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Free energy of bubbles and droplets in the quark-hadron phase transition

Gregers Neergaard and Jes Madsen
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Århus C, Denmark

~Received 8 March 1999; published 28 July 1999!

Using the MIT bag model, we calculate the free energy of droplets of a quark-gluon plasma in a bulk
hadronic medium, and of hadronic bubbles in a bulk quark-gluon plasma, under the assumption of vanishing
chemical potentials. We investigate the validity of the multiple reflection expansion approximation, and we
devise a novel procedure for calculating finite-size corrections to the free energy of hadronic bubbles in a bulk
quark-gluon plasma. While our results agree largely with earlier calculations, we show that the usual multiple
reflection expansion should be used with caution, and we propose a modification of the multiple reflection
expansion, which makes this approximation agree nicely with direct numerical calculations. The results should
be of relevance in connection with the cosmological quark-hadron transition as well as for ultrarelativistic
heavy ion collisions.@S0556-2821~99!03815-1#

PACS number~s!: 12.38.Mh, 12.39.Ba, 98.80.Cq
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I. INTRODUCTION

The quark-hadron phase transition is of significant inter
in connection with ultrarelativistic heavy ion collision ex
periments, the interior of neutron stars, and the evolution
the early Universe. A calculation from first principles usin
QCD is at present impossible, but lattice-QCD studies h
shed some light on the transition, for instance, demonstra
that the transition is apparently first order for pure glu
whereas the order for physical QCD is still a matter of
vestigation.

Awaiting more definite answers to come from such inv
tigations, numerous studies have been performed using
nomenological models in order to gain insight into the ph
ics of the transition. Many such studies have used the M
bag model, which in a relatively simple manner incorpora
confinement in terms of a set of boundary conditions
quarks and gluons.

A very interesting result of a detailed study within th
MIT bag model was presented by Mardor and Svetitsky@1#,
who considered the zero chemical potential case of releva
for the cosmological quark-hadron transition. For a drop
of quark-gluon plasma within a bulk medium of pions,
direct numerical calculation of the partition sum using qua
and gluon energy levels led to a behavior of free energy
function of radiusF(R) as expected for a first order trans
tion, namely, a minimum ofF for R50 whenT is below the
transition temperatureT0 and an energy barrier forR of order
a few fm separating a local minimum atR50 from the true
minimum ~diverging negative energy! for R˜`.

To treat the ‘‘inverse’’ problem of a vacuum~hadron!
bubble within a bulk phase of a quark-gluon plasma,
authors employed a phase shift formula to calculate
changes in quark and gluon density of states stemming f
the presence of the hadron bubble; again calculating the
tribution to the free energy by a direct numerical integratio
In this case, a peculiar feature was observed, namely,
F(R) had a negative minimum for radii of 1–2 fm, even f
T.T0, apparently indicating an instability of the quar
gluon plasma aboveT0, since there was no energy barrier
prevent formation of hadron bubbles.
0556-2821/99/60~5!/054011~12!/$15.00 60 0540
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An interpretation of the result was put forward in terms
an expansion of the free energy in terms of volume, surfa
and curvature contributions:

F~R!5DP
4

3
pR31s4pR21a8pR1•••. ~1!

Here R is the radius of the droplet or bubble,DP is the
pressure difference between quark and hadron phases~with
DP50 defining the transition temperatureT0), s is the sur-
face tension, anda the curvature coefficient, where volum
surface, and curvature terms can be calculated from
smoothed quark and gluon densities of state within the M
bag model~see below!. The results of Ref.@1# were appar-
ently well reproduced under the assumption that a vacu
bubble behaves as a plasma droplet turned inside out, so
the radius changes sign. This leaves the area term
changed, but volume and curvature terms change sign. O
R is defined to be positive in the expression above, thens is
unchanged, but pressure difference as well as curvature
efficient changes sign when going from the case of a plas
droplet to that of a vacuum bubble. The fact that the cur
ture contributions from massless quarks and gluons are
large compared to the surface contributions coming o
from the massives quarks, could explain that an energy ba
rier for the plasma droplet could turn into an energy mi
mum in the reverse case of a hadron bubble.

The authors of Ref.@1# were careful to point out a numbe
of reasons to be cautious about the result. First of all that
MIT bag model is clearly just a phenomenological mod
and also that the radii of relevance for the interesting bubb
and droplets were perhaps too small to justify the ideal
approximations. But if the result was of a physical nature
did have important implications for the understanding of t
quark-hadron transition@1–4#. And the procedure of
R˜2R gave a simple recipe for treating other situation
such as quark-hadron mixed phases in neutron stars. S
consequences, however, were rather strange. For instan
apparently pays energetically to fill a strangelet with vacu
bubbles, so that it looks more similar to a Swiss cheese t
a uniform mixture of quarks@5#.
©1999 The American Physical Society11-1
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GREGERS NEERGAARD AND JES MADSEN PHYSICAL REVIEW D60 054011
The aim of the present paper is to compare several dif
ent calculations of the free energy of a vacuum bubble e
bedded in quark-gluon plasma as well as a quark-gl
plasma droplet within a bulk phase of hadrons. For
plasma droplet we focus on a direct sum over states c
pared with a multiple reflection expansion, showing th
terms beyond volume, surface, and curvature in the free
ergy are necessary to avoid unphysical behavior for sm
radii. We demonstrate how the next important contributio
to F @proportional toT ln(RT) and T] arise naturally if the
density of states is truncated below some value ofkR ~where
k denotes momentum! instead of integrating over unphysica
negative values for the density of states all the way fromk
50. For the vacuum bubble we confirm the results of
phase shift approach of Ref.@1# by comparing to a more
direct sum over states approach introduced below, which
refer to as theconcentric spheres method. Again we show
how an improvement of the multiple reflection expansi
leads to correction terms inF, such terms arising naturall
from a truncation of the density of states.

