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The numbers of bosonic and fermionic zero modes of multipronged strings are countéd4nsuper-
Yang-Mills theory and compared with those of the type IIB string theory. We obtain nice agreement for the
fermionic zero modes, while our result for the bosonic zero modes differs from that obtained in the type IIB
string theory. The possible origin of the discrepancy is discudSfih56-282(199)08012-1

PACS numbses): 14.80.Hv, 11.15-q, 11.15.Tk, 11.25-w

[. INTRODUCTION string picturg[12]. The number of fermionic zero modes was
already discussed for a specific @Jsolution in Ref.[6].

The recent development of nonperturbative string theories In Sec. Il, we briefly describe the BPS equations describ-
has provided new powerful tools to understand supersyming the string junction and the zero-mode equations. In Sec.
metric gauge theories. The low energy dynamics of thdll, we count the zero modes. The equations of the bosonic
D-branes is described by supersymmetric gauge theoriegero modes consist of those for the magnetic monopole and
The Bogomol'nyi-Prasad-SommerfieldBPS spectrum of one more second order equation. Usually, the index, i.e., the
the supersymmetric theory will then correspond to the BPSwmber of zero modes, is evaluated by asymptotic expansion
configurations of strings and branes ending on the backof the field configuration§l1]. However, for the string junc-
ground brane configurations. tions, the method of evaluating the index by the expansion of

Various known properties of th&=4 SU(N) supersym- the electric fields fails. Instead, we will count the bosonic
metric Yang-Mills theory have been studied based\opar- ~ and fermionic zero modes based on considering the con-
allel D3-branes. The BPS state spectra of the massive gaug&aints imposed on the zero modes of multimonopoles. The
bosons, monopoles, and dyons preserving half of the supefetails of the mathematical arguments are given in the Ap-
symmetry are identified with thep(q) strings connecting Pendix. In Sec. 1V, this counting is shown to be different
two separated D3-branes. With more than two D3-branes, wom that based on the type Il string theory. In Sec. V, we
can have string junction configuratiofi] that preserve only summarize our main results and indicate future directions.
1/4 of the supersymmetri¢g,3]. The condition for the string
junction configurations gives the set of field equations de- Il. MULTIPRONGED STRINGS
scribing the corresponding BPS states of the gauge theory AND THEIR MODULI SPACE
[3—8]. In addition to the first order differential equations de- ) ) _ _ _
scribing the 1/2 BPS states of monopoles, the string junction & Dbegin by recapitulating the basic properties of 1/4
needs a second order equation of the Gauss law. The fiel®PS States in theV=4 SUN) super-Yang-Mills theory,
theoretic solutions corresponding to multipronged stringdVhose Lagrangian, for the bosonic part only, reads
were explicitly constructed for S8) theory[5,6] and gen-

eralized to SWN) theory[7,8]. _ 1 v Iye sl | 472
To study the quantum properties of this string junction, £ 49\2(MTr FHFu+2D,4 D" 223 [¢.67T),
one needs to understand the zero modes around the classical (1)

configurations. As in the case of monopolgs10], the
bosonic zero modes will correspond to the collective coordiwhere F.=d,A,—d,A,—i[A, Al D,¢p'=d,¢'

nates of the moduli space, while the fermionic zero modes—i[AM,¢'], and the indices andJ run from 1 to 6. It is
correspond to the spin structures of the supermultiplets. Thevell known that, in this theory, the monopoles, dyons, ®Whd
number of zero modes of monopoles with an arbitrary gaugearticles preserve half of 16 supersymmetries of the theory.
group is well known11]. It was shown recently that there may be also 1/4 BPS states
In this paper, we will count the number of bosonic andthat preserve a quarter of the total supersymmetry. As shown
fermionic zero modes of the multipronged strings in thein Refs.[3,12], these states describe multipronged strings
SU(N) field theory and compare it with that of the type IIB connectingN D3-branes in the type IIB string picture. Ex-
amples of closed-form solutions corresponding to the
pronged strings were found in tbé=4 SUN) super-Yang-

