vertices at this

order, in which the chiral tens_dl‘mﬁs 3Tr{ Ti[D_,, ,f;/g]} plays a dominant part. At a first glance the following structures are
possible candidateg*’ o *?ysf',., 5, 9*'9“Pysf\ns, 940" Pysting, 949 P yst g, €“PAE. 5, where the free indey is

to be contracted with the corresponding index of the Rarita-Schwinger delta spinor in the initial state. It is straightforward to
verify that only the first and third quantities will survive A:f\fA) and can be shown to give identical contributions up to higher

order terms. Accordingly we find

Dy

Es %,
4M3

2Mg Mg *#

1.
AR =759 v S STH{7[D, f 5,1} + S+ =AR (24)

whereD,, E, are now identified as the tweNA low energy constants aP(e°).® This set is sufficient for the renormaliza-
tion of the procesa —>N+v*; a more detailed discussion of the construction of these counterterms can be fd@ad in

5The second term of Eq24), proportional toE,, appears in the “small scale expansion” due to the fact that the delta-nucleon mass
splitting dy counts as a quantity dd(e). Therefore one has to construct additional relativistic contact terms which are products of lower
order interactions and the new small scéje For a discussion of this issue see H&8].
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Gathering the above results we determine the relevant 8$E Lagrangian to0(e?):

(3)

LAN'y

2 vBa ' Mo My

b;—2bg—
1 26ka
4M3

put

IIl. NONRELATIVISTIC REDUCTION OF THE A—Ny
VERTEX

Since the leading order Lagrangian counts¥g) and,

from the general exposition in the previous section, it fol-
lows that each new order in the SSE contributes a power

e/M, the calculation of the radiative delta decay®@§e?>)
will include all terms up ta®(1/M?). Thus, in order to com-
pare our calculation with Eq1) we must find the most gen-
eral form of the amplitude consistent with &(1/M?) cal-
culation. In our case it is convenient to use th€l232) rest

D, — By 8p—.,
_12Ng’”v“53f'+ T+ —°Nf!
aM

: . b, —
vPEsLS. DITH+ 2_|\/1|2ka
0

NAR T+N[°B{M D) DR+ voB LS vo(c) B T+H.c.

b, +2bg— o
Ve N(S-D)vPfL T

S

+uv

Kor SPVAEELDI T+ H.c. (25)

with pk=Mqv#+rk ,X=N,A, we finally arrive at the fol-
lowing expression:

2 —
\[geuv(rm (S-)q,,

B 91(0?) _ )
My 2M3

01(9?)
My

(€9 R—
A—Ny

iM

+O(1/M§)}

+(S:g)e, 91(0)

frame where a Pauli reduction of the amplitude allows one to

identify the various multipoles.

As far as Dirac spinors are concerned the situation with
the Pauli reduction is well known. For the delta field, on the
other hand, we think that is worth providing our conventions.

We start from a typicale.g.,[38]) Rarita-Schwinger repre-
sentation of theA (1232) spinor with the subsidiary condi-
tions

(26)

YuUh=0, d,uf=

o

A specific representation consistent with these constraints is

the following:

1

(L O
Ex+ M,

EatMy)\ 2
UZ: ZMA 2IMX?;/Z: (27)

with E,, M,, and p, the energy, mass, and three-
momentum of the delta particle, respectively, anti the
four-vector given by

S pa 0
MA(Ex+My) ")

S-pa
M, S+

EH

(28)

whereS denotes the spin 3/21/2 transition matricef38].
Next, we have to expand the various terms entering E
(1) in powers of 1M and restrict ourselves up 6(1/M?)

accuracy. Using the analogue of the four-component notation

of the SSE,
uy(ry)= P\TU(DN),

uya(ra)= Py UA(pa), (29

+

+(S-q)

6 3
7 02(0)+ O(UM)
N

1
91(0)— Egz(o)

o2 +0O(1M3)
N

X(v-€)q,

+(S-a)(q- €)q,[0+O(LM] [ u¥ (0,
(30)

which has been evaluated in the rest frame of the delta par-
ticle.

Some comments regarding the above equation are appro-
priate.

(1) To the order we are working the energy of the
outgoing photon four-momentum is=M,— M 2N+ q°=4
— g 12My+ - - - =5+ 0O(1IMy).

(2) For g?=0, Eq. (30) is not in agreement with the
analogous expression of R¢fl3]. There, the nucleon mass
dependence of the Dirac spinors apparently was not taken
into account.

(3) Equation(30) has been derived under the assumption

%hat all the form factors are quantities 6Kc°) at leading

order.

(4) It is inconsistent with our subsequent loop results.
This can be most easily seen by the structure proportional to
€-q. According to the I¥1 expansion this structure should
not exist toO(&%). However, as will turn out, the loop dia-
grams of Fig. 1 produce a nontrivia? dependence which
scales as W2~1/M?2.
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9 (h)

FIG. 1. Loop diagrams: singl@ouble solid lines denote nucle-
ons (deltag, respectively.