The general framework and basic equations are descr
in Sec. II. In Sec. III we present our numerical resul
largely confirming the calculations of Ref.@1#. Our results
show how and why the usual version of the multiple refle
tion expansion is not always accurate. In Sec. IV we sh
how further terms in the analytical expansion of the fr
energy proposed in the literature improves the agreem
with the numerical results, and we show how a physica
motivated truncation of the density of states from the m
tiple reflection expansion resolves most of the problems
countered in Sec. III. Section V contains our conclusions

II. THEORETICAL FRAMEWORK

In this section, we give the basic equations needed fo
analysis of the quark-hadron phase transition within the M
bag model. We consider the case of zero chemical pote
which is of particular relevance to the cosmological qua
hadron transition, but also of interest for ultrarelativis
heavy ion collisions. The quark-gluon plasma is taken
consist of three quark flavors (u, d, ands), the correspond-
ing antiquarks, and eight noninteracting gluons, these
ticles being described by the MIT bag model presented
low. The hadron phase is considered a mixture of the th
pionsp0,p6, since all other~much heavier! hadrons contrib-
ute only insignificantly to the free energy. Further, we sh
assume that the pions contribute volume terms only~see Sec.
II B !. We have takenmu5md50, ms5150 MeV, andmp

5138 MeV.

A. The MIT bag model

The MIT bag model@6,7# is defined by the Lagrangian

L5E
V

d3x~LQCD2B!. ~2!

LQCD is the usual QCD Lagrangian density, andL50 out-
side the bag.V is the bag volume.B.0 is a phenomeno
logical parameter, the bag constant, which models the dif
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ence in energy density between the perturbative vacu
inside the bag and the nonperturbative QCD vacuum out
the bag. Requiring the actionW5* t1

t2dtL to be stationary

with respect to variations of the fields yields the equations
motion.

At the surface of the bag, the fields are taken to sati
boundary conditions which correspond to the fields be
confined inside the bag volume. We neglect gluon-excha
interactions.

The equations of motion for the fields become the Dir
equation for the quark fields and the source-free Maxw
equations for the gluon fields. The complete set of equati
governing the behavior of the fields, including the bounda
conditions, is

~ igm]m2m!C~x!50, xWPV, ~3!

]mFmn~x!50, xWPV, ~4!

inmgmC~x!5C~x!, xWP]V, ~5!

nmFmn~x!50, xWP]V, ~6!

in the following notation:x5(x0,xW ) is a space-time four-
vector,]V is the surface of the bag volumeV, for xWP]V

we definenm(x)5(0,2xW /uxW u) as an inward-directed unit
normal three-vector to the surface of the bag,C(x) is the
quark-spinor@there will be one for each quark flavor (u, d,
s, . . . ) and one foreach of the three color states of a quar#,
and Fmn(x)5]mAn(x)2]nAm(x) is the ~noninteracting!
gluon field ~there are eight copies of this field!.

We fix the bag constant by demanding bulk pressure b
ance at the transition temperature. Somewhat symbolic
the bag constant is thus determined by the equation

B5 lim
V˜`

H 2
]Fquarks

]V
2

]Fgluons

]V
1

]Fpions

]V J
T5T0

, ~7!

F being the free energy. In the following, we shall set t
transition temperature toT05150 MeV, thus fixing the bag
constantB5312.6 MeV/fm35(221.4 MeV)4.

We can immediately write down the expression for t
gluon field, since this is just the solution to the source-fr
Maxwell equations. Expressing the gluon field in terms
color-electric and color-magnetic fields, writingAm(x)

5@V(x),AW (x)#, ¹3AW 5BW (x), and 2¹V(x)2]AW (x)/]x0

5EW (x), there are two sets of solutions to Eq.~4!, labeled
TM and TE ~the l 50 fields are absent since forl 50, the

only solution to the source-free Maxwell equations isBW 00

5EW 0050 @8#!:

$BW lm
TMe2xmkm,EW lm

TMe2xmkm%m52 l ,2 l 11, . . . ,l
l 51,2, . . . , ~8!

$BW lm
TEe2xmkm,EW lm

TEe2xmkm%m52 l ,2 l 11, . . . ,l
l 51,2, . . . , ~9!

where
1-2
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BW lm
TM52 i f l~kr !xW3@¹Ylm~u,f!# ~10!

2 i¹3@xW f l~kr !Ylm~u,f!#, ~11!

EW lm
TM5

i

k
¹3BW lm

TM~x! ~12!

5
1

k
¹3¹3@xW f l~kr !Ylm~u,f!#, ~13!

EW lm
TE52 i f l~kr !xW3@¹Ylm~u,f!# ~14!

52 i¹3@xW f l~kr !Ylm~u,f!#, ~15!

BW lm
TE52

i

k
¹3EW lm

TE~x! ~16!

52
1

k
¹3¹3@xW f l~kr !Ylm~u,f!#,

~17!

Ylm(u,f) are the usual spherical harmonics,f l(z)5a j l(z)
1bnl(z), the spherical Bessel-functionsj l(z) andnl(z) be-
ing the two linearly independent solutions of the equation

z2g9~z!12zg8~z!1@z22 l ~ l 11!#g~z!50,

r 5uxW u, andkm5(ukW u,kW ). The constantsa andb appearing in
the functionf l , and the possible values ofk, must be fixed
from the boundary conditions~6!. Expressed in terms of th

fields EW andBW , these boundary conditions read

xW•EW 5xW3BW 50, xWP]V. ~18!

Extension of the MIT bag model.The MIT bag is a finite
region of space~-time! to which quarks and gluons are co
fined by boundary conditions~5!,~6! corresponding to no flux
of plasma out of the droplet. We shall refer to this config
ration as a plasma droplet. However, in the following w
shall also use the MIT bag model in a slightly different wa
namely, the case where quarks and gluons are keptoutsidea

FIG. 1. Left: A plasma droplet with nonperturbative vacuu
outside; this is essentially an MIT bag. Right: A vacuum bub
surrounded by plasma, the boundary conditions being those o
MIT bag, but corresponding to no flux of plasmainto the bubble.
The phase outside a droplet or bubble extends to infinity.
05401
-
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finite region of space, see Fig. 1. The equations describ
the quarks and gluons in the second configuration,
‘‘vacuum bubble,’’ are still Eqs.~3!–~6!, but now using
nm(x)5(0,xW /uxW u) in the boundary conditions.

