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Accelerated convergence of perturbative QCD by optimal conformal mapping of the Borel plane
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The technique of conformal mapping is applied to enlarge the convergence domain of the Borel series and
to accelerate the convergence of Borel-summed Green functions in perturbative QCD. We use the optimal
mapping, which takes into account the location of all the singularities of the Borel transform as well as the
present knowledge about its behavior near the first branch points. The determination ofas(mt

2) from the
hadronic decay rate of thet lepton is discussed as an illustration of the method.@S0556-2821~99!00915-7#

PACS number~s!: 13.35.Dx, 12.38.Bx, 12.38.Cy
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I. INTRODUCTION

The behavior of the large order terms in perturbat
quantum field theory has been a subject of permanent inte
@1–9#. Recently, this problem received much attention in
case of QCD @10–20#. As is known, the creation o
instanton–anti-instanton pairs and certain classes of F
man diagrams are responsible for a factorial increase of
large order coefficients of the perturbative expansion of
QCD Green functions, making this series divergent in
mathematical sense. Moreover, the growth of the large o
coefficients is so dramatic that, when combined with ot
difficult circumstances~such as their nonalternating sign an
the extraordinarily small analyticity domain of the Gre
functions in the coupling variable@9#!, it leads to the situa-
tion that some of the usually efficient summation techniq
@21# are not applicable. One of them, the Borel summati
has been very much investigated in recent times. The gro
of the large order perturbative coefficients of the QCD Gre
functions leads, under certain conditions, to Borel transfo
with singularities in the Borel plane that make the integ
defining the Green function by the Laplace transform ill d
fined. Of course, as discussed in@19#, the Borel technique is
not the only mathematical method by which a divergent
ries can be summed, but an ambiguity emerges in every s
mation method, once it is discovered in one of them. The
source of nonuniqueness consists in a missing piece of in
mation about the quantities to be calculated, which ado
different forms in different summation methods, but has
be added to eliminate the ambiguity.

In QCD the Borel nonsummability originates from th
infrared regions of the Feynman diagrams, where nonper
bative effects also play an important role. Therefore it
natural to assume that the ambiguities of perturbation the
must be compensated by nonperturbative contributions
fact, it turns out that general concepts like analyticity, ren
malization group, or specific properties of the QCD vacu
are unavoidable when discussing the large order behavio
perturbation theory@4,9,19#. As an example, we recall tha
the argument given by ’t Hooft@9# for the Borel nonsumma
bility of QCD relies on nonperturbative properties, main
the momentum plane analyticity combined with renormali
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tion group invariance. So the perturbative and the nonper
bative regimes of the theory cannot be separated, and
interplay is very clear when attempting to perform the su
mation of the large orders of perturbation theory. The Bo
plane is particularly suitable for discussing this aspect, si
the singularities of the Borel transform offer a very intuitiv
measure of the ambiguities of the perturbation theory a
suggest a way to compensate them. The properties of t
singularities in some approximations~such as massless QC
in the largeb0 limit, when they are poles@13#! were used
recently to provide estimates of the truncation error in
theoretical determinations of some accurately measu
quantities.

A natural question is whether it is possible to improve t
accuracy of the Borel summation using the first Taylor co
ficients of the Borel transform known from explicit low orde
calculations, supplemented by some~approximate! informa-
tion about its singularities in the Borel plane. We address
question in the present paper. We use as input the assu
tion that there are no other singularities in the Borel pla
other than those located on the real axis, at a nonvanis
distance from the origin. The precise nature and strength
these singularities are not known in general, except for
nearest ones, which can be characterized by using gen
principles @20,10#. As discussed in@4#, the singularities of
the Borel transform require the introduction of higher dime
sional operators, which ensure compensation of the amb
ities present in the usual perturbative terms by the amb
ities inherent in their Wilson coefficients. This allows on
also to infer a universal behavior of the Borel transform n
the first ultraviolet renormalon@20#. On the other hand, a
discussed in@10#, the location and nature of the first infrare
renormalon can be plausibly predicted too, by nonpertur
tive arguments. In our approach, we take as input this kno
edge about the first ultraviolet and infrared renormalons.

Our purpose was to exploit in an optimal way this info
mation, in order to improve the accuracy of the Borel su
mation in the frame of a specific prescription of handling t
singularities of the Borel transform. To this end we use
analytic continuation of the Borel transform outside t
circle of convergence of the Taylor expansion, achieved
the technique of conformal mapping. As is known, the co
©1999 The American Physical Society14-1
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formal mappings are very suitable for accelerating the c
vergence of power series. The existence of an optimal exp
sion, with the largest convergence domain and the b
asymptotic convergence rate, was proved in@22# a long time
ago. The method is applicable if the position of the sing
larities of the function to be approximated is known or c
be reasonably guessed, which is the case in many situa
in particle physics.

In the context of the Borel summation in quantum fie
theory, conformal mappings were first considered in@5–8#.
More recently, the method was applied in@23,24# to the
Borel transform of QCD Green functions, following a su
gestion made in@10#. The purpose was to estimate~and pos-
sibly reduce! the influence of the first ultraviolet renormalo
and of the associated power corrections on observable q
tities, by using a variable in which this singularity is push
farther away from the integration range of the Borel tra
form. However, from the point of view of the convergen
rate the mapping used in@23,24# is not optimal, since it takes
into account only a part of the singularities of the Bo
transform, the ultraviolet~UV! renormalons. By using an
optimal treatment, which takes into account also the infra
~IR! renormalons and the behavior near the first singularit
an increased convergence rate and consequently a sm
truncation error are to be expected.

The objective of our work is to establish whether the o
timal mapping technique is numerically relevant in the Bo
plane for situations of physical interest~we mention alterna-
tive attempts to enlarge the convergence domain of the B
transform, based on Pade´ approximants@25#!. To illustrate
our discussion we consider, as in@23#, the Adler function of
the massless QCD vacuum polarization and the determ
tion of the strong coupling constantas(mt

2) from the had-
ronic t decay rate. In the next section we briefly revie
some properties of the Adler function and of its Borel tran
form. In Sec. III we present the technique of optimal conf
mal mapping and investigate its efficiency in the Borel pla
on several mathematical models which simulate the phys
situation. We discuss also the determination of the str
coupling constantas(mt

2) using the present technique. Som
conclusions are formulated in Sec. IV.

