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Accuracy of calculations involving a® vacuum-polarization diagrams:
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The contribution of thex® single electron-loop vacuum-polarization diagrams to the Lamb shift of muonic
hydrogen has been evaluated recently by two independent methods. One uses the exact parametric represen-
tation of the vacuum-polarization function while the other relies on thé Bpgeoximation method. The high
precision of these values offers an opportunity to examine the reliability of the Monte Carlo integration as well
as that of the Padmethod. Our examination covers both the muonic hydrogen atom and gw@n We test
them further for the cases involving two-loop vacuum polarization, where an exact analytic result is known.
Our analysis justifies the result for the Lamb shift of muonic hydrogen and also resolves the long-standing
discrepancy between two previous evaluations of the ngie2 value.[S0556-282(199)05215-7

PACS numbgs): 12.20.Ds, 06.20.Jr, 31.30.Jv, 36.10.Dr

I. INTRODUCTION We also derived the imaginary part of the approximiafg’
and, inserting it in Eq(6) of Ref.[1], obtained
In a recent paper we evaluated the contributhd®(P®) of
sixth-order electron-loop vacuum-polarization diagrams to
the muonic hydrogenyg p*) Lamb shift[1]. Together with
the proposed measurement of thB,2—2S;,, Lamb shift
[2] it will lead to a very precise determination of the proton Again the [3/2] and [2/3] Padeapproximations are nearly
charge radius. indistinguishable. The result®) and(3) are consistent with
The most laborious part of this calculation is that of theeach other and agree within one standard deviation with the
single electron loop diagrams contributing to the sixth-orderdirect calculatior(1). Note, however, that the uncertainties in
vacuum-polarization functiofisee Fig. 1 Using the para- Egs.(2) and(3) are those caused by numerical treatment of
metric representation for this functigB] we find its contri-  the Padeapproximation and do not represent the accuracy of
bution to the Lamb shift to bfl] the Pademethod itself. To gain insight into how good the
Padeapproximation is we have examined two cases where
3 exact results are known. Based on these results we argue that
AEP®=0.017 410(9) mr(za)z(ﬁ) , (1) the true value of the muonic herogen Lamb shift will be
™ found within 0.0007% of the Padealue, which is well
within the uncertainties quoted in Eq®) or (3).

3
AE{PY=0.017 414 9(26) mr(Za)Z(%) B

wherem;, is the reduced mass of the muon-proton system ,
andZ=1 is the proton charge in units of the electron charge Il. DERIVATION OF PADE = APPROXIMATION RESULTS

|€|. As a cross-check, we have also computei(*® using Let us begin with a brief review of the derivation of the
the Padeapproximation of the single electron loop sixth- padeapproximation to the sixth-order vacuum-polarization
order vacuum-polarization functiodl§’(z), z=0%4mi.  functionI1%!(2), z=02/4m?, by Baikov and Broadhurgt].
wherem; is the electron masit]. Inserting the real part of The analytic properties Qﬂ[sl](z) they utilized are(a) the

14! derived from Eq(7) of Ref.[4]into Eq.(3) of Ref.[1],  first three coefficients of the Taylor expansion arousdD,
we obtained the Lamb shift contribution in th8&/2] and

[2/3] Padeapproximations. Since they are practically indis-
tinguishable, we will not label them separately and simply
qguote them as
a b c d
@ 3
AE(P9=0.017 414 9(25) mr(Za)z(; . ©@
e f g h

*Email address: tk@hepth.cornell.edu FIG. 1. Sixth-order vacuum-polarization diagrams with a single
TEmail address: makiko@phys.nara-wu.ac.jp electron loop.
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(b) the first two logz-dependent coefficients of the expansion

in 1/z for large negativez, and (c) the threshold Coulomb

PHYSICAL REVIEW D 60 053008

TABLE I. Coefficients of Padapproximants. We sdt,=1 for
the overall normalization.

behavior which is determined by nonrelativistic quantum
mechanics. Taking account of this information they con-

structed the function

(2= (2)+411,(2)