B. Thermodynamical relations

For a system of noninteracting fermions~upper sign! or
bosons~lower sign! we can calculate the free energy for ea
particle degree of freedom as

F~T,V!57T(
i 51

`

ln~16e2Ei (V)/T!, ~19!

whereEi(V)5Am21ki
2(V). In the continuum case we hav

F~T,V!57TE d3kr̃~kW ,V!ln~16e2Am21k2/T!, ~20!

r̃(kW ,V) being the density of states, defined such th

r̃(kW ,V)d3k is the number of states in the volumeV with

momentum ind3k aroundkW . The importance of the free en
ergy stems from the fact that the configuration realized
nature is characterized by a minimum in this free energy

In the following we shall speak of the volume part res
the surface part of the free energy. In the case of nonin
acting Dirac particles and noninteracting gluons~these are
just Maxwell fields! which are the particle species relevant
us, the density of statesr̃ in any sufficiently large volumeV
contains a term proportional to the volume. In fact,1

r̃~V˜`!.gi

V

8p3
~21!

independent of which particle species we consider. The
fore, also the free energy will contain a term proportional
the volume of the system. We name this term thevolume free
energy. The total free energy beingF tot , we can writeF tot
5 f volV1Fsur, whereFsur/V˜0 asV˜`, and f vol does not
depend on the volume. We shall callFsur the surface part of
the free energy, or simply thesurface free energy.

C. The multiple reflection expansion, MRE

The multiple reflection expansion~MRE! is an approxi-
mation for the density of states, also commonly referred to
the asymptotic expansion of the density of states. Since
only consider systems with spherical symmetry, we defi
the spherically symmetric density of statesr(k,V)

[4pk2r̃(kW ,V). Consider a spherical volumeV5(4p/3)R3

of quarks and gluons, described by the bag model. The M
for this system, as a sum of volume, area, and curva
contributions, valid for sufficiently large volumes, is

1gi accounts for spin~helicity! degeneracy.

he
1-3
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r i~k,V!5
Vk2

2p2
1 f A,i~k/m!k4pR2

1 f C,i~k/m!8pR1•••, i 5q,g, ~22!

where

f A,q~k/m!52
1

8p S 12
2

p
arctan~k/m! D , ~23!

f C,q~k/m!5
1

12p2 F12
3k

2m S p

2
2arctan~k/m! D G , ~24!

f A,g50, ~25!

f C,g52
1

6p2
. ~26!

Here,A stands for area,C for curvature, and indicesq andg
denote quarks and gluons. Note that limm˜0f C,q(k/m)
521/24p2, and that limm˜0f A,q(k/m)50.

The MRE was developed by Balian and Bloch@9#, and
the above expressions for the area and curvature terms
appeared in the literature. The area term for quarks is gi
~though not derived! in Ref. @10#. The curvature term for
massless quarks seems to appear explicitly for the first t
in Ref. @11#, whereas the full expression~24! for massive
quarks is introduced in Ref.@12#. The gluon expressions
valid for noninteracting gluons, is calculated in Ref.@13#.

As indicated by the dots in Eq.~22!, the expression for
r i(k,V) should in principle contain terms proportional
1/R, 1/R2, etc., but as these terms become small in the li
of largeR, and since the MRE is an approximation valid f
large systems, these terms are usually neglected. Howe
we shall see in the following that the MRE as it stands in E
~22! is not only inaccurate, but also unphysical at small ra
having negative density of states. Further, we shall ar
that, when used in calculations of the free energy, the M
~22! containing only area and curvature terms leads to er
even at larger radii, where the MRE itselfis a good approxi-
mation to the density of states. We also suggest a solutio
these problems.

Everywhere in the following, unless explicitly stated, re
erence to the MRE means the approximation~22! to the den-
sity of stateswithout further correction terms such as 1/R,
1/R2.

D. The inverse multiple reflection expansion, MRE„2R…

Because of the ‘‘symmetry’’ between the two situatio
~i! quark-gluon plasma confined by MIT bag boundary co
ditions within a sphere of radiusR ~a ‘‘plasma droplet’’! and
~ii ! quark-gluon plasma kept outside a sphere of radiusR by
MIT bag boundary conditions~a ‘‘vacuum bubble’’!, it has
been argued@1# that there should exist a simple relation b
tween the density of states in the two cases, i.e., that
density of states of quarks and gluons in the case o
vacuum bubble can be found from the expressions~22!–~26!
05401
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for a plasma bubble by simply inverting the sign ofR. We
shall refer to this hypothesis as the MRE(2R). Since the
MRE(2R) is derived from the MRE, we expect th
MRE(2R) to have problems related to those of the MR
mentioned in the previous section.

E. The phase shift approach

In this section we briefly describe the phase shift a
proach to calculating the free energy of a vacuum bubb
The phase shift formula~27! was introduced in this contex
by Mardor and Svetitsky@1#. The phase shift approach i
based on a relation between the density of states and
scattering phase shifts:2

Dr l~k!5
1

p

dd l~k!

dk
. ~27!

For a derivation of this relation in the nonrelativistic cas
see, e.g., Ref.@14#. Here,Dr l is the change in the density o
states~at a given angular momentum! induced by the scat-
terer.

In order to use this phase shift approach to calculate
free energy, we need the scattering phase shifts for qu
and gluons. These are derived from the defining equati
~3! and~5! for the quarks, and from Eqs.~8!, ~9!, and~18! for
the gluons. The phase shift for thej component of the quark
field ( j 51/2,3/2, . . . , istotal angular momentum! is the sum
of two components

d j~k!5d j
l 5 j 21/2~k!1d j

l 5 j 11/2~k!, ~28!

where, for a surface of radiusR,

d j
l 5 j 71/2~k!5arctanS j l~kR!6@k/~E1mq!# j l 61~kR!

nl~kR!6@k/~E1mq!#nl 61~kR! D ,

~29!

and E5Amq
21k2, q5u,d,s. The phase shift for the gluon

field also consists of two parts,d l
TM(k) andd l

TE(k), where

d l
TE~k!5arctanS ~d/dr !@r j l~kr !#

~d/dr !@rnl~kr !# D
r 5R

~30!

