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The technique of conformal mapping is applied to enlarge the convergence domain of the Borel series and
to accelerate the convergence of Borel-summed Green functions in perturbative QCD. We use the optimal
mapping, which takes into account the location of all the singularities of the Borel transform as well as the
present knowledge about its behavior near the first branch points. The determinatig(rr&b from the
hadronic decay rate of thelepton is discussed as an illustration of the metH&D556-282(99)00915-1

PACS numbd(s): 13.35.Dx, 12.38.Bx, 12.38.Cy

I. INTRODUCTION tion group invariance. So the perturbative and the nonpertur-
bative regimes of the theory cannot be separated, and their
The behavior of the large order terms in perturbativeinterplay is very clear when attempting to perform the sum-
guantum field theory has been a subject of permanent interestation of the large orders of perturbation theory. The Borel
[1-9]. Recently, this problem received much attention in theplane is particularly suitable for discussing this aspect, since
case of QCD[10-20. As is known, the creation of the singularities of the Borel transform offer a very intuitive
instanton—anti-instanton pairs and certain classes of Feymneasure of the ambiguities of the perturbation theory and
man diagrams are responsible for a factorial increase of theuggest a way to compensate them. The properties of these
large order coefficients of the perturbative expansion of theingularities in some approximatiofsuch as massless QCD
QCD Green functions, making this series divergent in then the largeg, limit, when they are pole§l13]) were used
mathematical sense. Moreover, the growth of the large orderecently to provide estimates of the truncation error in the
coefficients is so dramatic that, when combined with othettheoretical determinations of some accurately measured
difficult circumstancegsuch as their nonalternating sign and quantities.
the extraordinarily small analyticity domain of the Green A natural question is whether it is possible to improve the
functions in the coupling variablg9)), it leads to the situa- accuracy of the Borel summation using the first Taylor coef-
tion that some of the usually efficient summation techniquedicients of the Borel transform known from explicit low order
[21] are not applicable. One of them, the Borel summationgalculations, supplemented by sorf@proximatg informa-
has been very much investigated in recent times. The growttion about its singularities in the Borel plane. We address this
of the large order perturbative coefficients of the QCD Greemjuestion in the present paper. We use as input the assump-
functions leads, under certain conditions, to Borel transformsion that there are no other singularities in the Borel plane
with singularities in the Borel plane that make the integralother than those located on the real axis, at a nonvanishing
defining the Green function by the Laplace transform ill de-distance from the origin. The precise nature and strength of
fined. Of course, as discussed 8], the Borel technique is these singularities are not known in general, except for the
not the only mathematical method by which a divergent senearest ones, which can be characterized by using general
ries can be summed, but an ambiguity emerges in every sunprinciples[20,10. As discussed if4], the singularities of
mation method, once it is discovered in one of them. The reathe Borel transform require the introduction of higher dimen-
source of nonunigueness consists in a missing piece of infoisional operators, which ensure compensation of the ambigu-
mation about the quantities to be calculated, which adopt#ies present in the usual perturbative terms by the ambigu-
different forms in different summation methods, but has toities inherent in their Wilson coefficients. This allows one
be added to eliminate the ambiguity. also to infer a universal behavior of the Borel transform near
In QCD the Borel nonsummability originates from the the first ultraviolet renormalof20]. On the other hand, as
infrared regions of the Feynman diagrams, where nonpertudiscussed it110], the location and nature of the first infrared
bative effects also play an important role. Therefore it isrenormalon can be plausibly predicted too, by nonperturba-
natural to assume that the ambiguities of perturbation theortive arguments. In our approach, we take as input this knowl-
must be compensated by nonperturbative contributions. ledge about the first ultraviolet and infrared renormalons.
fact, it turns out that general concepts like analyticity, renor- Our purpose was to exploit in an optimal way this infor-
malization group, or specific properties of the QCD vacuummation, in order to improve the accuracy of the Borel sum-
are unavoidable when discussing the large order behavior ahation in the frame of a specific prescription of handling the
perturbation theory4,9,19. As an example, we recall that singularities of the Borel transform. To this end we use the
the argument given by 't Hoofi9] for the Borel nonsumma- analytic continuation of the Borel transform outside the
bility of QCD relies on nonperturbative properties, mainly circle of convergence of the Taylor expansion, achieved by
the momentum plane analyticity combined with renormaliza-the technique of conformal mapping. As is known, the con-
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formal mappings are very suitable for accelerating the conwhich is ultraviolet finite and is also analytic in the complex
vergence of power series. The existence of an optimal expars-plane cut above the unitarity threshold. This function was
sion, with the largest convergence domain and the beshuch investigated lately in connection with the determina-
asymptotic convergence rate, was provef2®] a long time  tion of the strong coupling constami(m?) from the had-
ago. The method is applicable if the position of the singu-ronic decay of ther lepton[26—28,17,29 The hadronic de-
larities of the function to be approximated is known or cancay width, normalized to the leptonic one, is defined as
be reasonably guessed, which is the case in many situations
in particle physics. I'(7—v,+hadrong m2  dR.(S)
In the context of the Borel summation in quantum field R.= — =] 7ds ds
theory, conformal mappings were first considered5r8]. I'(1—v.eve) 0
More recently, the method was applied [i83,24 to the
Borel transform of QCD Green functions, following a sug-
gestion made in10]. The purpose was to estima@nd pos-
sibly reduce the influence of the first ultraviolet renormalon

where the inclusive hadronic spectrumR ds)/ds is related
to the spectral part of the correlatt):

2
and of the associated power corrections on observable quan-dRT(S) = 3(1+ Sew) 1— S 1+ 2_§ ImTI(s+ie).
tities, by using a variable in which this singularity is pushed ~ ds m? m? m;

farther away from the integration range of the Borel trans- (4)

form. However, from the point of view of the convergence

rate the mapping used j&3,24 is not optimal, since it takes The factor dg,y=0.0194 accounts for electroweak radiative
into account only a part of the singularities of the Borel corrections. The decay rat8) was measured recently with
transform, the ultraviole{UV) renormalons. By using an great accuracy31,32.

optimal treatment, which takes into account also the infrared Using the analyticity properties of the functidi(s) in
(IR) renormalons and the behavior near the first singularitiesthe momentum plane, relatia8) can be transformed by a
an increased convergence rate and consequently a smalléauchy relation into

truncation error are to be expected.