9 31 229, 229 173
H(1=2)G(2)| 76D+ 15 351 "3 95
4

wherell,(z) is the fourth-order vacuum-polarization func-
tion [5]. G(2) is the hypergeometric functiogF,(1,1;3:2).
For the negative rea, G is given by

G(z)= n(V—z+\1-2). (5)

Jz_

Analytic continuation 0fG(z) from z<0 toz=1 through the
upperz plane yields

ReG(z)=\/Z_2_iZIn(\/E+\/z—1), 6)
a
ImG(z)=2 o (7)

By constructionii}!(z) is analytic in thezplane cut
along the real axis £z<e. The function defined by

4w
Trar

Z=

®)

is analytic for|w|<1, and may be simulated accurately by a

Padeapproximant(w). Analytic information onl15 listed
above is translated into six data fB(w): {P(—1), P(0),
P’(0), P”(0), P"(0), P(1)}. Using these data we have
constructed

aptajw+a,w’+azw’

Pl@)= § b0 1 b,0? by’

9

The coefficientsa’s and b’s for both [2/3] and[3/2] Pade

Coefficient [2/3] Pade [3/2] Pade

ay 5.450 103 092 5.450 103 092
a, —0.966 458 776 —0.891171812
a, —1.785 150 929 —1.800 086 980
as 0 —0.025 240917
bo 1 1
b, —0.456 709 419 —0.442 895 559
b, —0.121 731 656 —0.128 331 492
bs 0.001 706 927 0

~ ,  2a%1-a? "

p(a)= a7y (11

and
e
B= mZa =0.737 383 76(30). (12

Substitutingl15(z) determined from Table I in Eq10) and
evaluating it numerically,we obtained the resu(®).

The second approach utilizes the imaginary part of the
approximatel'[[gll for z>1 obtained from the Padapproxi-
mantP(w) by taking its value on the unit circle in the upper-
half  plane. Using this information theR,,—2S;,, Lamb
shift of the muonic hydrogen can be expressed Ly

ImII(2z)

ko

282
(1+282)*

AE:mr(za)ZFdz (13
1

The result(3) follows from Eq.(13).

Ill. DISCUSSION

The results(2) and (3) obtained by the Padapproxima-
tion method are in good agreement with the direct redylt
The difference between them is within one standard devia-
tion of the result(1) and can be ignored for the purpose of
comparison with experiment. However, E@s), (2), and(3)
all involve some uncertainties inherent to their derivation.
Thus it will be worthwhile to examine the nature of these

approximations calculated from the given data are listed iruncertainties. There are at least two possible causes which
Table I. Once a Padapproximant is constructed, we can may contribute to these uncertainties: One is that the error
readily obtain the correspondnﬂ;s] from Egs.(4) and(8). estimate generated byeGAs in the evaluation of Eq(1)

The 2P,,,—2S,,, Lamb shift of the muonic hydrogen has might be a gross underestimate of the true error. The other
been evaluated in two ways. One uses the formula whickarises from the fact that the Padpproximant does not rep-
containslI(z) for negativez [1]: resentH[31](z) accurately for all values dof.

2 ®
AE=—(Za)2mrf dap(a®)I[—a%/(4B%)], (10
m 0 Unless specified otherwise integrals are evaluated numerically on
DECa using the adaptive-iterative Monte Carlo subroutiresas
where [6].
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A. Nonstatistical error in VEGAs calculation practical approach because it typically requires 20 or more
computing time for execution compared with double preci-

The integration routineveEGAsS is an adaptive-iterative X su v
sion calculation. Only recently the availability of faster com-

procedure based on random sampling of the integf&hdn . , i
theith iteration, the integral is evaluated by sampling thePuters has made this a viable option. _
integrands at points chosen randomly according to a distri- Because of higher speed we normally start evaluation of
bution function chosen in thé £ 1)-st iteration. This gener- F€ynman integrals in double precision. If this runs int>-a

ates the approximate valug of the integral, an estimate of Problem, we split the integration domain into a small region
its uncertaintyo;, and the distribution function to be used around thed-d domain and the remainder. The difficult re-

for the next iteration. After several iteratiomsand o, are 910N IS then evaluated in quadruple precision, while evalua-