5arctanS j l~kR!~11 l !2kR jl 11~kR!

nl~kR!~11 l !2kRnl 11~kR! D , ~31!

and

d l
TM~k!5arctanS j l~kR!

nl~kR! D , ~32!

2In the case of spherical symmetry, the phase shiftsd l(k) are
defined such that the effect of the scatterer is to change the sp
part of the wave function far away from the scatterer for a giv
angular momentuml from }(1/kr)sin(kr2lp/2) to }(1/kr)sin@kr
2lp/21d l(k)#.
1-4



si

n
e

th

c-
i

sh
l
on
o

e
d

h

t

e

s a
rgy

late
nd
the
of

hat

ere

here.
MIT
ross

the
e

FREE ENERGY OF BUBBLES AND DROPLETS IN THE . . . PHYSICAL REVIEW D 60 054011
again for a surface of radiusR. l 51,2, . . . , labels orbital
angular momentum, and here, as opposed to the quark
ation, it is a good quantum number.

Knowing the phase shifts, the contribution to the free e
ergy from the quarks and gluons outside a vacuum bubbl
radiusR is calculated using Eq.~20!, so that

Fi~T,R!57gi

T

pE0

`

dk
dd i~k,R!

dk
ln~16e2E(k)/T!.

~33!

The labeli stands for different particle types~quarks, gluons!
andangular momentum. Again, the upper sign applies to
fermions~quarks!, lower sign to bosons~gluons!. The appro-
priate degeneracy factors aregquark56 andggluon58.

We make two remarks about the formulas~27! and ~33!.
~i! The free energy~33! includes the contribution from the
excluded volume.~ii ! When the phase shifts contain fun
tions with multiple branches, such as the arctan function
our case, we choose the branch which makes the phase
continuous functions of the energy.~In the case of potentia
scattering where the potential obeys certain integrability c
ditions, one can prove that the phase shifts are continu
functions of the energy@15#.!

The free energy in the limit RT̃ 0. By expanding the
Bessel-functions appearing in Eqs.~29!, ~31!, and~32! as

j l~x!5 (
k50

`

ak~ l !xl 12k ~34!

and

nl~x!5 (
k50

`

bk~ l !x2k2 l 21 ~35!

~valid for l .0) and keeping only the lowest order terms, w
obtain via Eq.~33! the following analytical expressions vali
for RT!1 for the surface free energy of~one flavor of!
massless quarks~index j and l means that we consider eac
angular momentum component separately!:

FS,q
j ~RT!

T
.212

~2 j 11!~22 j 1221!p2 j 12

~2 j 13!
aq~ j !

3~RT!2 j 12Bj 13/2 ~36!

and for the eight gluons

FS,g
l ~RT!

T
.28

~2l 11!~2p!2l 11

2l 12
ag~ l !~RT!2l 11Bl 11 ,

~37!

where

aq~ j !5
a0~ j 11/2!b0~ j 11/2!2a0~ j 21/2!b0~ j 21/2!

b0
2~ j 11/2!

,

~38!
05401
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ag~ l !5
a0~ l !

b0~ l !
1

a0~ l !~ l 11!

b0~ l !~ l 11!2b0~ l 11!
, ~39!

and

ak~ l !5
~21!k

2kk!13335•••~2l 12k11!
, ~40!

bk~ l !5~21!k11
13335•••~2l 21!

2kk! ~122l !~322l !•••~2k2122l !
.

~41!

@The factors (122l )(322l )••• in the denominator of Eq.
~41! appear only when 2k21>1.# TheBn appearing in Eqs.
~36! and ~37! are the Bernoulli numbers, defined by

x

ex21
512

x

2
1B1

x2

2!
2B2

x4

4!
1B3

x6

6!
2••• ~42!

the first few of these being

B151/6, B251/30, B351/42, B451/30. ~43!

On the basis of Eqs.~36! and~37!, we conclude that the firs
energy term of importance forR˜0 is proportional toR3;
no terms proportional toR or R2 appear in this limit. This is
in contrast to the MRE~2R! conjecture, where a curvatur
term proportional toR dominates forR˜0. The difference is
clearly demonstrated in the figures in the next section a
difference between zero and finite slope of the free ene
for R˜0.

F. The concentric spheres method

The concentric spheres method is a new way to calcu
the surface contribution to the free energy of quarks a
gluons outside a vacuum bubble. The idea is to extract
contribution from the inner surface to the total free energy
the concentric spheres configuration in Fig. 2. Assuming t

FIG. 2. The concentric spheres configuration: The inner sph
has radiusR1, the outer sphere has radiusR2. There is nonpertur-
bative vacuum inside the inner sphere and outside the outer sp
Quark-gluon plasma is confined between the two spheres by
bag boundary conditions corresponding to no flux of plasma ac
the spheres. At the outer sphere the boundary conditions are
usual MIT bag conditions~5!,~6!, but at the inner sphere we us

nm(x)ur 5R1
52nm(x)ur 5R2

5(0,xW /uxW u).
1-5
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the splitting of the free energy in volume and surface con
butions is valid, we can extract the free energy contribut
from the inner surface~see Fig. 3! from a calculation of the
total free energy of particles contained between two conc
tric spheres as

Fsurface~R1!5F total~R1 ,R2!1Fvolume~R1!2F total~R2!,
~44!

