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Chiral symmetry and the delta-nucleon transition form factors
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The three complex form factors entering theD˜Ng* vertex are calculated toO(«3) in the framework of a
chiral effective theory with explicitD(1232) degrees of freedom included. It is shown that the lowq2 behavior
of the form factors is governed bypN, pD loop effects. Predictions are given for theq2 dependence of the
three transition multipolesM1(q2), E2(q2), C2(q2). Furthermore, the role of the presently unknown low
energy constants that affect the values of the multipole ratios EMR(q2) and CMR(q2) is elucidated.
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I. INTRODUCTION

The electromagnetic transition of theD(1232) resonance
to the nucleonD˜Ng* is of particular interest@1–4# as far
as our understanding of the structure of the latter is c
cerned. Historically~e.g., @5#!, this reaction raised a lot o
interest because it allowed one to probe the issue of whe
the nucleon or its first resonance is ‘‘deformed’’—the reas
being that apart from the dominant magnetic dipole (M1)
transition electromagnetic selection rules also allow an e
tric (E2) and a Coulomb (C2) quadruple transition, which
vanish in simple models of the nucleon with spherical sy
metry. Accordingly, the amount of deformation can be qu
tified by the multipole ratios EMR(q2)5E2(q2)/M1(q2)
and CMR(q2)5C2(q2)/M1(q2), which acquire a four-
momentum~squared! dependence in the case of virtual ph
tonsq2Þ0.

By the late 1990s there was a nearly uniform consensu
the physics community that indeed there exists a small qu
rupole component in the electromagneticND transition@4,6#.
In the case of real photons one nowadays believe
Re@EMR(0)#'21/%•••24%, but a more precise determ
nation of this fundamental property of the nucleon has b
surprisingly elusive and hotly contested throughout the p
decade, both among theorists and among experimentalis
is our hope that the ongoing experiments@7# of the electro-
production ofD(1232) with the resulting better informatio
on theq2 dependence of theND-transition form factors, as
well as on EMR(q2), CMR(q2), will lead to a clear picture
of the underlying physics and enable us to identify the r
evant degrees of freedom for several different regimes
momentum transfer. A dramatic change of the physics
derlying the electromagneticND transition is very much ex-
pected fromperturbativeQCD, which predicts for ‘‘large’’
Q2[2q2 that EMR(Q2)˜11. At which finite Q2 the
crossover from a negative to a positive EMR should hap
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and whether this point is kinematically accessible at pres
or future electron scattering machines is a further issue
current debate and interest, e.g.,@8#.

From a theorist’s perspective, the treatment of the elec
magneticND transition may be grouped into two categorie

~1! Calculations of the electromagneticDNg* vertex with
its associated three complex form factorsper se, using dif-
ferent theoretical frameworks that aspire to fundamenta
based descriptions of theN-D system. The chiral Bag mode
~e.g.,@9#!, quark models with meson exchange currents~e.g.,
@10#!, lattice gauge theory~e.g., @11#!, and effective chiral
Lagrangians~e.g.,@12,13#! constitute such attempts.

~2! Direct theoretical treatments@2,3# of the full scattering
processes~e.g., eN˜e8Np,eN˜e8Ng) in the D(1232)
resonance region, either based on phenomenolog
Lagrangians supplemented with a method of choice to un
rize the amplitudes or dispersion relations. A point of stro
contention therein is the issue of separation of backgroun
resonance contributions. For a recent summary of the st
of the resulting EMR and CMR extractions we refer to t
talk by Workman@14#.

In the present work we calculate theD(1232) toN radia-
tive transition D˜Ng* in the region of small~i.e., Q2

,0.2 GeV2) photon virtuality, utilizing a recently devel
oped effective chiral Lagrangian approach@15,16# that sys-
tematically incorporates the spontaneous and the exp
breaking of the chiral symmetry of QCD. A small scale«
5$p,mp ,d% denoting, collectively, small momenta, the pio
mass, and the delta-nucleon mass splitting is used to es
lish a systematic power counting, thus telling us precis
which diagrams and vertices have to be included if we w
to calculate up to a certain order ine. This approach allows
for an efficient inclusion of aD(1232) degrees of freedom
consistent with the underlying chiral symmetry of QCD a
is referred to as the ‘‘small scale expansion’’~SSE! @15,16#,
constituting a phenomenological extension of heavy bar
chiral perturbation theory@17#. The formalism can be used t
calculate both the vertex as well as full scatterin
amplitudes—here we focus on the former. Clearly, as we
dealing with alow energyeffective theory, theq2 depen-
dence of a given physical quantity can be trusted only at
©1999 The American Physical Society22-1
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values.1 Accordingly, our final applications will be discusse
in this spirit.

The most general form of theD˜Ng* radiative decay
amplitude that complies with Lorentz covariance, gauge
variance, and parity conservation is described by three f
factors. We begin our discussion from the widely used for2

iM D˜Ng
rel 52

e

2MN
ū~pN!g5Fg1~q2!~q” em2e”qm!

1
g2~q2!

2MN
~pN•eqm2pN•qem!

1
g3~q2!

2MN
~q•eqm2q2em!GuD

m~pD!. ~1!

Here MN is the nucleon mass,pN,D
m denotes the relativistic

four-momentum of the nucleon and delta, andqm andem are
the photon momentum and polarization vectors, respectiv
The delta is described via a Rarita-Schwinger spinoruD

m(pD)
with free Lorentz indexm. TheM1, E2, andC2 multipoles
allowed in 3

2
1
˜

1
2

1 electromagnetic transitions can be ca
as linear combinations of the form factorsg1 , g2, and g3
@20#.

In this work we study the radiative vertex toO(«3) in the
above-mentioned SSE formalism. This constitutes the
order where pion-nucleon and pion-delta loop graphs e
the vertex. As will be shown later, anO(«3) calculation
entails corrections up toO(1/Lx

2), with Lx the chiral sym-
metry breaking scale. One of the main tasks during this
culation has been the consistent matching between the re
of our perturbative calculation and the most general ver
parametrization as given, for example, in Eq.~1!. In order to
provide for a stringent test of our new predictions with e
periment we note that a complementary calculation of
full pion photoproduction amplitude in theD(1232) region
to the same order ine3 is in progress@21#.

There have been previous analyses of the radiative tra
tion in a similar theoretical approach by Butleret al. @12# and
by Napsuciale and Lucio@13#. Our work differs from the
aforementioned references in the following aspects.

The most crucial difference is that we address theform
factorsand not just the real-photon point. This entails~a! a
q2 dependence in our expressions and~b! the presence of an
additional form factor (g3), or, equivalently, our calculation
yields the CMR(q2), in addition to the EMR(q2).

SSE systematically keeps track of 1/M ~i.e., relativistic!
corrections to lower order couplings. These corrections h
not been included in previous analyses@12,13#. We also find
that our identification of the form factors differs from the o
used in@13# at the real photon point.

1Similar calculations using the SSE have been performed for
electromagnetic form factors of the nucleon and good agreem
with experimental data has been found in theQ2,0.2 GeV2 re-
gime @18,19#.

2Equivalent forms, obtained via use of the equations of moti
can be found in the vast literature on this subject.
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This article is structured as follows. In the next section
briefly review the essentials of the ‘‘small scale expansio
and its power counting. In Sec. III, we discuss the m
general form of the Pauli-reduced transition amplitude wh
is consistent with theO(«3) calculation in the SSE. We the
proceed, in Sec. IV, to calculate the loop as well as ch
counterterm contributions. The resulting expressions for
form factors are identified in Sec. V, while those for th
multipoles in Sec. VI. Numerical values for the EMR(q2),
CMR(q2) using presently available~theoretical! input are
furnished in Sec. VII. In the same section we give numeri
as well as analytical results for~complex! slopes of the three
form factors. We summarize and offer our perspective
future efforts in the concluding section. Finally, we devo
an appendix to the discussion of technical matters.