II. ADLER FUNCTION AND ITS BOREL TRANSFORM

We consider the correlator

i E d4xeiq•x^0uT$Vm~x!,Vn~0!†%u0&5~qmqn2gmnq2!P~s!,

~1!

where s5q2 and Vm5q̄gmq is the current of a massles
quark. From the general principles of causality and unita
it follows that the amplitudeP(s) is an analytic function of
real type in the complex planes, cut along the real positive
axis from the threshold 4mp

2 of hadron production to infinity.
It is convenient to define the Adler function

D~s!52
d

ds
P~s!, ~2!
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which is ultraviolet finite and is also analytic in the comple
s-plane cut above the unitarity threshold. This function w
much investigated lately in connection with the determin
tion of the strong coupling constantas(mt

2) from the had-
ronic decay of thet lepton@26–28,17,29#. The hadronic de-
cay width, normalized to the leptonic one, is defined as

Rt5
G~t˜nt1hadrons!

G~t˜nten̄e!
5E

0

mt
2

ds
dRt~s!

ds
, ~3!

where the inclusive hadronic spectrum dRt(s)/ds is related
to the spectral part of the correlator~1!:

dRt~s!

ds
5

3~11dEW!

pmt
2 S 12

s

mt
2D 2S 11

2s

mt
2D Im P~s1 i e!.

~4!

The factordEW.0.0194 accounts for electroweak radiativ
corrections. The decay rate~3! was measured recently wit
great accuracy@31,32#.

Using the analyticity properties of the functionP(s) in
the momentum plane, relation~3! can be transformed by a
Cauchy relation into

Rt5
3~11dEW!

2p i R ds

s S 12
s

mt
2D 3S 11

s

mt
2DD~s!, ~5!

where the integration runs along a closed contour in the c
plex plane, taken usually to be the circleusu5mt

2 .
Relation ~5! is the starting point for the computation o

the t hadronic width in perturbative QCD. At complex va
ues ofs the Adler function admits the formal renormalizatio
group-improved expansion

D~s!511 (
n51

`

DnS as~2s!

p D n

. ~6!

The strong couplingas(m
2) satisfies the renormalizatio

group equation

m2
das~m2!

dm2
52as~m2! (

n50

`

bn@as~m2!#n11, ~7!

with the first coefficientsbn defined in terms of the numbe
nf of quark flavors as

b05
3322nf

12p
,

b15
153219nf

24p2 . ~8!

The coefficientsDn for N,3 in the expansion~6! were com-
puted forN,3 @33–37#. In the modified minimal subtraction
(MS) scheme withnf53 they are

D151,
4-2
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D251.63982,

D356.37101. ~9!

On the other hand, the large order coefficients,Dn for large
n, have the generic factorial behavior

Dn'Ckn!ndkS pb0

k D n

1•••, ~10!

where the indexk takes the values21,62,63, . . . .
In the Borel method of summation one defines the Bo

transform of the Adler function as

B~u!5 (
n50

`

bnun, ~11!

where

bn5
1

n!

Dn11

~pb0!n
5

D̃n11

n!
. ~12!

Then D(s) can be expressed formally in terms ofB(u) by
the Laplace transform

D~s!511
1

pb0
E

0

`

duB~u!expS 2
u

b0as~2s! D . ~13!

We need also the Borel-summed expression of the hadr
decay rateRt . It was obtained in@23# by inserting in Eq.~5!
the Borel representation~13! of the Adler function and per-
forming the integration along the circleusu5mt

2 using the
one-loop expression

as~2s!5
1

b0 ln~2s/L2!
, ~14!

of the running coupling. This gives@23#

Rt53~11dEW!F11
1

pb0
E

0

`

du

3expS 2
u

b0as~mt
2! DB~u!F~u!G , ~15!

where

F~u!5
212 sin~pu!

pu~u21!~u23!~u24!
. ~16!

In Sec. III we shall use Eq.~15! as a starting point for the
determination ofas(mt

2) using the method of conforma
mapping.

The growth~10! of the Taylor coefficientsDn leads to the
dominant behavior

B~u!'CkG~dk11!S 12
u

kD 2dk21

1•••, ~17!
05401
l

ic

which shows that the functionB(u) becomes singular at th
pointsu5k, with k521,62,63, . . . . Theprecise values of
Ck anddk are not known in general. However, from gene
arguments it can be shown that the nature of the first bra
points of the Borel transform is universal@10,20#. More pre-
cisely, near the first UV renormalon atu521 the Borel
transform behaves as

B~u!.r 1~11u!2g1, ~18!

where@20#

g1532
b1

b0
2 1l1 . ~19!

Herel1 is a parameter depending on the number of flavo
which reflects the mixing of higher dimensional operators
the renormalization group equations@20#. Similarly, near the
first IR renormalon atu52 the behavior is

B~u!.r 2~22u!2g2, ~20!

where@10#

g25112
b1

b0
2 . ~21!

Using the first coefficientsb i from Eqs.~8! and the param-
eterl1 given in @20# ~equal to 0.379 fornf53 and 0.630 for
nf55) we obtain

g152.589, g252.580 ~22!

for nf53 and

g152.972, g252.316 ~23!

for nf55. We emphasize that only the nature of the fi
renormalons is known, and nothing can be said about
residuesr 1 and r 2 appearing in Eqs.~18! and ~20!, respec-
tively.

Strictly speaking, the integrals~13! and~15! have nothing
to do with the summation of the perturbative series, beca
one condition of the Borel theorem~the existence of the ana
lytic continuation in theas plane from the convergence dis
to an infinite strip around the positive real semiaxis! is not
satisfied@9#. This can be seen from the singularities of t
Borel transform given in Eq.~17!: the poles situated on th
real positive axis~IR renormalons! make the integrals~13!
and~15! ambiguous. In order to compute it a prescription h
to be adopted, by suitably choosing the integration contou
order to avoid the singularities. But this is not the Bor
summation. Different prescriptions give different results, a
a measure of the intrinsic ambiguity of the perturbation e
pansion is given by the difference between these result
no a priori arguments in favor of a certain choice exist.