whereF total(R1 ,R2) is the total free energy~including both
surface contributions! of the particles contained between th
spheres with radiiR1 and R2 , Fvolume(R1) is the volume
contribution to the free energy of the particles in a sphere
radiusR1, andF total(R2) is the total free energy~including
surface contribution! of the particles in a sphere of radiusR2.
It is precisely Fsurface(R1), the surface free energy of th
particles outside a sphere, that we are interested in. Here
termsF total(R1 ,R2) andF total(R2) are calculated directly by
summation over energy levels, whereasFvolume(R1) is calcu-
lated from the MRE~using a positive radius!. Explicitly, the
term F total(R1 ,R2) in the case of quarks of massmq is

Fquarks~R1 ,R2!526T (
j 51/2,3/2

`

~2 j 11! (
l 5 j 61/2

(
n

ln~1

1e2Ejln /T!, Ejln5Akjln
2 1mq

2, ~45!

wherekj ,l 5 j 61/2,n is thenth solution of the equation

@a~k! j l 21~kR1!2 j l~kR1!#@a~k!nl 21~kR2!1nl~kR2!#

2@a~k! j l 21~kR2!1 j l~kR2!#

3@a~k!nl 21~kR1!2nl~kR1!#50 ~46!

for l 5 j 11/2, and

@a~k!nl 11~kR1!1nl~kR1!#@ j l~kR2!2a~k! j l 11~kR2!#

1@a~k!nl 11~kR2!2nl~kR2!#

3@a~k! j l 11~kR1!1 j l~kR1!#50 ~47!

for l 5 j 21/2, with a(k)5k/Ak21mq
21mq. In the case of

gluons, the termF total(R1 ,R2) is

FIG. 3. How to extract the surface free energy in the concen
spheres method: Shaded areas are plasma, white areas are n
turbative vacuum. Contributions to free energy~left to right!:
F total(R1 ,R2), F total(R2), Fvolume(R1), and Fsurface(R1).
F total(R1 ,R2) andF total(R2) are calculated by summation over e
ergy levels of the particles in the relevant configuration.Fvolume(R1)
is only the volume free energy of particles occupying a volum
(4p/3)R1

3. The purpose is to calculate the contribution to the fr
energy from the inner surface,Fsurface(R1), and this can be done a
in Eq. ~44!.
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Fgluons~R1 ,R2!58T(
l 51

`

~2l 11!

3 (
a5TM,TE

(
n

ln~12e2kl ,n
a /T!, ~48!

wherekl ,n
a is thenth solution of the equation

j l~kR2!nl~kR1!2 j l~kR1!nl~kR2!50 ~49!

for the TM gluons, and

~ l 11!2$ j l~kR1!nl~kR2!2 j l~kR2!nl~kR1!%

1~ l 11!kR1$ j l~kR2!nl 11~kR1!2 j l 11~kR1!nl~kR2!%

1~ l 11!kR2$ j l 11~kR2!nl~kR1!2 j l~kR1!nl 11~kR2!%

1kR1kR2$ j l 11~kR1!nl 11~kR2!

2 j l 11~kR2!nl 11~kR1!%50, ~50!

for the TE gluons. The termF total(R2) is just the free energy
of a quark or gluon droplet, so this is calculated using E
~53!–~57!. Finally, the volume termFvolume(R1) is

Fvolume~R1!57giTE
0

`

dk
Vk2

2p2
ln~16e2E(k)/T!, i 5q,g,

~51!

whereV5(4p/3)R1
3, gq512 for each flavor andgg516.

Formally, the splitting in surface and volume terms
appropriate only whenR22R1˜`. However, calculations
for 10 fm,R2,20 fm suggest that the concentric spher
method yields the correct free energy contribution from
inner surface up toR1.R2/2.

III. NUMERICAL RESULTS

We are now going to use the different techniques
scribed in the previous section to calculate the free energ
~i! a plasma droplet in a bulk hadronic medium and~ii ! a
hadron bubble in a bulk plasma. In both cases we norma
the free energy such that it is zero when there is no drop
respectively, bubble, i.e., we calculate the free energy r
tive to an infinite hadron, respectively, plasma phase. In
adopted model, we have the following contributions to t
free energy: Quarks (u, d, ands, and their antiquarks!, glu-
ons, the bag contributionBVQGP, whereVQGP is the plasma
volume, and the contribution from the three pions@using Eq.
~20! with rp(k,V)53(Vk2/2p2) andm5mp , this is

Fp~T,Vp!5
3TVp

2p2 E0

`

dkk2 ln~12e2Amp
2

1k2/T!, ~52!

whereVp is the pion volume#. The bag and pion contribu
tions are thus simple and universal, the interesting part of
free energy is the quark and gluon contributions.

ic
per-
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FREE ENERGY OF BUBBLES AND DROPLETS IN THE . . . PHYSICAL REVIEW D 60 054011
A. Free energy of a plasma droplet in a bulk hadronic
medium

The plasma droplet is an MIT bag with pions around it,
the calculation of the free energy is straightforward, i.e.,
can calculate the energy levels of quarks and gluons in
bag, and perform the partition sum~19! directly. This, of
course, gives the true free energy.

We can also use the MRE~22! to calculate the free energ
~20!. This way, two approximations are involved:~1! The
spectrum is discrete, but the MRE treats the energy level
continuous and~2! we have discarded terms of the form 1/R,
1/R2, etc., in Eq.~22!. Since we are considering the hig
temperature case, the first approximation is well justifi
The low (E,T) energy levels, where the level spacing
large, do not contribute significantly to the free energ
whereas the main contribution to the true free energy~19!
comes from the higher levels where the spacing is sm
Thus, any difference in the free energy between a direct
culation and the MRE approximation is a measure of
importance of the neglected terms in Eq.~22! and/or the
choice of truncation discussed in Sec. IV.

1. Direct calculation

In this case, we need to solve the set of equations~3!–~6!,
and then perform the sum~19! over these levels. We thu
obtain the following equations~to be solved numerically! for
the quarks (l 5 j 61/2):

j l~kR!56
k

E1mq
j l 61~kR!, E5Ak21mq

2. ~53!

For theTM gluons

j l~kR!50 ~54!

and for theTE gluons

j l~kR!~ l 11!5kR jl 11~kR!. ~55!

