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Moduli space dimensions of multipronged strings
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The numbers of bosonic and fermionic zero modes of multipronged strings are counted inN54 super-
Yang-Mills theory and compared with those of the type IIB string theory. We obtain nice agreement for the
fermionic zero modes, while our result for the bosonic zero modes differs from that obtained in the type IIB
string theory. The possible origin of the discrepancy is discussed.@S0556-2821~99!08012-1#
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I. INTRODUCTION

The recent development of nonperturbative string theo
has provided new powerful tools to understand supers
metric gauge theories. The low energy dynamics of
D-branes is described by supersymmetric gauge theo
The Bogomol’nyi-Prasad-Sommerfield~BPS! spectrum of
the supersymmetric theory will then correspond to the B
configurations of strings and branes ending on the ba
ground brane configurations.

Various known properties of theN54 SU(N) supersym-
metric Yang-Mills theory have been studied based onN par-
allel D3-branes. The BPS state spectra of the massive g
bosons, monopoles, and dyons preserving half of the su
symmetry are identified with the (p,q) strings connecting
two separated D3-branes. With more than two D3-branes
can have string junction configurations@1# that preserve only
1/4 of the supersymmetries@2,3#. The condition for the string
junction configurations gives the set of field equations
scribing the corresponding BPS states of the gauge th
@3–8#. In addition to the first order differential equations d
scribing the 1/2 BPS states of monopoles, the string junc
needs a second order equation of the Gauss law. The fi
theoretic solutions corresponding to multipronged strin
were explicitly constructed for SU~3! theory @5,6# and gen-
eralized to SU~N! theory @7,8#.

To study the quantum properties of this string junctio
one needs to understand the zero modes around the cla
configurations. As in the case of monopoles@9,10#, the
bosonic zero modes will correspond to the collective coo
nates of the moduli space, while the fermionic zero mo
correspond to the spin structures of the supermultiplets.
number of zero modes of monopoles with an arbitrary ga
group is well known@11#.

In this paper, we will count the number of bosonic a
fermionic zero modes of the multipronged strings in t
SU~N! field theory and compare it with that of the type II
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string picture@12#. The number of fermionic zero modes wa
already discussed for a specific SU~3! solution in Ref.@6#.

In Sec. II, we briefly describe the BPS equations desc
ing the string junction and the zero-mode equations. In S
III, we count the zero modes. The equations of the boso
zero modes consist of those for the magnetic monopole
one more second order equation. Usually, the index, i.e.,
number of zero modes, is evaluated by asymptotic expan
of the field configurations@11#. However, for the string junc-
tions, the method of evaluating the index by the expansion
the electric fields fails. Instead, we will count the boson
and fermionic zero modes based on considering the c
straints imposed on the zero modes of multimonopoles.
details of the mathematical arguments are given in the
pendix. In Sec. IV, this counting is shown to be differe
from that based on the type II string theory. In Sec. V, w
summarize our main results and indicate future direction

II. MULTIPRONGED STRINGS
AND THEIR MODULI SPACE

We begin by recapitulating the basic properties of 1
BPS states in theN54 SU~N! super-Yang-Mills theory,
whose Lagrangian, for the bosonic part only, reads

L52
1

4gYM
2

TrFFmnFmn12Dmf IDmf I22(
I ,J

@f I ,fJ#2G ,
~1!

where Fmn[]mAn2]nAm2 i @Am ,An#, Dmf I[]mf I

2 i @Am ,f I #, and the indicesI and J run from 1 to 6. It is
well known that, in this theory, the monopoles, dyons, andW
particles preserve half of 16 supersymmetries of the the
It was shown recently that there may be also 1/4 BPS st
that preserve a quarter of the total supersymmetry. As sh
in Refs. @3,12#, these states describe multipronged strin
connectingN D3-branes in the type IIB string picture. Ex
amples of closed-form solutions corresponding to
pronged strings were found in theN54 SU~N! super-Yang-
Mills theory @5–8#. We shall investigate the number of bo
bosonic and fermionic zero modes of the the multiprong
strings in theN54 super-Yang-Mills theory for the gaug
group SU~N!. This will be the first step to extract the struc
ture or geometry of the moduli space involved with the m
©1999 The American Physical Society05-1
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BAK, HASHIMOTO, LEE, MIN, AND SASAKURA PHYSICAL REVIEW D 60 046005
tipronged strings. Thereby, one is ultimately interested
obtaining the low-energy effective dynamics of the mu
pronged strings.

