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Free energy of bubbles and droplets in the quark-hadron phase transition
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Using the MIT bag model, we calculate the free energy of droplets of a quark-gluon plasma in a bulk
hadronic medium, and of hadronic bubbles in a bulk quark-gluon plasma, under the assumption of vanishing
chemical potentials. We investigate the validity of the multiple reflection expansion approximation, and we
devise a novel procedure for calculating finite-size corrections to the free energy of hadronic bubbles in a bulk
quark-gluon plasma. While our results agree largely with earlier calculations, we show that the usual multiple
reflection expansion should be used with caution, and we propose a modification of the multiple reflection
expansion, which makes this approximation agree nicely with direct numerical calculations. The results should
be of relevance in connection with the cosmological quark-hadron transition as well as for ultrarelativistic
heavy ion collisions[S0556-282(99)03815-]

PACS numbse(s): 12.38.Mh, 12.39.Ba, 98.80.Cq

I. INTRODUCTION An interpretation of the result was put forward in terms of
an expansion of the free energy in terms of volume, surface,
The quark-hadron phase transition is of significant interesand curvature contributions:
in connection with ultrarelativistic heavy ion collision ex-
periments, the interior of neutron stars, and the evolution of
the early Universe. A calculation from first principles using
QCD is at present impossible, but lattice-QCD studies have
shed some light on the transition, for instance, demonstratinglere R is the radius of the droplet or bubbl&,P is the
that the transition is apparently first order for pure glue,pressure difference between quark and hadron phagds
whereas the order for physical QCD is still a matter of in-AP=0 defining the transition temperatufg), o is the sur-
vestigation. face tension, and the curvature coefficient, where volume,
Awaiting more definite answers to come from such inves-surface, and curvature terms can be calculated from the
tigations, numerous studies have been performed using phemoothed quark and gluon densities of state within the MIT
nomenological models in order to gain insight into the physbag model(see below The results of Ref[1] were appar-
ics of the transition. Many such studies have used the MITently well reproduced under the assumption that a vacuum
bag model, which in a relatively simple manner incorporateshubble behaves as a plasma droplet turned inside out, so that
confinement in terms of a set of boundary conditions forthe radius changes sign. This leaves the area term un-
quarks and gluons. changed, but volume and curvature terms change sign. Or, if
A very interesting result of a detailed study within the R s defined to be positive in the expression above, ihés
MIT bag model was presented by Mardor and Svetifsky  unchanged, but pressure difference as well as curvature co-
who considered the zero chemical potential case of relevanasgficient changes sign when going from the case of a plasma
for the cosmological quark-hadron transition. For a dropletdroplet to that of a vacuum bubble. The fact that the curva-
of quark-gluon plasma within a bulk medium of pions, ature contributions from massless quarks and gluons are very
direct numerical calculation of the partition sum using quarklarge compared to the surface contributions coming only
and gluon energy levels led to a behavior of free energy as fiom the massive quarks, could explain that an energy bar-
function of radiusF(R) as expected for a first order transi- rier for the plasma droplet could turn into an energy mini-
tion, namely, a minimum ofF for R=0 whenT is below the  mum in the reverse case of a hadron bubble.

4
F(R):AP§7TR3+O'47TR2+a87TR+..._ (1)

transition temperatur€, and an energy barrier f& of order The authors of Ref.1] were careful to point out a number
a few fm separating a local minimum BR&0 from the true  of reasons to be cautious about the result. First of all that the
minimum (diverging negative energyor R— oo, MIT bag model is clearly just a phenomenological model,

To treat the “inverse” problem of a vacuurthadron and also that the radii of relevance for the interesting bubbles
bubble within a bulk phase of a quark-gluon plasma, theand droplets were perhaps too small to justify the ideal gas
authors employed a phase shift formula to calculate thepproximations. But if the result was of a physical nature, it
changes in quark and gluon density of states stemming frordid have important implications for the understanding of the
the presence of the hadron bubble; again calculating the comruark-hadron transition[1-4]. And the procedure of
tribution to the free energy by a direct numerical integration.R— —R gave a simple recipe for treating other situations,
In this case, a peculiar feature was observed, namely, thauch as quark-hadron mixed phases in neutron stars. Some
F(R) had a negative minimum for radii of 1-2 fm, even for consequences, however, were rather strange. For instance, it
T>T,, apparently indicating an instability of the quark- apparently pays energetically to fill a strangelet with vacuum
gluon plasma abové&,, since there was no energy barrier to bubbles, so that it looks more similar to a Swiss cheese than
prevent formation of hadron bubbles. a uniform mixture of quarkgs].
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The aim of the present paper is to compare several difference in energy density between the perturbative vacuum
ent calculations of the free energy of a vacuum bubble eminside the bag and the nonperturbative QCD vacuum outside

bedded in quark-gluon plasma as well as a quark-gluohe bag. Requiring the actioW=fiidtL to be stationary
plasma droplet within a bulk phase of hadrons. For thewith respect to variations of the fields yields the equations of
plasma droplet we focus on a direct sum over states conm: Stion
pared with a multiple reflection expansion, ;howmg that At tHe surface of the bag, the fields are taken to satisfy
terms beyond volume, surfa}ce, and curvature in the free e youndary conditions which correspond to the fields being
ergy are necessary to avoid unphyslcal behavior fpr SMaALsnfined inside the bag volume. We neglect gluon-exchange
radii. We demonstrate how the next important contributions . '
. . . interactions.

o F .[proportlona.l toTIn(RT) and T] arise naturally if the The equations of motion for the fields become the Dirac
density of states is truncated below some valukR{where

k denotes momentuninstead of integrating over unphysical equation for the quark fields and the source-free Maxwell
enotes momentunnstead ot integrating over unphysical, equations for the gluon fields. The complete set of equations
negative values for the density of states all the way flom