The objective of our work is to establish whether the op-  , _ 3(1+ %ew) fﬁ dsf,_s
timal mapping technique is numerically relevant in the Borel T 27 S mf
plane for situations of physical intergste mention alterna-
tive attempts to enlarge the convergence domain of the Boralhere the integration runs along a closed contour in the com-
transform, based on Padgproximantg25]). To illustrate  plex plane, taken usually to be the cirgi=m?.
our discussion we consider, as[i28], the Adler function of Relation (5) is the starting point for the computation of
the massless QCD vacuum polarization and the determinahe r hadronic width in perturbative QCD. At complex val-
tion of the strong coupling constams(mi) from the had- ues ofsthe Adler function admits the formal renormalization
ronic = decay rate. In the next section we briefly review group-improved expansion
some properties of the Adler function and of its Borel trans-
form. In Sec. Il we present the technique of optimal confor- ”
mal mapping and investigate its efficiency in the Borel plane D(s)=1+ 21 Dn
on several mathematical models which simulate the physical "
situat@on. We discuss2 alsq the determination qf the strong,q strong couplingare(x
coupling constantrg(m?) using the present technique. Some group equation
conclusions are formulated in Sec. IV.

8 s

1+ —
mZ

T

D(s), (5

(6)

as(_s)>n

o

2) satisfies the renormalization

das(ﬂz) -
IIl. ADLER FUNCTION AND ITS BOREL TRANSFORM ,U«z—d o=~ ag(p?) 20 Brlas(w®)I™, (D)
7 n=
We consider the correlator
with the first coefficients3, defined in terms of the number

. f k fl
if dxe (0| TVA(x),V*(0) }]0) = (q“q"— g gP)TI(s), o oo

(1) B 33—2n;
o Bo= "1,
where s=qg? and V#=qy*q is the current of a massless
qguark. From the general principles of causality and unitarity 153—19n;
it follows that the amplitudéI(s) is an analytic function of B1= T oan2 (8)

real type in the complex plang cut along the real positive

axis from the thresholdm?Z of hadron production to infinity. The coefficient® , for N< 3 in the expansiol6) were com-
It is convenient to define the Adler function puted forN <3 [33-37. In the modified minimal subtraction
(MS) scheme witm;=3 they are

d
D(s)=— (), ) D=1,
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D,=1.63982,

D3;=6.37101. 9)
On the other hand, the large order coefficieftg,for large
n, have the generic factorial behavior
7Bo\|"

K + ..

D,~C,n!n . (10

where the index takes the values-1,+2,=3, . ...

PHYSICAL REVIEW D 60 054014

which shows that the functioB(u) becomes singular at the
pointsu=k, with k=—1,£2 +3,. ... Theprecise values of

Cy and &y are not known in general. However, from general
arguments it can be shown that the nature of the first branch
points of the Borel transform is univerddl0,20. More pre-
cisely, near the first UV renormalon at=—1 the Borel
transform behaves as

In the Borel method of summation one defines the Borel

transform of the Adler function as

B(u)=2, byu", (11)
n=0
where
1 Dpi; Dppa
n e (12)

T ()" N

ThenD(s) can be expressed formally in terms Bfu) by
the Laplace transform

13

D —1+ifde [{—L)
(=)= mBoJo uB(u)ex Boas(—s)/

B(u)=r,(1+u) ", (18
where[20]

Here\, is a parameter depending on the number of flavors,
which reflects the mixing of higher dimensional operators in
the renormalization group equatiof®]. Similarly, near the
first IR renormalon ati=2 the behavior is

B(u)=ry(2—u)~ 72, (20)
where[10]
yo=1+ 2@. (22)
0

Using the first coefficient; from Egs.(8) and the param-

We need also the Borel-summed expression of the hadron@ter)\1 given in[20] (equal to 0.379 fon;=3 and 0.630 for

decay rateR, . It was obtained 23] by inserting in Eq(5)
the Borel representatiofi3) of the Adler function and per-
forming the integration along the circls|=m? using the
one-loop expression

1
ag(—s)= Bon(—sIAY)’ (14
of the running coupling. This gived®3]
st 11 [a
= 3( Ew) 7BoJo u
u
XGX%—W) B(U)F(U)}, (15)
where
Fu)= —12sinwu) 16

mu(u—1)(u—=3)(u—4)°

In Sec. Il we shall use Eq.15) as a starting point for the
determination ofas(mf) using the method of conformal
mapping.

The growth(10) of the Taylor coefficient®,, leads to the
dominant behavior

U\~ 8t
1——) +..., @

B(W~C{l (5t 1) 1

n{=5) we obtain

y,=2.589, y,=2.580 (22)

for n;=3 and

v,=2.972, y,=2.316 (23
for n;=5. We emphasize that only the nature of the first
renormalons is known, and nothing can be said about the
residuesr, andr, appearing in Eqs(18) and (20), respec-
tively.

Strictly speaking, the integrald3) and(15) have nothing
to do with the summation of the perturbative series, because
one condition of the Borel theorefthe existence of the ana-
lytic continuation in theag plane from the convergence disk
to an infinite strip around the positive real semigiss not
satisfied[9]. This can be seen from the singularities of the
Borel transform given in Eq(17): the poles situated on the
real positive axigIR renormalons make the integral$13)
and(15) ambiguous. In order to compute it a prescription has
to be adopted, by suitably choosing the integration contour in
order to avoid the singularities. But this is not the Borel
summation. Different prescriptions give different results, and
a measure of the intrinsic ambiguity of the perturbation ex-
pansion is given by the difference between these results, if
no a priori arguments in favor of a certain choice exist.