These equations provide a series of solutions, that we l
Ejln for the quarks andkln

a , a5TM,TE for the gluons.
The contribution to the free energy from quarks and gluo
are then

Fq~T,R!526T (
j 51/2,3/2,..

`

~2 j 11!

3 (
l 5 j 61/2

(
n

ln~11e2Ejln /T! ~56!

and

Fg~T,R!58T(
l 51

`

~2l 11! (
a5TM,TE

(
n

ln~12e2kln
a /T!,

~57!

respectively. Note that when dealing with each angular m
mentum component separately, the degeneracy factorgi
05401
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only account for the degeneracy due to color and partic
antiparticle, so we havegq56 for each quark flavor andgg
58 for the gluons.

We imagine a spherical plasma droplet of volumeVQGP
5(4p/3)R3 embedded in a large volume of pions, the to
volume of this system beingV` . The pions therefore inhabi
a volumeVp5V`2VQGP. Since we calculate the free en
ergy relative to a system with no plasma droplet, and pio
in the whole volumeV` , the effective pion volume in Eq
~52! is 2VQGP. Summing all the contributions we obtai
Fig. 4. In Fig. 5 we show the different contributions to Fig.
We shall comment on these figures later.

2. Using the MRE

Now let us see how the MRE approximation handles
plasma droplet. The difference from the sum over sta
method lies entirely in the calculation of the quark and glu
contributions. The pion and bag contributions are the sa
as before. Now, we use Eq.~20! for the quarks and the glu
ons with the MRE density of states~22!. The result is shown
in Fig. 6. Figure 7 shows the different contributions forT
5152 MeV.

3. Comparison

Comparing Figs. 4 and 6 we see that although they ag
qualitatively~except forR˜0, where the MRE is dominated

FIG. 4. Total free energy~calculated directly by summation
over states! of a quark-gluon plasma droplet of radiusR surrounded
by pions. The phase transition temperature is set toT05150 MeV.
Results are shown for several temperatures aroundT0.

FIG. 5. Different contributions to Fig. 4 forT5152 MeV.
1-7
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GREGERS NEERGAARD AND JES MADSEN PHYSICAL REVIEW D60 054011
by a curvature term proportional toR, whereas the sum ove
states for massless particles behaves asR3), there are signifi-
cant quantitative differences even at large radii. At first si
this is surprising. The MRE should be a good approximati
since each of the terms in Eq.~22! is derived analytically
~albeit in the limitkR@1). But the MRE is an approximation
for the density of states, not for the free energy itself. B
cause the free energy is an integral over the density of sta
it ‘‘picks up’’ the wrong behavior of the MRE at low ener
gies, and ‘‘remembers’’ this error even at larger radii. This
why the free energy calculated using the MRE is not in qu
titative agreement with the correct free energy in Fig. 4,
though the MRE is a good approximation for the density
states in the limitkR@1.

Looking at Fig. 7, we see that the main difference b
tween the sum over states approach and the MRE app
mation is due to the gluons. The gluon free energy be
positive for small (R,1.5 fm! radii, corresponds to the den
sity of states being negative. This can also be seen dire
from Eqs.~22! and~26!. Hence the gluon density of states
the MRE is not only wrong, it is unphysical at small rad
This behavior is due to the way the MRE handles the surf
corrections, namely, through Eqs.~23!–~26!. Taking more
terms (}1/R, }1/R2, etc.! into account in Eq.~22! might
cure this. We propose another resolution of the problem
Sec. IV.

A few words about the physics implied by Figs. 4 and
There are two minima, atR50 and atR5`, separated by an

FIG. 6. As Fig. 4, except that the free energies are calcula
using the MRE approximation.

FIG. 7. The different contributions to Fig. 6 forT5152 MeV.
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energy barrier. The picture is therefore the following: Wh
the temperature isT,T0, no stable droplets can form. Eve
whenT.T0 there is an energy barrier to pass before sta
droplets of quark-gluon plasma can exist within the pi
phase. But once a droplet is created~from fluctuations! with
radiusR.2 fm, it will expand unimpeded. The energy ba
rier, of course, is due to the surface terms. The most imp
tant quantitative difference between Figs. 4 and 6 is
height of the energy barrier separating the two minima aR
50 and R5`. The height of the barrier is related to th
nucleation rate, in this case the plasma formation rate w
heating a hadron gas, e.g., in a heavy ion collision. Th
although generally small, the surface contribution to the f
energy has important implications.

B. Free energy of a hadron bubble in bulk plasma

This configuration is a vacuum bubble with hadrons~i.e.,
pions, in our model! inside, surrounded by plasma. In ord
to emphasize the essential points, we start by focusing on
surface free energy of quarks and gluons, since this is
interesting, non-universal, part of the free energy.

1. Surface free energy of a vacuum bubble

We shall compare results for this surface free energy
calculated by the MRE(2R) conjecture and by the concen
tric spheres method. We shall also compare with results
tained by the phase shift approach.

Figures 8, 9, and 10 show the surface free energy of m
less quarks, massive quarks, and gluons, respectively.
show the results for just one temperature,T5152 MeV, but
the picture is qualitatively the same for other temperatu
(T550,100,160 MeV!. These figures show that th
MRE(2R) works quite well in the case of quarks~massless
and massive!, but less well for gluons. Theslopeof the gluon

d FIG. 8. A comparison between two different methods of calc
lating the surface free energy of massless quarks outside a sphe~a
‘‘vacuum bubble’’! of radiusR: ~1! Multiple reflection expansion
with the sign ofR reversed@MRE(2R)# and ~2! the concentric
spheres method with an outer radiusR2520 fm. WhenR,R2/2 the
two methods yield similar results. This suggests two things:~A!
When R!R2 the interactions at the outer surface are unimport
and~B! MRE(2R) describes adequately the way the inner surfa
alters the density of states in the case of massless quarks.
temperature isT5152 MeV.
1-8
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FREE ENERGY OF BUBBLES AND DROPLETS IN THE . . . PHYSICAL REVIEW D 60 054011
MRE(2R) curve is correct, but there is an offset of abo
1000 MeV~see Fig. 10!. This is because the MRE(2R) for
the density of states, although a good approximation at la
values ofkR, is wrong at smallkR, and since the free energ
at a given large radius is an integral over the density of st
also at small momenta, the bad behavior of the MRE(2R) at
small kR affects the free energy even at large radii~see re-
marks about the MRE for the plasma droplet!. The same
remarks apply to the quarks, but here the effect is much
pronounced. To support this picture we show in Fig. 11
comparison of the quantity (p/R)r(kR), r being the density
of states of the eight gluons, calculated by the MRE(2R):
(p/R)rMRE(2R)(kR)52 32