—0. For the vacuum bubble we confirm the results of thegovernmg the behavior of the fields, including the boundary

phase shift approach of Refl] by comparing to a more conditions, is
direct sum over states approach introduced below, which we (iy*a,—m)W(x)=0 e &)
refer to as theconcentric spheres methodgain we show # ' '
how an improvement of the multiple reflection expansion

leads to correction terms iR, such terms arising naturally dFH(X)=0, xeq, )
from a truncation of the density of states. , -

The general framework and basic equations are described in, y*W(x)=w(x), xed, ©
in Sec. Il. In Sec. lll we present our numerical results, .
largely confirming the calculations of Rgfl]. Our results n,F*"(x)=0, xed, (6)

show how and why the usual version of the multiple reflec- .

tion expansion is not always accurate. In Sec. IV we shown the following notation:x=(xx) is a space-time four-
how further terms in the analytical expansion of the freevector, 9() is the surface of the bag volunf®, for X e 0Q)
energy proposed in the literature improves the agreementq definen®(x)=(0,—x/|x|) as an inward-directed unit-
with the numerical results, and we show how a physically,grmal three-vector to the surface of the bag(x) is the
motivated truncation of the density of states from the m“"quark-spinor[there will be one for each quark flavou,(d,

tiple reflection expansion resolves most of the problems eng ) and one foeach of the three color states of a quark
countered in Sec. lll. Section V contains our conclusions. and FA(x)=a*A"(x)— d"AX(x) is the (noninteracting

gluon field (there are eight copies of this figld
Il. THEORETICAL FRAMEWORK We fix the bag constant by demanding bulk pressure bal-
nce at the transition temperature. Somewhat symbolically

In this section, we give the basic equations needed for a . . )
e bag constant is thus determined by the equation

analysis of the quark-hadron phase transition within the MITE

bag model. We consider the case of zero chemical potential = = =

; ; : : . d quarks d gluons d pions|
which is of particular relevance to the cosmological quark- B= lim{ — _ , (7)
hadron transition, but also of interest for ultrarelativistic VA NV NV NV

T=T
heavy ion collisions. The quark-gluon plasma is taken to °

consist of three quark flavorsi( d, ands), the correspond- F being the free energy. In the following, we shall set the
ing antiquarks, and eight noninteracting gluons, these pattransition temperature td,=150 MeV, thus fixing the bag
ticles being described by the MIT bag model presented beconstantB=312.6 MeV/in?=(221.4 MeV).

low. The hadron phase is considered a mixture of the three We can immediately write down the expression for the
pions7°,7r*, since all othefmuch heavierhadrons contrib-  gluon field, since this is just the solution to the source-free
ute only insignificantly to the free energy. Further, we shallMaxwell equations. Expressing the gluon field in terms of
assume that the pions contribute volume terms ¢edbe Sec. color-electric and color-magnetic fields, writing\*(x)

[ B). We have takerm,=my=0, m;=150 MeV, andm,. =[V(X),,&(X)], VX,&Zé(X), and —VV(X)—&E\(X)/&XO

=138 MeV. =I§(x), there are two sets of solutions to Ed), labeled

TM and TE (the =0 fields are absent since for=0, the

A. The MIT bag model ) ) >
only solution to the source-free Maxwell equationsBig,

The MIT bag mode[6,7] is defined by the Lagrangian =
g [6,7] y grang —Ey0=0 [8])
- f o4 X(Laco=B). @ {BlVe uEle Mp M i, 0 @)
Laqcp is the usual QCD Lagrangian density, ane-0 out- {élTrEe—X"ku,érrfe‘x"k#}'njjfil-_-,-ﬂ _____ , (9)

side the bag(} is the bag volumeB>0 is a phenomeno-
logical parameter, the bag constant, which models the differwhere
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FIG. 1. Left: A plasma droplet with nonperturbative vacuum
outside; this is essentially an MIT bag. Right: A vacuum bubble

surrounded by plasma, the boundary conditions being those of the

MIT bag, but corresponding to no flux of plasnrdo the bubble.
The phase outside a droplet or bubble extends to infinity.

BIM=—if,(KD)XX[VY|m(6, )] (10
—iVX[XFI(KN)Yim(6, )], (11)
1= LT XBI00 (12
1 -
=EV><V><[xf|(kr)Y|m(0,d>)], (13
ENE=—if (KDXX[VY|n(6,6)] (14
= —iVX[xf,(kr)Y,m(6, )], (15)
Bin= - igv XETE(X) (16
1 -

== LVXVXIXR (KN Yin(0,6)],

(17)

Y\m(6,¢) are the usual spherical harmonidg(z) =aj;(2)
+bn(z), the spherical Bessel-functiofgz) andn;(z) be-
ing the two linearly independent solutions of the equation

7°9"(z)+2z29'(z)+[Z>—1(1+1)]g(2)=0,

r=|x|, andk“=(|IZ|,IZ). The constanta andb appearing in
the functionf,, and the possible values &f must be fixed
from the boundary condition®). Expressed in terms of the

fieldsE and I§, these boundary conditions read

X-E=xXB=0, Xe . (18
Extension of the MIT bag modé@he MIT bag is a finite
region of spacetime) to which quarks and gluons are con-

fined by boundary condition$),(6) corresponding to no flux
of plasma out of the droplet. We shall refer to this configu-
ration as a plasma droplet. However, in the following we
shall also use the MIT bag model in a slightly different way,
namely, the case where quarks and gluons are defsidea
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finite region of space, see Fig. 1. The equations describing
the quarks and gluons in the second configuration, the
“vacuum bubble,” are still Eqs.(3)—(6), but now using

n“(x)=(0x/|x|) in the boundary conditions.

B. Thermodynamical relations

For a system of noninteracting fermiofspper sign or
bosonglower sign we can calculate the free energy for each
particle degree of freedom as

©

F(T,V)=%TY, In(1+e EWIT) (19
=1

whereE;(V) = ym?+ k?(V). In the continuum case we have
F(T,V)= :Tf d3k73(|Z,V)|n(1ie*Vmiﬂg”), (20)

Z(IZ,V) being the density of states, defined such that
Z(k,V)d3k is the number of states in the volumé with

momentum ind®k aroundk. The importance of the free en-
ergy stems from the fact that the configuration realized in
nature is characterized by a minimum in this free energy.