*Email address: dshak@mach.uos.ac.kr Mills theory [5—-8]. We shall investigate the number of both
"Email address: hasshan@gauge.scphys.kyoto-u.ac.jp bosonic and fermionic zero modes of the the multipronged
*Email address: bhi@ccs.sogang.ac.kr strings in theA'=4 super-Yang-Mills theory for the gauge
8Email address: hsmin@dirac.uos.ac.kr group SUN). This will be the first step to extract the struc-
'Email address: sasakura@gauge.scphys.kyoto-u.ac.jp ture or geometry of the moduli space involved with the mul-
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tipronged strings. Thereby, one is ultimately interested invherea, are the roots. We will choose the simple rogts
obtaining the low-energy effective dynamics of the multi- by requiring h'pb',Bp>0 for the maximal symmetry
pronged strings. breaking case alongp'b'.
The Bogomol'nyi bound for the 1/4 BPS states can be The saturation of the bound occurg #-8]
found by considering the energy functional of the=4 sys-
tem: D¢'=€e'E+b'B, Dyp'e'=0, Doop'b'+i[¢'e, ¢p'b’]1=0
(10)

E-E+B-B+D¢'-D¢'+Dop'De¢'  aNd

[¢) ,¢71=0, [¢'D%,¢!1=0, Do¢1+i[¢3e3,¢i]:?l.1)

2

1
M= f d3x Tr
209m

-2 [¢',¢~’12}. 2
There are two types of BPS states that may be classified by
considering two\'=4 central charges given k]

Z.=|QelP+QulIP=lQHlQulsiny (xe[0,m)),
(12)

Introducing two orthonormal six-vectors' and b', we

present the energy equivalently by
1
f d3x Tr
ZQ\Z(M where y denotes the angle between the charges vectors. For
x=0, the state preserves the eight supersymmetries and
+|Do'b' +i[ #'e',¢’b7]|2+ Do) +i[ ¢%’, ¢ 1|>  these are described field theoretically by the monopole, dy-
ons, andW particles. With nonvanishing, the two charge

M:

|e'E+b'B—Dg'|2+|Dye'e'|?

— Ind ! 12— 4312 ) PN vectors are no longer parallel, and the state preserves only

2I [#70%0.] ;] (6,41 ]+2V (Ede) 1/4 of the supersymmetry. We will be concerned on these 1/4
BPS states.

+2V-(B¢'b"|, 3 Owing to the tracelessness of the charges, this, in fact,

guarantees the balance of tension of the corresponding mul-

| . ~tipronged junction. Moreover, one finds a restriction on the
where¢, refers to components of the six-vector perpendicu-glectric and the magnetic charges:

lar to the unit vectorse' andb', and we have used the Gauss
law constraint QEh'Pb'— QR h'Pe'=0, (13

D-E+i[¢',Dy¢p']1=0, (4)  which turns out to be the balance condition of the torque
applied on the associated D3-branes by the pronged gtring.

and the Bianchi identityp-B=0 to perform the integration This restriction follows from
by part. This, then, implies that the energy is bounded from
below by QEh"’b'zQ'Eb':f d3xTrE-D¢'b':f A TrE-B

g7mM=Qee' +Qyb', 5
| 43 Aalal— AP hipal
where we define the charge six-vectors as _f d°xTrB-D¢'e =QyhPe, (14)

D | prlp where we used the Bogomol'nyi equation and the definitions
Qg= | d°xV-TrE¢'=Qgh'™, of charges.

The geometric shape of the junction and the meaning of

| 5 o the charges may be clearly found by fixing our six-
QMEf d°xV-TrBe'=Qjh™P. (6)  coordinate system. For later purpose, we shall degdte
=A,, and ¢'e'=X and further setp| =0 without loss of
For the equalities, we used the asymptotic condition generality.
(¢)=h'PH,, (7)

where Ho is the N—1 mutually commuting operators that We consider only the case of the maximal symmetry breaking in

nu : S i N - . .

span the Cartan subalgebra. The raising and lowering geﬁhe glrectlon ofp'b’ for simplicity. Obvpusly, this condition may

eratorsE be lifted to study the effect of non-Abelian symmetry breaking.
ar

20n the transverse two-plang,§) of the pronged string, the ten-
[Hp E,]= apEa! (8) sion on thepth string that ends on thpth D3-brane is the trans-
verse two-vector QB ,QF), while the transverse asymptotic posi-
are normalized by tion of thepth brane is &, ,y,) = (h'Pe',h'Pb'). The torque exerted
by the strings with respect to the origin of the transverse plane is
[Eo . E_,]=apHp, 9 then given by Eq(13).
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The BPS equation€l0) are rewritten as N. Then, in the SUY) theory, the field components of the