3 (kR)21 64
3 , and by the phase

shift approach~33!. In contrast to other figures in this se
tion, Fig. 11 includes the volume contribution. Figure
compares all three methods of calculating the surface
energy, here shown in the case of gluons. We expect
concentric spheres method to be a correct way of calcula
the free energy, as long as we stay in the regimeR!R2. The
agreement of the concentric spheres method and the p
shift approach atR,6 fm in Fig. 12 suggests that both ap
proaches are valid ways to calculate the surface free en
and/or the density of states of quarks and gluons outsid
vacuum bubble, for the phase shift approach presumab
any radius. Referring back to Fig. 11 it is therefore clear t
the MRE(2R) approach is inadequate at smallkR. This was

FIG. 9. Same as Fig. 8, but using a quark mass of 150 MeV
this case, the effect of the outer surface is not visible untilR is quite
close to the outer surface atR2520 fm. Again, the MRE(2R)
seems to be a satisfactory description.

FIG. 10. Same as Fig. 8, but for gluons. The MRE(2R) is not
as good a description as in the case of the quarks.
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to be expected. First, the original MRE~for positive radii! is
derived in the limit of largekR, and second, we have see
that the MRE is unphysical at small radii, so it is not surpr
ing that also the MRE(2R) has problems in this regime.

We thus conclude, that as an approximation of the den
of states, the MRE(2R) for gluons works well at large val-
ues ofkR, but is incorrect at smallkR. We have only shown
the gluon data, but a similar conclusion is valid for th
quarks, although the error at small radii is less important th
in the case of gluons. Further, we have argued that as fa
the free energy is concerned, we should be even more ca
when applying the MRE(2R), as the bad behavior of th
MRE(2R) at small radii manifests itself as an error in th
free energy even at large radii. Finally, our results obtain
with the concentric spheres method are consistent with

n
FIG. 11. The ‘‘reduced density of states’’ (p/R)r(kR) of glu-

ons outside a vacuum bubble, calculated by the phase shift
proach, and using the MRE(2R). The phase shift method yield
the more correct result~cf. Fig. 12!. Note that this is the density o
states relative to a situation with no vacuum bubble, sor,0 in this
case is not unphysical.

FIG. 12. Surface free energy of gluons outside a vacuum bub
of radiusR calculated in the three different ways described in t
text. The outer radius used in the concentric spheres method iR2

520 fm. The phase shift approach agrees with the concen
spheres method forR,6 fm, whereas the deviation between the
two methods atR.6 fm is due to the influence of the outer surfa
on the result of concentric spheres method. To emphasize the
ferences between the three methods, we have subtracted the vo
free energy from the phase shift results, so that only the sur
contributions are shown in this figure. The temperature isT5152
MeV.
1-9
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GREGERS NEERGAARD AND JES MADSEN PHYSICAL REVIEW D60 054011
phase shift formula~27!, which seems to be an accurate w
to calculate the density of states of quark-gluon plasma
side a vacuum bubble.

2. The total free energy

Knowing the contribution from the surface to the fre
energy of quarks and gluons outside the vacuum bubble
can easily calculate the total free energy of the whole c
figuration: The volume contribution of the plasma is calc
lated using Eq.~20! with the smoothed density of states~21!
inserted. The pion contribution is given by Eq.~52!, and the
bag constant contributes a termBVQGP as always. Adding
these contributions we obtain the results in Fig. 13. The
teresting part of this figure is the minimum of the free ene
at R51 –2 fm for temperatures well above the transiti
temperature. Mardor and Svetitsky@1# found a similar mini-
mum in the free energy using the same model as describe
this paper, but calculating the free energy of the plasma
ing the phase shift approach, whereas here we have ap
the concentric spheres method.

IV. CORRECTIONS TO THE MRE

We have seen that the MRE and the MRE(2R) for glu-
ons as it stands in Eqs.~22!, ~25!, and~26! have problems a
small values ofkR, leading to errors in the free energy eve
at large radii. Although we have numerical methods to c
culate correctly the free energy both in the plasma dro
case and in the vacuum bubble case, we would like to be
to use some MRE approximation to gain physical insig
and for practical computations because the direct meth
are numerically demanding. In this section, we investig
how to modify the MRE and the MRE(2R), in order for

FIG. 13. Free energy of a pion bubble surrounded by qua
gluon plasma, normalized so that the free energy of a pure pla
without pions is zero. Curves are shown for temperatures above
below the transition temperatureT05150 MeV. The surface contri-
butions from the quarks and gluons are calculated by the conce
spheres method with an outer surface ofR2520 fm. The minimum
at R.122 fm shows that in this model, bubbles of pions of th
radius will form even for temperatures aboveT0. Similar results
were obtained by Mardor and Svetitsky@1# using the phase shif
method.
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these approximations to describe more correctly the den
of states of the configuration in question.

A. Gluon droplet

Previously in this paper, we have shown how to calcul
exactly the free energy of Abelian gluons in an MIT ba
That was, however, a numerical computation. Analytic c
culations of the free energy, not using the MRE, have a
appeared in the literature. Using the same model for the
ons as we do, De Francia@16,17# finds for the difference
DF5F gluons2F gluons,MREin the limit of largeRT

DF

T
520.8742

5

8
ln~RT!1•••, ~58!

where the dots indicate terms of higher order in (RT)21. ~De
Francia gives such terms explicitly, but they are too smal
be relevant in our analysis.! Note that Eq.~58! is calculated
for one Abelian gauge field, and should thus be multiplied
8 in order to describe the gluon free energy.