In the following we shall speak of the volume part resp.
the surface part of the free energy. In the case of noninter-
acting Dirac particles and noninteracting gluadfisese are
just Maxwell fieldg which are the particle species relevant to

us, the density of statgsin any sufficiently large volumy/
contains a term proportional to the volume. In fact,

p(V—o0)= v (21)
P _9'8173

independent of which particle species we consider. There-
fore, also the free energy will contain a term proportional to
the volume of the system. We name this termvbkime free
energy The total free energy being,,, we can writeF
=f,qV+Fg WhereFg,/V—0 asV—o, andf,, does not
depend on the volume. We shall cgl, the surface part of
the free energy, or simply th&urface free energy

C. The multiple reflection expansion, MRE

The multiple reflection expansiofMRE) is an approxi-
mation for the density of states, also commonly referred to as
the asymptotic expansion of the density of states. Since we
only consider systems with spherical symmetry, we define
the spherically symmetric density of stateg(k,V)

=47k%p(k,V). Consider a spherical volumé= (4/3)R®

of quarks and gluons, described by the bag model. The MRE
for this system, as a sum of volume, area, and curvature
contributions, valid for sufficiently large volumes, is

19, accounts for spirthelicity) degeneracy.
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VK2 for a plasma bubble by simply inverting the sign Rf We
pi(k,V):_2+fA’i(k/m)k47TR2 shall refer to this hypothesis as the MRER). Since the
2 MRE(—R) is derived from the MRE, we expect the

MRE(—R) to have problems related to those of the MRE

+ . + ... i=
fei(kim)8mR . 1549, (22 mentioned in the previous section.
where
E. The phase shift approach
fa (k,m):_i(l_iamtamk,m)), (23 In this section we briefly describe the phase shift ap-
4 8m ™ proach to calculating the free energy of a vacuum bubble.

The phase shift formulé27) was introduced in this context
3k (7 by Mardor and Svetitsky1]. The phase shift approach is
fc‘q(k/m)=P[1—%(E—arctar@k/m)”, (24 pased on a relation between the density of states and the
& scattering phase shifts:

fag=0, (25) dé(k)
APl(k)— = dk (27)
1
feg=" Q (26) For a derivation of this relation in the nonrelativistic case,

see, e.g., Ref14]. Here,Ap, is the change in the density of

Here,A stands for areaC for curvature, and indicegandg  states(at a given angular momentynnduced by the scat-
denote quarks and gluons. Note that Jimyfc o(k/m) terer.
= —1/24x?, and that limy,_,of 5 q(k/m)=0. In order to use this phase shift approach to calculate the

The MRE was developed by Balian and Blof®l, and free energy, we need the scattering phase shifts for quarks
the above expressions for the area and curvature terms haaad gluons. These are derived from the defining equations
appeared in the literature. The area term for quarks is givefB) and(5) for the quarks, and from Egg3), (9), and(18) for
(though not derivedin Ref. [10]. The curvature term for the gluons. The phase shift for theomponent of the quark
massless quarks seems to appear explicitly for the first timéeld (j=1/2,3/2 . . ., istotal angular momentujis the sum
in Ref. [11], whereas the full expressiof24) for massive of two components
quarks is introduced in Refl2]. The gluon expressions, . '
valid for noninteracting gluons, is calculated in REf3]. (k) =871k + &7 Yk, (28)

As indicated by the dots in Eq22), the expression for
pi(k,V) should in principle contain terms proportional to where, for a surface of radiug,
1/R, 1/R?, etc., but as these terms become small in the limit _ _
of largeR, and since the MRE is an approximation valid for 5| 12 10) arctarE jI(kR) =[k/(E+mg)]j -1 (kR) )
large systems, these terms are usually neglected. However, Ni(KR) =[K/(E+mg)In+1(kR) )/’
we shall see in the following that the MRE as it stands in Eq. (29
(22) is not only inaccurate, but also unphysical at small radii,
having negative density of states. Further, we shall arguand E= \/m2+ k?, q=u,d,s. The phase shift for the gluon
that, when used in calculations of the free energy, the MREield also cons|sts of two parts; (k) and 6/ 5(k), where
(22) containing only area and curvature terms leads to errors

even at larger radii, where the MRE itsédfa good approxi- TE (drdr)[rj(kr)]
mation to the density of states. We also suggest a solutionto 9 (k) =arcta (@ranirm (k0] (30
these problems. r=R

Everywhere in the following, unless explicitly stated, ref- . .
erence to the MRE means the approximati2®) to the den- Car a’E JI(kR)(1+1)=kRji+1(kR) ) 31
sity of stateswithout further correction terms such asRl/ n(KR)(1+1)—kRn 1 (kR)/’
1/R?,

and

D. The inverse multiple reflection expansion, MRE—R) _

Because of the “symmetry” between the two situations ™) =ar @ 2
. - 6, (k) =arcta , (32
(i) quark-gluon plasma confined by MIT bag boundary con- n(kR)

ditions within a sphere of radiug (a “plasma droplet’) and

(i) quark-gluon plasma kept outside a sphere of rafilxy

MIT bag boundary conditionga “vacuum bubble’), it has 2In the case of spherical symmetry, the phase shiftk) are
been argued1] that there should exist a simple relation be- defined such that the effect of the scatterer is to change the spatial
tween the density of states in the two cases, i.e., that thgart of the wave function far away from the scatterer for a given
density of states of quarks and gluons in the case of angular momentunh from o (1/kr)sinkr—I/2) to o (1/kr)sinkr
vacuum bubble can be found from the expressi@2s—(26) =72+ 8,(K)].
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again for a surface of radiuR. [=1,2, ..., labels orbital
angular momentum, and here, as opposed to the quark situ-
ation, it is a good quantum number.