The Bogomol’nyi bound for the 1/4 BPS states can
found by considering the energy functional of theN54 sys-
tem:

M5
1

2gYM
2 E d3x TrFE•E1B•B1Df I

•Df I1D0f ID0f I

2(
I ,J

@f I ,fJ#2G . ~2!

Introducing two orthonormal six-vectorseI and bI , we
present the energy equivalently by

M5
1

2gYM
2 E d3x TrF ueIE1bIB2Df I u21uD0f IeI u2

1uD0f IbI1 i @f IeI ,fJbJ#u21uD0f'
I 1 i @fJeJ,f'

I #u2

2(
I

@fJbJ,f'
I #22(

I ,J
@f'

I ,f'
J #212¹•~E f IeI !

12¹•~B f IbI !G , ~3!

wheref'
I refers to components of the six-vector perpendi

lar to the unit vectors,eI andbI , and we have used the Gau
law constraint

D•E1 i @f I ,D0f I #50, ~4!

and the Bianchi identityD•B50 to perform the integration
by part. This, then, implies that the energy is bounded fr
below by

gYM
2 M>QE

I eI1QM
I bI , ~5!

where we define the charge six-vectors as

QE
I [E d3x¹•Tr Ef I5QE

phIp,

QM
I [E d3x¹•Tr Bf I5QM

p hIp. ~6!

For the equalities, we used the asymptotic condition

^f I&5hIpHp , ~7!

where Hp is the N21 mutually commuting operators tha
span the Cartan subalgebra. The raising and lowering g
eratorsEa ,

@Hp ,Ea#5apEa , ~8!

are normalized by

@Ea ,E2a#5apHp , ~9!
04600
n

e

-

n-

whereap are the roots. We will choose the simple rootsbp
by requiring hIpbIbp.0 for the maximal symmetry
breaking1 case alongf IbI .

The saturation of the bound occurs if@4–8#

Df I5eIE1bIB, D0f IeI50, D0f IbI1 i @f IeI ,fJbJ#50
~10!

and

@f'
I ,f'

J #50, @fJbJ,f'
I #50, D0f'

I 1 i @fJeJ,f'
I #50.

~11!

There are two types of BPS states that may be classified
considering twoN54 central charges given by@4#

Z65AiQE
I i21iQM

I i26iQE
I iiQM

I isinx „xP@0,p!…,
~12!

wherex denotes the angle between the charges vectors.
x50, the state preserves the eight supersymmetries
these are described field theoretically by the monopole,
ons, andW particles. With nonvanishingx, the two charge
vectors are no longer parallel, and the state preserves
1/4 of the supersymmetry. We will be concerned on these
BPS states.

Owing to the tracelessness of the charges, this, in f
guarantees the balance of tension of the corresponding
tipronged junction. Moreover, one finds a restriction on t
electric and the magnetic charges:

QE
phIpbI2QM

p hIpeI50, ~13!

which turns out to be the balance condition of the torq
applied on the associated D3-branes by the pronged str2

This restriction follows from

QE
phIpbI5QE

I bI5E d3x Tr E•Df IbI5E d3x Tr E•B

5E d3x Tr B•Df IeI5QM
p hIpeI , ~14!

where we used the Bogomol’nyi equation and the definitio
of charges.

The geometric shape of the junction and the meaning
the charges may be clearly found by fixing our si
coordinate system. For later purpose, we shall denotef IbI

[A4, and f IeI[X and further setf'
I 50 without loss of

generality.