II. CHIRAL LAGRANGIANS
AND THE ‘‘SMALL SCALE EXPANSION’’

A. Heavy baryon ChPT

QCD, being a strongly coupled theory at low~of the order
of 1 GeV! energies, renders traditional perturbative expa
sions in the coupling constant inadequate. Chiral pertur
tion theory~ChPT! offers an alternative perturbative expa
sion, namely, one that is realized in terms of the exter
momenta involved in a given physical process. The origi
strategy was based on the notion that at low energies
effective theory of QCD will involve only the nearly mass
less~i.e., the Goldstone bosons: pions, etc.! degrees of free-
dom @22,23#. Accordingly, chiral perturbation theory ha
been very successful with respect to applications in the
son sector. With the inclusion of baryons, however, the s
tematic power counting of ChPT fails, since baryon mas
MB(>1 GeV) cannot join the set of the expansion para
eters$external momenta,mp% as they are by no means sma
and remain finite in the chiral limit.

A systematic power counting can, nevertheless, be
fined through a splitting of the nucleonic field degrees
freedom into heavy-light modes and integrating out t
former. The cost of this procedure is to burden the effect
description with additional, higher order contact interactio
Generalizing recent developments in heavy quark effec
theories~see, e.g.,@24,25#! heavy fermion methods were firs
applied to baryon chiral perturbation theory by Jenkins a
Manohar@26#. The basic premise is the adoption of a no
relativistic mode of description, which entails a restriction
four-velocities of the formvm;(11udu,d),udu!1. On an
operational level this means that all momentum depende
in the theory is only governed by~nonrelativistic! soft mo-
mentakm , defined via

pm5M0vm1km , ~2!

where pm is a typical nucleon relativistic four-momentum
andM0 corresponds to the nucleon mass in the chiral lim
The range of validity of the resulting effective theory d
mands that each componentkm!Lx , with the chiral sym-
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CHIRAL SYMMETRY AND THE DELTA-NUCLEON . . . PHYSICAL REVIEW D60 054022
metry breaking scale beingLx'1 GeV. This approach is
commonly referred to as heavy baryon chiral perturbat
theory ~HBChPT!.

In the construction of the effective theory we will follow
the systematics laid out in@27#. The general philosophy is to
take the fully relativistic theory as the starting point and th
perform a systematic nonrelativistic reduction. This pro
dure automatically guarantees the proper 1/M corrections to
the couplings in higher order Lagrangian terms. Altern
tively, one could start from a general Lagrangian within t
nonrelativistic framework, but then has to implement the
called ‘‘reparametrization invariance.’’ The latter approa
is, for example, quite common in the field of heavy qua
effective theories@28#.

We now briefly sketch the derivation of the~nonrelativis-
tic! chiral Lagrangians for matter fields. For details we re
the extensive literature of reviews~e.g.,@16,17,29#!.

We start from the chiral relativistic SU~2! Lagrangian for
nucleons:

LN5c̄NGNcN , ~3!

with the relativistic nucleon isospinor field

cN5S cp

cn
D

and

GN5GN
(1)1GN

(2)1••• ~4!

being a string of general nucleon-nucleon transition matri
GN

(n) of increasing chiral powern @30#. For example, to lead
ing order one obtains the well-known structure

GN
(1)5 iD” 2M01

ġA

2
u”g5 , ~5!

whereDm denotes the chiral covariant derivative. The p
rameterġA corresponds to the axial vector coupling const
~in the chiral limit! and the chiral tensorum describes the
coupling of an odd number of pions with nucleon. For mo
details we refer to@30#.

The second step is a redefinition of the relativistic nucle
fields via

N5eiM 0v•xPv
1cN ,

H5eiM 0v•xPv
2cN , ~6!

with the velocity-dependent projection operatorsPv
65 1

2 (1
6v” ). N is typically called the ‘‘light’’ field, whereasH is
commonly referred to as the ‘‘heavy’’ field. The relativist
Lagrangian, Eq.~3!, then takes the general form

LN5N̄ANN1~H̄BNN1H.c.!2H̄CNH, ~7!

where the matricesAN ,BN ,CN are defined via
05402
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AN5Pv
1GNPv

1 , BN5Pv
2GNPv

1 , CN5Pv
2GNPv

2 .
~8!

We note that each matrix consists of an infinite string
terms of increasing chiral powern, analogous to Eq.~4!.3

Now one shifts the fields and integrates out the hea
componentH. The resulting~nonrelativistic! effective La-
grangian reads

LN
e f f5N̄~AN1g0BN

† g0CN
21BN!N. ~9!

For the case of SU~2! the explicit form of this effective La-
grangian for spin 1/2 nucleons has been worked out up
n53 by several groups~e.g.,@31,32,19#!. Generalizations to
even higher orders are under way@33#. The important point
to note is that the inverse of matrixCN is calculated pertur-
batively, which confines the resulting effective Lagrangian
the nonrelativistic regime.

B. Small scale expansion

HBChPT, as described above, has been quite succe
for scattering processes off a single nucleon near thres
~for reviews see@17,34#!. At higher energies, however, th
contribution from nucleon resonances likeD(1232) can no
longer be parametrized via higher order nucleon-nucle
couplings inGN

(2) ,GN
(3) , etc. At some point, i.e., once explic

propagation of a nucleon or meson resonance has to be
cluded, the above-described contact interaction appro
breaks down. So if one is interested in kinematic conditio
of such dynamic resonance contributions or in investigati
into the low energy structure of nucleon resonances, it
comes mandatory to include low lying resonances as exp
degrees of freedom in the effective Lagrangian, Eq.~9!. In
particular this means the inclusion of the spin 3/2 nucle
resonanceD(1232) in the case of an SU~2! analysis.

The first efforts towards this direction were performed
Jenkins and Manohar@35#. In the present work, however, w
follow a specific generalization of the construction meth
of Ref. @27# ~as outlined above!, which is called the ‘‘small
scale expansion’’@15,16,19,36,37#. The main difference to
HBChPT lies in the fact thatthe chiral power counting is
modified in a phenomenologically inspired fashion. In the
SSE approach one expands in the small scale«

5$soft momenta,mp ,d0%, whered05ṀD2M0 corresponds
to the delta-nucleon mass splitting in the chiral lim
whereas in HBChPT one expands in the quantityp
5$soft momenta,mp%.4 The chiral power counting of HB-
ChPT as an expansion of all quantities in a power se

3Technically speaking, the matricesAN ,BN start with chiral
powern51, while CN begins withn50:C N

(0)52M0. This appear-
ance of a large mass term 2M0.Lx in CN is also the reason why
theH fields are denoted ‘‘heavy’’ and ultimately get integrated o

4In strict HBChPTd0 counts as a quantity of orderp0. This is
formally correct but can lead to poor convergence properties in
perturbation series. For more details we refer to the discussio
@37# regarding the spin polarizabilities of the nucleon.
2-3
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governed bypn is taken over by the SSE as an expansion
all quantities in a power series governed by«n. In the fol-
lowing we only briefly discuss the construction of the re
evant SU~2! Lagrangians with explicit pion, nucleon, an
delta degrees of freedom and their couplings to arbitrary
ternal fields. For details we refer the interested reade
@15,16,19#.

The starting point this time is a set of coupled relativis
SU~2! Lagrangians of relativistic nucleon and delta fiel
cN ,cm :5

LN5c̄NGNcN ,

LD5c̄mGD
mncn ,

LDN5c̄mGDN
m cN1H.c., ~10!

where each baryon matrixGX ,X5N,D,DN, is a string of
terms of increasing power in«n, analogous to Eq.~4!. For
the spin 3/2, isospin 3/2 delta field we utilize a Rarit
Schwinger-isospurion notation, as laid out in the Appendi
of Ref. @16#. In the Rarita-Schwinger formulation for spi
3/2 fields one encounters the well-known redundancy of
grees of freedom, which calls for six projection operato
before one is able to isolate the ‘‘light’’ spin 3/2 compone
Tm from the ‘‘heavy’’ oneGm :

Tm5eiM 0v•xPv
1P(33)mn

3/2 cn, ~11!

with

P(33)mn
3/2 5gmn2

1

3
gmgn2

1

3
~v”gmvn1vmgnv” !. ~12!

The ‘‘heavy’’ spin 3/2 fieldGm is a five-component object
An explicit representation can be found in@16# but is not
needed here.

