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Implication of the running mass of the r0 meson for the dilepton mass spectrum
and the µ1µ2/e1e2 ratio in K1

˜p1l 1l 2 decays

Peter Lichard*
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

and Institute of Physics, Silesian University, 746-01 Opava, Czech Republic
~Received 1 March 1999; published 2 August 1999!

We make an attempt to resolve the discrepancy of the observede1e2 mass spectrum in theK1

˜p1e1e2 decay with that predicted by meson dominance. To this end we investigate the properties of ther0

propagator. We use dispersion relations to evaluate the running massmr
2(t) of the r0 resonance without

adjustable parameters. To improve the convergence of the dispersion integral, the momentum dependence of
strong vertices is taken from the flux-tube-breaking model of Kokoski and Isgur. The obtained behavior of
mr

2(t) at small momentum squaredt makes theK1
˜p1e1e2 form factor rise faster with increasingt than in

the original meson dominance calculation and more in agreement with the published data. As a consequence,
the meson dominance prediction of them1m2/e1e2 ratio changes slightly, from 0.224 to 0.236. We do not
see any possibility to accommodate into the meson dominance approach an even steepere1e2 spectrum,
indicated by the preliminary data of the E865 Collaboration at BNL AGS.@S0556-2821~99!02215-8#

PACS number~s!: 12.15.Ji, 11.55.Fv, 13.20.Eb
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The decaysK1
˜p1l 1l 2 ( l 5e,m) have been the sub

ject of intensive theoretical studies since the late 1950s~see
@1–3# and references therein!. A picture of the later theoret
ical developments can be gained by inspecting@4–7# and
papers cited there. The decayK1

˜p1l 1l 2 was experimen-
tally observed in 1975 in itse1e2 mode@8# and in 1997 in
them1m2 mode@9#. Other experiments include a more pr
cise measurement of thee1e2 mode by the BNL-E777 Col-
laboration @10#, unpublishede1e2 data of the BNL-E851
Collaboration@11#, and the current BNL-E865 experimen
capable of measuring both modes@12# with high precision
and statistics.

Today, it is customary to interpret experimental results
the framework of chiral perturbation theory@5,13,7#. Unfor-
tunately, this theoretical framework contains free paramet
one in thep4 order@5#, two in thep6 order@7#. This, on the
one hand, diminishes the predictive power of the theory b
on the other hand, gives more room to experimentalists w
trying to fit theoretical formulas.

On the contrary, as we have shown recently@14#, meson
dominance offers a parameter-free description of theK1

˜p1l 1l 2 decays. The relevant Feynman diagram is sho
in Fig. 1. The corresponding formula for the differential d
cay rate in dilepton massM has the form generally expecte
for the one-photon approximation, namely,

dG~K1
˜p1l 1l 2!

dM
5CMl3/2~mK1

2 ,mp1
2 ,M2!

3A12
4ml

2

M2 S 11
2ml

2

M2 D uF~M2!u2,

~1!
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with l(x,y,z)5x21y21z222xy22xz22yz and the form
factor given by

F~ t !5
mr

2

mr
22t

. ~2!

The normalization constantC is not given by first principles,
but can be determined using data other than those on
K1

˜p1l 1l 2 decays themselves, concretely, from the e
perimental information about thet2

˜p2p2p1nt and
K1

˜m1nm decay. In Ref.@14#, we used the decay rate o
the t2

˜a1
2nt decay, thea1(1270) decay width, and the

K1
˜m1nm branching fraction.1 In this way we obtained

B(K1
˜p1e1e2)'3.131027, not in contradiction with

experiment (2.7460.23)31027 @15#. The approximative
character of our result was caused by the badly knowna1
decay width.