Knowing the phase shifts, the contribution to the free en-
ergy from the quarks and gluons outside a vacuum bubble of
radiusR is calculated using Eq20), so that

T (» d&(kR)
_ ——q — SO a—E(RIT
Fi(T,R) +g,71_J’0 dk dk In(1*xe ).
(33
The labeli stands for different particle typéguarks, gluons FIG. 2. The concentric spheres configuration: The inner sphere

andangular momentum. Again, the upper sign applies to théas radiusR,, the outer sphere has radiRs. There is nonpertur-
fermions(quarks, lower sign to boson&luong. The appro-  bative vacuum inside the inner sphere and outside the outer sphere.
priate degeneracy factors agg =6 andggon=28. Quark-gluon plasma is confined between the two spheres by MIT
We make two remarks about the formul@y) and (33). bag boundary conditions corresponding to no flux of plasma across
(i) The free energy33) includes the contribution from the the spheres. At the outer sphere the boundary conditions are the
excluded volume(ii) When the phase shifts contain func- usual MIT bag conditiong5),(6), but at the inner sphere we use
tions with multiple branches, such as the arctan function im*“(x)|,_g,= —nf‘(x)|r:R2:(0,§/|§|).
our case, we choose the branch which makes the phase shifts

continuous functions of the energyin the case of potential ag(l) ao(l)(1+1)
scattering where the potential obeys certain integrability con- ay(l)= bo(1) Dy (1+1)—by(1+ 1)’ (39
ditions, one can prove that the phase shifts are continuous
functions of the energj15].) and
The free energy in the limit R$0. By expanding the
Bessel-functions appearing in Eq89), (31), and(32) as a ()= (—1)k 40)
) e oMa1x3%5. - (21 +2k+1)
L) = I+2k
0= 2 ahx (34) (1t 1X3X5.--(21-1)
“ 2KK1(1—21)(3—21)---(2k—1—2)

and (41)

” k|1 [The factors (+21)(3—2l)--- in the denominator of Eq.
nl(X):kZO bi(1)x (39 (41) appear only when—1=1] TheB, appearing in Egs.
(36) and (37) are the Bernoulli numbers, defined by

(valid for I>0) and keeping only the lowest order terms, we X X 2 x4 6

obtain via Eq.(33) the following analytical expressions valid =1--+B;==—B,—+By——--- (42
for RT<1 for the surface free energy dbne flavor of e—1 2 2! 4! 6!

massless quark@ndexj andl means that we consider each i )

angular momentum component separately the first few of these being

FLRT  (2j+1)(2%72- 1)1 B,=1/6, B,=1/30, By=1/42, B,=1/30. (43

T B (2j+3) aq(]) On the basis of Eqg36) and(37), we conclude that the first
242 energy term of importance fdR—0 is proportional toR?;
X(RT) Bj+an (36) no terms proportional t& or R? appear in this limit. This is
i in contrast to the MRE-R) conjecture, where a curvature
and for the eight gluons term proportional tdR dominates foR— 0. The difference is

clearly demonstrated in the figures in the next section as a
difference between zero and finite slope of the free energy
for R—0.

FI R 21+1
S'gi LEBSPAC e LTINS R

21+2
37

F. The concentric spheres method

where : .
The concentric spheres method is a new way to calculate

the surface contribution to the free energy of quarks and
gluons outside a vacuum bubble. The idea is to extract the
b3(j+1/2) contribution from the inner surface to the total free energy of

(38)  the concentric spheres configuration in Fig. 2. Assuming that

- ag(j +1/2)bo(j + 1/2)— ag(j — 1/2)bo(j — 1/2)

aq(]
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D@e:
X 2 |n(1_e*kﬁn/T)’ (48)

a=TM,TE n

FIG. 3. How to extract the surface free energy in the concentriq,vherekla is thenth solution of the equation
spheres method: Shaded areas are plasma, white areas are nonper- "
turbative vacuum. Contributions to free ener@gft to right): i1 (KRN (KRy) = j (KR, )N (KR,) =0 (49)

I:total( Rl ’ RZ) ) Ftotal( RZ) ’ I:volumt; Rl) ’ and Fsurface( Rl) .
Foa(R1,R2) andF(R,) are calculated by summation over en-

ergy levels of the particles in the relevant configurati®gymd R1)
is only the volumefree energy of particles occupying a volume . .
(4m/3)R?. The purpose is to calculate the contribution to the free (I +1)X11(KR)M(KRy) —ji(KRo)ni(KRy)}

from the i face R;), and thi be d ; ;
gy mner surtacBeutec{Re). and i can be done Sy (1) kRy(jy(KRy) M4 1(KRy) — (KR M (KRy)}

for the TM gluons, and

» _ , + (1 + 1)KRo{ji 1+ 1(kRo)N | (KRy) — j i (KRy) Ny 4 1(KRy)
the splitting of the free energy in volume and surface contri- _
butions is valid, we can extract the free energy contribution T KRiKRx{jj 4 1(KR)N 1 1(KRy)
from the inner surfacésee Fig. 3 from a calculation of the . -
total free energy of particles contained between two concen- Ji2(kRp)My 1 (KRy}=0, (50

tri h L
fic spheres as for the TE gluons. The terf,(Ry) is just the free energy

Fsurtacd R1) = Frota R, R2) + Fuolumd R1) ~ Frota( Ra), of a quark or gluon droplet, so this is calculated using Egs.
(44  (53—(57). Finally, the volume terniq,md Ry) is

whereF2(R1,R,) is the total free energyincluding both - VIR

surface contributionsof the particles contained between the F  —(R,)= Igin dk—In(1xe WM j=q,g,
spheres with radiR; and R,, F,qumd R1) is the volume o 27

contribution to the free energy of the particles in a sphere of (5

radiusR;, and F,,(R,) is the total free energyincluding

surface contributionof the particles in a sphere of radis. ~ WhereV=(4m/3)R}, g,=12 for each flavor ang,= 16.