Suppressing all spin-isospin indices, the coupled se
relativistic Lagrangians in Eq.~10! can then be written as

LN5N̄ANN1~H̄BNN1H.c.!2H̄CNH,

LD5T̄ADT1~ḠBDT1H.c.!2ḠCDG,

LDN5T̄ADNN1ḠBDNN1H̄DNDT1H̄CNDG1H.c.
~13!

Now one integrates out the ‘‘heavy’’ nucleon and ‘‘heavy
delta componentsH,G and finds the resulting~nonrelativis-
tic! effective Lagrangian with explicit nucleon and del
fields:

LSSE
e f f 5T̄ÃDT1N̄ÃNN1@ T̄ÃDNN1H.c.#, ~14!

with

5For notational simplicity we suppress all explicit isospin indice
05402
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ÃD5AD1g0D̃ND
† g0C̃N

21D̃ND1g0B D
† g0C D

21BD ,

ÃN5AN1g0B̃N
† g0C̃N

21B̃N1g0B DN
† g0C D

21BDN ,

ÃDN5ADN1g0D̃ND
† g0C̃N

21B̃N1g0B D
† g0C D

21BDN ~15!

and

C̃N5CN2CNDC D
21g0CND

† g0 ,

B̃N5BN1CNDC D
21BDN ,

D̃ND5DND1CNDC D
21BD . ~16!

The explicit form of the effective Lagrangian, Eq.~14!, in
the SSE has been worked out ton52 in Ref. @16#. For n
51 one finds

ÃN
(1)5AN

(1)5 iv•D1ġAS•u,

ÃND
(1)5AND

(1)5ġpNDwm
i ,

ÃD
(1)5A D

(1)52~ iv•Di j 2d0j3/2
i j 1ġ1S•ui j !gmn .

~17!

In addition to the structures already discussed in Sec.
one encounters the Pauli-Lubanski spin vectorSm and the
pND,pDD bare coupling parametersġpND ,ġ1. Further-
more, the chiral tensorswm

i ,um
i j parametrize the coupling o

an odd number of pions to anND and aDD transition cur-
rent, whereasDm

i j corresponds to the chiral covariant deriv
tive acting on a spin-3/2–isospin-3/2 field. Withi , j 51,2,3
we denote explicit isospin indices andj3/2

i j 5 2
3 d i j 2 i /3e i jktk

corresponds to the isospin 3/2 projector. For more details
refer to @16#.

At n52 we are only interested inDNg vertices, as will
be discussed in Sec. IV A. The relevant relativis
O(e2) DNg contact terms can be parametrized in terms
the low energy constants~LECs! b1 , b6 as follows:

L DNg
(2) 5

ib1

4M0
c̄ i

m@gmn1y1gmgn#grg5f i 1
nr cN

2
b6

2M0
2
c̄ i

m@gmn1y6gmgn#g5f i 1
nr DrcN1H.c.,

~18!

wheref i 1
rn [ 1

2 Tr@ f 1
rnt i # denotes the isovector photon comp

nent andy1,6 are the so-called off-shell coupling constants
Performing the transition to the heavy baryon fields

the vertices of interest to our calculation one finds@16#.
2-4
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ÃND
(2)52 i

b1

2M0
f 1mn

i Sn1•••, ~19!

which is independent of the couplingsy1 ,b6 ,y6. In the ra-
diative decay of theD(1232) the fact that there is noS-wave
multipole allowed precludes the possibility of having
O(e) DNg vertex. The parameterb1 therefore denotes th
leadinggND coupling and carries the main strength of t
M1 DNg transition@15,16,37#.

While the desired analysis forn52 is quite simple, the
situation atn53 is more complex. In fact, there is no agre
ment in the literature about number and/or structure of
subleadingDNg vertices~e.g., compare Refs.@12,13,2#!. In
the next subsection we shall explicitly construct then
53 DNg vertices according to the SSE approach.

C. Construction of O„«3
… vertices

Referring to the SSE master formula, Eqs.~14!–~16!, the
relevant LagrangianL DNg

(3) contains terms which have tw
separate origins—the dimension-6 contact interactions c
05402
e

n-

tributing to AND
(3) and possible 1/M corrections related to the

O(«2)DNg vertices. The latter are given by

LD˜Ng*
(3) f ixed

5N̄~g0BN
†(1)g0CN

(0)21DND
(2)

1g0B DN
†(2)g0C D

(0)21B D
(1)!T, ~20!

where the superscripts denote the SSE dimension. The p
nent coupling matrices can be found in@16#, exceptfor the
structures denoted asB DN

†(2) , DND
(2) which only start contrib-

uting atO(«3). We therefore construct these matrices, b
only for the vertices of interest in our calculation. Using E
~18! and the orthogonality properties of the light-heavy pr
jection operators@16# we find ~ellipses signify terms that are
irrelevant to the present analysis!

DND
(2)5

i ~b112b6!

4M0
P2P(33)

3/2nmg5f nr
1 vr1•••[DNDg

(2) 1•••

~21!

and ~for the b1 part!
are

ward to
her

-

mass
lower
B DN
(2)b15

ib1

4M03
2P(33)

3/2mnvr

~113y!P(11)
1/2mn~gr1vr!2A3yP(12)

1/2mnvr

2~11y!P(22)
1/2mnvr1A3yP(21)

1/2mn~gr1vr!

2~113y!P(11)
1/2mnvr1A3yP(12)

1/2mn~gr1vr!

~11y!P(22)
1/2mn~gr1vr!2A3yP(21)

1/2mnvr
4 g5f nr

1 , ~22!

where we have suppressed isospin indices. In a similar manner one obtains the contribution toBDN
(2) associated withb6. The

complete 1/M corrections atO(e3) which had to be constructed via Eq.~20! then read

LD˜Ng*
(3) f ixed

5
b112b6

4M0
2 N̄~S•DQ !vr f mr1

i Ti
m1

b122b6

4M0
2

N̄f rm1
k vrj3/2

k j S•D ji Ti
m1

b1

2M0
2
N̄f rb1

k Srvbj3/2
k j Dm

j i Ti
m . ~23!

Interestingly, one observes that the off-shell couplingsy1 ,y6 drop out in the final result.
Finally we have to determine the dimension-6gND counterterms contained inAND

(3) as mandated by Eq.~14!. Once more we
have to start from that part of the most general relativisticO(e3) Lagrangian that contains all allowedgND vertices at this
order, in which the chiral tensorf nab

i 1 [ 1
2 Tr$t i@Dn , f ab

1 #% plays a dominant part. At a first glance the following structures
possible candidates:gmnsabg5f nab

i 1 , gmngabg5f nab
i 1 , gmasnbg5f nab

i 1 , gmagnbg5f nab
i 1 , enabm f nab

i 1 , where the free indexm is
to be contracted with the corresponding index of the Rarita-Schwinger delta spinor in the initial state. It is straightfor
verify that only the first and third quantities will survive inAND

(3) and can be shown to give identical contributions up to hig
order terms. Accordingly we find

AND
(3)5

D1

4M0
2

gmnvaSb
1

2
Tr$t i@Dn , f ba

1 #%1
iE1

2M0

d0

M0
f 1mn

i Sn1•••[ANDg
(3) 1•••, ~24!

whereD1 , E1 are now identified as the twogND low energy constants ofO(e3).6 This set is sufficient for the renormaliza
tion of the processD2.Ng* ; a more detailed discussion of the construction of these counterterms can be found in@21#.

6The second term of Eq.~24!, proportional toE1, appears in the ‘‘small scale expansion’’ due to the fact that the delta-nucleon
splitting d0 counts as a quantity ofO(e). Therefore one has to construct additional relativistic contact terms which are products of
order interactions and the new small scaled0. For a discussion of this issue see Ref.@19#.
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Gathering the above results we determine the relevant SSEgND Lagrangian toO(e3):

L DNg
(3) 5N̄ANDg

(3) T1N̄@g0BN
†(1)g0~CN

(0)!21DNDg
(2) 1g0B DNg

†(2)g0~C D
(0)!21B D

(1)#T1H.c.