1We consider only the case of the maximal symmetry breaking
the direction off IbI for simplicity. Obviously, this condition may
be lifted to study the effect of non-Abelian symmetry breaking.

2On the transverse two-plane (x,y) of the pronged string, the ten
sion on thepth string that ends on thepth D3-brane is the trans
verse two-vector (QE

p ,QM
p ), while the transverse asymptotic pos

tion of thepth brane is (xp ,yp)5(hIpeI ,hIpbI). The torque exerted
by the strings with respect to the origin of the transverse plan
then given by Eq.~13!.
5-2
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The BPS equations~10! are rewritten as

B5DA4 , ~15!

E5DX, ~16!

D0X50, D0A41 i @X,A4#50, ~17!

with the Gauss law

D•DX2@A4 ,@A4 ,X##50. ~18!

Let us now choose a gaugeA05X. Equations~16! and ~17!

then lead to a relationȦm5Ẋ50 (m51,2,3,4), which im-
plies that any solutions of the BPS equation are static w
this gauge choice.

Equation~15! is the usual BPS monopole equation. Hen
the junction BPS state is a kind of monopole surrounded
W-boson cloud, which is determined by Eq.~18!. Topologi-
cal argument leads to the quantization of the magnetic ch
by

QM54p (
a51

N21

mabp
ahIpbI , ~19!

where the integerma counts the number of each fundamen
monopole.

The moduli space of a given multipronged string w
fixed D-brane positions is defined by the solution space
the above BPS equation modulo gauge transformation w
fixed vacuum expectation values of scalars and elec
magnetic charges.

The tangent vectors of the moduli space with the ga
A05X will satisfy the zero-mode equations

e i jkD jdAk1D4dAi2DidA4[hmn
i DmdAn50, ~20!

DmDmdA012i @DmA0 ,dAm#50, ~21!

DmdAm50, ~22!

where we introduced a notation2 i @A4 ,(•)#[D4(•) and the
’t Hooft symbol

hmn
a 55

«amn, m,n51,2,3,

1dan , m54,

2dam , n54,

0, m5n54,

~23!

and Eq.~22! is the gauge condition. The zero modes are th
normalizable solutions of the above equations with a nor

uudAuu25E d3x ~dA0dA01dAmdAm!. ~24!

The number of the zero modes will agree with the dime
sions of the moduli space or the tangent space at a g
point of the moduli space. In dealing with the above ze
mode equations, we note that a multipronged string of SU~N!

can be always embedded into the SU(N̄) theory with a larger
04600
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N̄. Then, in the SU(N̄) theory, the field components of th
multipronged solution other than the SU~N! component are
zero by construction. Then, with this background solutio
the fluctuations of components other than the SU~N! compo-
nent will be dynamically decoupled in the above zero-mo
equations and, hence, can be trivially set to vanish from
beginning. Hereafter, we shall choose such an SU~N! sub-
group with the minimum rank, where one can embed
pronged string, and work within such SU~N!. This N is then
the number of D-branes where the prongs end, which will
denoted byÑ.

To expose the structure of the low-energy effective L
grangian resulting from the moduli-space approximation,
begin by specifying the moduli-space element that satis
the static Bogomol’nyi equations asA(r ;j) where js (s
51,2, . . . , @No. of zero modes#! is the coordinate of the
moduli space. In evaluating the effective Lagrangian w
time-dependent moduli coordinates, we shall work in
gaugeA0„r ;j(t)…5X„r ;j(t)…, which is achieved by an ap
propriate gauge transformation of the fields. The Gauss c

straint in Eq. ~4!, then, takes the formj̇s(DidsAi
2 i @A0 ,dsA0#2 i @A4 ,dsA4#)50, where dsA[]sA2Des
with es being the gauge function required to achieve t
gauge choice. InsertingA„r ;j(t)… into the Lagrangian~1!,
performing the gauge transformation, and then using
gauge condition and the above form of the Gauss constra
one finds that

Leff5
1

2gYM
2 E d3x Tr@d tA0d tA01d tAmd tAm22] i~A0d tA

i !#,

~25!

whered tA
i denotesj̇sdsA, and we have dropped a consta

term. The effective Lagrangian may be rewritten, to qu
dratic order in velocities, as

Leff5
1

2
gss8~j!j̇sj̇s82As~j!j̇s. ~26!