A prescription adopted by several authf8s14,17 is the
“principal value” (PV), defined as
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o u Let us consider a conformal mappimg=w(u) of the
PVJ du exr( - a_) f(u) planeu onto the planav, such thatw(0)=0, and write the
0 s truncated Taylor expansion of the functiéu) in the vari-
=01 [ [ u ablew:
= 2“0 du ex;{ aS)f(quns)du
o u
+j du ex;{ — a—)f(u—ie)
° ° As pointed out in[22], the best asymptotic rate of conver-
gence of this series in a certain region of the complex plane
This definition is a generalization to arbitrary singularities ofis achieved whenv is such a transformation of the plane
the Cauchy principal value for the case of simple poles, anghat the corresponding rati@R is minimal for every point in
has the advantage of yielding a real result wiagris real.  that region. According to the theorem proved 22] this is
Although this prescription is not unique, we adopted it belowrealized by a conformal mapping/(u) which maps the
as a working hypothesis. whole analyticity domairD of the functionf(u) in the u
We applied the definitiori24) for computing the Borel-  plane into the interior of a circle in the plame The proof of
summed Adler functiogiven by the Laplace integrél3)]  the theorem is based on the fact that the circle is the natural
and the hadronie decay ratg¢given by Eq.(15)]. In the first  domain of convergence for power series and on the Schwartz
case the parametea, is related to the running coupling lemma, which implies that the larger the domain mapped
ag(—s) (and may be complex i is complex or in the inside the circle, the better is the asymptotic rate of conver-
Minkowskian regions>0), while in the second case it is gence(for details se¢22]).
proportional thS(mf). We use as input the first Taylor co- In what follows we shall apply this technique to the Borel
efficients of B(u) [known from Eq.(12) and the calculated transformB(u) of the Adler function. The nearest singulari-
values(9)], supplemented by knowledge of the location andties of the functionB(u) are situated at=—1 andu=2
nature of singularities of this function. As discussed in theand the power expansiofiil) converges only inside the

Introduction, our purpose is to improve the accuracy of thecircle |u|<1 passing through the first UV renormalon. It is
calculation by the technique of conformal mapping, whicheasy to see that the optimal conformal mapping in the sense

N
FP(u)=2 cw". (26)
L (24 "

exploits in an optimal way this input information. explained above is given in our case by
I1l. OPTIMAL CONFORMAL MAPPING OF THE BOREL - 1ru—vi-ui2

w :
PLANE 1+u++1-u/2

A. Remarks on the theory

(27)

By this mapping, the complex plane cut along the real axis
for u>2 andu< —1 is mapped onto the interior of the circle
9W|<1 in the complexw plane, the originu=0 of theu

The use of conformal mapping for improving the conver-
gence of power series in particle physics was discussed f
the first time in Refs[22]. The problem formulated if22] plane becoming the origiw=0 of the w plane, and the
was to find the optimal conformal transformation which upper (lower) lips of the cuts are mapped onto the upper
minimizes the asymptotic truncation error of a power series o e semicircles in the plane. Particularly, all the sin-
taklng into account the Iocatlon of the smgularltles_of thegularities of the Borel transform, the UV and IR renorma-
function to be approximated. First we briefly describe thejyng are now situated on the boundary of the unit disk in the
results obtained if22]. We consider a functiof(u) analytic plane, all at equal distance from the origin. The Taylor

in a domainD of the complexu plane containing the origin expansion of the Borel transform in powersvaf
and write its Taylor series truncated at a finite orbleas

N
N ~ ~
(W= fou. (25) BL ()= Cw, (28)

will converge forN—o up to points close to the renorma-
According to general theory, the seriézb) converges, for lons. This is a considerable improvement with respect to the
N— oo, inside the circle passing through the nearest singularasual expansiorill), whose convergence is limited by the
ity of the functionf(u) in the complex plane, the rate of presence of the first UV renormalon. In this way, the expan-
convergence at a pointsituated inside the circle being that sion in powers of the functiom(u) makes full use of the
of the geometrical series in powersrdR, wherer =|u| and  analyticity property that is universall§pout tacitly) assumed
Ris the radius of the convergence circle. Therefore, the conin all QCD considerations, namely, that there are no singu-
vergence rate is strongly influenced by the distance of théarities in the Borel plane other than those situated on the real
singularities off (u) from the origin, and can be improved by axis, at a nonvanishing distance from the origin. This essen-
using a suitable change of variable, in which the singularitiegial, additional assumption has, to our knowledge, never been
are pushed further away from the region of interest. explicitly used.

054014-4



ACCELERATED CONVERGENCE OF PERTURBATIVE QT. . . PHYSICAL REVIEW D 60 054014

For comparison we give the conformal mapping used in B. Discussion of mathematical models
(23,24, (1) As a first application, let us consider the use of the
optimal conformal mapping to estimate the first unknown
1+u—-1 term of a truncated power expansion.
Z:—1+ N 1: (29 We tested the practical efficiency of the conformal map-
u

ping (27) for a number of functions having logarithmic or

) ) ) power branch points ai=—1 andu=2. We took in par-
which maps the plane cut alongi<<—1 onto the interior of  tjcular functions of the form

the unit circle in thez plane. In thez plane the UV renorma-

lons are situated along the boundary of the unit citae r ry Nir M

=1, but the IR renormalons are situated inside this circle. As B(u)= + +

noticed in[24], pushing away the ultraviolet renormalons by (1+u)m (2—u)”2 =3 (n—u)”

(29) has a price in moving the first infrared renormalamd Nov

actually, the whole positive real semiaxidoser to the ori- + S — (32
gin. This is why the convergence domain of the power series n=2 (n+u)¥-n

in z is limited by the first IR renormalon and, as a conse-

quence, the convergence rate of the series in pomeitbe ~ Which simulate the contribution of a number of ultraviolet
worse than that obtained with the optimal variat@). The  and infrared renormalons to the Borel transform. We started

use of the optimal conformal mappin@7) is therefore from the “perturbative” expansion

highly desirable, because it does not suffer from this short- N
coming, placingall renormalons onto the circumference of BN ()= b.u" 33
the unit disk. ) nZO e @3