B=DA,, (15) multipronged solution other than the 81 component are
zero by construction. Then, with this background solution,

E=DX, (16)  the fluctuations of components other than the(I${compo-
nent will be dynamically decoupled in the above zero-mode
DoX=0, DoA,+i[X,A,]=0, (17) equations and, hence, can be trivially set to vanish from the

beginning. Hereafter, we shall choose such ariN8lsub-
with the Gauss law group with the minimum rank, where one can embed the

pronged string, and work within such 8). This N is then
the number of D-branes where the prongs end, which will be

Let us now choose a gaude=X. Equations(16) and(17)  denoted byN. .
then lead to a relatiod,=X=0 (m=1,2,3,4), which im- To expose the structure of the low-energy effective La-
m 163 L]

plies that any solutions of the BPS equation are static wit raqgian result.in'g from the moduli-space approximation, we
this gauge choice egin by specifying the moduli-space element that satisfies

/ o . i s
Equation(15) is the usual BPS monopole equation. Hencetfi Zstat|c BNogomfoI ny! equztlon.s ?ﬁ(r'g) v(\j/her:a 3 f(;]
the junction BPS state is a kind of monopole surrounded b¥; d ’I.' ol OII 0 ze:o [T“’ ?]g 1S ﬁ et_coorL inate o e‘th

W-boson cloud, which is determined by Ed8). Topologi- odult space. In evalualing the efiective Lagrangian wi

o . e-dependent moduli coordinates, we shall work in a
E?l argument leads to the quantization of the magnetic charg;ér;uger(r;g(t))=X(r:§(t)), which is achieved by an ap-

propriate gauge transformation of the fields. The Gauss con-
straint in Eq. (4), then, takes the form¢&S(D;d6A,
QM:‘W; maB5h P, 19 _i[Ay, 8A0]—i[As,8A,])=0, where SA=3dA—De,
with €5 being the gauge function required to achieve the
where the integem, counts the number of each fundamentalgauge choice. Inserting\(r;&(t)) into the Lagrangian(1),
monopole. performing the gauge transformation, and then using the
The moduli space of a given multipronged string with gauge condition and the above form of the Gauss constraint,
fixed D-brane positions is defined by the solution space opne finds that
the above BPS equation modulo gauge transformation with

D-DX—[A4,[A4,X]]=0. (18)

N—-1

fixed vacuum expectation values of scalars and electric- 1 3 i
magnetic charges. Leﬁ=2 > | XTI A0S A0+ SAMOAm— 2di(AgSA) ],
The tangent vectors of the moduli space with the gauge ™ (25)

Ao=X will satisfy the zero-mode equations

eijij(sAk+ D,8A D' 6A,= 7}, DmdA,=0, (20) where 5A' denot_esgsﬁsA, ano! we have droppe_d a constant
term. The effective Lagrangian may be rewritten, to qua-
DD mdAg+2i[DmAg, 5AL]=0, (21 dratic order in velocities, as

_ 1 C .
DndAm=0, 223 o= 9ex ()8 — AL O, (26)

where we introduced a notationi[ A4, (-)]=D4(-) and the

't Hooft symbol The metric and the vector potential can be expressed, in

fammn  MN=1.2.3, terms of the zero mode, as

a +0an, M=4, 1
Mmn— .y n=4 (23) gssl(g)zz_f d3X TI‘[ 55A05SIA0+ 55Am551Am],
am: ' Gvm
0, m=n=4, (27)
and Eq.(22) is the gauge condition. The zero modes are then 1 _
normalizable solutions of the above equations with a norm: As(§)=—— dS TrAgSA,
OymIr==
||5A||2=f d3x (8Ag0Ag+ SALOAL). (24 _ .
mem =f dQ hpe'lim[r2Tr(r'6,AH,)], (28
r—o