The main problem with the MRE is that it predicts a neg
tive density of states at smallkR where in reality there are no
states, see Fig. 14. An error in the density of states at sm
values ofkR is particularly severe, since here the statistic
factor in the integrand of the free energy is large. In t
following, we will show that using a reduced density
states of the form

p

R
rL~kR!5H 0, 0<kR,L,

2

3
~kR!22

4

3
, kR>L

~59!

cures most of the problems of the MRE. We shall refer
this density of statesrL as the MMRE~modified MRE!,
since it consists of the usual MRE contributions forkR>L,
but is truncated belowkR5L. When we are in a regime
whereRT@1, we can find an approximate analytical expre
sion for the correctionDF5F gluons,MMRE2F gluons,MREto the
free energy induced by usingrL instead ofr as the density
of states of gluons:

-
a

nd

ric

FIG. 14. Number of gluon states with energy less thank in an
MIT bag of radiusR, calculated~i! directly, solving Eqs.~54! and
~55! ~discontinuous line, true values! and~ii ! by the MRE~continu-
ous line, approximation!. Note that the MRE predicts a negativ
density of states at small values ofkR.
1-10
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DF

T
5216S ln~L!S 2

9p
L32

4

3p
L D2

2

27p
L31

4

3p
L

1 ln~RT!S 4

3p
L2

2

9p
L3D D . ~60!

We can fix the value ofL by matching the coefficient o
ln(RT) to the analytical result of De Francia, i.e., solvin
16@(2/9p)L32(4/3p)L#525, which hasL50.832 as the
relevant solution, and the free energy~60! becomes

DF

T
526.35225 ln~RT!. ~61!

The fact that 6.352.830.874 shows the consistency of th
procedure, cf. Eq.~58!.

In Fig. 15 we compare the proposal~59! with a direct
calculation~summing over energy levels! of the free energy.
Also shown is the free energy calculated using the us
MRE.

B. Vacuum bubble

Balian and Duplantier@18# have calculated the Casim
energy of a perfectly conducting spherical shell. They fi
@in the largeRT limit, and again not quoting terms of highe
order in (RT)21]

DF̃

T
52

0.769

4
2

ln~RT!

4
. ~62!

In our language, 8DF̃ is the sum of~i! the surface free en
ergy of gluons inside an MIT bag and~ii ! the surface free
energy of gluons outside a vacuum bubble. Using this
De Francia’s calculation~58!, we can deduce the correction
to the MRE(2R). We obtain, for the differenceDF vac
5F gluons,corrected2F gluons,MRE(2R) ,

FIG. 15. Gluon contribution to the free energy~in units of the
temperatureT) of a plasma droplet of radiusR, as a function of the
dimensionless parameterRT. The unphysical behavior of the usu
MRE @Eqs. ~22!, ~25!, and ~26!# at small radii causes the free en
ergy to deviate from the true free energy~calculated by summing
over energy levels! even at large radii. Using the modified MRE
r0.832, in Eq. ~20! makes the free energy agree remarkably w
with the true free energy.
05401
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d

DF vac5T@5.45413 ln~RT!#. ~63!

As in the gluon droplet case, we can advise a modification
the MRE(2R), which works very well. Specifically, we pro
pose the following: The reduced density of states of gluo
outside a vacuum bubble, is

p

R
r vac~kR!5H 0, 0<kR,0.458,

2
2

3
~kR!21

4

3
, kR>0.458,

~64!

whereR.0 is the radius of the vacuum bubble. We refer
this density of states as the MMRE(2R). The value ofkR
50.458 where we cut the MRE(2R) is fixed by the same
procedure as in the gluon droplet case. The differenceDF
5F gluons,MMRE(2R)2F gluons,MRE(2R) is then

DF5T@5.41713ln~RT!#, ~65!

showing the consistency of the procedure@cf. Eq. ~63!#. The
fact that we should cut the density of states atkR50.458 and
not kR50.832 as in the gluon droplet case, reflects
asymmetry between the gluon droplet and the vacu
bubble configurations.

In Fig. 16 we compare the different methods of calcul
ing the free energy of gluons outside a vacuum bubble. T
simple MMRE(2R) suggestion is in nice agreement wi
the phase shift approach, which~based on our calculations i
the previous sections! we consider the most accurate way
calculating the free energy.

V. CONCLUSION

This paper had a twofold purpose. First we introduced
concentric spheres method as a way to calculate the
energy of quark-gluon plasma outside a pion bubble, c
firming the peculiar results of Mardor and Svetitsky@1# that,
within the MIT bag model, this free energy has a minimu
at nonzero radius even well above the transition temperat

Second, we have shown that terms beyond volume,
face, and curvature are necessary in order to reproduce

l

FIG. 16. The free energy of gluons outside a vacuum bubble
radiusR ~normalized to the temperatureT) calculated in three dif-
ferent ways:~1! By the phase shift approach, which we consider
accurate procedure,~2! by the MRE(2R), and ~3! using the
MMRE(2R).
1-11
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GREGERS NEERGAARD AND JES MADSEN PHYSICAL REVIEW D60 054011
free energy of plasma droplets and vacuum bubbles wi
the multiple reflection expansion, especially for the glu
contributions. We have discussed the reasons for this,
based on previous calculations@16,18#, we extracted correc
tion terms to the free energy, which can be understood fr
a physically motivated truncation of the density of states

Our calculations were all performed in the limit of va
ishing chemical potentials. The results are thus relevan
investigations of the cosmological quark-hadron transiti
and possibly to forthcoming ultrarelativistic heavy ion col
sion experiments at RHIC and LHC. While these are c
tainly interesting prospects, we plan to extend our analysi
t.

7
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situations of finite chemical potential, such calculations b
ing relevant to a wider range of applications including, e.
neutron stars.
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