We conclude that the popular form of the relativistic is-
ovector nucleon-delta transition current, as given in @&g.
is not ideally suited for microscopic calculations of these
form factors which rely on M expansions involving a chi-
ral power counting. We find it, therefore, advantagebirs,
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2 _
\/;eU(pN)Y5

G 2
N 2(9%)
AV ES

G 2
N 3(9%)
4AM o

Gi(9®)
.o (b éa)

rel —
A—Ny

iM

(Pn- €9,—Pn-Q€EL)

(q-€q,—0%,) [Uk(pa). (32

Equation (32) will serve as the reference point for future
comparisons with other calculations. The advantage offered
by this parametrization can be seen best when performing a
1/M expansion of EQ.(32), once more restricted to
O(1M?):

2
= \[geuv(rN){(S- €)d,

~ Gy(d®)  8G4(0)
My 2M3

Gl(qz)
My

+cxymgﬂ

8G2(q?)
1V

+(S-q)e,

2

5—G3(0?) + O(UMR) [ +(S-a)(v-€)q,

Jf_
am25

G1(0) _ G2(9?)
2MZ 4AM3
G 2

| — 3(d°)

2
N

+O(UMR) [ +(S-9)(g- €)q,

+O(UMR) | uk 4(0). (33

The above formula serves as the basic connection between
our (nonrelativistig results calculated via the SSE and the

view of the above remarks, to define a new set of form facyegjreqrelativistio transition current, Eq32). One can eas-

tors, by rescaling the previous ones. We propose the followny see that toO(e

ing definition:

G1(99)=01(9?), Ga(g?)=gx(q?),

P
G3(g?)= M—Nga(qz), (31

which leads to the relativistid —N+* transition matrix el-
ement

"The only alternative would be g form factor which behaves as
O(e 1) atg?=0, i.e.,g3(0)~A,/m_,A /8. However, such a re-
sult would violate the basic premise of nonrelativistic formalisms
like HBChPT or SSE that the large scalg,~My,4xF . should
alwaysappear as\;” ,n=0, in order to ensure a consistent power
counting.

%) one is sensitive to the leading and
subleading behavior of the form fact@;(q?), whereas the
form factorsG,(q?),G5(g?) start out at 12 and therefore
only allow us to determine them to leading order. One can
also check that Eq:33) is gauge invariant t@)(1/M?) and
allows for a nonvanishing?-dependent contribution in each
of the four independent structures, consistent with the SSE
calculation toO(e%). We now move to the details of the
calculation.

IV. CALCULATION
A. Born contributions

In the present subsection we discuss the Born contribution
to the amplitude. The relevant expressions resulting from
eachANy* tree level vertex have the following explicit
forms?®

8To the order we are working we can identify the parameters
My, 8y with the physical valuedty,6=M,—My.
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e e
IMA—>Ny §eq,(rN) S-qeﬂm

MZMN v,A !

b 2 [ D,
IMA1—>Ny Jew(rN) —-S-€q,—

D,
+eOS-qu4M
N

2
M —\[ew(rN>

1
+ €S- qqﬂm

N
2
. b
M= V[éwum

—bg
+ €S- qu S IVE

b,6
S-Qeu4

uy A(0),

Sqe—
N

uyA(0), (34)

N

where the superscripts tabulate the relevant vertices, in rela-
tion to the LECs, while fc” stands for “relativistic correc-
tion.”

We mention that the second relativistic correction La-
grangian term in Eq23) giveszerocontribution to our form
factors. To see this, note that the derivatives acting on the
delta field bring down factorsS-r,) and (- T) whererf
is the A(1232) soft momentum. In tha(1232) rest frame,
where our calculation is performed one finds= 6v#. Both
(S-rp) and (,-T) therefore vanish due to the light delta
constraints. We do anticipate, on the other hand, that this
operator will contribute to the resonant Born diagram in pion
photoproduction where the intermediak€1232) will also
contain off-shell components of the delta field.

The overall Born contribution, therefore, is

2
\[ewN)

b, Ei6 (b;+2bg)é
2My 2M3 4M?3

1 (2E1=Dy)d
2My AMZ,

. Born
IMy = S-€q,

+S-qu

AMY 4AMR

+v-€S-qq,

uy A(0).

(39
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B. Loop contributions

VA,u

+(S-q)€,[9aGNT X916l
+(S-9)q, (€[ 9aInt xT1dA]
+(9-e)[gaHnt xg1HAD UL A (0).

Here theN andA labels on the functionk; ,G;, . ..
My the intermediate baryon propagator in diagrgamsnd(j) of

Fig. 1, respectively, while the isospin factptakes the value
— 2. The loop functions are defined via

A3 sx M2
Fn(t)= 2] dx(x— 1)#,

APY — 5x,M?)