Formula ~1! makes a definite prediction for th
m1m2/e1e2 branching ratio even ifC is badly known. The
number is 0.224 with an error which is negligible under t
circumstances because the ratio is a function of the mass
participating particles only. We use it and the experimen
e1e2 branching fraction to predict

B~K1
˜p1m1m2!5~6.260.5!31028, ~3!

in agreement with the later measurement@9# of (5.0
61.0)31028.2

s,

1We use the terminology of@15#. The branching fractionB is the
ratio of a partial decay rate to the total decay rate; the branch
ratio is the ratio of two partial decay rates or, equivalently, of tw
branching fractions.

2We follow the convention of@15#, where the statistical, system
atic, and theoretical errors given in@9# are summed quadratically.
©1999 The American Physical Society07-1
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The t dependence of the form factor~2! can be, for the
purpose of comparing with data, characterized by the sl
variable

l~ t !5mp1
2 dF~ t !

dt
, ~4!

which is equal to 0.033 att50 and reaches 0.053 at th
upper kinematic boundaryt'0.125 GeV2. In Ref. @10# the
data were fit by a linear approximation to the form fac
@l[l(0)#

F~ t !511l
t

mp1
2 , ~5!

with l50.10560.035 (stat)60.015 (syst).
This result became a little surprising after the experim

tal value ofB(K1
˜p1m1m2) was published@9#. In fact, if

one assumes them/e universality and validity of Eq.~5!, the
values of B(K1

˜p1e1e2), B(K1
˜p1m1m2), and l

must match together. And they do not match very well. Ev
for l50.055 ~mean value minus both errors! the ‘‘pre-
dicted’’ value of them1m2/e1e2 branching ratio is equal to
0.235, which should be compared to the experimental 0
60.04 ~using @15#, errors summed quadratically!. The dis-
agreement rises withl. The preliminary data of the E86
experiment@12# indicate that the fault is not on the side ofl.

We therefore take for granted that the experimental va
of l indicates, despite its large errors, that the meson do
nance form factor~2! is too flat. In the following, we will try
to find the possible origin of this discrepancy and a way
improve the situation without introducing unnatural assum
tions and free parameters.

When writing Eq.~1! with form factor given by Eq.~2!,
the essential assumption was that ther0 propagator in Fig. 1
can be written in a free-vector-particle form

2 iG0
mn~q!5

2gmn1qmqn/mr
2

t2mr
21 i e

, ~6!

wheremr is the mass of ther0 resonance, as is seen in th
hadronic production experiments. The general expression
the interacting-vector-resonance propagator is a little m
complicated. It reads~see, e.g.,@16#!

2 iGmn~q!5
2gmn1v~ t !qmqn/t

t2mr
2~ t !1 imrG~ t !

, ~7!

FIG. 1. Matrix element of the decayK1
˜p1e1e2 in the me-

son dominance approach.
05300
e

r

-

n

8

e
i-

o
-

or
re

whereG(t) is the total width of ther resonance with off-
shell massAt, normalized att5mr

2 to the nominal widthGr .
Furthermore,mr

2(t) is the running mass squared andv(s) is
a complex function which reflects the properties of the o
particle-irreducible bubble.

The propagator~6!, which is usually used in meson dom
nance calculations, differs from Eq.~7! in three respects.

~1! A simplified structure of theqmqn term. This is not
important, because this term does not contribute anyhow
to the transverserpp vertex.

~2! The absence of a finite imaginary part, which is jus
fied, since most of ourt region lies below thepp threshold.
In a small window between the latter and the end of tht
interval it is negligible. Nevertheless, we will include it i
what follows.

~3! The only real difference is in replacing the runnin
massmr(t) with the nominal massmr , which is generally
allowed only in a close vicinity of the resonance point.

We will concentrate our effort on the last issue and stu
the consequences of replacing the nominal mass of ther0

resonance by its running mass in the denominator in Eq.~2!.
To be more concrete, we will write the modified form fact
in the form

F~ t !5
mr

2~0!

mr
2~ t !2t2 imrG~ t !

. ~8!