5
D1

4M0
2
N̄gmnvaSb f nba

i 1 Tm
i 1

iE1

2M0

d0

M0
N̄f 1mn

i SnTi
m2

b112b6

4M0
2 N̄~S•D !vr f mr

i 1Ti
m

1
b122b6

4M0
2

N̄f rm1
k vrj3/2

k j S•D ji Ti
m1

b1

2M0
2
N̄f rb1

k Srvbj3/2
k j Dm

j i Ti
m1H.c. ~25!
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III. NONRELATIVISTIC REDUCTION OF THE D˜Ng
VERTEX

Since the leading order Lagrangian counts asO(«) and,
from the general exposition in the previous section, it f
lows that each new order in the SSE contributes a po
«/M , the calculation of the radiative delta decay toO(«3)
will include all terms up toO(1/M2). Thus, in order to com-
pare our calculation with Eq.~1! we must find the most gen
eral form of the amplitude consistent with anO(1/M2) cal-
culation. In our case it is convenient to use theD(1232) rest
frame where a Pauli reduction of the amplitude allows one
identify the various multipoles.

As far as Dirac spinors are concerned the situation w
the Pauli reduction is well known. For the delta field, on t
other hand, we think that is worth providing our conventio
We start from a typical~e.g., @38#! Rarita-Schwinger repre
sentation of theD(1232) spinor with the subsidiary cond
tions

gmuD
m50, ]muD

m50. ~26!

A specific representation consistent with these constrain
the following:

uD
m5S ED1MD

2MD
D 1/2S 1

s•pD

ED1MD

D Smx3/2, ~27!

with ED , MD , and pD the energy, mass, and thre
momentum of the delta particle, respectively, andSm the
four-vector given by

Sm5FS•pD

MD
,S1

S•pD

MD~ED1MD!
pDG , ~28!

whereS denotes the spin 3/2̃1/2 transition matrices@38#.
Next, we have to expand the various terms entering

~1! in powers of 1/M and restrict ourselves up toO(1/M2)
accuracy. Using the analogue of the four-component nota
of the SSE,

uv~r N!5Pv
1u~pN!,

uv,D
m ~r D!5Pv

1uD
m~pD!, ~29!
05402
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with pX
m5M0vm1r X

m ,X5N,D, we finally arrive at the fol-
lowing expression:

iM D˜Ng
(1) 5A2

3
eūv~r N!H ~S•e!qmFg1~q2!

MN
1O~1/MN

3 !G
1~S•q!emF2

g1~q2!

MN
2

d

2MN
2

g1~0!

1
d

4MN
2

g2~0!1O~1/MN
3 !G1~S•q!

3~v•e!qmF g1~0!2
1

2
g2~0!

2MN
2

1O~1/MN
3 !G

1~S•q!~q•e!qm@01O~1/MN
3 !#J uv,D

m ~0!,

~30!

which has been evaluated in the rest frame of the delta
ticle.

Some comments regarding the above equation are ap
priate.

~1! To the order we are working the energyv of the
outgoing photon four-momentum isv5MD2AMN

2 1q25d
2q2/2MN1•••5d1O(1/MN).

~2! For q250, Eq. ~30! is not in agreement with the
analogous expression of Ref.@13#. There, the nucleon mas
dependence of the Dirac spinors apparently was not ta
into account.

~3! Equation~30! has been derived under the assumpt
that all the form factors are quantities ofO(«0) at leading
order.

~4! It is inconsistent with our subsequent loop resul
This can be most easily seen by the structure proportiona
e•q. According to the 1/M expansion this structure shoul
not exist toO(«3). However, as will turn out, the loop dia
grams of Fig. 1 produce a nontrivialq2 dependence which
scales as 1/Lx

2;1/M2.
2-6
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We conclude that the popular form of the relativistic
ovector nucleon-delta transition current, as given in Eq.~1!,
is not ideally suited for microscopic calculations of the
form factors which rely on 1/M expansions involving a chi
ral power counting. We find it, therefore, advantageous,7 in
view of the above remarks, to define a new set of form f
tors, by rescaling the previous ones. We propose the foll
ing definition:

G1~q2![g1~q2!, G2~q2![g2~q2!,

G3~q2![
d

MN
g3~q2!, ~31!

which leads to the relativisticD˜Ng* transition matrix el-
ement

7The only alternative would be ag3 form factor which behaves a
O(e21) at q250, i.e.,g3(0);Lx /mp ,Lx /d. However, such a re-
sult would violate the basic premise of nonrelativistic formalis
like HBChPT or SSE that the large scaleLx'MN ,4pFp should
alwaysappear asLx

2n ,n>0, in order to ensure a consistent pow
counting.

FIG. 1. Loop diagrams: single~double! solid lines denote nucle
ons ~deltas!, respectively.
05402
-
-

iM D˜Ng
rel 5A2

3
eū~pN!g5FG1~q2!

2MN
~q” em2e”qm!

1
G2~q2!

4MN
2 ~pN•eqm2pN•qem!

1
G3~q2!

4MNd
~q•eqm2q2em!GuD

m~pD!. ~32!

Equation ~32! will serve as the reference point for futur
comparisons with other calculations. The advantage offe
by this parametrization can be seen best when performin
1/M expansion of Eq. ~32!, once more restricted to
O(1/M2):

iMD2.Ng
NR

5A2

3
eūv~r N!H ~S•e!qmFG1~q2!

MN
1O~1/MN

3 !G
1~S•q!emF2

G1~q2!

MN
2

dG1~0!

2MN
2

1
dG2~q2!

4MN
2

1
q2

4MN
2 d

G3~q2!1O~1/MN
3 !G1~S•q!~v•e!qm

3FG1~0!

2MN
2

2
G2~q2!

4MN
2

1O~1/MN
3 !G1~S•q!~q•e!qm

3F2
G3~q2!

4MN
2 d

1O~1/MN
3 !G J uv,D

m ~0!. ~33!

The above formula serves as the basic connection betw
our ~nonrelativistic! results calculated via the SSE and t
desired~relativistic! transition current, Eq.~32!. One can eas-
ily see that toO(e3) one is sensitive to the leading an
subleading behavior of the form factorG1(q2), whereas the
form factorsG2(q2),G3(q2) start out at 1/M2 and therefore
only allow us to determine them to leading order. One c
also check that Eq.~33! is gauge invariant toO(1/M2) and
allows for a nonvanishingq2-dependent contribution in eac
of the four independent structures, consistent with the S
calculation toO(«3). We now move to the details of th
calculation.

IV. CALCULATION

A. Born contributions

In the present subsection we discuss the Born contribu
to the amplitude. The relevant expressions resulting fr
each DNg* tree level vertex have the following explic
forms:8

8To the order we are working we can identify the paramet
M0 ,d0 with the physical valuesMN ,d5MD2MN .
2-7
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iM
D˜Ng*
b1 52A2

3
eūv~r N!FS•qem

b1

2MN

2S•eqm

b1

2MN
Guv,D

m ~0!,

iM
D˜Ng*
E1 52A2

3
eūv~r N!F ~S•eqm

2S•qem!
E1d

2MN
2 Guv,D

m ~0!,

iM
D˜Ng*
D1 52A2

3
eūv~r N!F2S•eqm

D1d

4MN
2

1e0S•qqm

D1

4MN
2 Guv,D

m ~0!,

iM
D˜Ng*
b1rc

52A2

3
eūv~r N!FS•qem

b1d

4MN
2

1e0S•qqm

2b1

4MN
2 Guv,D

m ~0!,

iM
D˜Ng*
b6rc

52A2

3
eūv~r N!FS•qem

b6d

2MN
2

1e0S•qqm

2b6

2MN
2 Guv,D

m ~0!, ~34!

where the superscripts tabulate the relevant vertices, in r
tion to the LECs, while ‘‘rc ’’ stands for ‘‘relativistic correc-
tion.’’

We mention that the second relativistic correction L
grangian term in Eq.~23! giveszerocontribution to our form
factors. To see this, note that the derivatives acting on
delta field bring down factors (S•r D) and (r D•T) wherer D

m

is theD(1232) soft momentum. In theD(1232) rest frame,
where our calculation is performed one findsr D

m5dvm. Both
(S•r D) and (r D•T) therefore vanish due to the light del
constraints. We do anticipate, on the other hand, that
operator will contribute to the resonant Born diagram in p
photoproduction where the intermediateD(1232) will also
contain off-shell components of the delta field.