(1-x) d

FMUzZdex

AN — 5x,M?)
+2X; ,

d(d—1)

1 A3O 6X,M2
GN(t)=2f dxx%,

A3 — 5x,M?
GAu)z-—2f1d4x——:£——J—il

d

A3OY — 5x,M?
+2(1—X)M},

d(d—1)

JMU=J:dxﬂ1—wAm%&gMﬁ,

Q_

-3
-1

JA(t)=f dx x(1—x) A3 — 6x,M?),

D_

=J1dxﬂ1—xM1—ZMA”%5meL
0

1 d_
t)= fo dx x(l—x)(2x—1)dT

In the next subsection we will turn our attention to con-
tributions from loop corrections to the transition vertex.

To O(¢%) one can draw ten independent loop diagrams
for the A— Ny transition(see Fig J. However, because of
the constrainty - u, ,=S-u, , =1,
on-shell spin 3/2 isospin 3/2 splnot‘,’AM, only diagrams 1i,
1j in Fig. 1 survive. Their contribution can be formally writ-
ten as

=0 satisfied by the

. Zzegﬂ'NA_
IM== 1\ WS du0aFn+ XGiF 4l

(36)

denote

3
TAT = ox MP),

(37
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where thet=q? dependence arises implicitly through?  and (33), satisfy this requirement explicitlyrecall that e,
=m2+tx(x—1). Explicit representations for the —0o=95). In the case of our loop calculation this requires
AlX(Q,M?) are given in the Appendix. TheI? sensitivity _

of our calculation is saturated by the two inverse powers of Fi(D)+Gi(t) +8Ji() +H;(1) =0, (4D
the quantity 4rF ,~M which is of the order of the chiral separately foi =N andi=A. This provides for a stringent

symmetry breaking scala (={47F ; ,My}). I11est of our calculation. From the explicit formulas E37)

We close the present subsection with a brief discussio .
concerning renormalization issues. It is straightforward, usf’md (AS5), one can show that the constraints of k4{) are

ing Egs. (37) and (A5), to see that Eq(36) for the loop mdeed satisfied. This is most easily seen by partial integra-
contributions to the decay amplitude of thg1232) is a  ton of the 1/(/Q*~My) part of (83 +tH;).

complexquantity and contains several divergent pieces. The

lower-order couplingsb,, bg only possess a finite part, V. A—=Ny* FORM FACTORS TO O(£%)

whereas the infinities encountered in the loop amplitudes are

absorbed by the infinite parts of th@(e3) counterterm$ Combining the loop result, Eq36), with the Born con-

tributions, Eq.(35), we obtain the total®(e%) amplitude.

E1, Dy This is to be compared with the general form of the ampli-
D;=D{(\)+16728p.L, tude, Eq.(33). The identification of the three form factors is
! straightforward. At this point we have no information about
E,=E\(\)+ 16728 L (38) the magnitude of the counterterrbg,bg,D4,E;. However,
e i the important observation is that the unknown counterterms
with [19] only affect theoverall normalizationof the three form fac-
tors Gi(g?) and leave theg? dependence unaffectetiVe
NCRCANE] 1 therefore separate the real photon paigt=0 from each
= 6.2 d_—4+ E('yE— 1-1In4m)|. (399  form factor and write
2y— = 42
The two pertinent beta function@ ,Be, can be found from G1(a%)=G1(0)+91(q%),
Eqg. (37) and the expressions in the Appendix. It is straight- ) -~
forward to obtain the results G2(9%)=G,(0) +92(q%),
9raMy Ga(0?) = G3(0)+ Ga(c?), 42
ﬁDszFi(gA—Wle), )
with g;(0)=0, i=1,2,3. It is then straightforward to arrive
g.naM3 at the results of Table I. Comparing thelativistic form of
Be,= W(QA_ 20/99,). (400 the coupling structure proportional tn, Eq. (18), with our

generalrelativistic amplitude, Eq(32), one expects that only

At the moment. however. we have no information aboutth€ G1 form factor receives contributions from this coupling,
the numerical size of their finite part,(x),D}()) at the which also holds in the nonrelativistic SSE formalism.

chosen renormalization scale as well as about the magni- ~Analogously, the coupling in Table 1 is shown only to
tude of the couplindps. We note that this information will be COI”“T"E’“FG to trlle f"”‘.‘ factoB,, aga;}n as expeﬁted frolm 't?
available in the near future as several calculations regardinff'ativistic analogue in Eq18). Furthermore, the results o

different scattering processes in the delta resonance regio ble I are, as they should be_, gauge mdependent._Thl_s hap-
using the SSE are underway, which will allow for a System_pens automatically for the chiral counterterm contributions.

atic extraction of the relevant higher orde€A-couplings. In For t.h.e- loop contributions_, however, gauge invariance can be
Sec. VII we will nevertheless give some numerical estimate§xr_’|!;1c'tly delmor}s1t_ratt)(ledlwa the ust()a of Ee). dwith th
for linear combinations of these couplings based on calcula- e results of Table | can now be compared with the ones

tions for NA-transition multipoles performed in theoretical in Ref. [13] W.here oply the real-photon case is. c_:ongidered
frameworks outside the SSE. (no G3). We find a difference from our result originating in