It is precisely Fo,c{R;), the surface free energy of the  Formally, the splitting in surface and volume terms is
particles outside a sphere, that we are interested in. Here, tigg@propriate only wherR,—R;— . However, calculations
termsF a(R1,R,) andF(R,) are calculated directly by for 10 fm<R,<20 fm suggest that the concentric spheres
summation over energy levels, wherdgag,,wd R,) is calcu- method yields the correct free energy contribution from the
lated from the MREusing a positive radiysExplicitly, the  inner surface up t&R;=R,/2.

term Fya(R1,R2) in the case of quarks of mass, is

Ill. NUMERICAL RESULTS

FquarksiRl,Rz):—GT_:lzlzw(zi+1)|:21/2 ; In(1 We are now going to use the different techniques de-
=7 = scribed in the previous section to calculate the free energy of

+e Bn'T),  Ej,= kﬁn+m§, (45) (i) a plasma droplet in a bulk hadronic medium affid a
hadron bubble in a bulk plasma. In both cases we normalize

wherek; | -j+1/2, is thenth solution of the equation the free energy such that it is zero when there is no droplet,
_ ) respectively, bubble, i.e., we calculate the free energy rela-
[@(K)ji—1(kRy) = ji(KRy) J[a(k)n;_1(kRy) +ni(kRy)] tive to an infinite hadron, respectively, plasma phase. In the

adopted model, we have the following contributions to the

~La(ki-a(kRe) +]i(kRp)] free energy: Quarksu d, ands, and their antiquarks glu-

X[ a(k)n _1(kRy)—n;(kR;)]1=0 (46)  ons, the bag contributioBVggp, WhereVogpis the plasma
_ volume, and the contribution from the three pi¢osing Eq.
for I=j+1/2, and (20) with p.(k,V)=3(VKk?27?) andm=m,,, this is
[a(k)n ;1 (KRy) +n(KRy) J[]1(kRp) — a(k)ji+1(kRp) ]
F(T,V ):STV“ xdkkzln(l—e* VMo HEIT) (5
+la(k)n1(kRz) —ni(kRy) ] m Ve TS 2 ’
X[a(k)jj+1(KRy) +ji(kRy)]=0 (47)

whereV . is the pion volumé¢ The bag and pion contribu-
for |=j—1/2, with a(k)=k/\k*+ mq2+ mq. In the case of tions are thus simple and universal, the interesting part of the
gluons, the ternf,(R1,R») is free energy is the quark and gluon contributions.
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A. Free energy of a plasma droplet in a bulk hadronic " " "
medium 4000 | T=147 MeV =150 MeV]
The plasma droplet is an MIT bag with pions around it, so 2000 | 1
. i . . =152 MeV|
the calculation of the free energy is straightforward, i.e., we _
can calculate the energy levels of quarks and gluons in the % 0
bag, and perform the partition sufd9) directly. This, of = 2000 | \
course, gives the true free energy. -
We can also use the MRR2) to calculate the free energy -4000 T=154 MeV
(20). This way, two approximations are involve(t) The
spectrum is discrete, but the MRE treats the energy levels as -6000 ¢ _ ‘ . .
continuous and2) we have discarded terms of the forniR]l/ 0 1 5 3 4 5
1/R?, etc., in Eq.(22). Since we are considering the high R (fm)

temperature case, the first approximation is well justified:

The low (E<T) energy levels, where the level spacing is FIG. 4. Total free energycalculated directly _by summation
large, do not contribute significantly to the free energy,over_state)sofaquark-t_:,luorl_plasma droplet qf radiRsurrounded
whereas the main contribution to the true free endi) by pions. The phase transition temperature is s@t;te 150 MeV.
comes from the higher levels where the spacing is smallX€sults are shown for several temperatures ardund

Thus, any difference in the free energy between a direct cal
culation and the MRE approximation is a measure of th
importance of the neglected terms in E§2) and/or the
choice of truncation discussed in Sec. IV.

I(')nly account for the degeneracy due to color and particle-
eantiparticle, so we havg,=6 for each quark flavor angd,
=8 for the gluons.

We imagine a spherical plasma droplet of voluWigsp
=(47/3)R® embedded in a large volume of pions, the total
volume of this system being... The pions therefore inhabit

In this case, we need to solve the set of equatiBns(6),  a volumeV,=V.,.—Voep. Since we calculate the free en-

and then perform the suiti9) over these levels. We thus ergy relative to a system with no plasma droplet, and pions
obtain the following equation&o be solved numericallyfor  in the whole volumeV.,, the effective pion volume in Eq.
the quarks (=] = 1/2): (52) is —Voee- Summing all the contributions we obtain

Fig. 4. In Fig. 5 we show the different contributions to Fig. 4.
jj-1(kR), E= k2+mq. (53) We shall comment on these figures later.

1. Direct calculation

Ji(kR)==*

E+my
2. Using the MRE

Now let us see how the MRE approximation handles the
plasma droplet. The difference from the sum over states

For theTM gluons

h(kR)=0 (54) method lies entirely in the calculation of the quark and gluon
and for theTE gluons contributions. The pion and bag contributions are the same
as before. Now, we use EO) for the quarks and the glu-
JI(KR)(1+1)=kRj . 1(kR). (55 Ons with the MRE density of stat¢82). The result is shown

in Fig. 6. Figure 7 shows the different contributions fbr

These equations provide a series of solutions, that we laber 192 MeV.
Ejin for the quarks andk{,, a=TM,TE for the gluons.