A prescription adopted by several authors@8,14,17# is the
‘‘principal value’’ ~PV!, defined as
4-3
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PVE
0

`

du expS 2
u

as
D f ~u!

5
e˜01

2 F E
0

`

du expS 2
u

as
D f ~u1 i e!du

1E
0

`

du expS 2
u

as
D f ~u2 i e!G . ~24!

This definition is a generalization to arbitrary singularities
the Cauchy principal value for the case of simple poles,
has the advantage of yielding a real result whenas is real.
Although this prescription is not unique, we adopted it bel
as a working hypothesis.

We applied the definition~24! for computing the Borel-
summed Adler function@given by the Laplace integral~13!#
and the hadronict decay rate@given by Eq.~15!#. In the first
case the parameteras is related to the running couplin
as(2s) ~and may be complex ifs is complex or in the
Minkowskian regions.0), while in the second case it i
proportional toas(mt

2). We use as input the first Taylor co
efficients ofB(u) @known from Eq.~12! and the calculated
values~9!#, supplemented by knowledge of the location a
nature of singularities of this function. As discussed in t
Introduction, our purpose is to improve the accuracy of
calculation by the technique of conformal mapping, whi
exploits in an optimal way this input information.

III. OPTIMAL CONFORMAL MAPPING OF THE BOREL
PLANE

A. Remarks on the theory

The use of conformal mapping for improving the conve
gence of power series in particle physics was discussed
the first time in Refs.@22#. The problem formulated in@22#
was to find the optimal conformal transformation whi
minimizes the asymptotic truncation error of a power ser
taking into account the location of the singularities of t
function to be approximated. First we briefly describe t
results obtained in@22#. We consider a functionf (u) analytic
in a domainD of the complexu plane containing the origin
and write its Taylor series truncated at a finite orderN as

f (N)~u!5 (
n50

N

f nun. ~25!

According to general theory, the series~25! converges, for
N˜`, inside the circle passing through the nearest singu
ity of the function f (u) in the complex plane, the rate o
convergence at a pointu situated inside the circle being tha
of the geometrical series in powers ofr /R, wherer 5uuu and
R is the radius of the convergence circle. Therefore, the c
vergence rate is strongly influenced by the distance of
singularities off (u) from the origin, and can be improved b
using a suitable change of variable, in which the singulari
are pushed further away from the region of interest.
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Let us consider a conformal mappingw5w(u) of the
planeu onto the planew, such thatw(0)50, and write the
truncated Taylor expansion of the functionf (u) in the vari-
ablew:

f w
(N)~u!5 (

n50

N

cnwn. ~26!

As pointed out in@22#, the best asymptotic rate of conve
gence of this series in a certain region of the complex pl
is achieved whenw is such a transformation of theu plane
that the corresponding ratior /R is minimal for every point in
that region. According to the theorem proved in@22# this is
realized by a conformal mappingw(u) which maps the
whole analyticity domainD of the function f (u) in the u
plane into the interior of a circle in the planew. The proof of
the theorem is based on the fact that the circle is the nat
domain of convergence for power series and on the Schw
lemma, which implies that the larger the domain mapp
inside the circle, the better is the asymptotic rate of conv
gence~for details see@22#!.

In what follows we shall apply this technique to the Bor
transformB(u) of the Adler function. The nearest singular
ties of the functionB(u) are situated atu521 andu52
and the power expansion~11! converges only inside the
circle uuu,1 passing through the first UV renormalon. It
easy to see that the optimal conformal mapping in the se
explained above is given in our case by

w5
A11u2A12u/2

A11u1A12u/2
. ~27!

By this mapping, the complexu plane cut along the real axi
for u.2 andu,21 is mapped onto the interior of the circl
uwu,1 in the complexw plane, the originu50 of the u
plane becoming the originw50 of the w plane, and the
upper ~lower! lips of the cuts are mapped onto the upp
~lower! semicircles in the planew. Particularly, all the sin-
gularities of the Borel transform, the UV and IR renorm
lons, are now situated on the boundary of the unit disk in
w plane, all at equal distance from the origin. The Tay
expansion of the Borel transform in powers ofw,

B̃w
(N)~u!5 (

n50

N

c̃nwn, ~28!

will converge forN˜` up to points close to the renorma
lons. This is a considerable improvement with respect to
usual expansion~11!, whose convergence is limited by th
presence of the first UV renormalon. In this way, the exp
sion in powers of the functionw(u) makes full use of the
analyticity property that is universally~but tacitly! assumed
in all QCD considerations, namely, that there are no sin
larities in the Borel plane other than those situated on the
axis, at a nonvanishing distance from the origin. This ess
tial, additional assumption has, to our knowledge, never b
explicitly used.
4-4
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For comparison we give the conformal mapping used
@23,24#,

z5
A11u21

A11u11
, ~29!

which maps theu plane cut alongu,21 onto the interior of
the unit circle in thez plane. In thez plane the UV renorma-
lons are situated along the boundary of the unit circleuzu
51, but the IR renormalons are situated inside this circle.
noticed in@24#, pushing away the ultraviolet renormalons b
~29! has a price in moving the first infrared renormalon~and
actually, the whole positive real semiaxis! closer to the ori-
gin. This is why the convergence domain of the power se
in z is limited by the first IR renormalon and, as a cons
quence, the convergence rate of the series in powersz will be
worse than that obtained with the optimal variable~27!. The
use of the optimal conformal mapping~27! is therefore
highly desirable, because it does not suffer from this sh
coming, placingall renormalons onto the circumference
the unit disk.

As was pointed out in@38#, a further improvement of the
convergence rate can be reached if some information a
the nature of the singularities of the expanded functionf (u)
is available. The idea is that the power variablew(u), taken
as a function ofu, should resemblef (u) as much as our
knowledge off (u) allows it. ~As it was put in@22#, if we
were to knowf exactly, the most rapidly convergent expa
sion would be that in powers off itself, in which case it
would reduce to the identityf [ f .!