Eq. (30). In particular, there is no contribution 8, from
the b, counterterm. This happens becausd,1i8], the coef-
ficient of G4 in the (S-q)(e-T3) term is 2V rather than
Gauge invariance requires that, upon setétig~g”, the  2M+ 6.
amplitude must vanish. The general amplitudes, E86) In Sec. VII we derive an estimate for the unknown cou-
plings. We will then be in position to describe both thye
dependence and the overall normalization of the three form
°The interaction terms proportional to these two LECs are whafactors. Once again we stress tichiral symmetry demands
one calls counterterms in the conventional field theoretical lanihat these form factors are complex quantitiedich is due
guage. Nevertheless, as is usual in ChPT, we will sometimes ento the on-shellrN intermediate state of loop diagrafi in
ploy the same name for th® , bg couplings. Fig. 1.

C. Note on gauge invariance

054022-9
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TABLE I. The ANy form factors: a=—2g,yaMZ/F2 and [1] is shorthand notation fofgaly

+x94l 4], with 1 {F,J,H}.

Source Gy G, G
—IF —4a =~2 —4a E~3
Loops [ 1=9.(0?) 4a[3]=02(q”) 4ad[H]=05(0%)
by
AR b, 0
2
1
VOBLM)YO@D R 0 —b;—2bg 0
1
YoB3 (Ar\)JTVO CWB &l) 0 0 0
A )
A(Daf WND]_ Dl 0
S
(3) -
AL I £t 0 0

VI. CONNECTION TO A—Ny* TRANSITION

MULTIPOLES

In the relativistic case the identification of the transition

multipoles M1(g?), E2(q?), C2(g?) in terms of the
“Dirac”-type form factors G;(q?),G,(q%),G5(g?) is ob-

proceed in two ways(1l) Use the same reasoning as in the
relativistic case, i.e., obtain the multipoles from the spin ten-
sor structure of the appropriate Pauli-reduced expression, Eq.
(33); (2) expand the relativistic formulas for the multipoles

tained[20] by reading off the spin-space tensor properties of

the Pauli-reduced most general amplitude, B9), in the
q-e=0 gauge. The explicit expressions r&ad

Ml(qz)ch[ G1(gA)[(3My+My)(My+My) —g?]

—Gz(qz)—(M M{—09?) —Gs(g%)q

2Ma
5 1

E2<q2>=—cAfel<q2>(Mi—Mﬁ+q2>

M
_Gz(qz)—(M Mﬁ—q%—ee,(qzmzf],

C2(q2):_CA2MA|q|[ 1(9%)—Ga(q

2M

w
- Gs<q2>3] , 43
with

elq|

q 2M
Cy= —\|——. (44
12MNMA ZMN(EN+MN) MA_MN

to O(1/M?).
In both cases we obtain
M 2)_ev52—q2 2G,1(9?) o Gy(@P)
2
—megmmowhﬂﬁ)},
E2(0?) = - Z_qz[ 2 G0+ -G
q 645 oMzt AMZ 2(q
q2
2
e(52—q2)[ 1 1
C2(g?)= - G1(0)+ —5Gy(qg?
(%) 6\/5 ZMﬁ 1(0) 4Mﬁ 2(0%)
+ 4M§Gs(q2)+0(1/Mﬁ)}. (45)

From Eq.(45) one can directly see that tt&( %) prediction

for M1 is sensitive to subleading order, whereas the predic-
tion for the quadrupole multipoles2, C2 only gives us the
leading result. One also observes the peculiar behavior that
in the case of the & C2 form factors their ¢ dependence

We now need to match these general expressions to this not suppressed by powers bM  with respect to the g

O(1/M?) accuracy of our results for th€,,G,,G; form

=0 point According to our knowledge this situation has not

factors obtained via the SSE in the previous section. We mapeen observéd before in chiral calculations of form factors,

10t the photon point §2=0) one easily verifies that they agree
with the corresponding expressions giverj 2. We are grateful to
Rick Davidson for valuable support on this point.

The notable exception has been the pseudoscalar form factor of
the nucleon which is known to be dominated by the light pion
physics[19].
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FIG. 2. The real and imaginary parts of the form fad&tr with FIG. 3. The real and imaginary parts of the form fac&® with
C,,C5 given by the set#\;,B,,C. C,.C3 given by the set#\;,B,,C.