The overall Born contribution, therefore, is

iMD˜Ng*
Born

52A2

3
eūv~r N!FS•eqmS 2b1

2MN
1

~2E12D1!d

4MN
2 D

1S•qemS b1

2MN
2

E1d

2MN
2

1
~b112b6!d

4MN
2 D

1v•eS•qqmS D1

4MN
2

2
b112b6

4MN
2 D Guv,D

m ~0!.

~35!
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In the next subsection we will turn our attention to co
tributions from loop corrections to the transition vertex.

B. Loop contributions

To O(«3) one can draw ten independent loop diagra
for the D˜Ng transition~see Fig. 1!. However, because o
the constraintsv•uv,D

i 5S•uv,D
i 5t iuv,Dm

i 50 satisfied by the
on-shell spin 3/2 isospin 3/2 spinoruv,Dm

i , only diagrams 1i,
1j in Fig. 1 survive. Their contribution can be formally wri
ten as

iM52A2

3

2egpND

Fp
2

ūv~r N!$~S•e!qm@gAFN1xg1FD#

1~S•q!em@gAGN1xg1GD#

1~S•q!qm~e0@gAJN1xg1JD#

1~q•e!@gAHN1xg1HD#!%uv,D
m ~0!. ~36!

Here theN andD labels on the functionsFi ,Gi , . . . denote
the intermediate baryon propagator in diagrams~i! and~j! of
Fig. 1, respectively, while the isospin factorx takes the value
2 5

3 . The loop functions are defined via

FN~ t !52E
0

1

dx~x21!
A301~dx,Mt

2!

d
,

FD~ t !52E
0

1

dxF ~12x!
A301~2dx,Mt

2!

d

12x
A301~2dx,Mt

2!

d~d21!
G ,

GN~ t !52E
0

1

dx x
A301~dx,Mt

2!

d
,

GD~ t !522E
0

1

dxFx
A301~2dx,Mt

2!

d

12~12x!
A301~2dx,Mt

2!

d~d21!
G ,

JN~ t !5E
0

1

dx x~12x!A310~dx,Mt
2!,

JD~ t !5E
0

1

dx x~12x!
d23

d21
A310~2dx,Mt

2!,

HN~ t !5E
0

1

dx x~12x!~122x!A300~dx,Mt
2!,

HD~ t !5E
0

1

dx x~12x!~2x21!
d23

d21
A300~2dx,Mt

2!,

~37!
2-8
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where thet[q2 dependence arises implicitly throughMt
2

5mp
2 1tx(x21). Explicit representations for th

Ai jk(V,Mt
2) are given in the Appendix. The 1/M2 sensitivity

of our calculation is saturated by the two inverse powers
the quantity 4pFp;M which is of the order of the chira
symmetry breaking scaleLx(5$4pFp ,MN%).

We close the present subsection with a brief discuss
concerning renormalization issues. It is straightforward,
ing Eqs. ~37! and ~A5!, to see that Eq.~36! for the loop
contributions to the decay amplitude of theD(1232) is a
complexquantity and contains several divergent pieces. T
lower-order couplingsb1 , b6 only possess a finite par
whereas the infinities encountered in the loop amplitudes
absorbed by the infinite parts of theO(«3) counterterms9

E1 , D1:

D15D1
r ~l!116p2bD1

L,

E15E1
r ~l!116p2bE1

L, ~38!

with @19#

L5
ld24

16p2 F 1

d24
1

1

2
~gE212 ln 4p!G . ~39!

The two pertinent beta functionsbD1
,bE1

can be found from
Eq. ~37! and the expressions in the Appendix. It is straig
forward to obtain the results

bD1
5

gpNDMN
2

6p2Fp
2 ~gA25/9g1!,

bE1
5

gpNDMN
2

6p2Fp
2 ~gA220/9g1!. ~40!

At the moment, however, we have no information abo
the numerical size of their finite partsE1

r (l),D1
r (l) at the

chosen renormalization scalel, as well as about the magn
tude of the couplingb6. We note that this information will be
available in the near future as several calculations regar
different scattering processes in the delta resonance re
using the SSE are underway, which will allow for a syste
atic extraction of the relevant higher orderND-couplings. In
Sec. VII we will nevertheless give some numerical estima
for linear combinations of these couplings based on calc
tions for ND-transition multipoles performed in theoretic
frameworks outside the SSE.

C. Note on gauge invariance

Gauge invariance requires that, upon settingem
˜qm, the

amplitude must vanish. The general amplitudes, Eqs.~30!

9The interaction terms proportional to these two LECs are w
one calls counterterms in the conventional field theoretical l
guage. Nevertheless, as is usual in ChPT, we will sometimes
ploy the same name for theb1 , b6 couplings.
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and ~33!, satisfy this requirement explicitly~recall thate0
˜q05d). In the case of our loop calculation this requires

Fi~ t !1Gi~ t !1dJi~ t !1tHi~ t !50, ~41!

separately fori 5N and i 5D. This provides for a stringen
test of our calculation. From the explicit formulas Eqs.~37!
and ~A5!, one can show that the constraints of Eq.~41! are
indeed satisfied. This is most easily seen by partial integ
tion of the 1/(AV22Mt

2) part of (dJi1tHi).

V. D˜Ng* FORM FACTORS TO O„«3
…

Combining the loop result, Eq.~36!, with the Born con-
tributions, Eq.~35!, we obtain the totalO(«3) amplitude.
This is to be compared with the general form of the amp
tude, Eq.~33!. The identification of the three form factors
straightforward. At this point we have no information abo
the magnitude of the countertermsb1 ,b6,D1 ,E1. However,
the important observation is that the unknown counterte
only affect theoverall normalizationof the three form fac-
tors Gi(q

2) and leave theq2 dependence unaffected. We
therefore separate the real photon pointq250 from each
form factor and write

G1~q2!5G1~0!1g̃1~q2!,

G2~q2!5G2~0!1g̃2~q2!,

G3~q2!5G3~0!1g̃3~q2!, ~42!

with g̃i(0)[0, i 51,2,3. It is then straightforward to arriv
at the results of Table I. Comparing therelativistic form of
the coupling structure proportional tob1, Eq. ~18!, with our
generalrelativistic amplitude, Eq.~32!, one expects that only
theG1 form factor receives contributions from this couplin
which also holds in the nonrelativistic SSE formalism
Analogously, the couplingb6 in Table I is shown only to
contribute to the form factorG2, again as expected from it
relativistic analogue in Eq.~18!. Furthermore, the results o
Table I are, as they should be, gauge independent. This
pens automatically for the chiral counterterm contributio
For the loop contributions, however, gauge invariance can
explicitly demonstrated via the use of Eq.~41!.

The results of Table I can now be compared with the o
in Ref. @13# where only the real-photon case is consider
~no G3). We find a difference from our result originating i
Eq. ~30!. In particular, there is no contribution toG2 from
the b1 counterterm. This happens because, in@13#, the coef-
ficient of G1 in the (S•q)(e•T3) term is 2MN rather than
2MN1d.

In Sec. VII we derive an estimate for the unknown co
plings. We will then be in position to describe both theq2

dependence and the overall normalization of the three fo
factors. Once again we stress thatchiral symmetry demand
that these form factors are complex quantities, which is due
to the on-shellpN intermediate state of loop diagram~i! in
Fig. 1.

t
-
-
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TABLE I. The DNg form factors: a522gpNDMN
2 /Fp

2 and @ I # is shorthand notation for@gAI N

1xg1I D#, with I P$F,J,H%.