In practice, however, our knowledge of the expand
function is only approximative. For instance, as discus
above, we know that near the branch pointsu521 andu
52 the function B(u) behaves like (u11)2g1 and (2
2u)2g2, respectively, withg i real positive numbers. Then
is convenient to expand the product (u11)g1(22u)g2B(u)
in powers of the optimal variablew defined in Eq.~27!. The
expansion of the functionB(u) will be therefore

B̂w
(N)~u!5

1

~u11!g1~22u!g2
(
n50

N

ĉnwn. ~30!

The singularities themselves may survive as positive pow
(u11)g1 and (22u)g2, the bonus nevertheless being that t
positive exponentsg i keep the values of the function

~u11!g1~22u!g2B~u! ~31!

finite nearu5u1 and u5u2, which softens their numerica
impact. This step will imply no large order improvement
the convergence rate~because the rate is given by theposi-
tion of the nearest singularities!, unless some of the two sin
gularities is fully removed by it. But it may represent a co
siderable improvement at low orders, even if the nature
the nearest singularities is known only approximately. A n
example of efficiency of this approach in practice was p
sented by Soper and Surguladze in@24#.
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B. Discussion of mathematical models

~1! As a first application, let us consider the use of t
optimal conformal mapping to estimate the first unknow
term of a truncated power expansion.

We tested the practical efficiency of the conformal ma
ping ~27! for a number of functions having logarithmic o
power branch points atu521 andu52. We took in par-
ticular functions of the form

B~u!5
r 1

~11u!g1
1

r 2

~22u!g2
1 (

n53

NIR r n

~n2u!gn

1 (
n52

NUV r 2n

~n1u!g2n
, ~32!

which simulate the contribution of a number of ultraviol
and infrared renormalons to the Borel transform. We star
from the ‘‘perturbative’’ expansion

B(N)~u!5 (
n50

N

bnun, ~33!

and obtained the expansion~28! in terms of the variablew by
replacingu in Eq. ~33! with the expansion

uw
(N)5 (

n51

N

Cnwn, ~34!

which follows from the inverse of Eq.~27!, and keeping only
terms up to the orderN @i.e., (uw

(N))N5C1
NwN, etc.#. The nu-

merical values of the first coefficientsCn are

C15
8

3
, C25

16

9
, C352

40

27
,

C452
224

81
, C552

88

243
. . . . ~35!

For comparison, the expansion in powers of the variablz
given in Eq.~29! is obtained using

uz
(N)5 (

n51

N

C̄nzn ~36!

with the numerical values@23#

C̄154, C̄258, C̄3512, C̄4516, C̄5520 . . . . ~37!

We computed the model functions and the truncated po
expansions in the variablesu, z, andw at pointsu inside the
analyticity region, near the origin of the Borel plane.
many cases the expansions in powers of the optimal vari
w approximated the exact functions better than the stand
expansion~33! or the series in terms of the variablez. This
feature was visible even with a few terms in the expansi

A nice illustration of the accelerated asymptotic conv
gence achieved by the expansion~28! is provided by the
following test: assume that the firstN Taylor coefficients in
4-5
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IRINEL CAPRINI AND JAN FISCHER PHYSICAL REVIEW D60 054014
Eq. ~33! are known. Using the above procedure, we obt
the expansion~28! in powers ofw, containingN terms with
known coefficients. Let us now expand this expression b
in powers of the variableu, using the expression~27! of w as
a function ofu. In doing this we of course recover the firstN
Taylor coefficients of Eq.~33!, used as input. But the expan
sion contains also higher order powers ofu, beyond the trun-
cation orderN. Since the expansion in powers ofw has better
convergence than the original expansion~33!, i.e., since it
contains more information on the exact function@note that
w(u) has the same location of singularities asB(u)], we
expect that the Taylor coefficients of the higher order ter
are close to those of the exact function, at least for largeN.
In particular, the next coefficientbN11 of the Taylor expan-
sion of B(u) is expected to be correctly reproduced by th
procedure, using as input only the firstN terms of the expan-
sion~33!. The implications for the calculation of perturbatio
terms would be very interesting: one could predict the hig
order term with no calculations, just using knowledge of t
first terms and the region of analyticity.1 We tested this con-
jecture for model functionsB(u) of the form ~32!, for sev-
eral choices of the parameters. In Table I we give so
results, corresponding to a function with two infrared a
two ultraviolet renormalons, with the residuar 151, r 2
5100, r 2254, r 3550, g15g252.5, g35g2252 @with
this choice the expression~32!, normalized to one atu50,
has an expansion similar to the physical Borel transform
cussed in the previous section#. As seen from Table I, the
values ofN<3 of interest for the present situation in pertu
bative QCD are too low to allow application of the proc
dure: in other words, forN<3, there is no hope of obtainin
correctly, without an explicit calculation, the next coefficie
of perturbation theory, using as input the low order term
However, starting fromN57 the next-order coefficien
bN11 is correctly reproduced by the firstN terms. The opti-
mal expansion predicts correctly the results of next order
perturbation theory. Similar, surprisingly good as well, p

1We mention that this virtue of conformal mapping was remark
on some time ago in the context of partial wave expansions@39#.

TABLE I. The next coefficient of the expansion~33!, obtained
by reexpressing in powers ofu the expansions in powers ofw andz
truncated atN terms:bN11 is the true Taylor coefficient;bN11

(w) and
bN11

(z) denote the values obtained from the expansion in powersw
andz, respectively.

N bN11 bN11
(w) bN11

(z)

2 0.327 20.45 21.208
3 0.778 20.099 21.198
4 20.2100 20.606 22.33
6 20.609 20.76 23.20
7 0.897 0.736 21.896
9 1.144 1.093 21.964
14 21.951 21.952 25.522
19 2.919 2.919 20.729
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dictions are obtained also for a few next coefficientsbN12 ,
bN13 , . . . .

On the other hand, the expansion in powers ofz @which is
not optimal; see Eq.~29!# systematically fails to reproduc
even the next-order coefficient, as is seen from the last
umn of Table I.

