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Accuracy of calculations involving a3 vacuum-polarization diagrams:
Muonic hydrogen Lamb shift and muon g22
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The contribution of thea3 single electron-loop vacuum-polarization diagrams to the Lamb shift of muonic
hydrogen has been evaluated recently by two independent methods. One uses the exact parametric represen-
tation of the vacuum-polarization function while the other relies on the Pade´ approximation method. The high
precision of these values offers an opportunity to examine the reliability of the Monte Carlo integration as well
as that of the Pade´ method. Our examination covers both the muonic hydrogen atom and muong22. We test
them further for the cases involving two-loop vacuum polarization, where an exact analytic result is known.
Our analysis justifies the result for the Lamb shift of muonic hydrogen and also resolves the long-standing
discrepancy between two previous evaluations of the muong22 value.@S0556-2821~99!05215-7#

PACS number~s!: 12.20.Ds, 06.20.Jr, 31.30.Jv, 36.10.Dr
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I. INTRODUCTION

In a recent paper we evaluated the contributionDE(p6) of
sixth-order electron-loop vacuum-polarization diagrams
the muonic hydrogen (m2p1) Lamb shift@1#. Together with
the proposed measurement of the 2P1/222S1/2 Lamb shift
@2# it will lead to a very precise determination of the proto
charge radius.

The most laborious part of this calculation is that of t
single electron loop diagrams contributing to the sixth-or
vacuum-polarization function~see Fig. 1!. Using the para-
metric representation for this function@3# we find its contri-
bution to the Lamb shift to be@1#

DE(p6)50.017 410 ~9! mr~Za!2S a

p D 3

, ~1!

where mr is the reduced mass of the muon-proton syst
andZ51 is the proton charge in units of the electron cha
ueu. As a cross-check, we have also computedDE(p6) using
the Pade´ approximation of the single electron loop sixt
order vacuum-polarization functionP3

[1] (z), z5q2/4me
2 ,

whereme is the electron mass@4#. Inserting the real part o
P3

[1] derived from Eq.~7! of Ref. @4# into Eq.~3! of Ref. @1#,
we obtained the Lamb shift contribution in the@3/2# and
@2/3# Padéapproximations. Since they are practically ind
tinguishable, we will not label them separately and sim
quote them as

DERe
(p6)50.017 414 9 ~25! mr~Za!2S a

p D 3

. ~2!
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We also derived the imaginary part of the approximateP3
[1]

and, inserting it in Eq.~6! of Ref. @1#, obtained

DEIm
(p6)50.017 414 9 ~26! mr~Za!2S a

p D 3

. ~3!

Again the @3/2# and @2/3# Padéapproximations are nearly
indistinguishable. The results~2! and~3! are consistent with
each other and agree within one standard deviation with
direct calculation~1!. Note, however, that the uncertainties
Eqs.~2! and ~3! are those caused by numerical treatment
the Pade´ approximation and do not represent the accuracy
the Pade´ method itself. To gain insight into how good th
Padéapproximation is we have examined two cases wh
exact results are known. Based on these results we argue
the true value of the muonic hydrogen Lamb shift will b
found within 0.0007% of the Pade´ value, which is well
within the uncertainties quoted in Eqs.~2! or ~3!.

II. DERIVATION OF PADE´ APPROXIMATION RESULTS

Let us begin with a brief review of the derivation of th
Padéapproximation to the sixth-order vacuum-polarizati
functionP3

[1] (z), z[q2/4me
2, by Baikov and Broadhurst@4#.

The analytic properties ofP3
[1] (z) they utilized are~a! the

first three coefficients of the Taylor expansion aroundz50,

FIG. 1. Sixth-order vacuum-polarization diagrams with a sin
electron loop.
©1999 The American Physical Society08-1
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T. KINOSHITA AND M. NIO PHYSICAL REVIEW D 60 053008
~b! the first two logz-dependent coefficients of the expansi
in 1/z for large negativez, and ~c! the threshold Coulomb
behavior which is determined by nonrelativistic quantu
mechanics. Taking account of this information they co
structed the function

P̃3
[1]~z![P3

[1]~z!14P2~z!