The metric and the vector potential can be expressed
terms of the zero mode, as

gss8~j!5
1

gYM
2 E d3x Tr@dsA0ds8A01dsAmds8Am#,

~27!

As~j!5
1

gYM
2 E

r 5`
dSi Tr A0dsAi

5E dV hp
I eI lim

r→`

@r 2 Tr~ r̂ idsA
iHp!#, ~28!

where, in the last equation, we have used the normalizab
condition dsAi5O(1/r 2) for a larger. The vector potential
term in Eq. ~26! may be a total time derivative term. Al
though a total time derivative term does not affect the cl
5-3
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sical dynamics of the moduli space, it may be relevant in
quantum version especially when some of the directions
the moduli space are compact. The motion in these com
directions is expected to be involved with the quantization
the electric charges.

III. COUNTING THE NUMBER OF ZERO MODES

The equations of the bosonic zero modes and the ga
fixing condition are given by Eqs.~20!, ~21!, and~22!. In this
section we shall analyze the number of normalizable so
tions of these equations. Here and below, all vector po
tials and the covariant derivative denote, respectively,
background solutions of pronged strings and the covar
derivative with respect to the background. The normaliza
solutions of Eqs.~20! and~22! are the zero modes of a BP
monopole. The problem here is whether Eq.~21! gives a
normalizable solution fordA0 or not. As discussed in the
Appendix, the condition that the solution of Eq.~21! be nor-
malizable is given by

E d3x Tr~La@DmA0 ,dAm# !50, ~29!

where the trace is over the color indices andLa (a
51, . . . ,Ñ21) are the zero modes of the operat
2DmDm . From the junction BPS equation,DmDmA0
5DmDmA450 holds. They are independent for a 1/4 BP
state, and hence they are two ofLa . As shown in the Ap-
pendix, the condition~29! is equivalent to the condition tha
the electric charges should not change under infinitesi
changes of the configuration.

Apparently these conditions seem to giveÑ21 condi-
tions on the tangent moduli space of the monopole, but
is not so. In fact, one of the conditions

E d3x Tr~A4@DmA0 ,dAm# !50 ~30!

is satisfied for any monopole zero modedAm . To show this,
we can use an identity resulting from the simple fact that
magnetic charges do not change under the infinitesi
change. As shown in the Appendix, this implies that

E d3x Tr~A0@DmA4 ,dAm# !50. ~31!

One can easily show that the partial integration of this eq
tion gives Eq.~30!. „Alternatively, one may understand E
~30! in terms of the torque balance identity~13! by
d Tr@A4(r 5`) QE#5d Tr@A0(r 5`) QM# and dQM50.…
Hence the number of constraints is in factÑ22. The number
of bosonic zero modes of the monopole BPS equation
given by@No. of monopoles# 34 @11#, where ‘‘No. of mono-
poles’’ is the total number of the fundamental monopol
(ama @see Eq.~19!#. Therefore, taking into account the co
straints, the total number of the bosonic zero modes~BZM’s!
of the junction solution is given by
04600
s
f
ct
f

ge

-
n-
e
nt
le

al

is

e
al

-

is

,

@No. of BZMs#5@No. of monopoles# 342Ñ12. ~32!

Let us now discuss the number of the fermionic ze
modes of the junction solution. The equations for the ferm
onic zero modes are given by

D (2)c (2)5S 22D0 tm
2Dm

tm
1Dm 0

Dc (2)50, ~33!