=7.7 as in Ref[37],1% although this is not entirely consistent

e.g., compar¢17,19.1? Its formal origin lies in the fact that — ) : :
g paré J g with our O(€®) calculation as this particular strength for the

for quadrupole transitions it is not possible to write down a ' >
counterterm at a lower order tha®(€%), i.e., the same order C0UPling only holds ta)(e) and 3undergoes an as yet unde-
where loops start contributing(eeping the above caveat in €rmined renormalization irO(e”). The remaining three
mind, i.e. that Eq. (45) only represents the leading behavior?N& couplings are still undeterming@1]; for now we find

for the E2, C2 form factors, the chiral structure underlying that We can parametrize them vio independent linear
Eq. (45) leads us to the expectation that the, EC2 form ~ combinations G,Cs and fix them from Refs[3,40] in the
factors only show a weak suppression at lofwyjth respect next section. Finally, as a result of a lack of more precise
to their ¢?=0 point and that the & evolution could be very Nformation at the moment, we use the BUquark model
different from the corresponding (dipole behavior of the)©€Stimated,=sga for the mAA coupling in Eq.(17), which
nucleon Sachs form factors (&4%),Gy(9?), €.9.,[17,19. should be accurate to 258.g.,[41]). We also note that the
On the other hand, the11 form factor shows the expected SO-called off-shell parameteys ¢ of Eq. (18) decouple from
1/M suppression of its radius with respect to the photorPUr results.

point—quite analogous to the SSE calculation of the dipole

form factorGy(g?) in [19]. This question will be addressed A. Best estimate for unknown couplings

in more detail in a future communication once precision in- First, we note that the unknown couplif§dg,D;,E;
formation on the relevant coupling constants is available. W%nly show up via two independent linear combinations in our

further note that the quadrupole multipoles in E4p) satisfy  .5jcylation. We therefore introduce the new set of param-
the long wavelength|@|—0) constraintE,=(qo/|q|)C>. eters
C ZE]__ 51 2b6_ Dl
2=, -1
VIl. NUMERICAL RESULTS 4

Il
O
w

I

(46)

To provide numerical results we need to fix the couplingwe now want to utilize existing phenomenological analyses
constants entering the calculation. For @(r®) calculation  for NA transition multipoles in order to fix these two param-
it is appropriate to us€,=92.5 MeV,My=938 MeV, 5  eters. Most of the existing work relies on parametrizations of
=293 MeV, m,;=140 MeV, ga=1.26, g,na=1.05 pjon photoproduction in the delta region and has focused on
[19,37. However, the fouryNA couplingsb; ,bg,D;1,E; @S the determination of the transition multipoles at the so called
well as the leadingrAA couplingg, are only poorly known

at the moment. Until we have more information on these———
couplings we therefore procesdmiempiricallyand evaluate
the exactO(e®) SSE results of Secs-NI with phenomeno-
logical input from other calculations.

In particular, for the leadingV1 coupling we useb;

3The factor of 2 difference compared to RER7] just results
from the fact that we use a different form for tt% e?) yNA vertex
in Eq. (19), in order to be consistent with the SSE formalism in
paper{16]. The sign ofb, is chosen to give a positive result for the
O(€®)M1yNA transition multipole atg?=0, consistent with the
previous analyseg?,3].

12The analogous phenomenon occurs for the slope parameters 0#4F0r the numerical analysis we utilize the scale-independent cou-
the G;(g?), i=1,2,3, which we discuss in Sec. VIIC. plingsD;, E;.
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FIG. 4. The real and imaginary parts of the form fad&8 with C,,Cs given by the set#,,B,,C.

C,,C; given by the set#\;,B,,C.
B

K-matrix pole position; e.g., sef2]. Unfortunately, this Cy'=—272, (49)
wealth of information is not directly transferable to our prob-
lem because th&-matrix approach by construction only
gives the imaginary part of the transition amplitude at the
kinematical point where the real part vanishes. For our cal-
culation, however, we need information on the transition C282=—8.27,
multipoles at theT-matrix pole, whereM1,E2,C2 can be
complex quantities even at the resonance position. This in-
formation has recently become availalp®39,40. Our fit-
ting procedure will refer to either the values of the real part ) ) )
of the transition multipoled1,E2 atg?>=0 or to the ratio The next step is 1o use the speed-plot anaﬁ?sﬂsthe Mainz
E2/M1 atq?=0. We shall adopt the first choice for the RPI, 9"0UP[3]. This time we need our expression
VPI results[40] and the second one for the Mainz res(i&§
The two parameter sets determined by fitting to _ E2(0) obi+ 8G,(0)
ReM1(0), ReE2(0),with Re denoting the real part, of the EMR(0)= M1(0) - 8MnG1(0)— 5G,(0)
RPI, VPI data will be designatelandB, respectively, while
a further subscript taking the values 1 or 2 will denote thefrom Eg.(45) and Table I. We end up with a new parameter
two fits used in reference[40]. Specifically, using set, denoted b{:
ReM1(0)=0.3 GeV 2 ReE2(0)=-0.0087 GeV 2

and finally the values R®1(0)=0.301 GeV *?
ReE2(0)=—0.0011 GeV *? produce

Ch2=-3.3L. (50)