combined under the assumption that all iterations are statidio" Of the rest continues in double precisigim some really

tically independent. The combined value and error are give ifficult cases, it will be preferable to adopt quadruple pre-
by cision for the entire integration domajriThis strategy has

been very successful and many integrals were evaluated very
5 5 precisely in this manner. In fact, in some cases, the achieved
|=<2 (|i/0i))/ (2 (1o )), numerical precision was such that it led to uncovering of
' ' errors in some analytic or semianalytic calculatihrik
1 Unfortunately, it is not always easy to detect problems
U=<E (1/Ui2)> _ (14) caused by thal-d distortion. This was the case with some
i muon g-2 diagrams involving sixth-order vacuum-
polarization diagram§8]. While Ref.[8] reported the value
In generalveGas is found to converge rapidly for a suf- —0.2415(19)/)* the same diagrams evaluated using the
ficiently large number of samplings. However, a special caré®adeapproximation method gavd]
is required when it is applied to the integration of Feynman 4
amplitudes in which re.normallz_atlon is car_ned out on the a®(Pade =—0.230362(5)(E> (15)
computer relying on point-by-point cancellation of singulari- L T
ties between the unrenormalized integrand and the corre-
sponding renormalization term. This does not pose a probletwhich disagreed with Refl8] by about 6 standard devia-
if we operate with infinite precision. In reality, however, cal- tions. The reliability of the error estimate in Rg8] was thus
culation is carried out using finite precision arithmetic, suchcalled into question.
as doublgreal*8) or quadruplgreal*16) precision. Random As was discussed above, the most effective way to sepa-
numbers generated byeGAs for sampling of the integrand rate thed-d error encountered in double precision from the
will inevitably hit points very close to some singularity. This Statistical uncertainty is to go over to quadruple precision.
will result in evaluation of the difference of two very large We have therefore repeated the integration of R&f.en-
and nearly identical numbers with finite amount of signifi- tirely in quadruple precision with a roughly equal amount of
cant digits. At such a point most of the significant digits Sampling statistics. The new value
cancel out leaving only a few significant digits or no signifi- 4
cant digit at all.(This will be referred to as digit-deficiency 8)/ i —_ @
or d-d problem, and the subdomain of integration where this a,"(Fig- 1 0.2285 (18)( 77) (16
happens, which contains some boundary surface of the hy- .
percube in our prob|em’ will be called tlded domain) This agrees within one standard deviation with the Padhie
introduces nonstatistical noise in the evaluation of the inte{15) but disagrees strongly with the old value.
gral and its error estimate, even though the effect, being con- A closer examination of Ref8] reveals that some of the
fined to thed-d domain of very small measure, is often not €ight integraldin particular, one involving Fig. (&), evalu-
readily distinguishable from the fluctuations inherent to ran-ated with 60 million sampling points per iteratipshow
dom sampling of the integrand. They tend to give the integrafigns of suffering from the presenceaf error. This is now
a false value and might cause deviation of error estimatélearly confirmed by the new result6). One way to over-
from the assumed statistical behavior. However, thd come this prOblem within double preCiSion calculation is to
problem encountered in thi¢h iteration will not affect the 90 over to much larger statistics. In order to see whether ten
performance of thei@-1)-st iteration unless it distorts the times more sampling points per iteration is sufficient for the
distribution function very severely. As is seen from Etg) ~ diagram e, we have evaluated it in both doublend
I, with larger e, are given smaller weights, giving only small quadruplé precisions(with 600 million sampling point per
impact on the compositeanda. A problem arises, however, iteration and 60_|terat|0r)s The two resu_ltg are in gqod _
if some g is relatively small even if it is suffering from the 2greement showing that the double precision calculation is
d-d problem. In such a case the fifahay be distorted in an reliable now. Encouraged by this, we have evaluated the re-

unpredictable way.
The relative impact of thel-d domain decreases as the
sampling statistics in an iteration increases. More impor- 2Evaluated on the Fujitsu VX computer at the Computer Center of
tantly, it decreases dramatically if quadruple precision isNara Women’s University.
adopted. In the past, however, this was not necessarily a’Evaluated on the IBM SP2 computer at Cornell Theory Center.
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maining seven integrals in double precision with ten times 6 a\’
more statistics. The total contribution is found to be alP(K—5)=1.493 672 7(40) ;) : (19

4
(83
alP)(Fig. 1)=-0.230 596(416)(;) : (17)  The difference between Eq&l8) and(19) is well within the

error bars of Eq(19) and will disappear as the numerical
precision of Eq.(19) increases.