D (1)c (1)5S 0 tm
2Dm

tm
1Dm 22D0

Dc (1)50, ~34!

where D0 is understood asD0(•)52 i @A0 ,(•)# and the 2
32 matrices are defined bytm

25(s i ,2 i ) and tm
15(s i ,i )

with the Pauli matricess i . To first analyze Eq.~34!, we
decompose it by

c (1)5S c1
(1)

c2
(1)D . ~35!

Then Eq.~34! is

tm
2Dmc2

(1)50, ~36!

tm
1Dmc1

(1)22D0c2
(1)50. ~37!

Since the operatortm
2Dm has no zero modes, the solution

given byc2
(1)50. Hencetm

1Dmc1
(1)50, andc1

(1) is just the
fermionic zero modes of a BPS monopole. Thus the numb3

of the fermionic zero modes resulting from Eq.~34! is given
by @No. of monopoles# 34.

With a similar decomposition to two-component spino
Eq. ~33! can be rewritten as

tm
1Dmc1

(2)50, ~38!

tm
2Dmc2

(2)22D0c1
(2)50. ~39!

Equation~39! just gives the fermionic zero modes of a BP
monopole and the number of the solutions is 43 @No. of
monopoles#. Let us discuss the normalizability ofc2

(2) re-
sulting from Eq.~39!. First act an operatortm

1Dm on Eq.
~39!.4 Using the BPS equation, we obtain

DmDmc2
(2)22tm

1DmD0c1
(2)50. ~40!

This equation looks very similar to the bosonic one~21!. To
obtain a normalizable solution ofc2

(2) , the following con-
straints onc1

(2) must be satisfied:

3We count the number in real components. Hencec and ic are
counted as distinct solutions.

4The following discussions are obscured by the existence of
zero modes of the operatortm

1Dm . However, using the explicit
known relations between the fermionic and bosonic zero modes
monopole, one can show the same result given below. N.S. w
like to thank S. Imai for clarifying this point.
5-4
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MODULI SPACE DIMENSIONS OF MULTIPRONGED STRINGS PHYSICAL REVIEW D60 046005
E d3x Tr~Latm
1DmD0c1

(2)!50, ~41!

where the trace is over the color indices. As similar to
bosonic case, one of the constraints,

E d3x Tr~A4tm
1DmD0c1

(2)!50, ~42!

is identically satisfied by the monopole fermionic ze
modes.

To show this, let us start with Eq.~39!. Applying the
operator tm

2Dm on it, one obtains (DmDm

1 i h̄mn
a saDmDn)c1

(2)50. @The symbolsh̄mn
a differ from h

by a change in the sign ofd in the definition~23!.# Using
further the BPS equations, we obtain

~DmDm22i tm
1DmD4!c1

(2)50. ~43!

Hence the normalizability of the fermionic zero modec1
(2)

reads

E d3x Tr~Latm
1DmD4c1

(2)!50. ~44!

By the partial integration of Eq.~44! with the substitution
La5A0, we obtain Eq.~42!.

Thus the constraints~41! give 4(Ñ22) constraints on the
fermionic BPS zero modes. Thus the total number of
fermionic zero modes~FZMs! is given by

@No. of FZMs#5@No. of monopoles# 3824~Ñ22!.
~45!

In the next section, we will compare the numbers of the z
modes, Eqs.~32! and~45!, with those derived from the type
IIB description.

Finally we mention the reason why we should takeÑ
instead ofN in our formulas for the numbers of zero mode
Let us consider a D-string of SU~3! theory in Fig. 1. The
zero-mode equations take the same form as Eqs.~20!, ~21!,
and ~22! with DmA050. Hence the solution of Eq.~21! is

FIG. 1. The configuration of D-string ending on D3-branes
depicted. The figure is for magnetic charges (m1 ,m2)5(1,1) in the
SU~3! case. The moduli space is four dimensional.
04600
e
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o
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simply dA050. The others possess 234 zero modes be-
cause the D-string is regarded as two fundamental mo
poles in Eqs.~20! and ~22!. This is incorrect because w
know from the beginning that there are only four mod
degrees of freedom around this configuration. This failure
the zero-mode analysis may be understood as follo
Around the D-string configuration, the field-theoretic pote
tial is too flat to capture the correct number of zero modes
just considering the linearized fluctuations of Eqs.~20!, ~21!,
and ~22!. The higher-order analysis will show that the rel
tive motions of the two fundamental monopoles drop out
the moduli space, which leaves just four overall translat
degrees.