As discussed in the previous section, for the physical
plications we are interested in the calculation of Laplace
tegrals such as Eq.~13! or ~15!. It is therefore necessary t
test the usefulness of the optimal conformal mapping for
evaluation of this integral. The principal value~24! of the
Laplace integral was computed numerically. The accuracy
the calculations was tested using some specific example
which analytical formulas exist. We used the relation@40#

lim
e˜0

E
0

`

du
exp~2u/as!

~u1b1 i e!n 5as
12neb/asG~2n11,b/as!,

Reas.0, ~38!

wheree.0 andG(n,z) is the incomplete gamma functio
@40#, analytically continued from the region Rez.0 to the
whole complex planez cut along the negative real axis. Fo
integern this can be expressed equivalently as@41#

lim
e˜0

E
0

`

du
exp~2u/as!

~u1b1 i e!n5
eb/as

bn21
En~b/as!, Reas.0,

~39!

in terms of the exponential integral functionsEn(z). Actu-
ally, as seen from Eq.~32!, in the physical case the denom
nators must be defined so as to give the correct cut struc
of the Borel transform. This case is obtained from Eq.~39! as

lim
e˜0

E
0

`

du
exp~2u/as!

~ ubu2u2 i e!n 5
eb/as

2ubun21
En~b/as!, ~40!

whereb52ubu.
As a side remark, we mention that the above relations

useful for defining the principal value prescription for arb
trary values ofas . First, by means of repeated integration
parts in Eq.~39! we can express the left hand side as@40#

E
0

`

du
exp~2u/as!

~u1b1 i e!n5 (
m51

n21
~m21!!

~n21!!

~2as!
12n1m

bm

1
~2as!

12n

~n21!! E
0

`

du
exp~2u/as!

~u1b1 i e!
,

Reas.0. ~41!

We now apply the definition~24! of the principal value and
use the known relation

1

~u1b6 i e!
5PV

1

~u1b!
7 ipd~u1b! ~42!

in the last term in Eq.~41!. We obtain thus the following
expression of the principal value:

d
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PVE
0

`

du
exp~2u/as!

~u1b!n 5
eb/as

bn21
En~b/as!

1 ip
~2as!

12n

~n21!!
eb/as, Reas.0.

~43!

For real values ofas the last term in the above relation
purely imaginary and the definition~43! amounts to taking
the real part of the right hand side of Eq.~39!. For complex
as the last term in Eq.~43! contains both real and imaginar
parts. As discussed below Eq.~24!, complex values ofas
appear in the Borel summation of the Green functions in
complex momentum plane or in the timelike region. F
some Minkowskian quantities a definition of the princip
value, based on physical arguments, was proposed in@14#.
The expression~43! is general and covers all these cases
the present work we used the above relations for testing
numerical evaluation of the principal value~24! of the
Laplace integral, for model functions of the form~32!.

~2! As a next application, we consider the test propos
by Altarelli, Nason, and Ridolfi. In Ref.@23#, by analyzing
the conformal mapping~29! in a specific model, these au
thors concluded that this mapping is useful only if the ult
violet renormalon is already dominant at the low orders
truncation. An interesting question is whether similar
quirements hold for the optimal conformal mapping~27!. In
order to answer this question we first perform an analy
similar to that presented in@23#. We assume the case whe
the Borel function is exactly given by

Btrue~u!511D̃2u1
D̃3

2
u21F B̂~u!2 (

n50

2

b̂nunG . ~44!

In this expression the parametersD̃2 and D̃3 are for the
moment arbitrary and the numbersb̂n are the Taylor coeffi-
cients of the expansion ofB̂ around the origin:

B̂~u!5 (
n50

`

b̂nun. ~45!

The perturbative expression of this model is

Bpert~u!511D̃2u1
D̃3

2
u2. ~46!

The expansion to the same order in terms of the opti
conformal variablew can be obtained easily using Eq.~34!:

Bpert,w~u!511D̃2C1w1S D̃2C21
D̃3

2
C1

2Dw2. ~47!

We consider also, for comparison, the expansion in term
the variable~29! used in@23#:

Bpert,z~u!511D̃2C̄1z1S D̃2C̄21
D̃3

2
C̄1

2D z2, ~48!
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with C̄N defined in Eq.~36!. We introduce now the expres
sionsBtrue , Bpert , Bpert,w , andBpert,z in the Laplace inte-
gral ~13! and define the corresponding quantiti
Dtrue , Dpert , Dpert,w andDpert,z .

Following @23# we consider the ratio

Hw5
Dtrue2Dpert,w

Dtrue2Dpert
~49!

and the similar quantityHz . Clearly, the inequalitiesuHwu
,1 ~or uHzu,1) are the conditions for the accelerated me
ods based on the conformal mappingsw ~or z) to be success-
ful. As in @23# we look for the domain in the planeD̃2 ,D̃3
for which the accelerated methods give better results than
usual perturbation theory. It is easy to see that this domai
a band bounded by the parallel straight lines

D̃35sD̃2 , D̃35sD̃21I . ~50!

When the denominator in Eq.~49! is positive the slope and
the intercept are given by

s522

E
0

`

due2u/as@u2C1w2C2w2#

E
0

`

due2u/as@u22C1
2w2#

~51!

and

I 524

E
0

`

due2u/asF B̂~u!2(
0

2

b̂nunG
E

0

`

due2u/as@u22C1
2w2#

, ~52!

respectively. All the integrals are evaluated with the prin
pal value prescription~24!. The above relations correspon
to the conformal mapping~27!, with the coefficientsCn from
Eq. ~35!. Similar relations define the slope and the interce
for the conformal mapping~29!.

As seen from Eq.~51! the slope depends uniquely on th
conformal mapping and not on the details of the model fu
tion. On the other hand, the intercept of the second line
Eq. ~50! depends on the choiceB̂(u). To illustrate this model
we chose forB̂(u) the largeb0 expression@14#

B̂~u!5e5u/3BV~u!, ~53!

with

BV~u!5
B0~2!