1~12z!G~z!S 9

4
G~z!1

31

16
1

229

32zD2
229

32z
2

173

96
,

~4!

whereP2(z) is the fourth-order vacuum-polarization fun

tion @5#. G(z) is the hypergeometric function2F1(1,1;3
2 ;z).

For the negative realz, G is given by

G~z!5
1

Az22z
ln~A2z1A12z!. ~5!

Analytic continuation ofG(z) from z,0 toz>1 through the
upperz plane yields

ReG~z!5
21

Az22z
ln~Az1Az21!, ~6!

Im G~z!5
p

2Az22z
. ~7!

By constructionP̃3
[1] (z) is analytic in thez-plane cut

along the real axis 1,z,`. The function defined by

12v

~11v!2@P̃3
[1]2P̃3

[1]~2`!#, z5
4v

~11v!2 , ~8!

is analytic foruvu,1, and may be simulated accurately by
PadéapproximantP(v). Analytic information onP3

[1] listed
above is translated into six data forP(v): $P(21), P(0),
P8(0), P9(0), P-(0), P(1)%. Using these data we hav
constructed

P~v!5
a01a1v1a2v21a3v3

b01b1v1b2v21b3v3 . ~9!

The coefficientsa’s and b’s for both @2/3# and @3/2# Padé
approximations calculated from the given data are listed
Table I. Once a Pade´ approximant is constructed, we ca
readily obtain the correspondingP3

[1] from Eqs.~4! and~8!.
The 2P1/222S1/2 Lamb shift of the muonic hydrogen ha

been evaluated in two ways. One uses the formula wh
containsP(z) for negativez @1#:

DE5
2

p
~Za!2mrE

0

`

da r̃~a2!P@2a2/~4b2!#, ~10!

where
05300
-

n

h

r̃~a2!5
2a2~12a2!

~11a2!4 ~11!

and

b5
me

mrZa
50.737 383 76~30!. ~12!

SubstitutingP3
[1] (z) determined from Table I in Eq.~10! and

evaluating it numerically,1 we obtained the result~2!.
The second approach utilizes the imaginary part of

approximateP3
[1] for z.1 obtained from the Pade´ approxi-

mantP(v) by taking its value on the unit circle in the uppe
half v plane. Using this information the 2P1/222S1/2 Lamb
shift of the muonic hydrogen can be expressed by@1#

DE5mr~Za!2E
1

`

dz
ImP~z!

p

2b2

~112bAz!4
. ~13!

The result~3! follows from Eq.~13!.

III. DISCUSSION

The results~2! and ~3! obtained by the Pade´ approxima-
tion method are in good agreement with the direct result~1!.
The difference between them is within one standard de
tion of the result~1! and can be ignored for the purpose
comparison with experiment. However, Eqs.~1!, ~2!, and~3!
all involve some uncertainties inherent to their derivatio
Thus it will be worthwhile to examine the nature of the
uncertainties. There are at least two possible causes w
may contribute to these uncertainties: One is that the e
estimate generated byVEGAS in the evaluation of Eq.~1!
might be a gross underestimate of the true error. The o
arises from the fact that the Pade´ approximant does not rep
resentP3

[1] (z) accurately for all values ofz.

1Unless specified otherwise integrals are evaluated numericall
DECa using the adaptive-iterative Monte Carlo subroutineVEGAS

@6#.

TABLE I. Coefficients of Pade´ approximants. We setb051 for
the overall normalization.

Coefficient @2/3# Padé @3/2# Padé

a0 5.450 103 092 5.450 103 092
a1 20.966 458 776 20.891 171 812
a2 21.785 150 929 21.800 086 980
a3 0 20.025 240 917
b0 1 1
b1 20.456 709 419 20.442 895 559
b2 20.121 731 656 20.128 331 492
b3 0.001 706 927 0
8-2
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ACCURACY OF CALCULATIONS INVOLVING a3 . . . PHYSICAL REVIEW D60 053008
A. Nonstatistical error in VEGAS calculation

The integration routineVEGAS is an adaptive-iterative
procedure based on random sampling of the integrand@6#. In
the i th iteration, the integral is evaluated by sampling t
integrands at points chosen randomly according to a di
bution function chosen in the (i 21)-st iteration. This gener
ates the approximate valueI i of the integral, an estimate o
its uncertaintys i , and the distribution function to be use
for the next iteration. After several iterationsI i and s i are
combined under the assumption that all iterations are st
tically independent. The combined value and error are gi
by

I 5S (
i

~ I i /s i
2! D Y S (

i
~1/s i

2! D ,

s5S (
i

~1/s i
2! D 21/2

. ~14!