However, our formulas, Eqs.~32! and ~45!, for the zero
modes are still valid for the D-string because we are us
the minimal embedding of solutions and, hence,Ñ52.

IV. COMPARISON WITH TYPE IIB STRING THEORY

Our result of the number of the bosonic zero modes d
not agree with that from the type IIB string theory. To illu
trate, let us consider the simplest case of a tree three-pron
string with two-form charges~1,0!, ~0,1!, and (21,21). The
magnetic charge of the corresponding field theory solution
SU~3! is (m1 ,m2)5(1,1). Thus the magnetic part has tw
fundamental monopoles, and the result~32! tells us that there
are seven bosonic zero modes. This number looks quite
and moreover this does not agree with the type IIB result t
is just three for the present case@12#. However, this is a very
natural result from the explicit junction solution discussed
Ref. @6#. Their solution is composed of two monopole cor
which are surrounded by clouds ofW bosons, i.e., electric
charges. The monopole part has eight bosonic zero mo
which are composed of the zero modes associated with t
translations, two gauge, two relative orientations, and o
relative distance. The electric part is determined by
monopole part when the vacuum expectation values of
scalar fields take given fixed values. Especially, the elec
charges of the junction solution are determined by the re
tive distance, while the magnetic charges are just topolog
numbers and stable. Since the electric charges appear in
asymptotic 1/r behavior of the junction solution, the chang
of the relative distance is not normalizable. Thus we sho
keep the relative distance fixed. The other monopole z
modes are naturally expected to be normalizable, and he
there are seven bosonic zero modes in the junction solut

On the other hand, we find nice agreement for the fer
onic part. Let us consider a monopole configuration w
magnetic charges (m1 ,m2 , . . . ,mÑ21). The corresponding
string configuration is such thatÑ D3-branes are aligned o
a line and that theath and the (a11)th D3-branes are con
nected byma D-strings (a51, . . . ,Ñ21). This configura-
tion may be regarded as the string configuration correspo
ing to a junction solution in the limit of vanishing electri
charges. To recover from the limit, let us now add sm
Neveu-Schwarz–Neveu-Schwarz~NS-NS! charges on each
D-string. We do not take care of the quantization of t
NS-NS charges, since our treatment in the field theory is
5-5
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classical and does not care about the quantization of the e
tric charges. The rule is as follows. We add distinct sm
NS-NS charges to each D-string, and connect the end
them with strings with appropriate (p,q) charges to form a
string network ending on the D3-branes. For the case w
(m1 ,m2 ,m3)5(1,3,2) as an example, the configuration
the string is deformed into the one in Fig. 2. There arema
21 internal loops between theath and (a11)th D3-branes
in a general case. Although the diagram changes if the
signment of the small NS-NS charges on each D-string
changed, the number of loops does not change. It is
possible to add more strings, but we take the configura
with a minimal number of strings to be able to form a stri
network.5 The total number of the loops in the diagram
given by

(
a51

Ñ21

~ma21!5@No. of monopoles#2~Ñ21!. ~46!