It follows from the causality of the propagator~7! that
above thepp thresholdt0 , mr

2(t) andmrG(t) are boundary
values of the real and imaginary parts, respectively, o
function analytic in the cutt plane. We can therefore write
once-subtracted dispersion relation@16#

mr
2~ t !5mr

22
t2mr

2

p
PE

t0

` mrG~ t8!

~ t82t !~ t82mr
2!

dt8, ~9!

where the symbolP denotes the principal value. To procee
further, we must find all important contributions to the va
able width G(t). Without any doubt, we start withr0

˜p1p2. Other candidates are, ordered according to ris
thresholds,r0

˜hp1p2, r0
˜vp0, and r0

˜K1K2 and
K0K̄0. The relative importance of those channels can furt
be assessed by comparing the abundance of their isot
companions in thet2 decays. This suggests that of tho
three, thevp0 final state will be the most important, whil
the hp1p2 one the least important. The results of actu
calculations confirm this estimate. Furthermore, inspect
of the t-decay fractions shows that there is no other imp
tant hadronic channel with quantum numbers of ther0 me-
son. In addition, we assume that possible channels w
thresholds above thet2 mass may be neglected. The resu
obtained below seem to validate this assumption.

Now we are going to describe our calculation in mo
detail. Let us start with the most important contribution
G(t), which is ther0

˜p1p2 decay. We write therpp
vertex in the form

Vm5 f rpp~p* 2!~pp1
m

2pp2
m

!, ~10!
7-2
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IMPLICATION OF THE RUNNING MASS OF THEr0 . . . PHYSICAL REVIEW D 60 053007
wherep* is the pion momentum in ther rest frame. Instead
of the usual coupling constant we have introduced the str
form factor. Its momentum dependence was taken from
flux-tube-breaking model of Kokoski and Isgur@17#. We
thus write

f rpp~p* 2!5grpp expH 2
p* 2

12b2J , ~11!

with b50.4. We must confess that our original motivatio
for borrowing Eq. ~11! from @17# was technical: we jus
wanted to ensure good convergence of the dispersion
gral. But it appeared later that a very reasonable result
mr

2(t), which we will present below, could not be achiev
without assuming Eq.~11! or with a very different value of
the parameterb. Our opinion is now that the flux-tube
breaking model ansatz~11! reflects correctly the real dynam
ics of therpp vertex. We will use the same parametrizati
for all strong form factors.

Using Eqs.~10! and ~11! we easily arrive at the formula

Gr0
˜p1p2~ t !5

grpp
2

6p

p* 3

t
expH 2

p* 2

6b2J , ~12!

where p* 5At/42mp
2 . The coupling constant was dete

mined from the condition

Gr0
˜p1p2~mr

2!5Gr5~150.761.1! MeV, ~13!

with the resultgrpp
2 541.760.3. Formula~12! can be used,

with obvious modifications also forr0
˜KK̄. Here, the cou-

pling constant can be determined from thet2
˜K2K0nt

branching fraction. We refer the reader to Ref.@14#. Taking
into account the modifications connected with present us
of the momentum-dependent strong form factors and ass
ing thatr2 andr0 decay to their correspondingKK̄ systems
with the same rate, we getgr0K1K2

2
1gr0K0K̄0

2
528.265.1.

The rvp vertex is taken in the form3

Vmn5
f rvp~p* 2!

mr
emanbpr,apv,b , ~14!

with the same momentum dependence of the strong f
factor as in Eq.~11!. The coupling constant can be dete
mined from the decay rateG(v˜p0g)5(7.260.4)31024

GeV assuming the usual vector-meson-dominance form
the coupling betweenr0 and g. The result isgrvp

2 5155
68. The contribution toG(t) is given by the formula

Gr0
˜vp0~ t !5

grvp
2

12p

p* 3

t
expH 2

p* 2

6b2J , ~15!

with p* 25l(t,mv
2 ,mp0

2 )/(4t).