This is in good agreement with the Padssult (15). Meanwhile, the real and imaginary parts[8f2] and[2/3]

We conclude that the problem encountered by the resuPadeapproximation given in the Appendix produce
[8] was caused solely by insufficient statistics. Unfortunately
this does not become visible until more extensive calculation

is done.

To examine the sensitivity of the Lamb shift calculation 1.493 677 6(16) - -[2/3]A,
to the precision of the arithmetic used we evaluated the 1.493 678 1(16)| [a\3---[2/3]B
sixth-order vacuum-polarization contribution to the muonic a(G)(padeRe)z (—) ’
hydrogen in both double and quadruple precision. The results . 1.493 676 2(16) | \m/ ---[3/2]A,
obtained in double and quadruple precisions are listed in 1.493 675 9(16) .--[3/2]B,
Table 1 of Ref.[1]. The double precision calculation was (20)
carried out using 100 million sampling points per iteration
while that of quadruple precision was obtained for 1 million
sampling points per iteratigexcept for diagramé) and(e)  and
which employ 2 and 4 times more sampling points, respec-
tively]. As is clearly seen from Table | of RdflL], the results
in double and quadruple precision are in good agreement and
give us confidence that this problem does not suffer visibly 1.493 674 2(38) - -[2/3]A,
from thed-d problem. The reason why the Lamb shift cal- 1.493 847 4(38)| [\ ---[2/3]B,
culation looks less susceptible to thed problem is that, —a{?(Padelm)= (—)
unlike the muong-2 case, the contribution from large mo- 1.493 737 9(39) | \ 7 ~[312A,
mentum transfer region is strongly suppressed by the hydro- 1.493 676 5(38) ---[3/2]B,
genic wave function. (21)

B. How good is the Padeapproximation?

We now want to examine whether or not the Paglsult  respectively, whereéA and B refer to two different sets of
aM(Pade) of Eq. (15) agrees within its much smaller error determinations of Padeinctions. Within the context of this
bars with the true value oaﬁf)(Fig. 1). This question is approximation it is not possible to tell which of the results
raised because tHe/3] or [3/2] PadeapproximantP(w) of ~ (20) and (21) are good or bad. Since tHen/n] Padeap-
Eq. (9) does not have complete information Bi§"! . In prin-  Proximation will get closer and closer to the exact function
ciple it is possible to answer this question by improving the@Sm andn increase, however, the Padsults based on the
numerical precision of Eq17) by two orders of magnitude. real and imaginary parts should give identical 'results in the
This is not very practical, however, since it would require'argem andn limit. This means that near equality of results
10°-fold increase in the computational effort. Another ap-from the real and imaginary parts may be chosen as a work-
proach is to go to higher-order Padpproximations, taking 'Ng criterion for selecting good Pad@proximation. Accord-

additional exact properties dﬂ[sﬂ into accoun{9,10]. ing to this criterion the resultf2/3]A and [3/2]B are good

Let us instead follow an alternative and easier routeVhile [2/3]B and[3/2]A are not. Since this is not a rigorous

namely, examine how well the Padethod works by apply- criterion, we may of course choose the worst case as a mea-

ing it to the cases where exact results are known. The firs?“rehOféhe uncertamt)l; of the PsdpprOX|lmat|orf1. q
example is the contribution of the two-loop vacuum- __|Ne disagreement between better values of E2f3.an