The contribution to the free energy from quarks and gluons ] )
are then Comparing Figs. 4 and 6 we see that although they agree

qualitatively (except forR— 0, where the MRE is dominated

Fo(T,R)=—6T 2j+1 i ' ' ' .
oT.R) 1:1/;,3/2,..( i+l 4000 bag /)1
2000 |

3. Comparison

X > D In(1+e Ein/Ty (56) . wotal
I=iz12 7 e 0

2 AN
and m  -2000
> -4000

Fg(T,R)ZSTE (21+1) > In(1—e kT, u+d\ g\ \s
=1 a=TM,TE 'n -6000 ‘ ‘
©7 0 1 2 3 4 5

R (f
respectively. Note that when dealing with each angular mo- ()

mentum component separately, the degeneracy fagors FIG. 5. Different contributions to Fig. 4 foF =152 MeV.
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: . — 1000
4000 | T=147 MeV =150 MeV ]
500 ¢ Concentric spheres methos
2000 | T=152 Me _ P
> 0
o~ L
3 0 2
) 8 -500 t
o 2000 t T=154 Me &
2 -1000 |
-4000 | =
-1500 :
-6000 | \ RE(-R)
: : . - 2000 M—/——m— :
0 1 2 3 4 5 0 2 4 6 8 10 12 14 16 18 20
R (fm) R (fm)

FIG. 6. As Fig. 4, except that the free energies are calculated F|G. 8. A comparison between two different methods of calcu-

using the MRE approximation. lating the surface free energy of massless quarks outside a gphere
“vacuum bubble”) of radiusR: (1) Multiple reflection expansion

by a curvature term proportional & whereas the sum over with the sign ofR reversed MRE(—R)] and (2) the concentric
states for massless particles behaveR3sthere are signifi-  spheres method with an outer radRis= 20 fm. WhenR< R,/2 the
cant quantitative differences even at large radii. At first sightwo methods vyield similar results. This suggests two thir@s:
this is surprising. The MRE should be a good approximationWhenR<R, the interactions at the outer surface are unimportant
since each of the terms in EQ2) is derived analytically and (B) MRE(— R) describes adequately the way the inner surface
(albeit in the limitkR>1). But the MRE is an approximation alters the density of states in the case of massless quarks. The
for the density of states, not for the free energy itself. Betemperature i =152 MeV.
cause the free energy is an integral over the density of states,
it “picks up” the wrong behavior of the MRE at low ener- energy barrier. The picture is therefore the following: When
gies, and “remembers” this error even at larger radii. This isthe temperature i$<T,, no stable droplets can form. Even
why the free energy calculated using the MRE is not in quanwhenT>T, there is an energy barrier to pass before stable
titative agreement with the correct free energy in Fig. 4, al-droplets of quark-gluon plasma can exist within the pion
though the MRE is a good approximation for the density ofphase. But once a droplet is creatéwm fluctuationg with
states in the limikR>1. radiusR>2 fm, it will expand unimpeded. The energy bar-

Looking at Fig. 7, we see that the main difference be-rier, of course, is due to the surface terms. The most impor-
tween the sum over states approach and the MRE approxiant quantitative difference between Figs. 4 and 6 is the
mation is due to the gluons. The gluon free energy beindieight of the energy barrier separating the two minim& at
positive for small R<1.5 fm) radii, corresponds to the den- =0 andR=<. The height of the barrier is related to the
sity of states being negative. This can also be seen directlyucleation rate, in this case the plasma formation rate when
from Egs.(22) and(26). Hence the gluon density of states in heating a hadron gas, e.g., in a heavy ion collision. Thus,
the MRE is not only wrong, it is unphysical at small radii. although generally small, the surface contribution to the free
This behavior is due to the way the MRE handles the surfacenergy has important implications.
corrections, namely, through Eq&R3)—(26). Taking more
terms (<1/R, «1/R?, etc) into account in Eq(22) might
cure this. We propose another resolution of the problem in
Sec. IV. This configuration is a vacuum bubble with hadrdns.,

A few words about the physics implied by Figs. 4 and 6.pions, in our modglinside, surrounded by plasma. In order

There are two minima, &=0 and atR=, separated by an t0 emphasize the essential points, we start by focusing on the
surface free energy of quarks and gluons, since this is the

B. Free energy of a hadron bubble in bulk plasma

" interesting, non-universal, part of the free energy.
4000 ba,
2000 | 4 tota 1. Surface free energy of a vacuum bubble
We shall compare results for this surface free energy as
% 0 calculated by the MRE{ R) conjecture and by the concen-
2 tric spheres method. We shall also compare with results ob-
T -2000 tained by the phase shift approach.
-4000 Figures 8, 9, and 10 show the surface free energy of mass-
less quarks, massive quarks, and gluons, respectively. We
-6000 show the results for just one temperatufes 152 MeV, but
the picture is qualitatively the same for other temperatures
0 1 2R (fm)3 4 3 (T=50,100,160 MeY. These figures show that the
MRE(— R) works quite well in the case of quarksassless
FIG. 7. The different contributions to Fig. 6 fdr=152 MeV. and massivg but less well for gluons. Thelopeof the gluon
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70000 —————————————————— —
60000 Concentric spheres method| - b 0 -
=
% 50000 | g 50t
S 40000 | >
[ ‘A
£ 30000 | g 100
5 ]
W 20000 '§ -150
10000 B
0 ‘ o & -200 |  Phase shift approach —
0 2 4 6 8 10 12 14 16 18 20 . MRE(-R) — .
R (fm) 0 1 2 3 4 5
kR
FIG. 9. Same as Fig. 8, but using a quark mass of 150 MeV. In
this case, the effect of the outer surface is not visible iid quite FIG. 11. The “reduced density of states’t(R)p(kR) of glu-
close to the outer surface &,=20 fm. Again, the MRE{(R) ons outside a vacuum bubble, calculated by the phase shift ap-
seems to be a satisfactory description. proach, and using the MRE(R). The phase shift method yields

the more correct resultf. Fig. 12. Note that this is the density of
MRE(—R) curve is correct, but there is an offset of aboutStates_ relative to a _situation with no vacuum bubbleps® in this
1000 MeV (see Fig. 10 This is because the MRE(R) for ~ C3S€ is not unphysical.
the density of states, although a good approximation at larg
values ofkR, is wrong at smalkR, and since the free energy
at a given large radius is an integral over the density of stat
also at small momenta, the bad behavior of the MRE] at

small kR affects the free energy even at large rddie re- S .
We thus conclude, that as an approximation of the density
e o s Bt A o ] SIS, e MRE ) for luons works wel a rge val
bply q S S ues ofkR, but is incorrect at smakR. We have only shown
pronounced. To support this picture we show in Fig. 11