3The coupling constants here were made dimensionless, con
to @14#, by introducing ther mass in the denominator.
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The last contribution toG(t) we consider is the deca
r0
˜hp1p2. We will consider this as a two-step proces

r0
˜hr0 followed by the decayr0

˜p1p2. The mass
squared of the parentr0 is t; that of the daughterr0 is s
,t. Thanks to the daughter decay matrix element be
transverse, the decay rate of the whole process factorizes
two parts@18#. The first of them is given by formula~15!
with obvious modifications; the second one contains a Br
Wigner term with a decay rate ofr0

˜p1p2. The only new
element is therhr coupling constant, which is determine
from G(r0

˜hg)5(3.661.3)31025 GeV as grhr
2 555

621. The contribution toG(t) is given by

Gr0
˜hp1p2~ t !5

grhr
2 grpp

2

36p3t

3E
2mp1

At2mh ~pp* ph* !3

~s2mr
2!21mr

2G2~s!

3expH 2
pp*

21ph*
2

6b2 J dAs, ~16!

where

ph* 5
l1/2~ t,s,mh

2 !

2At
, ~17!

pp* 5As

4
2mp1

2 . ~18!

It seems to be a sort of conundrum that the right hand s
contains the same quantity, the contribution to which we a
to determine, namely,G(s). Under different circumstance
we would be forced to repeat the whole procedure sev
times in search of a self-consistent solution. Fortunate
here it shows that the result depends only little on the fo
of G(s). We compared the case of fixed widthGr with the
case ofGrpp(s) and found only tiny differences. We picke
the result of the latter choice.

Now we have collected all pieces and can add them
form the totalG(t) and evaluate the dispersion integral. T
be sure that we have things under control, we proceeded
less straightforward way. We first took the basic (r0p1p2)
contribution alone and determinedmr

2(t). Then we did the
same thing for the basic contribution combined with thr
other contributions taken individually and compared t
changes against the basic contribution alone. In this way
determined the following sequence of contributions~most
important first!: vp0, KK̄, hp1p2. Then we started again
and added the contributions cumulatively, in the order j
shown. The resultingmr

2(t)’s are depicted in Fig. 2. We ca
see that the procedure of adding contributions converges
very reasonable result: a wide plateau, the derivative at
5mr

2 almost vanishing. Our input parameters, coupling co
stants, have relatively large errors. So it would be possibl
vary them within limits in an effort to find an even bette
solution ~characterized by the vanishing derivative att
ry
7-3
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PETER LICHARD PHYSICAL REVIEW D 60 053007
5mr
2). Another possibility would be to varyv a little around

the breaking-flux-tube model@17# preferred solutionb50.4.
We made only one try in that direction. We found that t
derivative vanished if the coupling constants squared of
three additional contributions were diminished by 8%. B
the behavior of the running mass squared in the region wh
interests us most@0,t,(mK12mp1)2# did not change by
that move at all. We therefore believe that our determinat
of mr

2(t) at low t is stable and trustable.
Before we draw conclusions about theK1

˜p1l 1l 2

form factor, we must mention one correction we shou
make in order to be consistent with the formalism we used
our dispersion relation evaluation of ther0 running mass.
We should include the same momentum dependence
strong form factors also into our basic diagram, Fig. 1. He
it applies to thea1rp vertex and leads to the following
modification of the form factor~8!:

F~ t !5
mr

2~0!

mr
2~ t !2t2 imrG~ t !

expH t~2mK1
2

12mp1
2

2t !

48mK1
2 v2 J .

~19!

Anyhow, to see the effect of the running mass alone
Fig. 3 we present three curves: the old meson domina
form factor calculated from Eq.~2! ~dashed curve!; the form
factor coming from the running mass with the vertex corr
tion ignored, Eq.~8! ~dash-dotted curve!; and the form factor
reflecting both effects, Eq.~19! ~solid curve!. The latter is
what we consider the final product of our study.