In generalVEGAS is found to converge rapidly for a suf
ficiently large number of samplings. However, a special c
is required when it is applied to the integration of Feynm
amplitudes in which renormalization is carried out on t
computer relying on point-by-point cancellation of singula
ties between the unrenormalized integrand and the co
sponding renormalization term. This does not pose a prob
if we operate with infinite precision. In reality, however, ca
culation is carried out using finite precision arithmetic, su
as double~real*8! or quadruple~real*16! precision. Random
numbers generated byVEGAS for sampling of the integrand
will inevitably hit points very close to some singularity. Th
will result in evaluation of the difference of two very larg
and nearly identical numbers with finite amount of sign
cant digits. At such a point most of the significant dig
cancel out leaving only a few significant digits or no signi
cant digit at all.~This will be referred to as digit-deficienc
or d-d problem, and the subdomain of integration where t
happens, which contains some boundary surface of the
percube in our problem, will be called thed-d domain.! This
introduces nonstatistical noise in the evaluation of the in
gral and its error estimate, even though the effect, being c
fined to thed-d domain of very small measure, is often n
readily distinguishable from the fluctuations inherent to ra
dom sampling of the integrand. They tend to give the integ
a false value and might cause deviation of error estim
from the assumed statistical behavior. However, thed-d
problem encountered in thei th iteration will not affect the
performance of the (i 11)-st iteration unless it distorts th
distribution function very severely. As is seen from Eq.~14!
I i with largers i are given smaller weights, giving only sma
impact on the compositeI ands. A problem arises, however
if somes i is relatively small even if it is suffering from the
d-d problem. In such a case the finalI may be distorted in an
unpredictable way.

The relative impact of thed-d domain decreases as th
sampling statistics in an iteration increases. More imp
tantly, it decreases dramatically if quadruple precision
adopted. In the past, however, this was not necessari
05300
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practical approach because it typically requires 20 or m
computing time for execution compared with double pre
sion calculation. Only recently the availability of faster com
puters has made this a viable option.

Because of higher speed we normally start evaluation
Feynman integrals in double precision. If this runs into ad-d
problem, we split the integration domain into a small regi
around thed-d domain and the remainder. The difficult re
gion is then evaluated in quadruple precision, while eval
tion of the rest continues in double precision.~In some really
difficult cases, it will be preferable to adopt quadruple p
cision for the entire integration domain.! This strategy has
been very successful and many integrals were evaluated
precisely in this manner. In fact, in some cases, the achie
numerical precision was such that it led to uncovering
errors in some analytic or semianalytic calculations@7#.

Unfortunately, it is not always easy to detect problem
caused by thed-d distortion. This was the case with som
muon g-2 diagrams involving sixth-order vacuum
polarization diagrams@8#. While Ref. @8# reported the value
20.2415(19)(a/p)4 the same diagrams evaluated using t
Padéapproximation method gave@4#

am
(8)~Padé! 520.230362 ~5!S a

p D 4

~15!

which disagreed with Ref.@8# by about 6 standard devia
tions. The reliability of the error estimate in Ref.@8# was thus
called into question.

As was discussed above, the most effective way to se
rate thed-d error encountered in double precision from t
statistical uncertainty is to go over to quadruple precisi
We have therefore repeated the integration of Ref.@8# en-
tirely in quadruple precision with a roughly equal amount
sampling statistics. The new value

am
(8)~Fig. 1!520.2285 ~18!S a

p D 4

~16!

agrees within one standard deviation with the Pade´ value
~15! but disagrees strongly with the old value.

A closer examination of Ref.@8# reveals that some of the
eight integrals@in particular, one involving Fig. 1~e!, evalu-
ated with 60 million sampling points per iteration# show
signs of suffering from the presence ofd-d error. This is now
clearly confirmed by the new result~16!. One way to over-
come this problem within double precision calculation is
go over to much larger statistics. In order to see whether
times more sampling points per iteration is sufficient for t
diagram e, we have evaluated it in both double2 and
quadruple3 precisions~with 600 million sampling point per
iteration and 60 iterations!. The two results are in good
agreement showing that the double precision calculation
reliable now. Encouraged by this, we have evaluated the

2Evaluated on the Fujitsu VX computer at the Computer Cente
Nara Women’s University.