The zero-mode analysis in the type IIB framework w
done in Ref.@12#. The result is

@No. of FZMs~type IIB)]58F int14Eext, ~47!

whereF int denotes the number of internal loops~faces! of the
string diagram andEext is the number of the external string
Thus, applying to the present case, we obtain

@No. of FZMs~type IIB)]

58@@No. of monopoles#2~Ñ21!#14Ñ

5@No. of monopoles# 3824Ñ18, ~48!

which agrees with Eq.~45!.
Finally, the discrepancy of the bosonic zero modes fr

the type IIB string picture might be understood as follow
Expression~32! of the bosonic zero modes can be written

5Although the possible number of the loops depends on
NS-NS charges of the external strings ending on D3-branes in
IIB theory, we take a special configuration derived by the abo
rule without taking into account the quantization of the NS-N
charges.

FIG. 2. The configuration of pronged strings ending on D
branes which corresponds to our field theory analysis. The l
strings have Ramond-Ramond~RR! charge one and small NS-N
charges. The figure is for magnetic charges (m1 ,m2 ,m3)5(1,3,2)
in the SU~4! case.
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@No. of BZMs]5@2~@No. of monopoles#21!

1@No. of monopoles##

1@No. of BZMs ~type IIB)], ~49!

where the last term is the type IIB result@12#,

@No. of BZMs ~type IIB)]5F int13. ~50!

It is intriguing to note that the discrepancy~49! agrees with
the number of the compact directions of the monop
moduli space; i.e., there are 2(@No. of monopoles#21) rela-
tive spatial orientations among the fundamental monopo
and one U~1! gauge direction per each fundamental mon
pole. It might be expected that, when the junction BPS s
is treated quantum mechanically, the wave function prev
the compact directions and these directions do not appea
the moduli of the state.

V. CONCLUSION

In this paper, we nonperturbatively identified the numb
of the bosonic and fermionic zero modes of the multiprong
strings in the context of theN54 super-Yang-Mills theory.
The bosonic zero modes differ from the type IIB string p
ture, but the fermionic zero modes are matching with tho
in the type IIB string picture.

The discrepancy is due to the softness of the fie
theoretic configurations. Namely, the monopoles of the m
tipronged strings in the field theory can take a relative m
tion in the parallel space of the D3-branes, whereas
corresponding degrees in the type IIB picture cannot be p
mitted. In the case of the minimal three-pronged strings,
number of bosonic zero modes is 7 while there are 12 fer
onic zero modes. On the grounds of the remaining supers
metries of the system, the natural number of bosonic deg
would be even due to the complex structure of the remain
supersymmetry. We expect that the analysis of deta
moduli dynamics may be helpful in resolving this issue. T
comparison with the M-theory result@13# or the D-string
world sheet approach@14# would also be interesting.

The dynamics of the moduli space is in itself of impo
tance, especially in relation to the quantizations of the el
tric charges. The supersymmetric quantum mechanics of
moduli space has been constructed in case of monop
@15,16#. Our work can be used in the identification of th
supersymmetric quantum mechanics for the multiprong
strings. As is also done for monopoles and dyons@17#, the
response analysis of the multipronged strings to the exc
tions of unbroken gauge fields will clarify most of leadin
physical processes around the multipronged strings. Th
require further studies.
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APPENDIX: THE NORMALIZABILITY CONDITION

In this appendix, we will show that the condition of ge
ting a normalizabledA0 from Eq. ~21! is given by Eq.~29!.

To simplify the expressions, we take a gauge where
vacuum expectation value ofA4 is expressed in a diagona
form.6 We assume also that the diagonal entries take gen
distinct values. Then, since the massless fields are assoc
only with the diagonal entries, the asymptotic behavior of
solutions to the equationDmDmLa50 should take the form

La5ha
(0)1

ha
(1)

r
1OS 1

r 2D , ~A1!

whereha
(0,1) are diagonal matrices. We assume that there

Ñ21 solutions to this equation (a51, . . . ,Ñ21), and that
the ha

(0) span the Cartan subalgebra.7 Note thatLa includes
A0 andA4, and we denoteL15A0 andL25A4. The diago-
nal entries of theh1

(1) are the electric charges of the junctio
solution, while those ofh2

(1) are the magnetic charges. Sin
the vacuum expectation values are fixed, the infinitesim
changes caused by the changes of the moduli parameters
monopole should be in the form

dA05
dh1

(1)

r
1OS 1

r 2D , dA45
dh2

(1)

r
1OS 1

r 2D . ~A2!