As was pointed out if38], a further improvement of the _ _ . .
convergence rate can be reached if some information abo@nd obtained the expansi¢28) in terms of the variablev by
the nature of the singularities of the expanded funcfim)  replacingu in Eq. (33) with the expansion

is available. The idea is that the power variabi@u), taken N
as a function ofu, should resembld(u) as much as our U= c (34)
knowledge off(u) allows it. (As it was put in[22], if we W T

were to knowf exactly, the most rapidly convergent expan-

sion would be that in powers dfitself, in which case it which follows from the inverse of Eq27), and keeping only

would reduce to the identitf=f.) terms up to the ordeN [i.e., u{M)N=CYwN, etc]. The nu-
In practice, however, our knowledge of the expandedmerical values of the first coefficien, are

function is only approximative. For instance, as discussed

above, we know that near the branch points —1 andu c 8 c _16 Coe 40

=2 the function B(u) behaves like ¢+1) "1 and (2 173" Y27 g W3 o7

—Uu) ™ 72, respectively, withy; real positive numbers. Then it

is convenient to expand the product+« 1)71(2—u)”2B(u) 224 88

in powers of the optimal variable defined in Eq(27). The Co=- 81"’ Cs=-— 243" " (39

expansion of the functioB(u) will be therefore
For comparison, the expansion in powers of the variable
given in Eq.(29) is obtained using

1 N
ANy — 2 n
BM(u) ST n§=)o cW". (30) -
uM=> c,z" (36)
The singularities themselves may survive as positive powers n=1
(u+1)" and (2—u) 2, the bonus nevertheless being that the

o . with the numerical valueg23]
positive exponents; keep the values of the function

(U+1)72(2— u)2B(u) (31 C,=4, C,=8, C3=12, C4=16, C5=20.... (37

We computed the model functions and the truncated power
finite nearu=u,; andu=u,, which softens their numerical expansions in the variables z, andw at pointsu inside the
impact. This step will imply no large order improvement of analyticity region, near the origin of the Borel plane. In
the convergence rafdecause the rate is given by thesi- many cases the expansions in powers of the optimal variable
tion of the nearest singularitigsunless some of the two sin- w approximated the exact functions better than the standard
gularities is fully removed by it. But it may represent a con-expansion(33) or the series in terms of the variabteThis
siderable improvement at low orders, even if the nature ofeature was visible even with a few terms in the expansion.
the nearest singularities is known only approximately. A nice A nice illustration of the accelerated asymptotic conver-
example of efficiency of this approach in practice was pre-gence achieved by the expansi@®8) is provided by the
sented by Soper and Surguladzd 24]. following test: assume that the firsk Taylor coefficients in
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TABLE |. The next coefficient of the expansidB83), obtained
by reexpressing in powers afthe expansions in powers wfandz
truncated aN terms:by ; is the true Taylor coefficienh"), and
b{?, , denote the values obtained from the expansion in powers of
andz, respectively.

N bn1 b2, b4

2 0.327 —0.45 —1.208
3 0.778 —0.099 —1.198
4 —0.2100 —0.606 —-2.33
6 —0.609 —-0.76 -3.20
7 0.897 0.736 —1.896
9 1.144 1.093 —1.964
14 —-1.951 —1.952 —5.522
19 2.919 2.919 —-0.729

Eqg. (33) are known. Using the above procedure, we obtain

the expansiori28) in powers ofw, containingN terms with

PHYSICAL REVIEW D60 054014

dictions are obtained also for a few next coefficients ,
bN+3, N

On the other hand, the expansion in powerg pfhich is
not optimal; see Eq(29)] systematically fails to reproduce
even the next-order coefficient, as is seen from the last col-
umn of Table I.

As discussed in the previous section, for the physical ap-
plications we are interested in the calculation of Laplace in-
tegrals such as Eq13) or (15). It is therefore necessary to
test the usefulness of the optimal conformal mapping for the
evaluation of this integral. The principal valg24) of the
Laplace integral was computed numerically. The accuracy of
the calculations was tested using some specific examples for
which analytical formulas exist. We used the relatjd0)]

) » expl—ul/ag) 1y bla
!I_I'gjo du(LH‘b—'i‘iE)V_aS eb F(—v+1,b/a5),
Rea,>0, (39)

known coefficients. Let us now expand this expression backvheree>0 andI'(v,z) is the incomplete gamma function

in powers of the variable, using the expressiof27) of w as

a function ofu. In doing this we of course recover the fitét
Taylor coefficients of Eq(33), used as input. But the expan-
sion contains also higher order powersupbeyond the trun-
cation ordem. Since the expansion in powerswias better
convergence than the original expansi@3), i.e., since it
contains more information on the exact functiprote that
w(u) has the same location of singularities Béu)], we

[40], analytically continued from the region Re-0 to the
whole complex plane cut along the negative real axis. For
integerv this can be expressed equivalently[4%]

/ag

0

Iimf d
e—070

exp(—u/ay) €
“utb+ien pr-t

E,(b/ag), Reas>0,

(39

expect that the Taylor coefficients of the higher order termsn terms of the exponential integral functiofs(z). Actu-

are close to those of the exact function, at least for Iadtge
In particular, the next coefficierty ,, of the Taylor expan-

ally, as seen from Eq32), in the physical case the denomi-
nators must be defined so as to give the correct cut structure

sion of B(u) is expected to be correctly reproduced by thisof the Borel transform. This case is obtained from 8§) as

procedure, using as input only the fitéterms of the expan-
sion(33). The implications for the calculation of perturbation

terms would be very interesting: one could predict the higher
order term with no calculations, just using knowledge of the

first terms and the region of analyticitywe tested this con-
jecture for model function8(u) of the form(32), for sev-
eral choices of the parameters.

exp—ulay) €%

(Ib|—u—ie)"  —|p|n-1

lim f du
e—070

whereb=—|b|.
As a side remark, we mention that the above relations are

En(b/ag), (40

In Table | we give sOMgsefy| for defining the principal value prescription for arbi-

results, corresponding to a function with two infrared andtrary values of. First, by means of repeated integration by

two ultraviolet renormalons, with the residug=1, r,
:100, r_2:4, I’3=5O, 71:72:2.5, ’)/3:’}/_2:2 [W|th
this choice the expressiai32), normalized to one ai=0,

has an expansion similar to the physical Borel transform dis-

cussed in the previous sectijorAs seen from Table I, the
values ofN=<3 of interest for the present situation in pertur-
bative QCD are too low to allow application of the proce-
dure: in other words, foN< 3, there is no hope of obtaining
correctly, without an explicit calculation, the next coefficient

of perturbation theory, using as input the low order terms.