The number of the zero modes will agree with the dimen-

sions of the moduli space or the tangent space at a givefhere, in the last equation, we have used the normalizability
point of the moduli space. In dealing with the above zero-condition 5,A;= O(1/r?) for a larger. The vector potential
mode equations, we note that a multipronged string ofNU  term in Eq.(26) may be a total time derivative term. Al-
can be always embedded into the S theory with a larger though a total time derivative term does not affect the clas-
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sical dynamics of the moduli space, it may be relevant in its [No. of BZMs]=[No. of monopolesx 4—N+2. (32)
guantum version especially when some of the directions of

the moduli space are compact. The motion in these compact Let us now discuss the number of the fermionic zero
directions is expected to be involved with the quantization ofmodes of the junction solution. The equations for the fermi-

the electric charges. onic zero modes are given by
Il. COUNTING THE NUMBER OF ZERO MODES oy [ 2P0 TmDm|
Dl )lﬂ( )= . ,r/,( ):0, (33
The equations of the bosonic zero modes and the gauge TmDm 0
fixing condition are given by Eq$20), (21), and(22). In this _
section we shall analyze the number of normalizable solu- Dy = 0 TmDm SH=0 (34
tions of these equations. Here and below, all vector poten- mDm  —2Dg '

tials and the covariant derivative denote, respectively, the

background solutions of pronged strings and the covarianhere D, is understood a®q(-)= —i[Ag,(-)] and the 2
derivative with respect to the background. The normalizable<2 matrices are defined by, =(o',—i) and 7,=(¢",i)
solutions of Eqs(20) and(22) are the zero modes of a BPS with the Pauli matricess'. To first analyze Eq(34), we
monopole. The problem here is whether K1) gives a decompose it by

normalizable solution forA, or not. As discussed in the

Appendix, the condition that the solution of EQ1) be nor- +) lﬂ(ﬂ
malizable is given by = (0] (35
f A3 Tr(A[DAg, 5A.]) =0, (29 1henEq.(34)is

TmDmisT)=0, (36)
where the trace is over the color indices and, (a . ) )
=1,...N—1) are the zero modes of the operator TmDmi1 "—=2Do¢p, '=0. (37
—DyDy,. From the junction BPS equationDd,,D,Aq
= = ) independent for a 1/4 BPS
st:;lljt(ran,Da;nr;A(;i4 hgn:gtdhseyTQreeyt\?vrc?mg. Es shown in the/Ap- given bY'/’(Zﬂzo' Hencer;, Dyy/i")=0, andy} ™ is just the
pendix, the conditiori29) is equivalent to the condition that f€rmionic zero modes of a BPS monopole. Thus the _nanber
the electric charges should not change under infinitesimd?f the fermionic zero modes resulting from Eg4) is given

changes of the configuration. by\g\';!?h- of mo_Tonge};x4. o 1o & <o
Apparently these conditions seem to gike-1 condi- h a simiiar decomposition 1o two-component Spinors,

tions on the tangent moduli space of the monopole, but thigq' (33) can be rewritten as

is not so. In fact, one of the conditions T;Dm (17)20, (38

Since the operator,,D,, has no zero modes, the solution is

f A3 Tr(A, D Aq, 5A,])=0 (30) TDmips ) —2D gy ) =0. (39

_ o _ Equation(39) just gives the fermionic zero modes of a BPS
is satisfied for any monopole zero mod&,,. To show this, monopole and the number of the solutions is 4No. of
we can use an identity resulting from the simple fact that thenonopoled Let us discuss the normalizability af$ ™) re-
magnetic charges do not change under the |nf|n|teS|magu|ting from Eq.(39). First act an operator D, on Eq.
change. As shown in the Appendix, this implies that (39).4 Using the BPS equation, we obtain

(-)_p+ ()
fd3xTr(Ao[DmA4,5Am])=o. 31) DmDmi2 "= 27mDmDoy1 *=0. (40

This equation looks very similar to the bosonic q2é). To
One can easily show that the partial integration of this equaobtain a normalizable solution af} ), the following con-
tion gives Eq.(30). (Alternatively, one may understand Eq. straints ony{~) must be satisfied:
(30) in terms of the torque balance identitfl3) by
ST AL(r=2) Qe]=6Tr[Ag(r=>) Qu] and 6Qu=0)
Hence the number of constraints is in fAtt 2. The number SWe count the number in real components. Hercandi i are
of bosonic zero modes of the monopole BPS equations igounted as distinct solutions.
given by[No. of monopole§x 4 [11], where “No. of mono- “The following discussions are obscured by the existence of the
poles” is the total number of the fundamental monopoleszero modes of the operatat,D,,. However, using the explicit
> .m, [see Eq(19)]. Therefore, taking into account the con- known relations between the fermionic and bosonic zero modes of a
straints, the total number of the bosonic zero md@&M'’s) monopole, one can show the same result given below. N.S. would
of the junction solution is given by like to thank S. Imai for clarifying this point.
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X simply 6A,=0. The others possessx2l zero modes be-
cause the D-string is regarded as two fundamental mono-
poles in Egs.(20) and (22). This is incorrect because we
know from the beginning that there are only four moduli
degrees of freedom around this configuration. This failure of
the zero-mode analysis may be understood as follows.
Around the D-string configuration, the field-theoretic poten-