~12u/2!
1 (

l 51

NUV A0~ l !1A1~ l !u

~11u/ l !2

1(
l 53

NIR B0~ l !1B1~ l !u

~12u/ l !2 . ~54!
4-7
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The exponential factor in Eq.~53! is required to pass from
the V scheme to theMS with m5Q @14#. The coefficients
entering Eq.~54! are @14#

A0~ l !5
8

3

~21! l 11~3l 216l 12!

l 2~ l 11!~ l 12!2
,

A1~ l !5
16

3

~21! l 11~ l 13/2!

l 2~ l 11!~ l 12!2
,

B0~2!51,

B0~ l !52A0~2 l !, l>3,

B1~ l !52A1~2 l !, l>3. ~55!

With the choice~53!, the intercept was rather stable whe
increasing the number of termsNUV and NIR in the expan-
sion. ForNUV54 andNIR56 the domain of interest is de
fined by the lines

D̃350.96D̃2 , D̃350.96D̃2240.9, ~56!

in the case of the optimal mapping~27!, and

D̃3520.30D̃2 , D̃3520.30D̃2214.1, ~57!

for the conformal mappingz used in@23#.
As already remarked in@23#, the conformal mapping~29!

brings no improvement when the low order coefficientsD̃2

and D̃3 are both positive, as is the case of physical inter
@see Eq.~9!#. On the other hand, we note that pairs of po
tive (D̃2 ,D̃3) exist in the band defined in Eq.~56! @the point
of coordinatesD̃250.724, D̃351.23 obtained from Eqs.~6!
and~11! is close to the upper boundary of this domain#. We
recall that we consider now only the effect of the conform
mappings, without additional information about the nature
the first singularities of the Borel transform. The mappi
used in @23# is useful only when the low order terms a
dominated by the ultraviolet renormalons. On the other ha
the optimal mapping, which takes into account the prese
of both types of leading renormalons, can be useful a
when the low order terms are dominated by the infra
renormalons, as seems to be the physical case.

~3! While the optimal conformal mapping leads to th
fastestasymptoticconvergence rate, it may be interesting
confront it with other methods by looking at theirfinite-order
properties.~We saw in the previous analysis that the im
provement might be very small at the lowest orders.! We
therefore tested the efficiency of the different conform
mappings in approximating the Laplace integral, for vario
values of the coupling constantas and various truncation
ordersN. We must say that no analytic proof exists ensur
that the optimal variable gives also the best approximation
the Laplace integral, for Borel transforms with singulariti
along the real axis which make the integral ill defined. O
nevertheless expects that the optimal conformal mapp
will provide better results, at least for moderateN, since the
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corresponding expansion converges up to points very c
to the boundary. Of course, for very large truncation ord
the presence of the boundary singularities will manifest i
more dramatic way, and the expansion in powers ofw will
fail. But it is reasonable to expect that this critical truncati
order will be much higher than the order corresponding
the usual variableu. In the present paper we performed
numerical analysis which confirmed these expectations.
evaluated the Laplace integral, with the generalized princ
value prescription defined in Eq.~24!, for a number of model
functions, in particular of the form~32!. In Fig. 1 we give for
illustration the results of our analysis for the model functi
~32! with the parameters:r 151, r 254, r n50, n>3, g1
52.5, g252.5, andas in the range~0.1–0.9!. The Laplace
integral of the exact function~32! is indicated together with
the results given by its ordinary perturbative expansion~trun-
cated atN53), and the expansions accelerated by the c
formal mappingsz and w, both in the simple versions an
with the improvement explained in Eq.~30!. In the present
case we assumed that the nature of the first singularitie
not exactly known and used in the improved version~30! the
product ofB(u) with the factors (u11)2.0(22u)2.0, which
do not compensate exactly the singularities of the mo
function ~32!.

As seen from Fig. 1, the combined technique of conf
mal mapping and the explicit treatment of the branch poin
supposing that some~approximate! information about the be-
havior of the function near the first singularities is availab
improves the accuracy of the Borel integral, especially
largeas . The valuesas'0.2–0.3~of interest in the hadronic
t decay! are on the boundary of the region for which th
improvement is significant at this order,N53. We notice
that a major part of the improvement is brought by the se
rate treatment of the branch points, according to Eq.~30!,
especially at lowN. Even the standard expansion in powe
of the Borel variableu gives good results if the nature of th
lowest singularities, assumed to be exactly known, is trea

FIG. 1. Laplace integral for the model~32! as a function ofas :
exact values~a!, perturbation expansion~b!, expansion in powers of
z ~c!, improved expansion in powers ofz ~d!, expansion in powers
of w ~e!, improved expansion in powers ofw ~f!. The series are
truncated atN53.
4-8
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explicitly as above. However, when the behavior near
first singularities is known only approximately, the expa
sion in the optimal variable gives in general the best appro
mation, especially when the orderN of the truncation is in-
creased. We illustrate this fact in Table II, where we indic
the Laplace integral, foras50.3, of the model~32! specified
above, as a function of the truncation orderN, for different
types of expansions. The ‘‘improved’’ expansions were o
tained now by expanding in powers the product ofB(u) with
the factors (u11)1.5(22u)1.5, close but not identical to the
actual behavior of Eq.~32!. For larger values ofas the im-
proved accuracy obtained by using the optimal mapping
even more impressive. Some results are presented in T
III for as50.5.

Similar results are obtained for model functions with su
leading renormalons, which simulate closer the physical s
ation. A number of such functions were analyzed, and
present in Tables IV and V some results for the funct
considered in the test discussed in Table I. The ‘‘improve

TABLE II. Approximations of the Laplace integral foras50.3
for different truncation orders:~a! expansion in powers ofu, ~b!
‘‘improved’’ expansion in powers ofu, ~c! expansion in powers o
z, ~d! ‘‘improved’’ expansion in powers ofz, ~e! expansion in pow-
ers of w, ~f! ‘‘improved’’ expansion in powers ofw. The exact
value isD(0.3)50.563683. The results close to the exact value
indicated with a greater number of digits.

N ~a! ~b! ~c! ~d! ~e! ~f!