3Evaluated on the IBM SP2 computer at Cornell Theory Cent
8-3
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T. KINOSHITA AND M. NIO PHYSICAL REVIEW D 60 053008
maining seven integrals in double precision with ten tim
more statistics. The total contribution is found to be

am
(8)~Fig. 1!520.230 596 ~416!S a

p D 4

. ~17!

This is in good agreement with the Pade´ result ~15!.
We conclude that the problem encountered by the re

@8# was caused solely by insufficient statistics. Unfortunat
this does not become visible until more extensive calcula
is done.

To examine the sensitivity of the Lamb shift calculatio
to the precision of the arithmetic used we evaluated
sixth-order vacuum-polarization contribution to the muon
hydrogen in both double and quadruple precision. The res
obtained in double and quadruple precisions are listed
Table 1 of Ref.@1#. The double precision calculation wa
carried out using 100 million sampling points per iterati
while that of quadruple precision was obtained for 1 milli
sampling points per iteration@except for diagrams~a! and~e!
which employ 2 and 4 times more sampling points, resp
tively#. As is clearly seen from Table I of Ref.@1#, the results
in double and quadruple precision are in good agreement
give us confidence that this problem does not suffer visi
from the d-d problem. The reason why the Lamb shift ca
culation looks less susceptible to thed-d problem is that,
unlike the muong-2 case, the contribution from large mo
mentum transfer region is strongly suppressed by the hy
genic wave function.

B. How good is the Pade´ approximation?

We now want to examine whether or not the Pade´ result
am~Padé! of Eq. ~15! agrees within its much smaller erro
bars with the true value ofam

(8)~Fig. 1!. This question is
raised because the@2/3# or @3/2# PadéapproximantP(v) of
Eq. ~9! does not have complete information onP3

[1] . In prin-
ciple it is possible to answer this question by improving t
numerical precision of Eq.~17! by two orders of magnitude
This is not very practical, however, since it would requ
104-fold increase in the computational effort. Another a
proach is to go to higher-order Pade´ approximations, taking
additional exact properties ofP3

[1] into account@9,10#.
Let us instead follow an alternative and easier rou

namely, examine how well the Pade´ method works by apply-
ing it to the cases where exact results are known. The
example is the contribution of the two-loop vacuum
polarization to the muong22. The exact result is given b
@11#

am
(6)~a2v.p.!51.493 671 80~4!S a

p D 3

, ~18!

where the uncertainty comes only from the uncertainty in
measured value ofmm /me . The corresponding value ob
tained by numerical integration byVEGAS starting from the
Källen-Sabry spectral function is
05300
s

lt
y
n

e

lts
in

c-

nd
y

o-

-

,

st

e

am
(6)~K2S!51.493 672 7 ~40!S a

p D 3

. ~19!

The difference between Eqs.~18! and~19! is well within the
error bars of Eq.~19! and will disappear as the numeric
precision of Eq.~19! increases.

Meanwhile, the real and imaginary parts of@3/2# and@2/3#
Padéapproximation given in the Appendix produce

am
(6)~PadéRe!55

1.493 677 6 ~16!

1.493 678 1 ~16!

1.493 676 2 ~16!

1.493 675 9 ~16!
6 S a

p D 3

•••@2/3#A ,

•••@2/3#B ,

•••@3/2#A ,

•••@3/2#B ,

~20!

and

am
(6)~PadéIm!55

1.493 674 2 ~38!

1.493 847 4 ~38!

1.493 737 9 ~38!

1.493 676 5 ~38!
6 S a

p D 3

•••@2/3#A ,

•••@2/3#B ,

•••@3/2#A ,

•••@3/2#B ,

~21!

respectively, whereA and B refer to two different sets of
determinations of Pade´ functions. Within the context of this
approximation it is not possible to tell which of the resu
~20! and ~21! are good or bad. Since the@m/n# Padéap-
proximation will get closer and closer to the exact functi
asm andn increase, however, the Pade´ results based on the
real and imaginary parts should give identical results in
largem andn limit. This means that near equality of resul
from the real and imaginary parts may be chosen as a w
ing criterion for selecting good Pade´ approximation. Accord-
ing to this criterion the results@2/3#A and @3/2#B are good
while @2/3#B and@3/2#A are not. Since this is not a rigorou
criterion, we may of course choose the worst case as a m
sure of the uncertainty of the Pade´ approximation.