As tial is too flat to capture the correct number of zero modes by

just considering the linearized fluctuations of E@), (21),

and (22). The higher-order analysis will show that the rela-

D3 D1 D3 tive motions of the two fundamental monopoles drop out of

the moduli space, which leaves just four overall translation

degrees.
However, our formulas, Eq$32) and (45), for the zero

FIG. 1. The configuration of D-string ending on D3-branes ismodes are still valid for the D-string because we are using

depicted. The figure is for magnetic charges, (m,) =(1,1) in the the minimal embedding of solutions and heride=2.
SU(3) case. The moduli space is four dimensional. ' '

f d3x Tr(AaT,TquDolﬂ(f)):O, (41) IV. COMPARISON WITH TYPE IIB STRING THEORY

Our result of the number of the bosonic zero modes does
where the trace is over the color indices. As similar to thenot agree with that from the type IIB string theory. To illus-

bosonic case, one of the constraints, trate, let us consider the simplest case of a tree three-pronged
string with two-form chargegl,0), (0,1), and (—1,—1). The
A3 Tr(A, 75D Do) =0, 42 magnetic charge of the corresponding field theory solution in
f (AaTmDmDov1 ) 42 SU@) is (m;,m,)=(1,1). Thus the magnetic part has two

fundamental monopoles, and the res8B) tells us that there
are seven bosonic zero modes. This number looks quite odd,
. . . and moreover this does not agree with the type IIB result that

To show ,th's’ let us st_art with E¢39). Applylng the is just three for the present cask?]. However, this is a very
operator 7Dy on it, one obtains  RwDm  patyral result from the explicit junction solution discussed in
+in%0aDmDn) ¥i ) =0. [The symbols,?2,, differ from »  Ref.[6]. Their solution is composed of two monopole cores
by a change in the sign af in the definition(23).] Using  which are surrounded by clouds W bosons, i.e., electric

is identically satisfied by the monopole fermionic zero
modes.

further the BPS equations, we obtain charges. The monopole part has eight bosonic zero modes
. ) which are composed of the zero modes associated with three
(DmDm—2i7,,DmDy) ¢y ’=0. (43 translations, two gauge, two relative orientations, and one

relative distance. The electric part is determined by the
monopole part when the vacuum expectation values of the
scalar fields take given fixed values. Especially, the electric
charges of the junction solution are determined by the rela-
f d3x Tr(Aar,;Dme(l‘)):O. (44)  tive distance, while the magnetic charges are just topological
numbers and stable. Since the electric charges appear in the
By the partial integration of Eq(44) with the substitution aSymptotic 17 behavior of the junction solution, the change
A=A, We obtain Eq(42). of the relative Q|stance is no_t normalizable. Thus we should
keep the relative distance fixed. The other monopole zero
modes are naturally expected to be normalizable, and hence
Shere are seven bosonic zero modes in the junction solution.
On the other hand, we find nice agreement for the fermi-
onic part. Let us consider a monopole configuration with
magnetic chargesng;,m,, ... mg_,). The corresponding

string configuration is such th&t D3-branes are aligned on
In the next section, we will compare the numbers of the zera line and that thath and the &+ 1)th D3-branes are con-
modes, Eqs(32) and(45), with those derived from the type nected bym, D-strings @=1, ... N—1). This configura-

IIB description. _ tion may be regarded as the string configuration correspond-
Finally we mention the reason why we should tdde ing to a junction solution in the limit of vanishing electric
instead ofN in our formulas for the numbers of zero modes. charges. To recover from the limit, let us now add small

Let us consider a D-string of §8) theory in Fig. 1. The Neveu-Schwarz—Neveu-Schwafl®S-NS charges on each
zero-mode equations take the same form as BB, (21), D-string. We do not take care of the quantization of the
and (22) with D,A;=0. Hence the solution of Eq21) is  NS-NS charges, since our treatment in the field theory is just