3 0.35 0.530 0.505 0.546 0.471 0.5596
4 0.90 0.610 0.540 0.5625 0.642 0.5701
5 –0.10 0.5732 0.547 0.5722 0.5457 0.570
6 2.2 0.516 0.5631 0.5783 0.613 0.5651
7 23.6 0.82 0.5743 0.582 0.634 0.5651
8 13 20.12 0.587 0.584 0.515 0.56310
9 240 2.3 0.599 0.584 0.638 0.56310
10 143 23.4 0.613 0.583 0.503 0.56347
11 2541 9.5 0.628 0.581 0.540 0.56346
12 23103 219 0.645 0.5776 0.590 0.56378
15 223105 199 0.72 0.56400 0.5783 0.56371
20 23109 283103 1.1 0.530 0.582 0.563689
25 2431013 33105 2.7 0.484 0.5687 0.563681
30 231018 253107 13 0.428 0.559754 0.56368

TABLE III. The same as in Table II, foras50.5. The exact
value isD(0.5)50.853427.

N ~a! ~b! ~c! ~d! ~e! ~f!

3 20.507 1.04 0.925 1.01 0.739 0.967
5 215 1.9 1.22 1.05 1.7 0.87689
10 43104 275 2.4 0.8412 2.2 0.857092
12 23106 349 3.6 0.678 1.8 0.853068
15 293108 33103 8.2 0.371 1.56 0.852614
20 831013 213105 56 20.27 231023 0.853263
25 2231019 13108 597 21.06 0.590 0.853463
30 131025 2331013 83103 22.0 1.51 0.853438
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expansions are now defined by multiplying with facto
which exactly compensate singularities near the first bra
points. As expected, in this case the benefic role of the ‘‘i
provement’’ is more pronounced for all the expansions, a
the deviation of the standard series from the true result
gins at a higherN.

A closer look at the Tables II–V reveals that there a
essentially three circumstances affecting the converge
properties:~i! the use of a convenient~including the optimal!
conformal mapping,~ii ! explicit ~even approximative! ac-
count of the branch point singularities, and~iii ! exponential
damping of the integrand by exp(2u/as).

The effect of the factor~i! can be seen from the fact tha
in each of the tables, column~c! possesses better conve
gence properties than column~a!, and column~e! has better
properties than column~c!. The effect of~ii ! is seen from the
fact that, again in all the tables, columns~f!, ~d!, and~b! have
better convergence properties than columns~e!, ~c!, and~a!,
respectively. As concerns point~iii !, the salutary effect of the
optimal conformal mapping is more important when t
damping of the exponential function exp(2u/as) is weaker,
i.e., whenas is larger. The results obtained withas larger
than 0.5 confirm this effect in a spectacular way~we do not
give these results here, since they are not of physical
evance in our case!.

In the case of a stronger damping~Tables II and IV!, the
role of the optimal conformal mapping combined with th
treatment of the branch point singularities is again importa
but good results are obtained also by the other methods
success varying with the perturbation orderN used. The
asymptotic superiority of the optimal mapping@columns~e!
and ~f!# emerges at very high values ofN; this mapping
supersedes the other methods and turns out to be the be
least starting fromN520. It is not excluded, on the othe
hand, that even the best series, column~f!, will exhibit nu-
merical indications of divergence at still higher orders, d

e

TABLE IV. The same as in Table II, foras50.3 and a different
model function~see the text!. In the improved expansion the actu
behavior near the branch points is included. The exact valu
D(0.3)50.4809.

N ~a! ~b! ~c! ~d! ~e! ~f!

2 0.4358 0.4812 0.4065 0.4575 0.4312 0.471
5 0.4787 0.4817 0.4646 0.4814 0.5084 0.483
10 6.4378 0.4806 0.5291 0.4813 0.4633 0.481
20 6.373107 20.280 0.9654 0.4807 0.4783 0.480

TABLE V. The same as in Table IV, foras50.5. The exact
value isD(0.5)50.8038.

N ~a! ~b! ~c! ~d! ~e! ~f!

2 0.9816 0.7938 0.8106 0.7911 0.9597 0.760
5 1.2945 0.8056 1.1759 0.805 1.251 0.796
10 1736.28 0.7829 2.3563 0.8018 0.6631 0.81
20 1.3431012 214.29 55.419 0.810 0.9880 0.8083
4-9
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to the singularities of the Borel function along the integrati
path. Consequently, as we already mentioned, since
Borel integral path runs along the cut, which in thew plane is
mapped onto theboundarycircle of the convergence disk, n
convergence is warranted even in column~f!.

Concluding this discussion we mention that, as is s
from Fig. 1 and Tables II–V, for realistic values ofas be-
tween 0.2 and 0.3 andN53 the numerical difference be
tween the two conformal mappings is small, and so is
difference between whether or not the known singularit
are explicitly taken into account. The reason is that, at h
values ofu, where the difference is important, the integra
of Eq. ~13! is, for small values ofas , strongly suppressed b
the exponential factor. The difference becomes visible w
as and/or N are big enough. Tables II–V show how th
effect develops with increasingN.

C. Determination of as„mt
2
… from t decay

As a final application of the method we discuss the de
mination of the strong coupling constantas(mt

2) from the
hadronict decay width. It is known that the theoretical err
is at present the dominant ambiguity in this determinati
and the main source of this error arises from higher order
perturbation theory. This makes the hadronict decay a very
suitable place to apply the technique of conformal mappi
which accelerates the convergence of the perturbative ex
sion and reduces the truncation error. As we mentioned,
problem was studied previously in@23#, where the conforma
mappings were used to reduce only the effect of the
renormalons. It is of interest to use also the optimal conf
mal mapping, whose properties were demonstrated on m
ematical models. We do not attempt to make here a comp
analysis ofas(mt

2) determination, but only point out the e
fect of the combined technique of optimal conformal ma
ping and the implementation of the correct behavior of
Borel transform near the first singularities.

We used as starting point the Borel sum~15! of Rt and
evaluated this expression using both the standard Taylor
pansion~11! of the Borel transform in powers ofu and the
optimized expression~30! proposed by us. For compariso
with previous work, we notice that the ‘‘standard expa
sion’’ in our approach is equivalent to the method of integ
tion along the circle proposed in@28#, in the particular case
of the one-loop running coupling. The expansions were tr
cated atN52, with the coefficientsbn determined from Eqs
~9! and ~12!. In the improved expansion~30! we used the
valuesg1 andg2 given in Eqs.~22! and the coefficientsĉn
were computed such as to reproduce the first three co
cientsbn from ~12!.