However, starting fromN=7 the next-order coefficient
bn. 1 is correctly reproduced by the firbt terms. The opti-

mal expansion predicts correctly the results of next orders o
perturbation theory. Similar, surprisingly good as well, pre-

parts in Eq.(39) we can express the left hand side[46]

[

)

exp—ulay) — (m—1)! (—ag i "tm

M T hrien & (n=1)! pm

[

Jdu
0

We now apply the definitiori24) of the principal value and
use the known relation

(_as)l_n
(n—=1)!

expl—u/ay)
(u+b+ie)’

Reag>0. (41

PV

Fims(u+b) (42)

_ 1
(u+b=*ie) = (u+b)

We mention that this virtue of conformal mapping was remarkedin the last term in Eq(41). We obtain thus the following

on some time ago in the context of partial wave expansj88%

expression of the principal value:
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» exp(—ulag) €&’3 with EN defined in Eq.36). We introduce now the expres-
PVJO U—uFr bn_lEn(b/aS) SionsBirue, Bperts Bpertw, @NdBper, in the Laplace inte-
gral (13) and define the corresponding quantities
. (—as)l‘“ / Dirues Dpert: Dpert,w andeert,z-
+|7r(n_—1)|eb %, Reag>0. Following [23] we consider the ratio
(43 H _Dtrue_Dpert,w (49)

W —
For real values ofg the last term in the above relation is Dtrue™ Dopert

purely imaginary and the definitio®3) amounts to taking o ) ] -

the real part of the right hand side of E§9). For complex ~and the similar quantit,. Clearly, the inequalitiesH,,|

a, the last term in Eq(43) contains both real and imaginary <1 (or|H,<1) are the condmons.for the accelerated meth-
parts. As discussed below ER4), complex values of, ~ ©ds based on the conformal mappingsor 2) to be success-
appear in the Borel summation of the Green functions in thdul. As in [23] we look for the domain in the plane,,D;
complex momentum plane or in the timelike region. Forfor which the accelerated methods give better results than the
some Minkowskian quantities a definition of the principal usual perturbation theory. It is easy to see that this domain is
value, based on physical arguments, was proposdd4h  a band bounded by the parallel straight lines

The expressioni43) is general and covers all these cases. In

the present work we used the above relations for testing the D3;=sD,, Dz=sD,+lI. (50)
numerical evaluation of the principal valu@4) of the
Laplace integral, for model functions of the for(2). When the denominator in E¢49) is positive the slope and

(2) As a next application, we consider the test proposedne intercept are given by
by Altarelli, Nason, and Ridolfi. In Ref.23], by analyzing
the conformal mapping29) in a specific model, these au- o
thors concluded that this mapping is useful only if the ultra- f due Y3s[u— C,w— C,w?]
violet renormalon is already dominant at the low orders of s=—2 0 (51)
truncation. An interesting question is whether similar re- fwdue‘“’as[uz—czwz]
quirements hold for the optimal conformal mappif&y). In 0 1
order to answer this question we first perform an analysis
similar to that presented if23]. We assume the case when 44
the Borel function is exactly given by

- D, 2
Biue(U)=1+Dou+ S u +

2
B(u)— >, bu"|. (49 fo due‘“’as{éw)—; Bnu“}
n=0 l=—4 , (52)

fo due™Yau2— C2w?]

In this expression the parametes, and D5 are for the
moment arbitrary and the numbérs are the Taylor coeffi-

cients of the expansion & around the origin: respectively. All the integrals are evaluated with the princi-
pal value prescriptiori24). The above relations correspond

- . N to the conformal mappin{R7), with the coefficient<,, from
B(U):zo byu®. (45 Eq.(35). Similar relations define the slope and the intercept
for the conformal mapping29).
The perturbative expression of this model is As seen from Eq(51) the slope depends uniquely on the

conformal mapping and not on the details of the model func-
_ Ds , tion. On the other hand, the intercept of the second line in
Bper(U)=1+Dou+ —-u (480 Eq.(50) depends on the choid(u). To illustrate this model

we chose foiB(u) the largeB, expressior14]
The expansion to the same order in terms of the optimal

conformal variablen can be obtained easily using EG4): é(u):eSuISBv(u), (53
- - D .
Bpert,w(U)=1+ D,Ciw+ D2C2+73C5)W2, (47 with

N
We consider also, for comparison, the expansion in terms of By(U) = Bo(2) N EUZV Ao(l)+A(hu
the variable(29) used in[23]: v (1-u/l2) = (1+ull)?

IS Nir
U ~ — Djs. Bo(1)+B1()u
Bper(U)=1+D,Cyz+ DZC2+7C§)ZZ, (49) +.:Eg,(1——u/|)2 (54)
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The exponential factor in E¢53) is required to pass from 2.5 T T T T T T T —
the V scheme to theMS with ©=Q [14]. The coefficients (e),."'
entering Eq.(54) are[14] 2t RO
8 (—1)'""4(312+61+2
agly= 8 DN ) sk |
3 12(1+1)(1+2)? —
16 (—1)'"1(1+3/2) o
AlN=5 5 o o
[“(1+1)(1+2) 051 |
Bo(2)=1, ok |
Bo(l)=—Aq(—1), 1=3, _
o)== A=) 08 oT0Z 03 07 05 05 07 05 09
Bl(l):_Al(_I), |=3. (55) d,

FIG. 1. Laplace integral for the mod€32) as a function ofy:
exact valuega), perturbation expansiofb), expansion in powers of
z (c), improved expansion in powers &f(d), expansion in powers
of w (e), improved expansion in powers @f (f). The series are
truncated alN=3.