(51)

we obtain EMR(0) yain=(—3.5-4.6)%—CS=—10.14
Al _
C,'=-7.80, —C§=—-2.25.
(52
Al _
C, 2.48, (47 All the fits produce “natural size” values for the param-

etersC,,C5. Based on the above parameter sets we may
determine an average value and a relevant erroCRC3.
We arrive at the values

while using ReM1(0)=0.301 GeV'? ReE2(0)=
—0.048 GeV Y2 we find

A _
<2 8.07, C,=—8.41+0.44,

Az _
Cy2=-2.91. (48) C3=-2.73+0.18. (53

We now consider the VPI group results. The values

ReM1(0)=0.297 GeV 2, ReE2(0)=0.0065 GeV 2
give In view of the preliminary character of these numerical esti-

mates we neglect the fact that the Mainz numbers were obtained at
By a pole position which would correspond to a smaller value for the
Cz =—1.76, nucleon-delta mass splitting parameter
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B. Predictions for the multipoles, CMR(0) ratio

C2(0)
. , . . . Re CM EReM—z —3.86+0.47%,
Having fixed C,,C5 in the previous subsection we can e CMRO) 1(0) (=3.86:0.47% (57)

now give the following predictions for the average values of

the electromagnetic form factors and their relevant errors: C2(0)
Im CMR(O)EImM 100)

=(—4.29:0.19%. (59

M1(0)=(308.6-8.9+i28.6x10 3 GeV 7, o _
We note that the imaginary parts of the multipole form

factors (as well as the imaginary parts of the form factors
Gii €{1,2,3}) are the same for all fits and so we are not in a
position to produce error bars for them. The reason is simply
C2(0)=(—10.8:1.7-i14.3x10 % GeV 2 that the imaginary part of the transition amplitude stems ex-
(549 clusively from loop contributions which do not depend on
C,,C3. Of course the same is not true for the ratios of the
multipoles since in this case real and imaginary parts of the
numerator and the denominator are mixed in order to obtain
E2(0) the real and imaginary part of the ratio. We also note that our
Re EMF{O)ERQ,\T(O) =(—2.52£0.48%, (55  results appear much less sensitiviCtocompared with their
dependence o€3. The reason is that this first parameter
appears only in th&, form factor and its contibution with
Im EMR(0)=1m E2(0) _ (=5.24:0.16%, (56 'eSPecttothe otherones is suppressed by a power of the ratio

E2(0)=(—-6.4+1.7-i16.9X10 ° GeV 2

For the ratios we determine

M1(0) SIMy.
-0.005 T T T T T T T T T -05 T T T T T T T T T
MEIR ReC2_ A1 © ReEMR_A1 o
+ 5 ReC2 B2 + . ReEMR_B2 +
ey ReC2 C o ARt e ReEMR_C o -
-0.01 e, e +
R A ++++
15 L 1
© ++ oy +
0015 o b +++++++
UD"e PR D
a ¢,
0.02 B0 E 25k |
o~ a °
o o AN
r [c] © s
3 -0.025 | i o, E R 3 E
[] o °
= a APy
; ®o °o, 35k ¢ B
-0.03 2g ®o, ] B8,
. o, a
o} o & a
Bp Cos, 4 -] 4
0.035 | ”nuu o4, - mm”“a
Bag, 45+ g -
“og a 8g 9y g
0.04 DDEEE 4 sl QQQEEEDEDD |
Bp ©esc00umng
LI P
0.045 . . . . . . . s 55 s s . . . . s ) s
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 ] 0.02 0.04 0.06 0.08 0.1 012 0.14 0.186 0.18 02
-qr2[Gevr2] g*2[GeVA2)
FIG. 7. The real part of the form fact@2 with C,,C; given by FIG. 9. The real part of the EMR ratio wit,,C5 given by the
the setsA;,B,,C. setsA;,B,,C.
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FIG. 10. The imaginary part of the EMR ratio wi@,,C; given FIG. 12. The imaginary part of the CMR ratio wi@,C; given
by the setsA,,B,,C. by the setsA,,B,,C.

In Figs. 2, 3, 4 the)? dependence of both the real and theform factors. This issue can only be resolved by a future
imaginary parts of;, G,, andGs is depicted, using the, ~ O(e*) calculation.
A,, andB, sets, respectively, for the values of the parameters
C,, Cs. As for the real part of the form fact@; we do not C. Predictions for the form factors
want to imply that it changes its sign near g?
=0.15 Ge\f. Given thatG;(g?) approaches quickly to zero
even small corrections from higher orders can change th
result for—g?>0.1 Ge\?. The resultingg® dependence of

the multipole form factordi 1, E2, C2 is shown in Figs. 5, dependence is solely governed ©e) parameters, whereas

6, 7, and 8. Finally the last remaining figur@sgs. 9, 10, 11, : :
12) show the real and the imaginary parts of the ratios EMR,thze_poorly known couplings,,be.D,,E, only enter in the

CMR. We close the present section with a remark concernd 0 normal_lzatlon Of the forr_n factors. Utilizing-,,C,
ing the range ofy?, for which we believe our results to be from the previous section one fixes

meaningful. As we have already mentioned in the previous

paragraph, thémaginary part of the amplitudes is deter- G1(0)=(5.50+0.14+i0.20,

mined entirely by a one-loop diagram relatedsbl scatter-

ing at the relatively large kinematic energy of approximately .