; 3
polarization to the muoig—2. The exact result is given by (21) and the exact valug1g) is about 0'900006 C(/Tr.)
[11] (~0.0004%), which falls somewhat outside the estimated

errors of Eqs(20) and(21). The difference of about 0.00017
(6)( 2 @\l (al )% (~0.01%) between Eq18) and the “worst” value
a,’(av.p.)=1.493 671 80(4) i (18)  of Egs.(20) and(21) is much larger, and is well outside its
estimated error. Based on these observations we may con-
clude that the near equality of real and imaginary Paale
where the uncertainty comes only from the uncertainty in thaies is a useful working criterion and indicates that [{P3]
measured value ofm,/m,. The corresponding value ob- and[3/2] Pademethods give results, with a high probability,
tained by numerical integration byeGAS starting from the  within 0.0004% of the exact value. Analogously, the Pade
Kallen-Sabry spectral function is approximation valug€15) of an eighth-order muog-2 may
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not deviate from the true value by more than 0.001%, evefiunction[5] is

allowing for possible differences betwedt, and 15", o2

staying within the error bars of Eql5). AE(e%)ct: 0.045 922 738(57) mr(Za)2<—) , (22
The second example is the Lamb shift caused by the 77

fourth-order vacuum-polarization function. The Lamb shift\yhile the real and imaginary parts of tf@/2] and[2/3] Pade
evaluated byVEGAS using the exact vacuum-polarization approximation described in the Appendix give

0.045 923 200 8 - [231A,
e | 0045923320 16 Z(Q)Z ...[2/3]B, s
Padere™ | 0.045 922 988 5p ™ FY ) 32, @3
0.045 922 938 1 ...[3/2]B,
and
0.045 923 200 9 . [2/31A,
o | 0045 933 403 98 2<a)2 .[2/3]B, .
Padem =) 0.045 926 642 68 “Y %) . [32A, 49
0.045 922 938 2 ... [3/2]B,

respectively* Uncertainties of all numerical coefficients in [4] is a very good approximation over nearly all momentum
Egs.(23) and(24) do not exceed 0810 °. space region, even though it is exact only at a few chosen
The[2/3]A and[3/2]B results of Eqs(23) and(24) are in  values of the momentum. It will be possible to narrow the
good agreement with E22), the difference being about gap between Padand exact results by using more input data
0.0007%. Meanwhile th§2/3]B value of Eq.(24) deviates  and by going to higher-order Padpproximations. However,
from Eq. (22) by about 0.02%. The six standard deviation ye believe thaf2/3] and[3/2] cases are good enough for the

difference between Eq22) and “good” values of Eqs(23)  purpose of confirming the reliability of numerical integration
and(24) is unlikely to be attributable to the fault of numeri- ethod.

cal integration. Instead it must be interpreted as the measure
of the approximate nature of tfig/3] and[3/2] Pade which
can be remedied only by going to higher-order Paplproxi-
mation. We thank K. G. Chetyrkin, J. H. Kan, R. Harlander, and
Finally one may ask how can one justify the use of them. Steinhauser for bringing our attention to Rd®,10]. The
Pade approximation for the two-loop vacuum-polarization work of T.K. was supported in part by the U. S. National
function as a model for the three-loop case, in view of thegcjence Foundation. The work of M.N. was supported in part
fact that the three-loop functiod}'! has a threshold singu- py the Grant-in-Aid(No. 10740123 of the Ministry of Edu-
larity (~1A) while I, does not. Our answer is that there is cation, Science, and Culture, Japan. Part of T.K.’s work was

not much analytical difference betweét{w) of two-loop  carried out on the SP2 computer at the Cornell Theory Cen-
and three-loop cases since this singularity is removed expliGg.

itly in the construction(8) of the Padédunction P(w).
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C. Conclusion APPENDIX: PADE APPROXIMATION TO 11,

Based on these considerations we conclude the following. The proper two-loop vacuum-polarization functidih,
(i) The Lamb shift calculation by numerical integration can be obtained from Edq57) of Ref. [5] by removing the
method gives a reliable result even if double precision arithcontribution of (I,)?, whereIl, is the one-loop vacuum-
metic is used, provided sufficient sampling of the integrancholarization function. Sincél, is known explicitly, it can be
is made in each step of iteratiafii) The[2/3] and[3/2] Pade  used to construct a Pad@proximant of any degree of pre-
methods for the VaCUUm'pOIariZation function given in Ref.cision_ Our purpose here is to test the approximatioﬂgjd .