In Fig. 2 we give the results corresponding to the stand
Taylor expansion~11! of the Borel transform@curve~a!# and
the improved expansion~30! @curve ~b!#, for various values
of as(mt

2). Using the experimental value@31#

~Rt!expt53.64560.024, ~58!

we obtain
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as~mt
2!50.3436~0.009!expt, ~59!

using the standard Taylor expansion~11!, and

as~mt
2!50.3186~0.007!expt, ~60!

using the optimized expression~30!. The improved expan-
sion leads to a value of the coupling constantas(mt

2) lower
by about 8% than the result given by the standard Tay
expansion of the Borel transform. Actually, as in the abo
discussion of the model functions at lowN and similar val-
ues ofas , the major contribution in shifting the value ofas
towards smaller values is brought by the explicit treatmen
the first singularities of the Borel transform. At the sma
values ofas relevant for the present problem, the effect
the conformal mapping is barely seen.

In Eqs.~59! and ~60! we indicated only the experimenta
error, which is very small. On the other hand, it is not easy
ascribe a definite theoretical error to these results. The p
lem of the theoretical error ofas(mt

2) was discussed in man
papers, in particular in@17,23,28–30#, with different conclu-
sions about its magnitude. One can safely neglect the ef
of the uncertainties in the QCD parameters~quark masses
gluon condensate, etc.!, which is small@27,29# ~leaving aside
the still open problem of the 1/s corrections!. The ambigu-
ities related to the prescription chosen for computing
Laplace integral are believed to be small too, due to
conjecture that these ambiguities must be compensate
corresponding ambiguities in the condensates. The most

FIG. 2. The Borel summation~15! of Rt , using the standard
Taylor expansion~a! and the improved expansion~30! ~b!, as func-
tions of as(mt

2). The band indicates the experimental values.
4-10
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portant sources of theoretical error remain therefore th
related to the analytic continuation from the Euclidian to t
Minkowskian region, and the truncation of the perturbat
expansion. A complete discussion of these errors is out
the objective of this paper. Concerning the analytic conti
ation, we only mention that in the derivation of Eq.~15! the
perturbative expansion of the Adler function was assume
be equally valid in the Euclidian region and in the compl
plane near the timelike axis, which is certainly not true. It
not trivial to relax this assumption and see its impact on
determination ofas(mt

2). As concerns the truncation erro
the estimatedas(mt

2).0.05 was suggested in@23# and@29#,
by comparing the predictions of different summation pro
dures. In@30# it was claimed on the other hand that mu
smaller errors are obtained if the renormalization group
variance of the perturbation series is exploited in an optim
way. The present work points towards a similar conclusi
indeed, as was remarked also in@17#, it is rather arbitrary to
interpret the spread of the results produced by different c
formal mappings as a measure of the theoretical error
suggested in@23#. Our investigation of mathematical mode
shows that the truncation error depends on the choice of
conformal mapping, being smaller if more information o
the analyticity of the function is taken into account. T
expansion proposed in our work exploits in an optimal w
the ~renormalization group invariant! information on the first
renormalons of the Borel transform, and we therefore exp
that the truncation error of the result~60! is smaller than the
estimate given above.

IV. CONCLUSIONS

The technique of the optimal conformal mapping of t
Borel plane, discussed in this paper, can be seen as an
native resummation of higher order effects in perturbat
QCD. This resummation method has a physical conten
the sense that the requirement of convergence in power
the optimal variablew(u) amounts to a statement onanaly-
ticity in the whole double-cut Borel plane. Indeed, the theo-
rem @22# on the asymptotic rate of convergence of pow
series, on which it is based, is dependent upon the cond
that the functionf (u) ~which is expanded! and the function
w(u) @in powers of whichf (u) is expanded; see Eq.~26!#
should have the same location of singularities. The met
of the optimal conformal mapping allows us to make full u
of this analyticity property.

This remarkable feature is lost if the function is expand
in powers of some other variable, be itu or a conformal
mapping ofu such that only a part of the analyticity doma
is mapped inside the convergence circle. In such cases
convergence domain is smaller than the region of analytic
and the requirement of convergence has to be suppleme
with the analyticity condition. Only in the case of the optim
mapping the two regions are identical.

As renormalons express the properties of the Feynm
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diagrams of the process, a statement about their location
plies a statement about the physics of the process consid

If the power expansion is truncated at a definite order
is the case in practice, the roles ofu andw(u) are modified.
While a polynomial inu is holomorphic inu and has no
singularites in the Borel plane, a polynomial inw has the
same analyticity region as the expanded function, having
cuts equally located. Since singularities have physical in
pretation, every polynomial inw(u) carries this piece of in-
formation.

We demonstrated the practical role of the optimized
pansion numerically on a large number of model functio
We found that the expansion in the optimized variable allo
one to predict, for a sufficiently large truncation order, t
N11 coefficient of the perturbation series, using as input
first N coefficients. For functions resembling the physic
Borel transform this procedure works starting fromN>7.
We investigated the usefulness of the optimized expans
for the evaluation of the Laplace integral and found that i
noticeable if the coupling constant is large and the expon
tial damping of the integrand is weak. In these cases kno
edge~even approximate! of the behavior near the first reno
malons, combined with the expansion in the optim
variable, leads to very accurate results, while the expan
in the Borel variable, though partially improved by the trea
ment of the branch points, fails dramatically. On the oth
hand, at low orders of perturbation expansion and for val
of the coupling constant of physical interest the effect of
optimal conformal mapping is not very visible and the pr
dominant effect is given by the explicit treatment of the ne
est branch points. This was actually the case with the de
mination of the strong coupling constantas(mt

2) from the
hadronict decay width: the combined technique of confo
mal mapping and the explicit treatment of the first bran
points of the Borel transform reduces by about 8% the va
given by the usual Taylor expansion in the Borel variab
The major contribution to this result is brought by the the
retical information@10,20# about the nature of the first reno
malons.
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