With the choice(53), the intercept was rather stable when
increasing the number of term;,, andN,i in the expan-
sion. ForNyy=4 andN;g=6 the domain of interest is de-
fined by the lines

D3=0.98D3, D3=0.98,-40.9, (56) corresponding expansion converges up to points very close

to the boundary. Of course, for very large truncation orders
the presence of the boundary singularities will manifest in a
Dy=-03D,, Ds=-03D,—14.1, (57) more dr{amatic way, and the expansion _in pp_vversvo;ﬁ/ill _
fail. But it is reasonable to expect that this critical truncation
for the conformal mapping used in[23]. order will be much higher than the order corresponding to
As already remarked if23], the conformal mapping9)  the usual variable.. In the present paper we performed a
brings no improvement when the low order coefficiebts numerical analysis Whl_ch conflrmed these expectations. We
= . _ o evaluated the Laplace integral, with the generalized principal
and D3 are both positive, as is the case of physical interesy,| e prescription defined in E€24), for a number of model
[see Eq(9)]. On the other hand, we note that pairs of posi-gnctions, in particular of the forrt82). In Fig. 1 we give for
tive (D,,D3) exist in the band defined in EG6) [the point  jllustration the results of our analysis for the model function
of coordinatedD ,=0.724,D;=1.23 obtained from Eq$p) (32 with the parameterst,=1, r,=4, r,=0, n=3, vy,
and(11) is close to the upper boundary of this domlawe =2.5, y,=2.5, anda, in the range(0.1-0.9. The Laplace
recall that we consider now only the effect of the conformalintegral of the exact functioB2) is indicated together with
mappings, without additional information about the nature ofthe results given by its ordinary perturbative expangtam-
the first singularities of the Borel transform. The mappingcated atN=3), and the expansions accelerated by the con-
used in[23] is useful only when the low order terms are formal mappingsz andw, both in the simple versions and
dominated by the ultraviolet renormalons. On the other handyith the improvement explained in EG30). In the present
the optimal mapping, which takes into account the presencease we assumed that the nature of the first singularities is
of both types of leading renormalons, can be useful alsmot exactly known and used in the improved verdi80) the
when the low order terms are dominated by the infraredproduct ofB(u) with the factors ¢+ 1)2%2—u)2% which
renormalons, as seems to be the physical case. do not compensate exactly the singularities of the model
(3) While the optimal conformal mapping leads to the function (32).
fastestasymptoticconvergence rate, it may be interesting to  As seen from Fig. 1, the combined technique of confor-
confront it with other methods by looking at thdimite-order ~ mal mapping and the explicit treatment of the branch points,
properties.(We saw in the previous analysis that the im- supposing that som@pproximateinformation about the be-
provement might be very small at the lowest ordel&/e  havior of the function near the first singularities is available,
therefore tested the efficiency of the different conformalimproves the accuracy of the Borel integral, especially for
mappings in approximating the Laplace integral, for varioudargeag. The valuesag~0.2—0.3(of interest in the hadronic
values of the coupling constamt; and various truncation 7 decay are on the boundary of the region for which the
ordersN. We must say that no analytic proof exists ensuringimprovement is significant at this orddd=3. We notice
that the optimal variable gives also the best approximation ofthat a major part of the improvement is brought by the sepa-
the Laplace integral, for Borel transforms with singularitiesrate treatment of the branch points, according to &),
along the real axis which make the integral ill defined. Oneespecially at lowN. Even the standard expansion in powers
nevertheless expects that the optimal conformal mappingf the Borel variablai gives good results if the nature of the
will provide better results, at least for moderétesince the lowest singularities, assumed to be exactly known, is treated

in the case of the optimal mappirtg7), and
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TABLE Il. Approximations of the Laplace integral f@;=0.3 TABLE IV. The same as in Table Il, foag=0.3 and a different
for different truncation orders(a) expansion in powers of, (b) model function(see the tejt In the improved expansion the actual
“improved” expansion in powers ofi, (c) expansion in powers of behavior near the branch points is included. The exact value is
z, (d) “improved” expansion in powers of, () expansion in pow- D(0.3)=0.4809.
ers of w, (f) “improved” expansion in powers ofv. The exact
value isD(0.3)=0.563683. The results close to the exact value areN (@ (b) (c (d) (e (f)
indicated with a greater number of digits.

2 0.4358 0.4812 0.4065 0.4575 0.4312 0.4712

N (a (b) (© (d) ® (f) 5 0.4787 0.4817 0.4646 0.4814 0.5084 0.4838
10 6.4378 0.4806 0.5291 0.4813 0.4633 0.4811

3 0.35 0.530  0.505 0546 0471 05596 9 63710’ -0.280 0.9654 0.4807 0.4783 0.4809

4 0.90 0.610 0.540 0.5625 0.642 0.5701

5 -0.10 0.5732 0.547 0.5722 0.5457 0.5701

6 2:2 0516 05631 0.5783 0613  0.56518 expansions are now defined by multiplying with factors

7 —36 0.82 05743 0582  0.634 056518 which exactly compensate singularities near the first branch

8 13 —012 0587 0584 0.515 0.563102 points. As expected, in this case the benefic role of the “im-

9 —40 2.3 0.599 0.584  0.638 0.563100 provement” is more pronounced for all the expansions, and

10 143 -34 0.613 0.583 0.503 0.563470 the deviation of the standard series from the true result be-

11 541 9.5 0.628 0.581 0.540 0.563467 gins at a higheiN.

12 2x10° —-19 0.645 0.5776 0590 0.563783 A closer look at the Tables II-V reveals that there are

15 —-2x10° 199 0.72 0.56400 0.5783 0.563713 essentially three circumstances affecting the convergence

20 2x10° -8x10° 1.1 0.530 0.582 0.563689 properties{i) the use of a conveniefincluding the optimal

25 —4x108 3x10° 27 0484 05687 0563681 conformal mapping(ii) explicit (even approximativeac-

30 2x108 —5x107 13 0.428 0.559754 0.563682 count of the branch point singularities, afiil) exponential

damping of the integrand by exp(/ay).