. . ) . he gluon data, but a similar conclusion is valid for the
g?gz?é';%? f[)geth; quljtanltlljtg’:/sR)cg (Ilétﬁzat g dbg m?h??\/lfﬂ?(? !ty quarks, although the error at small radii is less important than
R kRg— _gg kR' 2, 64 q 3{) the ph : in the case of gluons. Further, we have argued that as far as
gzm )a’; “6?5&'?((33))% ccfn(tras)t o sbt’h:lrnfigur)és ine thFi)s asii_ the free energy is concerned, we should be even more careful
tion, Fig. 11 includes the volume contribution. Figure lZWhen applying the MRE( R), as the bad behavior of the

compares all three methods of calculating the surface freMRE(_R) at small radii manifests itself as an error in the

energy, here shown in the case of gluons. We expect thiree energy even at large radii. Finally, our results obtained

. . With the concentric spheres method are consistent with the
concentric spheres method to be a correct way of calculating

the free energy, as long as we stay in the regRreR,. The
agreement of the concentric spheres method and the phase
shift approach aR<6 fm in Fig. 12 suggests that both ap-
proaches are valid ways to calculate the surface free energy
and/or the density of states of quarks and gluons outside a
vacuum bubble, for the phase shift approach presumably at
any radius. Referring back to Fig. 11 it is therefore clear that

the MRE(—R) approach is inadequate at smiaR. This was

f be expected. First, the original MREbr positive radi) is
ederived in the limit of largekR, and second, we have seen
that the MRE is unphysical at small radii, so it is not surpris-
ing that also the MRE{ R) has problems in this regime.

0 =

-5000 1

-10000 ¢

-15000 | Phase shift method —
MRE(-R) -~

Concentric spheres method -
-10000 ¢ - 20000

Surface free energy (MeV)

0

2 4 6 8 10 12
20000 | MRE(-R) | R (fm)
| FIG. 12. Surface free energy of gluons outside a vacuum bubble
-30000 r . : . . .
Concentric spheres method of radiusR calculat_ed in the_three different ways described in j[he
-40000 | 4 text. The outer radius used in the concentric spheres methg is
=20 fm. The phase shift approach agrees with the concentric
-50000 r 1 spheres method fdR<6 fm, whereas the deviation between these
two methods aR>6 fm is due to the influence of the outer surface
0 2 4 6 é 1'0 1'2 1'4 1l6 1‘8 20 on the result of concentric spheres method. To emphasize the dif-
R (fm) ferences between the three methods, we have subtracted the volume
free energy from the phase shift results, so that only the surface
FIG. 10. Same as Fig. 8, but for gluons. The MRER) is not  contributions are shown in this figure. The temperatur&sl152
as good a description as in the case of the quarks. MeV.

Fsurface (MeV)

-60000
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6000 - T . . 120
100 |
4000 1 .
T=160 MeV g 80 ¢
—_ 2000 I ‘g 60 |
% 3
go/ 0 o E 40 t
= T=152 MeV “ a0
-2000 1
0
-4000 T=147 MeV 1 0 2 4 = 6 8 10
-6000 ' FIG. 14. Number of gluon states with energy less tkdan an
0 1 2 3 4 5

MIT bag of radiusR, calculated(i) directly, solving Eqs(54) and
R (fm) (55) (discontinuous line, true valupand(ii) by the MRE(continu-
FIG. 13. Free energy of a pion bubble surrounded by quark-ous I_ine, approximation Note that the MRE predicts a negative
. density of states at small values loR.
gluon plasma, normalized so that the free energy of a pure plasma
without pions is zero. Curves are shown for temperatures above al
below the transition temperatuig= 150 MeV. The surface contri-
butions from the quarks and gluons are calculated by the concentr
spheres method with an outer surfaceRgf=20 fm. The minimum

at R=1-2 fm shows that in this model, bubbles of pions of this A. Gluon droplet

radius will form even for temperatures aboVg. Similar results Previ ; ;
. . . ) eviously in this paper, we have shown how to calculate
vr;/]eertﬁo%btamed by Mardor and Svetitsky] using the phase shift exactly the free energy of Abelian gluons in an MIT bag.
' That was, however, a numerical computation. Analytic cal-

phase st o2, wichseems tobe an accurate wey CO%L0TS 1 e Enera. ol s e MEC, haie ko
to calculate the density of states of quark-gluon plasma outzPP : 9 9

X ons as we do, De Francid 6,17 finds for the difference
side a vacuum bubble. AF=F guons~ F giuons,mrein the limit of largeRT

r{%ese approximations to describe more correctly the density
f states of the configuration in question.

2. The total free energy

AF 5
Knowing the contribution from the surface to the free ?:_0-874_§|”(RT)+”"

energy of quarks and gluons outside the vacuum bubble, we

can easily calculate the total free energy of the whole conwhere the dots indicate terms of higher order®irj 2. (De
figuration: The volume contribution of the plasma is calcu-Francia gives such terms explicitly, but they are too small to
lated using Eq(20) with the smoothed density of stat€xl)  pe relevant in our analysisNote that Eq.(58) is calculated
inserted. The pion contribution is given by B&§2), and the  for one Abelian gauge field, and should thus be multiplied by
bag constant contributes a tefVqcp as always. Adding 8 in order to describe the gluon free energy.

these contributions we obtain the results in Fig. 13. The in-  The main problem with the MRE is that it predicts a nega-
teresting part of this figure is the minimum of the free energtive density of states at smaR where in reality there are no
at R=1-2 fm for temperatures well above the transitionstates, see Fig. 14. An error in the density of states at small
temperature. Mardor and Svetitsky] found a similar mini-  values ofkR is particularly severe, since here the statistical
mum in the free energy using the same model as described factor in the integrand of the free energy is large. In the
this paper, but calculating the free energy of the plasma uSollowing, we will show that using a reduced density of
ing the phase shift approach, whereas here we have appliegates of the form

the concentric spheres method.