Thus we construct a Pad@proximant ofll, using analytic
information similar to those used in constructibity’! de-
“The results(23) and (24) are obtained using the numerical inte- scribed in Sec. Il. They are
gration routine ofMAPLE V. (i) small momentum behavior dii,(z) given by[4]
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TABLE II. Coefficients of Pad@approximants for two-loop vacuum polarization functidg(z). We set

by=1 for the overall normalization.

Coefficient [2/3]A [2/3]B [3/2]A [3/2]B
ao 0.218 599 301 0.218 599 301 0.218 599 301 0.218 599 301
a, —0.011 600 062 —0.097 946 773 —0.051 634 466 0.005 017 399
a, —0.118 517 746 —0.176 492 097 —0.190 422 374 —0.143 212 168
as 0 0 —0.023 342 491 —0.018 586 700
bo 1 1 1 1
b, —0.228 103 636 —0.623 103 575 —0.411 244 220 —0.152 085 728
b, —0.470 961 931 —0.667 030 155 —0.767 838 808 —0.597 234 583
bs 0.060 545 956 0.082 509 741 0 0
82 - 449 , 249916 , AD) requiring thatll, vanishes in the limiz—0_ . We find that
Ma(2)= 675Z 496125Z ' ﬁz(z) is analytic in thez-plane cut along the real axis (1,
+ ) if we choose
(i) leading terms ofl,(z) for z— — o,
c;==(1-7%), ¢ =3(7— m?), ¢ =i(1+ 572)
172 RGN 12 ’
IT > L I 4z)+ _3 I 42) |+ O !
22)= 5,43~ zIn(=42)+ _| = 7In(—42) =
A2 1 1
(A2) =Z(—7+772), 05=Z772. (A7)

(iii ) the threshold behavior of the imaginary partld$(z)

2

1 I )
;ImHZ(Z)—T—Z&F(’)(é ), (A3)

where §=\/1—1/z. This means that the real part bf,(z)
has the logarithmic threshold singularity of the form

2

a
H2(2)=—Zln|1—z|+~-~ (A4)

The function to be Padapproximated is chosen as

1 - -
T l@-la(==)l, z=rmm. (AB)

We construct the PadapproximantP(w) of the form (9)
using Eqgs.(Al), (A2), and (A3) as the input data. We ob-
tained two sets of;’s andb;’s for each[2/3] and[3/2] Pade
approximation, which we denofe/3]A, [2/3]B, [3/2]A, and
[3/2]B. They are listed in Table Il. The Padesults of Sec.
Il B are obtained from this table.

To take these analytic properties into account we construct a As a final check, we compared directly the |mag|nary

function Hz(z) containing five parameters, . . . ,Cs:

,(2)=T1,(2)+(1-2)G(2)(c1+ ¢, /2)

+cgtcylz+csF(2), (A5)

whereG(z) is introduced in Eq(4) andF(z)=In|1—Z. For
z>1, F(2) has the imaginary part

ImF(z)=—m (AB)

The coefficients;, ¢,, andc, are determined by requiring

parts of the exact Kien-Sabry function and its Padap-
proximation. The difference of the two functiond
=ImII,(K—S)/m—ImIl,(Pad®/ is examined for the en-
tire  momentum rangez=1. The fractional deviation
A/TIMII,(K—=S)/7] is less than 0.2% in all cases of the
Padeapproximations. The Padgproximation functions are
found to oscillate around the exact value. Also, by integrat-
ing A over the entire range of=1—1/z, 0<6<1, we
found

0.000 276 ---[2/3]A,
. ~0.000 930 ---[2/3]B,
fodMZ 0000 461 ---[32A, A9
0.000 015 ---[3/2]B.

cancellation of all logarithmic singularities found in Egs. Apparently the values of the muap2 and Lamb shift are
(A2) and (A4). The remainingc; andcs are determined by more accurate than are implied by these results.
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