The disagreement between better values of Eqs.~20! and
~21! and the exact value~18! is about 0.000006 (a/p)3

(;0.0004%), which falls somewhat outside the estima
errors of Eqs.~20! and~21!. The difference of about 0.0001
(a/p)3 (;0.01%) between Eq.~18! and the ‘‘worst’’ value
of Eqs.~20! and ~21! is much larger, and is well outside it
estimated error. Based on these observations we may
clude that the near equality of real and imaginary Pade´ val-
ues is a useful working criterion and indicates that the@2/3#
and@3/2# Padémethods give results, with a high probabilit
within 0.0004% of the exact value. Analogously, the Pa´
approximation value~15! of an eighth-order muong-2 may
8-4
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not deviate from the true value by more than 0.001%, e
allowing for possible differences betweenP2 and P3

[1] ,
staying within the error bars of Eq.~15!.

The second example is the Lamb shift caused by
fourth-order vacuum-polarization function. The Lamb sh
evaluated byVEGAS using the exact vacuum-polarizatio
n
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function @5# is

DEexact
(p4)50.045 922 738~57! mr~Za!2S a

p D 2

, ~22!

while the real and imaginary parts of the@3/2# and@2/3# Padé
approximation described in the Appendix give
DEPadéRe
(p4) 55

0.045 923 200 88

0.045 923 320 16

0.045 922 988 50

0.045 922 938 13
6 mr~Za!2S a

p D 2

•••@2/3#A ,

•••@2/3#B ,

•••@3/2#A ,

•••@3/2#B ,

~23!

and

DEPadéIm
(p4) 55

0.045 923 200 97

0.045 933 403 92

0.045 926 642 63

0.045 922 938 22
6 mr~Za!2S a

p D 2

•••@2/3#A ,

•••@2/3#B ,

•••@3/2#A ,

•••@3/2#B ,

~24!
m
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respectively.4 Uncertainties of all numerical coefficients i
Eqs.~23! and ~24! do not exceed 0.531029.

The @2/3#A and @3/2#B results of Eqs.~23! and~24! are in
good agreement with Eq.~22!, the difference being abou
0.0007%. Meanwhile the@2/3#B value of Eq.~24! deviates
from Eq. ~22! by about 0.02%. The six standard deviati
difference between Eq.~22! and ‘‘good’’ values of Eqs.~23!
and~24! is unlikely to be attributable to the fault of numer
cal integration. Instead it must be interpreted as the mea
of the approximate nature of the@2/3# and@3/2# Padé, which
can be remedied only by going to higher-order Pade´ approxi-
mation.

Finally one may ask how can one justify the use of t
Padéapproximation for the two-loop vacuum-polarizatio
function as a model for the three-loop case, in view of
fact that the three-loop functionP3

[1] has a threshold singu
larity (;1/v) while P2 does not. Our answer is that there
not much analytical difference betweenP(v) of two-loop
and three-loop cases since this singularity is removed exp
itly in the construction~8! of the Pade´ function P(v).

C. Conclusion

Based on these considerations we conclude the follow
~i! The Lamb shift calculation by numerical integratio
method gives a reliable result even if double precision ar
metic is used, provided sufficient sampling of the integra
is made in each step of iteration.~ii ! The@2/3# and@3/2# Padé
methods for the vacuum-polarization function given in R

4The results~23! and ~24! are obtained using the numerical int
gration routine ofMAPLE V.
re

e

c-

g.

-
d

.