Source G1 G2 G3

Loops a

MN
@F#[g̃1(q2) 24a@J#[g̃2(q2) 24ad@H#[g̃3(q2)

A DN
(2) b1

2
b1 0

g0B N
†(1)g0

1

C N
(0)D ND

(2) 0 2b122b6 0

g0B DN
(2)†g0

1

C D
(0)B D

(1) 0 0 0

A D1

(3) d
4MN

D1 D1 0

A E1

(3) 2
d

2MN
E1 0 0
on

o

t

a

he
n-
Eq.
s

dic-

that

ot
,

e or of
on
VI. CONNECTION TO D˜Ng* TRANSITION
MULTIPOLES

In the relativistic case the identification of the transiti
multipoles M1(q2), E2(q2), C2(q2) in terms of the
‘‘Dirac’’-type form factors G1(q2),G2(q2),G3(q2) is ob-
tained@20# by reading off the spin-space tensor properties
the Pauli-reduced most general amplitude, Eq.~32!, in the
q•e50 gauge. The explicit expressions read10

M1~q2!5cDH G1~q2!@~3MD1MN!~MD1MN!2q2#

2G2~q2!
MD

2MN
~MD

2 2MN
2 2q2!2G3~q2!q2

MD

d J ,

E2~q2!52cDH G1~q2!~MD
2 2MN

2 1q2!

2G2~q2!
MD

2MN
~MD

2 2MN
2 2q2!2G3~q2!q2

MD

d J ,

C2~q2!52cD2MDuqW u H G1~q2!2G2~q2!
EN

2MN

2G3~q2!
v

2dJ , ~43!

with

cD5
euqW u

12MNMDA2MN~EN1MN!
A 2MD

MD
2 2MN

2
. ~44!

We now need to match these general expressions to
O(1/M2) accuracy of our results for theG1 ,G2 ,G3 form
factors obtained via the SSE in the previous section. We m

10At the photon point (q250) one easily verifies that they agre
with the corresponding expressions given in@2#. We are grateful to
Rick Davidson for valuable support on this point.
05402
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proceed in two ways:~1! Use the same reasoning as in t
relativistic case, i.e., obtain the multipoles from the spin te
sor structure of the appropriate Pauli-reduced expression,
~33!; ~2! expand the relativistic formulas for the multipole
to O(1/M2).

In both cases we obtain

M1~q2!5
eAd22q2

6Ad
F2G1~q2!

MN
2

d

4MN
2 G2~q2!

2
q2

4dMN
2 G3~q2!1O~1/MN

3 !G ,
E2~q2!5

eAd22q2

6Ad
F2

d

2MN
2 G1~0!1

d

4MN
2 G2~q2!

1
q2

4dMN
2 G3~q2!1O~1/MN

3 !G ,
C2~q2!5

e~d22q2!

6Ad
F2

1

2MN
2 G1~0!1

1

4MN
2 G2~q2!

1
1

4MN
2 G3~q2!1O~1/MN

3 !G . ~45!

From Eq.~45! one can directly see that theO(e3) prediction
for M1 is sensitive to subleading order, whereas the pre
tion for the quadrupole multipolesE2, C2 only gives us the
leading result. One also observes the peculiar behavior
in the case of the E2, C2 form factors their q2 dependence
is not suppressed by powers of1/MN with respect to the q2

50 point. According to our knowledge this situation has n
been observed11 before in chiral calculations of form factors

11The notable exception has been the pseudoscalar form fact
the nucleon which is known to be dominated by the light pi
physics@19#.
2-10
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e.g., compare@17,19#.12 Its formal origin lies in the fact tha
for quadrupole transitions it is not possible to write down
counterterm at a lower order thanO(e3), i.e., the same orde
where loops start contributing.Keeping the above caveat i
mind, i.e. that Eq. (45) only represents the leading behav
for the E2, C2 form factors, the chiral structure underlyin
Eq. (45) leads us to the expectation that the E2, C2 form
factors only show a weak suppression at low q2 with respect
to their q250 point and that the q2 evolution could be very
different from the corresponding (dipole behavior of th
nucleon Sachs form factors GE(q2),GM(q2), e.g., @17,19#.
On the other hand, theM1 form factor shows the expecte
1/M suppression of its radius with respect to the pho
point—quite analogous to the SSE calculation of the dip
form factorGM(q2) in @19#. This question will be addresse
in more detail in a future communication once precision
formation on the relevant coupling constants is available.
further note that the quadrupole multipoles in Eq.~45! satisfy
the long wavelength (uqu˜0) constraintE25(q0 /uqu)C2.

VII. NUMERICAL RESULTS

To provide numerical results we need to fix the coupli
constants entering the calculation. For ourO(e3) calculation
it is appropriate to useFp592.5 MeV, MN5938 MeV, d
5293 MeV, mp5140 MeV, gA51.26, gpND51.05
@19,37#. However, the fourgND couplingsb1 ,b6 ,D1 ,E1 as
well as the leadingpDD couplingg1 are only poorly known
at the moment. Until we have more information on the
couplings we therefore proceedsemiempiricallyand evaluate
theexactO(e3) SSE results of Secs. II–VI with phenomeno-
logical input from other calculations.

In particular, for the leadingM1 coupling we useb1

12The analogous phenomenon occurs for the slope paramete
the Gi(q

2), i 51,2,3, which we discuss in Sec. VII C.

FIG. 2. The real and imaginary parts of the form factorG1 with
C2 ,C3 given by the setsA1 ,B2 ,C.
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57.7 as in Ref.@37#,13 although this is not entirely consisten
with ourO(e3) calculation as this particular strength for th
coupling only holds toO(e2) and undergoes an as yet und
termined renormalization inO(e3). The remaining three
gND couplings are still undetermined@21#; for now we find
that we can parametrize them viatwo independent linear
combinations C2 ,C3 and fix them from Refs.@3,40# in the
next section. Finally, as a result of a lack of more prec
information at the moment, we use the SU~6! quark model
estimateg15 9

5 gA for the pDD coupling in Eq.~17!, which
should be accurate to 25%~e.g.,@41#!. We also note that the
so-called off-shell parametersy1,6 of Eq. ~18! decouple from
our results.

A. Best estimate for unknown couplings

First, we note that the unknown couplings14 b6 ,D1 ,E1
only show up via two independent linear combinations in o
calculation. We therefore introduce the new set of para
eters

C2[
2Ē12D̄1

4
, C3[

2b62D̄1

4
. ~46!

We now want to utilize existing phenomenological analys
for ND transition multipoles in order to fix these two param
eters. Most of the existing work relies on parametrizations
pion photoproduction in the delta region and has focused
the determination of the transition multipoles at the so cal

of

13The factor of 2 difference compared to Ref.@37# just results
from the fact that we use a different form for theO(e2)gND vertex
in Eq. ~19!, in order to be consistent with the SSE formalism
paper@16#. The sign ofb1 is chosen to give a positive result for th
O(e2)M1gND transition multipole atq250, consistent with the
previous analyses@2,3#.

14For the numerical analysis we utilize the scale-independent c

plings D̄1 , Ē1.

FIG. 3. The real and imaginary parts of the form factorG2 with
C2 ,C3 given by the setsA1 ,B2 ,C.
2-11
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K-matrix pole position; e.g., see@2#. Unfortunately, this
wealth of information is not directly transferable to our pro
lem because theK-matrix approach by construction onl
gives the imaginary part of the transition amplitude at
kinematical point where the real part vanishes. For our c
culation, however, we need information on the transit
multipoles at theT-matrix pole, whereM1,E2,C2 can be
complex quantities even at the resonance position. This
formation has recently become available@3,39,40#. Our fit-
ting procedure will refer to either the values of the real p
of the transition multipolesM1,E2 at q250 or to the ratio
E2/M1 atq250. We shall adopt the first choice for the RP
VPI results@40# and the second one for the Mainz results@3#.
The two parameter sets determined by fitting
ReM1(0), ReE2(0), with Re denoting the real part, of th
RPI, VPI data will be designatedA andB, respectively, while
a further subscript taking the values 1 or 2 will denote
two fits used in reference@40#. Specifically, using
ReM1(0)50.3 GeV21/2, ReE2(0)520.0087 GeV21/2

we obtain

C2
A1527.80,

C3
A1522.48, ~47!

while using ReM1(0)50.301 GeV21/2, ReE2(0)5
20.048 GeV21/2 we find

C2
A2528.07,

C3
A2522.91. ~48!