The effect of the factofi) can be seen from the fact that,
explicitly as above. However, when the behavior near thdén each of the tables, columft) possesses better conver-
first singularities is known only approximately, the expan-gence properties than colunta), and column(e) has better
sion in the optimal variable gives in general the best approxiproperties than columet). The effect of(ii) is seen from the
mation, especially when the ordBrof the truncation is in-  fact that, again in all the tables, colum(f} (d), and(b) have
creased. We illustrate this fact in Table 1, where we indicatebetter convergence properties than colurt@s(c), and(a),
the Laplace integral, foa,=0.3, of the mode(32) specified respectively. As concerns poifiti ), the salutary effect of the
above, as a function of the truncation ordérfor different  optimal conformal mapping is more important when the
types of expansions. The “improved” expansions were ob-damping of the exponential function exp(/ay) is weaker,
tained now by expanding in powers the producB¢ti) with  i.e., whenag is larger. The results obtained with larger
the factors (+1)2%2—u)*®, close but not identical to the than 0.5 confirm this effect in a spectacular waye do not
actual behavior of Eq(32). For larger values of the im-  give these results here, since they are not of physical rel-
proved accuracy obtained by using the optimal mapping igvance in our cage
even more impressive. Some results are presented in Table In the case of a stronger dampifiBables Il and 1V, the
[l for ag=0.5. role of the optimal conformal mapping combined with the

Similar results are obtained for model functions with sub-treatment of the branch point singularities is again important,
leading renormalons, which simulate closer the physical situbut good results are obtained also by the other methods, the
ation. A number of such functions were analyzed, and wesuccess varying with the perturbation ordérused. The
present in Tables IV and V some results for the functionasymptotic superiority of the optimal mappifigolumns(e)

considered in the test discussed in Table I. The “improved”and (f)] emerges at very high values of; this mapping
supersedes the other methods and turns out to be the best at

TABLE lIl. The same as in Table I, foms=0.5. The exact least starting fromN=20. It is not excluded, on the other
value isD(0.5)=0.853427. hand, that even the best series, colufn will exhibit nu-
merical indications of divergence at still higher orders, due

N @ (b) (© (d C} ®)

3 —0.507 1.04 0925 1.01 0.739 0.967 TABLE V. The same as in Table 1V, foa,=0.5. The exact
5  —15 1.9 122 105 1.7 087689 VvalueisD(0.5)=0.8038.
10 4x10* -75 24 08412 2.2  0.857092
b d f
12 2x10F 349 36 0678 1.8  0.853068 @ ® © @ © ®

15 -9x10° 3x1C0° 82 0371 156 0.852614 2 0.9816 0.7938 0.8106 0.7911 0.9597 0.7607
20 8x108® —1x10° 56 —0.27 2x10°% 0.853263 5 1.2945 0.8056 1.1759 0.805 1.251 0.7960
25 —2x10° 1x10° 597 —1.06 0590 0.853463 10 1736.28 0.7829 2.3563 0.8018 0.6631 0.8106
30 1x10®® -—-3x10%® 8x10>° —2.0 1.51 0.853438 20 1.34x10" -—14.29 55419 0.810 0.9880 0.8083
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3.9 — 11—

to the singularities of the Borel function along the integration
path. Consequently, as we already mentioned, since the
Borel integral path runs along the cut, which in thelane is
mapped onto thboundarycircle of the convergence disk, no
convergence is warranted even in coluffin

Concluding this discussion we mention that, as is seen
from Fig. 1 and Tables 11—V, for realistic values af be-
tween 0.2 and 0.3 andl=3 the numerical difference be-
tween the two conformal mappings is small, and so is the
difference between whether or not the known singularities
are explicitly taken into account. The reason is that, at high
values ofu, where the difference is important, the integrand
of Eq. (13) is, for small values ofg, strongly suppressed by
the exponential factor. The difference becomes visible when
a; and/or N are big enough. Tables II-V show how this
effect develops with increasinyg.

(b)

3.8

(a)
3.7

3.6

C. Determination of ag(m?) from = decay

As a final application of the method we discuss the deter-
mination of the strong coupling constan'g(mf) from the
hadronicr decay width. It is known that the theoretical error
is at present the dominant ambiguity in this determination,
and the main source of this error arises from higher orders in
perturbation theory. This makes the hadronidecay a very
suitable place to apply the technique of conformal mapping, £ 2. The Borel summatiofi5) of R,, using the standard

which accelerates the convergence of the perturba;ive eXPaRayior expansionia) and the improved expansid80) (b), as func-
sion and reduces the truncation error. As we mentioned, thigons of o (m?). The band indicates the experimental values.

problem was studied previously &3], where the conformal
mappings were used to reduce only the effect of the UV

o> ) I R I I B
0.28 0.3 0.32 0.34 0.36

0.38

a (m?)

2\ _
renormalons. It is of interest to use also the optimal confor- ars(m;) =0.343(0.009 exp, (59
mal mapping, whose properties were demonstrated on math- . .
ematical models. We do not attempt to make here a compleﬂés'ng the standard Taylor expansigir), and
analysis ofag(m?) determination, but only point out the ef-
ysis Ofars(m?) nation, but only point ou t5(M?) = 0.318* (0.007) ey, (60)

fect of the combined technique of optimal conformal map-
ping and the implementation of the correct behavior of the

Borel transform near the first singularities.
We used as starting point the Borel sufb) of R, and

using the optimized expressid0). The improved expan-
sion leads to a value of the coupling constag¢m§) lower

evaluated this expression using both the standard Taylor ey about 8% than the result given by the standard Taylor

pansion(11) of the Borel transform in powers af and the

expansion of the Borel transform. Actually, as in the above

optimized expressioli30) proposed by us. For comparison discussion of the model functions at ldwand similar val-
with previous work, we notice that the “standard expan-Ues ofas, the major contribution in shifting the value af;
sion” in our approach is equivalent to the method of integra-towards smaller values is brought by the explicit treatment of
tion along the circle proposed [i28], in the particular case the first singularities of the Borel transform. At the small
of the one-loop running coupling. The expansions were trunvalues ofas relevant for the present problem, the effect of

cated alN=2, with the coefficient®, determined from Eqs.
(9) and (12). In the improved expansiof80) we used the

valuesy; and y, given in Eqs.(22) and the coefficients,,

were computed such as to reproduce the first three coeff

cientsb,, from (12).