@4# is a very good approximation over nearly all momentu
space region, even though it is exact only at a few cho
values of the momentum. It will be possible to narrow t
gap between Pade´ and exact results by using more input da
and by going to higher-order Pade´ approximations. However
we believe that@2/3# and@3/2# cases are good enough for th
purpose of confirming the reliability of numerical integratio
method.
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APPENDIX: PADÉ APPROXIMATION TO P2

The proper two-loop vacuum-polarization functionP2

can be obtained from Eq.~57! of Ref. @5# by removing the
contribution of (P1)2, whereP1 is the one-loop vacuum
polarization function. SinceP2 is known explicitly, it can be
used to construct a Pade´ approximant of any degree of pre
cision. Our purpose here is to test the approximation toP3

[1] .
Thus we construct a Pade´ approximant ofP2 using analytic
information similar to those used in constructingP3

[1] de-
scribed in Sec. II. They are

~i! small momentum behavior ofP2(z) given by @4#
8-5
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TABLE II. Coefficients of Pade´ approximants for two-loop vacuum polarization functionP2(z). We set
b051 for the overall normalization.

Coefficient @2/3#A @2/3#B @3/2#A @3/2#B

a0 0.218 599 301 0.218 599 301 0.218 599 301 0.218 599 30
a1 20.011 600 062 20.097 946 773 20.051 634 466 0.005 017 399
a2 20.118 517 746 20.176 492 097 20.190 422 374 20.143 212 168
a3 0 0 20.023 342 491 20.018 586 700
b0 1 1 1 1
b1 20.228 103 636 20.623 103 575 20.411 244 220 20.152 085 728
b2 20.470 961 931 20.667 030 155 20.767 838 808 20.597 234 583
b3 0.060 545 956 0.082 509 741 0 0
ct

s.

,

-

ry

e

at-
P2~z!5
82

81
z1

449

675
z21

249916

496125
z31•••, ~A1!

~ii ! leading terms ofP2(z) for z˜2`,

P2~z!5
5

24
2z32

1

4
ln~24z!1

1

z F2
3

4
ln~24z!G1OS 1

z2D ,

~A2!

~iii ! the threshold behavior of the imaginary part ofP2(z)

1

p
Im P2~z!5

p2

4
22d1O~d2!, ~A3!

whered5A121/z. This means that the real part ofP2(z)
has the logarithmic threshold singularity of the form

P2~z!52
p2

4
lnu12zu1•••. ~A4!

To take these analytic properties into account we constru
function P̃2(z) containing five parametersc1 , . . . ,c5:

P̃2~z![P2~z!1~12z!G~z!~c11c2 /z!

1c31c4 /z1c5F~z!, ~A5!

whereG(z) is introduced in Eq.~4! andF(z)5 lnu12zu. For
z.1, F(z) has the imaginary part

Im F~z!52p. ~A6!

The coefficientsc1 , c2, andc4 are determined by requiring
cancellation of all logarithmic singularities found in Eq
~A2! and ~A4!. The remainingc3 andc5 are determined by
05300
a

requiring thatP̃2 vanishes in the limitz˜02 . We find that
P̃2(z) is analytic in thez-plane cut along the real axis (1
1`) if we choose

c15
1

2
~12p2!, c25

1

4
~72p2!, c35

1

12
~115p2!,

c45
1

4
~271p2!, c55

1

4
p2. ~A7!

The function to be Pade´ approximated is chosen as

1

~11v!2@P̃2~z!2P̃2~2`!#, z5
4v

~11v!2 . ~A8!

We construct the Pade´ approximantP(v) of the form ~9!
using Eqs.~A1!, ~A2!, and ~A3! as the input data. We ob
tained two sets ofai ’s andbi ’s for each@2/3# and@3/2# Padé
approximation, which we denote@2/3#A, @2/3#B, @3/2#A, and
@3/2#B. They are listed in Table II. The Pade´ results of Sec.
III B are obtained from this table.

As a final check, we compared directly the imagina
parts of the exact Ka¨llen-Sabry function and its Pade´ ap-
proximation. The difference of the two functionsD
[Im P2(K2S)/p2Im P2(Padé)/p is examined for the en-
tire momentum rangez>1. The fractional deviation
D/@ Im P2(K2S)/p# is less than 0.2% in all cases of th
Padéapproximations. The Pade´ approximation functions are
found to oscillate around the exact value. Also, by integr
ing D over the entire range ofd5A121/z, 0<d<1, we
found

E
0

1

dd D55
0.000 276 •••@2/3#A ,

20.000 930 •••@2/3#B ,

20.000 461 •••@3/2#A ,

0.000 015 •••@3/2#B .

~A9!

Apparently the values of the muong-2 and Lamb shift are
more accurate than are implied by these results.
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