FIG. 2. Running mass squared of ther0 meson for different
inputs to the dispersion relation:~i! r0

˜p1p2 only ~dash-dotted

curve!, ~ii ! r0
˜vp0 added ~dashed curve!; ~iii ! also r0

˜KK̄
added~dotted curve!, ~iv! the final curve~solid curve! after ther0

˜hp1p2 contribution has been added.
05300
ll
t
h

n

n

of
,

n
ce

-

Figure 4 brings the same information but in a form whi
is better suited for comparison with the experimental m
spectra. It shows the dependence of the form factor squ
on the dilepton mass.

The form factor calculated from Eq.~19! has a much
steepert dependence than the original form factor~2!. It is
characterized byl50.043 att50 andl50.073 at the larg-
est t. Thee1e2/m1m2 branching ratio calculated using Eq
~1! with Eq. ~19! is 0.236. Using the experimental branchin
fraction of thee1e2 mode@15# we get a new prediction for
the m1m2 mode,

FIG. 3. K1
˜p1e1e2 form factor as a function oft: ~i! con-

stantr0 mass, Eq.~2! ~dashed curve!; ~ii ! runningr0 mass, Eq.~8!
~dash-dotted curve!; ~iii ! running r0 mass and thea1rp vertex
correction, Eq.~19! ~solid curve!.

FIG. 4. Same as Fig. 3, but with theK1
˜p1e1e2 form factor

squared as a function of the dielectron mass.
7-4
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B~K1
˜p1m1m2!5~6.560.6!31028, ~20!

which differs only little from the original one~3!. The ‘‘ef-
fective l ’’ of our form factor, defined as the value ofl in
linear parametrization ~5! that leads to the sam
m1m2/e1e2 branching ratio, is 0.057~in the original ver-
sion of the meson dominance calculation@14# it was 0.039!.
From the above we conclude that the meson domina
model with our new form factor is consistent with the sha
of the e1e2 mass distribution as measured in experim
@10#.

A much different story is the comparison with the pr
liminary data@12# of the E865 experiment at the Brookhave
National Laboratory Alternating Gradient Synchrotron. Th
10 000K1

˜p1e1e2 events yielded a preliminary result o
the form factor parameter ofl50.2060.02. If this value is
confirmed, the meson dominance model of theK1

˜p1l 1l 2 decays will be ruled out, despite its success w
a parameter-free calculation of the branching fractions.

Let us conclude with a general comment. It is a lit
unfortunate that the role of theK1

˜p1l 1l 2 decays is
sometimes shrunk to a testing ground of chiral perturba
theory and other clues are not followed. Here I mean ma
the importance of these decays in studying the behavio
the electromagnetic form factor induced by ther0 resonance
at small t. In my opinion, there are only two kinds of pro
-

05300
ce
e
t

r

n
ly
of

cesses that are able to perform this task. BesidesK1

˜p1l 1l 2 decays these arev˜p0l 1l 2 Dalitz decays.4

Concerning the latter, the onlye1e2 experiment performed
@19# had low statistics and was unable to provide the m
spectrum. Them1m2 experiment @20# showed that the
dimuon mass spectrum disagreed with the vector me
dominance hypothesis. The parallel withK1

˜p1l 1l 2 is
interesting. But the kaon decays we consider here are un
in populating mainly the region below thepp threshold,
whereas the dilepton mass spectrum of thev Dalitz decays
spans to much higher values. TheK1

˜p1l 1l 2 decays can
serve as a unique magnifying glass for studying the beha
of the r-induced electromagnetic form factor at smallt.

I am indebted to Julia Thompson, Naipor Cheung, Da
Kraus, Hong Ma, and Pavel Reha´k for discussions and to
Julia Thompson and Alex Sher for taking on themselve
part of my experimenter’s responsibilities while I was wor
ing as a theoretician. This work was supported by the U
Department of Energy under Contract No. DOE/DE-FG0
91ER-40646 and by the Grant Agency of the Czech Repu
under Contract No. 202/98/0095.

4Dalitz decays off, which can, in principle, serve for the sam
purposes, have not been observed yet.
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