We now consider the VPI group results. The valu
ReM1(0)50.297 GeV21/2, ReE2(0)50.0065 GeV21/2

give

C2
B1527.76,

FIG. 4. The real and imaginary parts of the form factorG3 with
C2 ,C3 given by the setsA1 ,B2 ,C.
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C3
B1522.72, ~49!

and finally the values ReM1(0)50.301 GeV21/2,
ReE2(0)520.0011 GeV21/2 produce

C2
B2528.27,

C3
B2523.31. ~50!

The next step is to use the speed-plot analysis15 of the Mainz
group @3#. This time we need our expression

EMR~0![
E2~0!

M1~0!
5

db11dG2~0!

8MNG1~0!2dG2~0!
~51!

from Eq. ~45! and Table I. We end up with a new paramet
set, denoted byC:

EMR~0!Mainz5~23.524.6i !%˜C2
C5210.14

˜C3
C522.25.

~52!

All the fits produce ‘‘natural size’’ values for the param
eters C2 ,C3. Based on the above parameter sets we m
determine an average value and a relevant error forC2,C3.
We arrive at the values

C2528.4160.44,

C3522.7360.18. ~53!

15In view of the preliminary character of these numerical es
mates we neglect the fact that the Mainz numbers were obtaine
a pole position which would correspond to a smaller value for
nucleon-delta mass splitting parameterd.

FIG. 5. The real and imaginary parts of the form factorM1 with
C2 ,C3 given by the setsA1 ,B2 ,C.
2-12
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B. Predictions for the multipoles, CMR„0… ratio

Having fixed C2 ,C3 in the previous subsection we ca
now give the following predictions for the average values
the electromagnetic form factors and their relevant errors

M1~0!5~308.668.91 i28.6!31023 GeV21/2,

E2~0!5~26.461.72 i16.9!31023 GeV21/2,

C2~0!5~210.861.72 i14.3!31023 GeV21/2.
~54!

For the ratios we determine

Re EMR~0![Re
E2~0!

M1~0!
5~22.5260.48!%, ~55!

Im EMR~0![Im
E2~0!

M1~0!
5~25.2460.16!%, ~56!

FIG. 6. The real part of the form factorE2 with C2 ,C3 given by
the setsA1 ,B2 ,C.

FIG. 7. The real part of the form factorC2 with C2 ,C3 given by
the setsA1 ,B2 ,C.
05402
f

Re CMR~0![Re
C2~0!

M1~0!
5~23.8660.47!%, ~57!

Im CMR~0![Im
C2~0!

M1~0!
5~24.2960.14!%. ~58!

We note that the imaginary parts of the multipole for
factors ~as well as the imaginary parts of the form facto
Gii P$1,2,3%) are the same for all fits and so we are not in
position to produce error bars for them. The reason is sim
that the imaginary part of the transition amplitude stems
clusively from loop contributions which do not depend o
C2 ,C3. Of course the same is not true for the ratios of t
multipoles since in this case real and imaginary parts of
numerator and the denominator are mixed in order to ob
the real and imaginary part of the ratio. We also note that
results appear much less sensitive toC2 compared with their
dependence onC3. The reason is that this first paramet
appears only in theG1 form factor and its contibution with
respect to the other ones is suppressed by a power of the
d/MN .

FIG. 8. The imaginary part of the form factorsE2,C2 with
C2 ,C3 given by the setsA1 ,B2 ,C.

FIG. 9. The real part of the EMR ratio withC2 ,C3 given by the
setsA1 ,B2 ,C.
2-13



he

te

o
th

f

R
r

e
u
-

ely
c
f

re

nsi-

l

s

t of

s of

pe

ition
wn

GELLAS, HEMMERT, KTORIDES, AND POULIS PHYSICAL REVIEW D60 054022
In Figs. 2, 3, 4 theq2 dependence of both the real and t
imaginary parts ofG1 , G2, andG3 is depicted, using theC,
A1, andB2 sets, respectively, for the values of the parame
C2 , C3. As for the real part of the form factorG3 we do not
want to imply that it changes its sign near2q2

50.15 GeV2. Given thatG3(q2) approaches quickly to zer
even small corrections from higher orders can change
result for2q2.0.1 GeV2. The resultingq2 dependence o
the multipole form factorsM1, E2, C2 is shown in Figs. 5,
6, 7, and 8. Finally the last remaining figures~Figs. 9, 10, 11,
12! show the real and the imaginary parts of the ratios EM
CMR. We close the present section with a remark conce
ing the range ofq2, for which we believe our results to b
meaningful. As we have already mentioned in the previo
paragraph, theimaginary part of the amplitudes is deter
mined entirely by a one-loop diagram related topN scatter-
ing at the relatively large kinematic energy of approximat
d2mp;150 MeV. We therefore do not necessarily expe
that theO(e3) calculation will lead to a good description o
the imaginary partsand point to thepossibility of large
higher order corrections in theimaginary partsof theGi(q

2)

FIG. 11. The real part of the CMR ratio withC2 ,C3 given by
the setsA1 ,B2 ,C.

FIG. 10. The imaginary part of the EMR ratio withC2 ,C3 given
by the setsA1 ,B2 ,C.
05402
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form factors. This issue can only be resolved by a futu
O(e4) calculation.

C. Predictions for the form factors

Though enjoying less fame than the corresponding tra
tion multipoles of the previous section, the threeND transi-
tion form factorsGi(q

2) are actually better suited for a chira
analysis—the reason being that toO(e3) the completeq2

dependence is solely governed byO(e) parameters, wherea
the poorly known couplingsb1 ,b6 ,D1 ,E1 only enter in the
q250 normalization of the form factors. UtilizingC2 ,C3
from the previous section one fixes

G1~0!5~5.5060.141 i0.20!,

G2~0!5~4.9060.732 i7.42!,

G3~0!5~21.931 i1.13!. ~59!

We note that all three imaginary parts and the real par
G3(0) do not depend on the couplingsb1 ,b6 ,D1 ,E1 and are
given by the much better known leading order parameter
SSE.

We now proceed to give predictions for the slo
parameters16

r i
2[6

dGi

dt U
t50

, ~60!

which can be directly calculated from Eqs.~42!–~44!. Defin-
ing m[mp /d andN523gpNDgAMN/4p2Fp

2 d we find

16We focus on the slope parameters rather than on the trans
radii in order to avoid the appearance of any of the poorly kno
couplingsb1 ,b6 ,D1 ,E1 in the discussion.

FIG. 12. The imaginary part of the CMR ratio withC2 ,C3 given
by the setsA1 ,B2 ,C.
2-14
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r1
25NF2

3

2
12mp2

i

3
A211m22mp1

2

3
m3p2

5

8
m2p21

m

3
A211m22logS 2A211m221

1

m D
1

2

3
m3A211m22logS 2A211m221

1

m D1
m2

2
log2S 2A211m221

1

m D1
4

3
mA211m22logSA211m221

1

m D
1

2

3
A211m22m3 logSA211m221

1

m D2
2

3
iA211m22m3p1 im2p logSA211m221

1
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2m2 log2SA211m221

1
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One can see immediately thatr1
2 is suppressed by a power o

1/Lx'1/MN compared to the real photon pointq250. This
behavior can also be observed in theF2(q2) Dirac form
factor of the nucleon~e.g., @17,19#!. An analogous result is
expected for the radius of theM1(q2) form factor; see the
discussion in Sec. VI.

For the slope parameters corresponding toG2 andG3 , t
differentiation of theJ, H functions is needed, resulting i
two divergent contributions~one nonintegrable singularit
resulting from differentiating under the integral sign and o
divergent surface term from differentiating with respect
the integration limit!. Treating the integral as a principa
valued one the infinities are shown to cancel out, leaving

r2
254pNMN

d H 2m2
3

2
pm21

8

3
m32 i FA12m2S 118m2

3 D
23m2 logS 1

m
1A 1

m2 21D G J ,

r3
2522pNMN

d H 8m1
16

3
m32S 11

15

2
m2D

3Fp

2
2 i logS 1

m
1A 1

m2 21D G
2 iA12m2S 19

6
1

16

3
m2D J . ~62!