In casedA0 with a nonvanishing constant part is obtain
from Eq. ~21!, the constant part can always be removed
adding an appropriate homogeneous solution~a linear com-
bination of La) of Eq. ~21!. This is possible because th
constant part ofLa that spans the Cartan subalgebra is u
to cancel the constant part ofdA0. Since the magnetic
charges are topological and do not change,dAm5O(1/r 2).
We define generalized electric central charges by

QLa

E [E
r 5`

dSi Tr~LaEi !5E
r 5`

dSi Tr~LaDiA0!

5Tr~ha
(0)h1

(1)!. ~A3!

6We cannot take this gauge globally. In the following discussi
we just need to take this gauge for a certain solid angle less thanp
outside a sphere of sufficiently large radius, since the solid an
can be chosen arbitrary.

7This is explicitly shown for the solutions in@5–8#.
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Under the assumption that theha
(0) span the Cartan subalge

bra, the invariance of the electric charges is equivalent to
invariance of these central charges. Sinceha

(0) is fixed in the
zero-mode analysis, the deformation of these central cha
by the presence of the zero modes is

dQLa

E 5E
r 5`

dSi Tr@Lad~DiA0!#

5E d3x Tr@DmLad~DmA0!1LaDmd~DmA0!#.

~A4!

Using the above asymptotic behaviors together with a li
further manipulation of Eq.~A4!, one obtains

dQLa

E 5E d3x Tr@LaDmDmdA0#

522i E d3x Tr~La@DmA0 ,dAm# !, ~A5!

where we have used Eq.~21! for the last equality. Similarly,
defining

QLa

M [E
r 5`

dSi Tr~LaBi !5E
r 5`

dSi Tr~LaDiA4!

5Tr~ha
(0)h2

(1)!, ~A6!

the deformation by the zero mode can be expressed as

dQLa

M 522i E d3x Tr~La@DmA4 ,dAm# !, ~A7!

which is in fact automatically vanishing due todQM50 or
dh2

(1)50. Thus, recalling the fact that there areÑ21 de-
grees of freedom of the electric charges and from Eq.~21!,
Eq. ~29! is equivalent to the condition that the electr
charges do not change under the infinitesimally sm
changes of the monopole moduli. Since the electric char
appear in the asymptotic 1/r behavior ofdA0, this is a nec-
essary condition for the infinitesimal change to be norma
able under the measure*d3x Tr(dA0

2). This necessary con
dition becomes a sufficient condition if the order next to 1r
is 1/r 2 as in the expansions~A1! and~A2!. In the spherically
symmetric solution discussed in Refs.@5,7,8#, the next order
is exponentially damping. In general nonspherical cases@6#,
the next order is expected to behave as 1/r 2 from dipole
contributions.

There is another way to see the condition~29!. Since the
operator2DmDm is a semipositive-definite Hermitian opera
tor, one may expanddA0 in terms of the eigenfunctions
Equation~21! is now

PC~P;V!22i E d3x Tr„f ~P;V!†@DmA0 ,dAm#…50,

~A8!

,

le
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where f (P;V) denotes the eigenfunction with eigenvalueP
with V parametrizing the degeneracies of the eigenfuncti
with the same eigenvalue, anddA0 is expanded as
(P,VC(P;V) f (P;V). If the second term of Eq.~A8! is non-
zero atP50, the C(P;V) will behave in 1/P near P50.
~We assume that the eigenvalues of the operator2DmDm
c

,
,

04600
s
exist continuously aroundP50.! This behavior may violate
the normalizability. Therefore the condition that the seco
term vanish forP→0 is related to the normalizability. This
is the condition~29!. But to conclude this we need the me
sure nearP50 from more knowledge of the spectrum of th
eigenvalues and the eigenvectors.
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