5—m_~150 MeV. We therefore do not necessarily expect G2(0)=(4.90£0.73-17.42,

that theO(€®) calculation will lead to a good description of
the imaginary partsand point to thepossibility of large
higher order corrections in thimaginary partsof the G;(g?)

Though enjoying less fame than the corresponding transi-
jon multipoles of the previous section, the thid4 transi-
ion form factorsG;(q?) are actually better suited for a chiral
analysis—the reason being that @(e®) the completeg?

G3(0)=(—1.93+i1.13. (59

. . : : : : . . : We note that all three imaginary parts and the real part of

2t Eg:éymﬁééé . G3(0) do not depend on the couplings,bg,D;,E; and are
Ty, . given by the much better known leading order parameters of
We now proceed to give predictions for the slope
T l parameter®
518 g R d
£ g Gi
nl Qggﬂ | piZEGW , (60)
°g a, t=0
Tt °eg 2q 1
°83s 2o, which can be directly calculated from Ed42)—(44). Defin-

ol FRrren, | ing u=m, /& and N'= —3g,,nagaM/47?F2 8 we find

°e8y 53 3 g
-9 L L

08 0.1 0.12 0.‘14 0.16 0.18 0.2
-q*2[GeVA2] 1 .
%We focus on the slope parameters rather than on the transition

FIG. 11. The real part of the CMR ratio witB,,C5 given by  radii in order to avoid the appearance of any of the poorly known

the setsA;,B,,C. couplingsb,,bg,D1,E; in the discussion.

054022-14



CHIRAL SYMMETRY AND THE DELTA-NUCLEON.. ..

3 i 2 5

p§=/\/{—§+2/L77—§\/—1+,u,_2,u77+§/,1, T gk
2 =) —, 1 n 2
+§,u, V=1+u “logl —vV—1+pu +; +—2 log

2 1
+ g\/—l-i-,u_z,ua |0g( —1+,u,_2+ ;)

3

_/-LZ |Og2

1+ 2+1)
it

2m2+ —\/—1+,u Iog< —1+u 2+ —

2
iv—1+u *ulm+iu’mwlog

PHYSICAL REVIEW D60 054022

4 1
1+ 2Io( —1+pu %+ —
+3uN=1+p flog V-1+u m

—1+u?

1+ ‘2+1
e N
7

(61)

One can see immediately the is suppressed by a power of However, we want to emphasize that E¢81),(62) only

1/A,~1/My compared to the real photon poigt=0. This
behaV|or can also be observed in tRg(q?) Dirac form
factor of the nucleonie.g.,[17,19). An analogous result is
expected for the radius of tHe 1(g?) form factor; see the
discussion in Sec. VI.

For the slope parameters correspondin@toandG,, t
differentiation of theJ, H functions is needed, resulting in
two divergent contributiongone nonintegrable singularity

resulting from differentiating under the integral sign and one
divergent surface term from differentiating with respect to
the integration limit. Treating the integral as a principal-

valued one the infinities are shown to cancel out, leaving

M 3 8 1+8u?
p2=47TN—N 2u— = mplt = ul—il V1—pu? ’
1) 2 3 3
3u?l 1+ ! 1)
— 0 J— —_— s
©10g P 12
_ 5 /\/M 8 16 1 15 )
=2 | But g1t g a
X il 1+ 1
E 1100 ; F
19 16
—iy1—pu? 53 2) (62)

represent the leading results for the three slope parameters;
more cannot be learned from( ) calculation. At present,
we have no way of knowing the size of tii&(e*) correc-
tions, but in principle it is possible to calculate them at a later
stage'®

Finally, we can obtain the chiral limit{— 0) behavior of
the slope parameters from Ed81, 62,

P2 N[___?Hogz logu|+0O(u),
) 4 My
p2=—§|7TNT+O(M)1
_ Z“MMN illog2—1I 1o
=—2 7 —E+| Og _OgM_E
+O(p). 63

Thus, the real part oﬁ diverges logarithmically in the chi-

ral limit while its imaginary part remains finite. On the other
hand, the real part oﬁ% vanishes altogether in the chiral
limit, while its imaginary part remains finite. As for2, it is

the real part that remains finite in the chiral limit while its
imaginary part diverges logarithmically. The numerical val-
ues for the slope parameters are also collected in Table II
and, since they take contributions only from the loops, are
independent from the values 6%, Cs.

It is important to note that this is a quite peculiar result. One
can see immediately that these two slope param@étscsle
asAd~My; e, they show no suppression by a heavy scale The main features of our investigation can be summarized
with respect to thej?=0 point. This behavior is completely as follows.