It is important to note that this is a quite peculiar result. O
can see immediately that these two slope parameters17 scale
asLx

0'MN
0 ; i.e., they show no suppression by a heavy sc

with respect to theq250 point. This behavior is completel
analogous to the one expected forE2(q2),C2(q2) ~cf. Sec.
VI !, but has not yet been observed in chiral calculations
baryon form factors. The first moment with respect toq2 of
these ‘‘quadrupolelike’’ form factorsG2(q2),G3(q2) is en-
tirely given by the small scalesmp ,d and leading order cou
pling constants—allowing,in principle, a large variation of
the form factors at lowq2 compared to theirq250 point.

17The same of course holds for the corresponding transition ra
05402
e

e

le

f

However, we want to emphasize that Eqs.~61!,~62! only
represent the leading results for the three slope parame
more cannot be learned from aO(e3) calculation. At present,
we have no way of knowing the size of theO(e4) correc-
tions, but in principle it is possible to calculate them at a la
stage.18

Finally, we can obtain the chiral limit (m˜0) behavior of
the slope parameters from Eqs.~61, 62!,

r1
25N F2

3

2
2

ip

3
1 log 22 logmG1O~m!,

r2
252

4

3
ipN MN

d
1O~m!,

r3
2522pN MN

d F2
p

2
1 i S log 22 logm2

19

6 D G
1O~m!. ~63!

Thus, the real part ofr1
2 diverges logarithmically in the chi-

ral limit while its imaginary part remains finite. On the oth
hand, the real part ofr2

2 vanishes altogether in the chira
limit, while its imaginary part remains finite. As forr3

2, it is
the real part that remains finite in the chiral limit while i
imaginary part diverges logarithmically. The numerical va
ues for the slope parameters are also collected in Tabl
and, since they take contributions only from the loops,
independent from the values ofC2 , C3.

VIII. SUMMARY AND OUTLOOK

The main features of our investigation can be summari
as follows.

The D˜Ng* amplitude has been calculated toO(e3) in
the ‘‘small scale expansion’’ formalism. The pertinent cou
terterm contributions, relevant 1/M corrections to lower or-
der coupling, and all loop diagrams allowed to this ord
have been analyzed systematically. It was found that theq2

ii.

18At first one would need a precise determination ofb1 and the
subleading corrections to thepND vertex, as these couplings woul
enter the new loop diagrams ofO(e4).
2-15
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dependence of the transition is generated by t
pN-,pD-loop diagrams and that two counterterms a
needed to renormalize the result.

We have obtained an estimate for presently poorly kno
couplings from existing phenomenological analyses and t
given predictions for the complex transition multipol
M1(q2), E2(q2), C2(q2) as well as the complex multi
pole ratios CMR~0!, EMR(q2), CMR(q2). While matching
the O(e3) results to the corresponding expressions of
multipoles as functions ofq2 we found that the radii of the
quadrupole form factors are not suppressed by a large s
compared to theq250 point, indicating a possibly rapid
variation at lowq2. Further study of this interesting resu
will continue once more precise information on the nec
sary couplings is available.

Three appropriately defined electromagneticND transi-
tion form factors Gi(q

2), i 51,2,3, have been identifie
from theO(e3) D˜Ng* calculation. The longitudinal form
factor G3(q2) had to be rescaled compared to existing de
nitions in the literature in order to achieve consistency w
the power counting of SSE.G1(q2) could be found to sub-
leading order, whereas forG2(q2),G3(q2) we obtained the
leading result.

The threeGi(q
2) form factors are found to be comple

quantities due to thepN-loop diagram~i! in Fig. 1. Their
entireq2 dependence is controlled by relatively well-know
O(e) parameters—making theGi(q

2) form factors the pref-
ered testing ground of chiral symmetry in the radiativeND
transition. The corresponding slope parameters have b
calculated and their chiral limit behavior has been discuss

The numerical results of this work have to be conside
preliminary due to the presently poor state of knowledge
coupling constants in the SSE formalism. However, this s
ation is going to improve in the near future and we will a
later point revisit ourO(e3) analytical results and try to im
prove upon the numerical accuracy of our predictions.
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TABLE II. The slope parameters@ fm2# of the form factors
Gi(q

2).
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APPENDIX: INTEGRALS

TheAi jk(V,Mt
2) functions used in Eq.~36! are defined as

Euclidean integrals in dimensional regularization:

Ai jk~V,Mt
2!

[E
0

`

a jdaE ddl E

~2p!d

~2 l E
2 !k

S 2 l E
22

1

4
a21aV2Mt

2D i . ~A1!

To calculate them, first of all, we express the denomina
using the Schwinger proper time representation:

E
0

`

dx xn21e2Ax5
G~n!

An
, A.0, ~A2!

with G(n) the well-knownG function. The constraintA.0
is explicitly satisfied for theV,0 case while forV.0 we
analytically continue our expressions. Finally using the ta
lated integrals

E
0

`

xn21e2bx22gxdx

5~2b!2(n/2)G~n!expS g2

8b DD2nS g

~2b!1/2D , ~A3!

E
0

`

e2ztt211b/2D2n@2~kt!1/2#dt

5
212b2n/2G~b!

GS 1

2
n1

1

2
b1

1

2D ~z1k!2b/2

3FS n

2
,
b

2
;
n1b11

2
;
z2k

z1kD , ~A4!

with D2n(x) the parabolic cylinder function andF(a,b;c;x)
the hypergeometric function, we find, explicitly,

A301

d
52LV1

V

32p2 S 12 ln
Mt

2

m2 D 1
1

16p2

35 2AMt
22V2 arccosS 2

V

Mt
D ,

1AV22Mt
2 lnS 2

V

Mt
1AV2

Mt
2 21D ,

A301

d~d21!
52

1

3
LV1

V

288p2 S 523 ln
Mt

2

m2 D 1
1

48p2

35 2AMt
22V2 arccosS 2

V

Mt
D ,

1AV22Mt
2 lnS 2

V

Mt
1AV2

Mt
2 21D ,
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A31052L1
1

16p2 S 11 ln
Mt

2

m2 D 2
V

8p2

35
1

AMt
22V2

arccosS 2
V

Mt
D ,

1

AV22Mt
2

lnS 2
V

Mt
1AV2

Mt
2 21D ,

d23

d21
A3105

2

3
L1

1

144p2 S 713 ln
Mt

2

m2 D 2
V

24p2

35
1

AMt
22V2

arccosS 2
V

Mt
D ,

1

AV22Mt
2

lnS 2
V

Mt
1AV2

Mt
2 21D ,

A30052
1

16p2

35
1

AMt
22V2

arccosS 2
V

Mt
D ,

1

AV22Mt
2

lnS 2
V

Mt
1AV2

Mt
2 21D ,

d23

d21
A3005

1

3
A300, ~A5!

where the factorL carries the infinity in dimensional regu
larization and is defined in Eq.~39!. It is clear thatA300 is
n,

8;

La
ed

so
n
L-

05402
finite while A310 andA301 diverge. The integrals in Eq.~37!
are split between@0,x0# ~trigonometric branch! and (x0,1#
~logarithmic branch! wherex0 is the large root ofV25Mt

2 ,

x05
2t1At214mp

2 uqu2

2uqu2
,

with t5d22uqu2 to the order we work. In the calculation th
functions are defined withV5dx for the Np intermediate
state loop diagram andV52dx for theDp one. This entails
@cf. Eq. ~A5!# that the logarithms have negative argume
~and therefore there is an absorptive piece of the amplitu!
for the Np diagram alone, as expected from general cons
erations@s5MD

2 >(Mi1mp)2 for i 5N only#. The imagi-
nary parts are computed analytically.

For completeness, we show the correspondence betw
our A functions and theJ functions appearing in the literatur
~e.g.,@37#!:

A200~V,Mt
2!5J0~V,Mt

2!,

A201~V,Mt
2!5dJ2~V,Mt

2!,

A300~V,Mt
2!5

1

2

]

]M
t
2
J0~V,Mt

2!,

A301~V,Mt
2!5

d

2

]

]M
t
2
J2~V,Mt

2!,

A310~V,Mt
2!52

1

2

]

]V
J2~V,Mt

2!5
]

]M
t
2
J1~V,Mt

2!.

~A6!
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