(58)

0, OskR<A,
a
IV. CORRECTIONS TO THE MRE ﬁPA(kR): z(kR)Z_ 4_1 R A (59)
We have seen that the MRE and the MRER) for glu- 3 3’ -

ons as it stands in Eq&22), (25), and(26) have problems at

small values okR, leading to errors in the free energy even cures most of the problems of the MRE. We shall refer to
at large radii. Although we have numerical methods to calthis density of statep, as the MMRE(modified MRB,
culate correctly the free energy both in the plasma droplesince it consists of the usual MRE contributions kiR= A,
case and in the vacuum bubble case, we would like to be ableut is truncated belovkR=A. When we are in a regime
to use some MRE approximation to gain physical insightwhereRT>1, we can find an approximate analytical expres-
and for practical computations because the direct methodsion for the correctiodF =F g,ons mmre~ F gluonsmreto the
are numerically demanding. In this section, we investigatdree energy induced by using, instead ofp as the density
how to modify the MRE and the MRE{R), in order for  of states of gluons:
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I i ——— s
40 | Phase shift approach -
-20 § 35t MRE(-R) -~ )
0 2 ol MMRE(-R) ——
S 60 £y
§ £ 20 }
2 -80 | 3 15 |
o0 \ g
- -100 I Sum over states \ 7 10 ¢
: \ =
120 | Modified ﬁg ....... § St
-140 Sy _(5’ [~
-160 L * -10 L s . N N " L L .
0 0.5 1 1.5 2 2.5 3 0 02040608 1 1.2141618 2
RT RT

FIG. 15. Gluon contribution to the free energy units of the FIG. 16. The free energy of gluons outside a vacuum bubble of
temperaturel) of a plasma droplet of radi, as a function of the  radiusR (normalized to the temperatufi® calculated in three dif-
dimensionless paramet®T. The unphysical behavior of the usual ferent waysi(1) By the phase shift approach, which we consider an
MRE [Egs.(22), (25), and(26)] at small radii causes the free en- accurate procedure(?) by the MRE(R), and (3) using the
ergy to deviate from the true free ener(palculated by summing  MMRE(—R).
over energy leve)seven at large radii. Using the modified MRE,

Pos3z IN Eg. (20) makes the free energy agree remarkably well

with the true free energy. AF vac=T[5.454+ 3 In(RT)]. (63)

As in the gluon droplet case, we can advise a modification of

AF In(A iAg,_ iA B iA3+ iA the MRE(— R), which works very well. Specifically, we pro-
T n(A) 9 3 27T 37 pose the following: The reduced density of states of gluons
4 ) outside a vacuum bubble, is
3
+In(RT|3-A—g-A ) (60) 0, 0<kR<0.458,
a
—pdkR={ 2 4 (64)
We can fix the value ofA by matching the coefficient of R™ ™ - §(kR)2+ 3+ kR=0458,

In(RT) to the analytical result of De Francia, i.e., solving
16 (2/9m)A®— (4/37)A]=—5, which hasA =0.832 as the

_ whereR>0 is the radius of the vacuum bubble. We refer to
relevant solution, and the free ener@0) becomes

this density of states as the MMRER). The value ofkR
A =0.458 where we cut the MRE(R) is fixed by the same
S 6.352-5In(RT). 61) procedure as in the gluon droplet case. The differehEe

T =F gluons MMRECR) ~ F gluons,Mre( R) IS then

The fact that 6.352 8% 0.874 shows the consistency of the AF=T[5.417 3In(RT)], (65)
rocedure, cf. Eq(58). ) ,

P In Fig. 15 weq(coinpare the proposé9) with a direct showing the consistency of the _procedLmé Eq.(63)]. The

calculation(summing over energy levelsf the free energy. fact that we should gut the density of statekBt=0.458 and

Also shown is the free energy calculated using the usudl®t KR=0.832 as in the gluon droplet case, reflects the

MRE. asymmetry between the gluon droplet and the vacuum

bubble configurations.

In Fig. 16 we compare the different methods of calculat-
ing the free energy of gluons outside a vacuum bubble. The
Balian and Duplantief18] have calculated the Casimir simple MMRE(—R) suggestion is in nice agreement with
energy of a perfectly conducting spherical shell. They findthe phase shift approach, whi@hased on our calculations in
[in the largeR T limit, and again not quoting terms of higher the previous sectionsve consider the most accurate way of

order in RT) 1] calculating the free energy.

B. Vacuum bubble

AF  0.769 In(RT) V. CONCLUSION
T4 1 (62

This paper had a twofold purpose. First we introduced the

_ concentric spheres method as a way to calculate the free
In our language, 8F is the sum of(i) the surface free en- energy of quark-gluon plasma outside a pion bubble, con-
ergy of gluons inside an MIT bag ard) the surface free firming the peculiar results of Mardor and Svetit§ky that,
energy of gluons outside a vacuum bubble. Using this andvithin the MIT bag model, this free energy has a minimum
De Francia’s calculatiofb8), we can deduce the corrections at nonzero radius even well above the transition temperature.
to the MRE(-R). We obtain, for the difference\F .. Second, we have shown that terms beyond volume, sur-
=F giuons,corrected F gluons MRECR) » face, and curvature are necessary in order to reproduce the
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free energy of plasma droplets and vacuum bubbles withisituations of finite chemical potential, such calculations be-
the multiple reflection expansion, especially for the gluoning relevant to a wider range of applications including, e.g.,
contributions. We have discussed the reasons for this, angeutron stars.

based on previous calculatiof6,18, we extracted correc-

tion terms to the_ free energy, \_/vhlch can be u_nderstood from ACKNOWLEDGMENTS

a physically motivated truncation of the density of states.
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