VIll. SUMMARY AND OUTLOOK

analogous to the one expected 2 (q?),C2(q?) (cf. Sec.
V1), but has not yet been observed in chiral calculations
baryon form factors. The first moment with respectfoof
these “quadrupolelike” form factor§,(q?),G3(q?) is en-

The A—Ny* amplitude has been calculated@fe®) in
ofhe “small scale expansion” formalism. The pertinent coun-
terterm contributions, relevant NI/ corrections to lower or-
der coupling, and all loop diagrams allowed to this order

tirely given by the small scales,, ,5 and leading order cou- have been analyzed systematically. It was found thagthe
pling constants—allowingin principle, a large variation of
the form factors at long? compared to theig?=0 point.

18At first one would need a precise determinationbgfand the
subleading corrections to theNA vertex, as these couplings would
"The same of course holds for the corresponding transition radiienter the new loop diagrams 6¥(e%).
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TABLE Il. The slope parametersfm?] of the form factors APPENDIX: INTEGRALS

Gi(a?). o ) . )
The Allk(Q,M?) functions used in Eq(36) are defined as
p? p2 p2 Euclidean integrals in dimensional regularization:
1.94+0.55 10.50- 6.16 —4.12-4.48 AIK(Q,M?)
- d¥ e (—12)%
. . = | dda g . (AD)

dependence of the transition is generated by two 0 (27) 2 1, - M2
7N-,7A-loop diagrams and that two counterterms are “lem gattall=M;

needed to renormalize the result.

We have obtained an estimate for presently poorly knowrTo calculate them, first of all, we express the denominator
couplings from existing phenomenological analyses and theunsing the Schwinger proper time representation:
givenzpredictigns for t2he complex transition multipoles
M1(g9), E2(q°), C2(q°) as well as the complex multi- * L I'(n)
pole ratios CMRO0), EMR(g?), CMR(g?). While matching fo dx X" le AX:F’ A>0, (A2)
the O(€) results to the corresponding expressions of the
multipoles as functions af® we found that the radii of the with I'(n) the well-knownI" function. The constrain&>0
quadrupole form factors are not suppressed by a large scajg explicitly satisfied for the)<0 case while fof)>0 we

compared to theg?=0 point, indicating a possibly rapid analytically continue our expressions. Finally using the tabu-
variation at lowq?. Further study of this interesting result |ated integrals

will continue once more precise information on the neces-

sary couplings is available. "l B
Three appropriately defined electromagnetid transi- Xt e dx
tion form factors G;(q%), i=1,2,3, have been identified
from theO(e®) A—N+v* calculation. The longitudinal form Y Y
factor G5(g?) had to be rescaled compared to existing defi- :(2,3)(V/2)F(V)6Xp( @) D, W) (A3)

nitions in the literature in order to achieve consistency with
the power counting of SSE5,(q?) could be found to sub- .
leading order, whereas f@8,(q?),G3(q?) we obtained the f e 2t 1HA2D_ [o(kt)M2dt
leading result. 0 !

The threeG;(q?) form factors are found to be complex

quantities due to therN-loop diagram(i) in Fig. 1. Their 21 BV (B) o
entireq? dependence is controlled by relatively well-known K] 1 1 (z+k)
O(€) parameters—making th®;(q?) form factors the pref- Fisv+3p+35

ered testing ground of chiral symmetry in the radiativa

transition. The corresponding slope parameters have been

calculated and their chiral limit behavior has been discussed. xF
The numerical results of this work have to be considered

preliminary due to the presently poor state of knowledge oRyith D _, (x) the parabolic cylinder function arfé(a,b; c;x)

coupling constants in the SSE formalism. However, this situthe hypergeometric function, we find, explicitly,

ation is going to improve in the near future and we will at a

v B v+p+1 z—k

55 5 i Tkl (A4)

later point revisit ourO(€%) analytical results and try to im- A30L M?2 1
prove upon the numerical accuracy of our predictions. o LO+ 3972 1—|n7 + 1672
2 2 Q
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where the factolL carries the infinity in dimensional regu-
larization and is defined in Eq39). It is clear thatA3® is

PHYSICAL REVIEW D60 054022

finite while A%*% and A% diverge. The integrals in Eq37)
are split betweerj0,x,] (trigonometric branchand (xq,1]
(logarithmic branchwherex, is the large root of)?= Mf,

—t+ Jt?+4m?|q|?

XO—
2|ql?

’

with t=6%—|q|? to the order we work. In the calculation the
functions are defined witlf) = 6x for the N7 intermediate
state loop diagram and = — 6x for the A 7 one. This entails
[cf. Eq. (A5)] that the logarithms have negative arguments
(and therefore there is an absorptive piece of the amplitude
for the N7r diagram alone, as expected from general consid-
erations[SZMiz(Mierw)2 for i=N only]. The imagi-
nary parts are computed analytically.

For completeness, we show the correspondence between
our A functions and thd functions appearing in the literature
(e.g.,[37]):

AN M2 =35(Q,M?),

A4 M2)=dI,(Q,M),

14 ,
5 7 Jo(Q, M),

A QO MP) =
t 2 aMtZ

d g
52l

A301(Q’M2):
t 2 aMtZ

Q,M?),

J Jd
AR O M2 =— sz,wl?):—a J1(Q,M2).
2

29 .
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