Hence the normalizability of the fermionic zero mogé
reads

Thus the constraint&1) give 4(N—2) constraints on the
fermionic BPS zero modes. Thus the total number of th
fermionic zero mode$FZMs) is given by

[No. of FZMs|=[No. of monopolefx 8 —4(N—2).
(45)
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[No. of BZMs]=[2([No. of monopoles-1)
+[No. of monopole§
+[No. of BZMs (type 1IB)], (49

FIG. 2. The configuration of pronged strings ending on D3-where the last term is the type IIB res{i?],
branes which corresponds to our field theory analysis. The long

strings have Ramond-RamoriRR) charge one and small NS-NS [No. of BZMs (type II1B)] = Fjn+ 3. (50
charges. The figure is for magnetic chargasg (m,,m;)=(1,3,2) oL . .
in the SU4) case. It is intriguing to note that the discrepan¢9) agrees with

the number of the compact directions of the monopole
moduli space; i.e., there are[&o. of monopoles-1) rela-

tric charges. The rule is as follows. We add distinct smallﬁve spatial orientations among the fundamental monopoles

. d one UWl) gauge direction per each fundamental mono-
{\rlz;r'\\liifhhesl:%isstc\)/vi?r? ? [i:t::g,?’ ?r;dcﬁg?nsstt;hfir?nngs %gle. It might be expected that, when the junction BPS state
9 ppropriatepiq 9 is treated quantum mechanically, the wave function prevails

string network ending on the D3-branes. For the case witlj compact directions and these directions do not appear as
(mq,m,,mg)=(1,3,2) as an example, the configuration ofthe moduli of the state

the string is deformed into the one in Fig. 2. There arg
—1 internal loops between theth and @+ 1)th D3-branes
in a general case. Although the diagram changes if the as-

signment of the small NS-NS charges on each D-string is |n this paper, we nonperturbatively identified the numbers
changed, the number of loops does not change. It is alsgf the bosonic and fermionic zero modes of the multipronged
possible to add more strings, but we take the configuratiostrings in the context of tha/=4 super-Yang-Mills theory.
with a minimal number of strings to be able to form a string The bosonic zero modes differ from the type 1B string pic-
network® The total number of the loops in the diagram is tyre, but the fermionic zero modes are matching with those

V. CONCLUSION

given by in the type 1IB string picture.
The discrepancy is due to the softness of the field-
N1 theoretic configurations. Namely, the monopoles of the mul-
_ = tipronged strings in the field theory can take a relative mo-
a; (M, —1)=[No. of monopolep-(N—1).  (46) tion in the parallel space of the D3-branes, whereas the
The zero-mode analysis in the type 1B framework wasCorresponding degrees in the type I1B picture cannot be per-
done in Ref[12]. The result is mitted. In the case of the minimal three-pronged strings, the

number of bosonic zero modes is 7 while there are 12 fermi-

onic zero modes. On the grounds of the remaining supersym-
[No. of FZMs(type IIB)] = 8F+ 4E¢y, 47 metries of the system, the natural number of bosonic degrees
would be even due to the complex structure of the remaining
supersymmetry. We expect that the analysis of detailed
moduli dynamics may be helpful in resolving this issue. The
comparison with the M-theory resultl3] or the D-string
world sheet approacki4] would also be interesting.

The dynamics of the moduli space is in itself of impor-

whereF;,; denotes the number of internal looffaces of the
string diagram andt.,, is the number of the external strings.
Thus, applying to the present case, we obtain

[No. of FZMs(type 11B)] tance, especially in relation to the quantizations of the elec-
tric charges. The supersymmetric quantum mechanics of the
=8[[No. of monopoles- (N—1)]+4N moduli space has been constructed in case of monopoles
~ [15,16. Our work can be used in the identification of the
=[No. of monopolesx 8 — 4N+ 8, (48 supersymmetric quantum mechanics for the multipronged

strings. As is also done for monopoles and dyphg, the
. . response analysis of the multipronged strings to the excita-
which agrees with Eq45). tions of unbroken gauge fields will clarify most of leading

Finally, the discrepancy of the bosonic zero modes fro : ; :
the type IIB string picture might be understood as foIIowglr)ggjilfealfuetrﬁgreijj;easround the multipronged strings. These