In Fig. 2 we give the results corresponding to the standar
Taylor expansior{11) of the Borel transfornfcurve(a)] and
the improved expansio(80) [curve (b)], for various values
of as(mf). Using the experimental valU&1]

(R,) expi= 3.645+ 0.024, (58)

we obtain

the conformal mapping is barely seen.

In Egs. (59) and(60) we indicated only the experimental
error, which is very small. On the other hand, it is not easy to
ascribe a definite theoretical error to these results. The prob-
em of the theoretical error ais(mf) was discussed in many

@apers, in particular ifi17,23,28—30 with different conclu-

sions about its magnitude. One can safely neglect the effect
of the uncertainties in the QCD parametégsiark masses,
gluon condensate, ejcwhich is smal[27,29 (leaving aside

the still open problem of the 4/correctiong. The ambigu-

ities related to the prescription chosen for computing the
Laplace integral are believed to be small too, due to the
conjecture that these ambiguities must be compensated by
corresponding ambiguities in the condensates. The most im-
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portant sources of theoretical error remain therefore thosdiagrams of the process, a statement about their location im-
related to the analytic continuation from the Euclidian to theplies a statement about the physics of the process considered.
Minkowskian region, and the truncation of the perturbative If the power expansion is truncated at a definite order, as
expansion. A complete discussion of these errors is outsidis the case in practice, the roleswandw(u) are modified.

the objective of this paper. Concerning the analytic continu\While a polynomial inu is holomorphic inu and has no
ation, we only mention that in the derivation of H45) the  singularites in the Borel plane, a polynomial \im has the
perturbative expansion of the Adler function was assumed tgame analyticity region as the expanded function, having the
be equally valid in the Euclidian region and in the complexcuts equally located. Since singularities have physical inter-
plane near the timelike axis, which is certainly not true. It ispretation, every polynomial im(u) carries this piece of in-
not trivial to relax this assumption and see its impact on theormation.

determination ofas(mf). As concerns the truncation error, We demonstrated the practical role of the optimized ex-
the estimateSas(mf)zo.OS was suggested [23] and[29], pansion numerically on a large number of model functions.
by comparing the predictions of different summation proce-We found that the expansion in the optimized variable allows
dures. In[30] it was claimed on the other hand that muchone to predict, for a sufficiently large truncation order, the
smaller errors are obtained if the renormalization group inN+ 1 coefficient of the perturbation series, using as input the
variance of the perturbation series is exploited in an optimafirst N coefficients. For functions resembling the physical
way. The present work points towards a similar conclusionBorel transform this procedure works starting frave7.
indeed, as was remarked also[iv], it is rather arbitrary to We investigated the usefulness of the optimized expansion
interpret the spread of the results produced by different corfor the evaluation of the Laplace integral and found that it is
formal mappings as a measure of the theoretical error, agoticeable if the coupling constant is large and the exponen-
suggested ifi23]. Our investigation of mathematical models tial damping of the integrand is weak. In these cases knowl-
shows that the truncation error depends on the choice of thedge(even approximapeof the behavior near the first renor-
conformal mapping, being smaller if more information onmalons, combined with the expansion in the optimal
the analyticity of the function is taken into account. Thevariable, leads to very accurate results, while the expansion
expansion proposed in our work exploits in an optimal wayin the Borel variable, though partially improved by the treat-
the (renormalization group invarianinformation on the first ment of the branch points, fails dramatically. On the other
renormalons of the Borel transform, and we therefore expedtand, at low orders of perturbation expansion and for values
that the truncation error of the resii0) is smaller than the of the coupling constant of physical interest the effect of the

estimate given above. optimal conformal mapping is not very visible and the pre-
dominant effect is given by the explicit treatment of the near-
V. CONCLUSIONS est branch points. This was actually the case with the deter-

_ _ . mination of the strong coupling constaag(mf) from the
The technique of the optimal conformal mapping of thepadronicr decay width: the combined technique of confor-
Borel plane, discussed in this paper, can be seen as an altgfm| mapping and the explicit treatment of the first branch
native resummation of higher order effects in perturbativeypints of the Borel transform reduces by about 8% the value
QCD. This resummation method has a physical content ijiven by the usual Taylor expansion in the Borel variable.
the sense that the requirement of convergence in powers qfhe major contribution to this result is brought by the theo-

the optimal variablev(u) amounts to a statement @maly- retical information{ 10,20 about the nature of the first renor-
ticity in the whole double-cut Borel planéndeed, the theo- mgz|ons.

rem [22] on the asymptotic rate of convergence of power
series, on which it is based, is dependent upon the condition
that the functionf (u) (which is expandedand the function
w(u) [in powers of whichf(u) is expanded; see E§26)]
should have the same location of singularities. The method We are grateful to Professor A. de jgla and the CERN
of the optimal conformal mapping allows us to make full useTheory Division for hospitality while a part of this work was
of this analyticity property. done, and to M. Beneke and A. Kataev for interesting dis-
This remarkable feature is lost if the function is expandedcussions. One of ud.C.) thanks Professor H. Leutwyler for
in powers of some other variable, beutor a conformal his kind hospitality at the Institute of Theoretical Physics,
mapping ofu such that only a part of the analyticity domain University of Berne, and the Swiss National Science Foun-
is mapped inside the convergence circle. In such cases, thmtion for support in the program CSR CEEC/ NIS, Contract
convergence domain is smaller than the region of analyticityNo 7 IP 051219. The other auth@i.F) is indebted to Pro-
and the requirement of convergence has to be supplementéessor G. Altarelli for reading the manuscript and stimulating
with the analyticity condition. Only in the case of the optimal discussions and remarks. The work was supported in part by
mapping the two regions are identical. GAAV and GACR (Czech Republic under Grants
As renormalons express the properties of the FeynmaA1010711 and 202/96/1616, respectively.
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