Expression32) of the bosonic zero modes can be written as
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APPENDIX: THE NORMALIZABILITY CONDITION (Ad)
In this appendix, we will show that the condition of get-

ting a normalizablesA, from Eq.(21) is given by Eq.(29). Using the above asymptotic behaviors together with a little
To simplify the expressions, we take a gauge where théurther manipulation of Eq(A4), one obtains

vacugm expectation value @, is expressed in a diagonal

form.” We assume also that the diagonal entries take general E _ 3

distinct values. Then, since the massless fields are associated 5QAa_J d*X TILA D mDmdAo]

only with the diagonal entries, the asymptotic behavior of the

solutions to the equatioB® ,D,,A ;=0 should take the form = _Zif d*X Tr(A [ DAg, AN, (A5)
h®)
A=h®+ % + O(r—z) , (A1)  where we have used ER1) for the last equality. Similarly,
defining
whereh{""? are diagonal matrices. We assume that there are
N—1 solutions to this equatiora1, ... N—1), and that QAaEf, dS Tr(A By)= f ~ dSTr(A.DiAy)
the h{’) span the Cartan subalgebralote thatA , includes e e
A, andA,, and we denoté\ ;=A, andA,=A,. The diago- =Tr(h{Oh{Y), (A6)

nal entries of thén{") are the electric charges of the junction

solution, while those oh(zl) are the magnetic charges. Since the deformation by the zero mode can be expressed as

the vacuum expectation values are fixed, the infinitesimal

changes caused by the changes of the moduli parameters of a M o 3

monopole should be in the form oQn,= —2|f dXTr(Aa[DnAg, 0An]), (A7)

sh{V
r

shi
.

1
2

which is in fact automatically vanishing due &8,,=0 or

sh{=0. Thus, recalling the fact that there ake-1 de-
grees of freedom of the electric charges and from &d),

In casedA, with a nonvanishing constant part is obtainedgq. (29) is equivalent to the condition that the electric
from Eq. (21), the constant part can always be removed bycharges do not change under the infinitesimally small
adding an appropriate homogeneous solut@tinear com-  changes of the monopole moduli. Since the electric charges
bination of A,) of Eq. (21). This is possible because the appear in the asymptoticrlbehavior of5A,, this is a nec-
constant part of\, that spans the Cartan subalgebra is use@ssary condition for the infinitesimal change to be normaliz-
to cancel the constant part afA,. Since the magnetic aple under the measugal®x Tr(5A3). This necessary con-
charges are topological and do not chande,,=O(1/r).  dition becomes a sufficient condition if the order next to 1/

5Ao: +O f 5A4: +O

1
r—z) . (A2)

We define generalized electric central charges by is 1k? as in the expansior#\1) and(A2). In the spherically
symmetric solution discussed in Refs,7,8|, the next order
E _ _ is exponentially damping. In general nonspherical c46gs
= dTrAE-—f dS Tr(A,D;A P y damping. In g P :
Aa Jr=oo STr(ALE) r=o S Tr(AaDiAo) the next order is expected to behave as’ ffom dipole

B (O)(1) contributipns. N _

=Tr(hz’h3”). (A3) There is another way to see the conditi@9). Since the
operator— DD, is a semipositive-definite Hermitian opera-
tor, one may expan@A, in terms of the eigenfunctions.

SWe cannot take this gauge globally. In the following discussion,Equation(Zl) is now

we just need to take this gauge for a certain solid angle less than 4

outside a sphere of sufficiently large radius, since the solid angle Lo f 3 .ot _

can be chosen arbitrary. PC(P:Q)=2i | d*)Tr(f(P:02) [DmAo, 6An])=0,
"This is explicitly shown for the solutions {f5—8]. (A8)

046005-7



BAK, HASHIMOTO, LEE, MIN, AND SASAKURA PHYSICAL REVIEW D 60 046005

wheref(P;()) denotes the eigenfunction with eigenvale exist continuously aroun&=0.) This behavior may violate
with () parametrizing the degeneracies of the eigenfunctionthe normalizability. Therefore the condition that the second
with the same eigenvalue, andA, is expanded as term vanish forP—0 is related to the normalizability. This
2p.aC(P;Q)f(P;Q). If the second term of EJA8) is non-  is the condition(29). But to conclude this we need the mea-
zero atP=0, the C(P;Q) will behave in 1P nearP=0. sure neaP=0 from more knowledge of the spectrum of the
(We assume that the eigenvalues of the operatér,,D,, eigenvalues and the eigenvectors.
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