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Finite cutoff on the string worldsheet?
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D-brane backgrounds are specified in closed string theories by holes with appropriate mixed Dirichlet and
Neumann boundary conditions on the string worldsheet. As presently stated, the prescription defining D-brane
backgrounds is such that the Einstein equation is not equivalent to the condition for scale invariance on the
string worldsheet. A modified D-brane prescription is found that leads to the desired equivalence, while
preserving all known D-brane lore. A possible interpretation is that the worldsheet cutoff is finite. Possible
connections to recent work of Maldacena and Strominger and Gopakumar and Vafa are suggested.
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PACS numbd(s): 11.25.Hf

[. INTRODUCTION for a spacetime Born-Infeld action including metric and di-
laton contributionsSgE®". Thus the total spacetime action is

One of the basic successes of the framework of stringjiven bySZsed+ ¢ 2", The constant is determined by the
theory is the consistent way in which one can introduc&:oupling between gravity and gauge fields, and it appears,
background condensates of fields. Only certain configurafor instance, multiplying the gauge field energy-momentum
tions of background fields are allowed by conformal invari-tensor in the full Einstein equation.
ance on the string worldsheet. It is crucial for consistency of The closed string beta function®), which give the
string propagation that conformal invariance on the world-vacuum Einstein equation, do not change if one adds a
sheet is maintained—it implies unitarity, for example. A pri- boundary to the worldsheet, but the full equation is neverthe-
mary reason for thinking that string theories have somethingess obtained by a generalized form of conformal invariance
to do with fundamental physics is that the conditions forincluding the effects of worldsheets of different topologies.
scale invariance on the worldsheet turn out to be equivalenthis all works due to the Fischler-Susskind mechanjdin
to physically interesting equations of motion for the spacewhere the extra breaking of conformal invariance comes
time metric and other fieldgl,2]. from shrinking fixtures on the worldsheets of higher genus.

For instance, consider bosonic closed string theory with an the present case it arises when the disk degenerates to a
background metri& ,,(X) and dilaton fieldD(X) (for sim-  sphere, i.e., we represent the disk as a sphere with a hole cut
plicity defined with zero expectation valueThis is de- out, and upon integrating the size of the hole there will be a
scribed by a sigma model actigwe use the notation and |ogarithmic divergence for small hole size. The coefficient of
conventions as in PolchinskB]) the divergence looks similar to an insertion of a local opera-
tor on the sphere. Identifying the cutoff on the hole size with
the cutoff used for the counterterms in the sphere amplitude,
we can demand cutoff independence of the combined ampli-

(1) tude. This yields the full Einstein equation, and thus deter-
mines the constart [4,5].

Conformal invariance at the quantum level corresponds to0 The case of a D-brane backgroufs] is in many ways
requiring the beta functions to vanish. At one loop thisanalogous to the gauge field background, in fact, the latter is
means a special caséa D25-brane in the bosonic casa static flat
Dp-brane is introduced simply by adding a boundary on the
worldsheet with Neumann boundary conditions i 1 of
. the directions and Dirichlet boundary conditions on the oth-

__% / 2_ ers. The sphere amplitude gives the same beta functions as
Po 2 Ve +a(VE)"=0. @ above, Eq.(2), while the disk amplitude gives conditions
corresponding to equations of motion following from a
These equations are equivalent to the equations of motiopirac-Born-Infeld action[7] (which in general also have
following from the spacetime action contributions from the background gauge field and antisym-
metric tensor field

sg’ﬁB'=cf dPlge V-G, @

1
S=—— | d?oVg[g?°G,,,(X) X dpX"+ a'RD(X)].

Aaa’

Bu=a'R,,+2a'V,V,0=0,

1
St 52 J d°x(=Ge **[R+4(V®)?], (3
where we are dropping terms that are zero in the relevant
case ofD=26. Similarly, if we add open strings and a gauge A )
field background on the boundary, we obtain conditions forvhere£”, A=0,...,p are coordinates on the D-brane world
conformal invariance equivalent to the equations of motiorvolume, andG,g is the induced metric.
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The full spacetime effective action should therefore behaveva(za)z(K/wa’)eivaX“3X”e‘ka'x(za) for gravitons,

given by Sip**%cSf', and the corresponding Einstein andv,. denote the volume of the conformal killing group

equation must have a source term due to the D-brane. lghich we need to divide out. Th¥*(z) satisfy boundary
analogy with the open string case above, it would be naturadonditions appropriate for ajfBbrane

to expect this source term to appear from the worldsheet

point of view as a Fischler-Susskirjd] type effect. Thus X' (2)|;5s=0, 1=0,...p, (6)
one expects that there is a logarithmic divergence in the disk _
amplitude, whose coefficient represents the effect of the X(2)|;s=0, i=p+1,...D—-1. 7

D-brane in the Einstein equati¢8]. We would then have to ) .
correct the sphere metric to one that solves these equations t€ exact Green functions for this geometry are for Neu-
compute consistent amplitudes. This contradicts the prescript@nn and Dirichlet directions, respectively:

tion for introducing D-branes into the theory, which says that o

one can either expand about background fields representing (XAz))XN(29)) = = 77”( —In|zy—2,|2

the (supejgravity solution of the solitor{and thus extract 2

restricted long-distance physj¢®r one can use the remark-

2 2
able prescription of adding boundaries with Dirichlet bound- —Inl1— & ) (8)
ary conditiong 6], using a flat background metric. We should (21-2)(2,-72)
not need to do both. Indeed, explicit calculations involving ,
D-branes show no logarithmic divergence in the disk ampli- i i _Y il 2
tude for localized p+1<D) branes[9,10]. Furthermore, X)X (Z))=F 7 ( In|z1= 2|
Leigh [7] explicitly noted that the disk amplitude does not ) )
change the closed string beta functions. The aim of this paper +lnl1- a
is to resolve this puzzle. (z2—-2)(2,—-2)
The two ways of introducing D-branes mentioned above P
are analogous to two different interpretations of the space- +In (2172272 ) 9
time effective action, where one can either expand super-

gravity about a vacuum corresponding to the D-brane super- ) o
gravity solution, or couple supergravity to a world-volume NOte that the last term in Eq9) must be kept even if it
action[the Dirac-Born-Infeld(DBI) actior] representing the factorizes, dL_Je tq the lack of momentum conservation |n.the
D-brane. These two descriptions are useful in SOmewha&ransverse directions. We can now perform the .contractlons
complementary regimes, the latter for isolated D-branes, ant] Adisk @nd expand the integrand for small We find

the former forN superposed D-branes, willhgg; not neces- da
sarily small. We also note that a fact that does separate the AdiskZZWszJ 2_3f dzzH d?z,
case of localized branes from the open string case is that the a Jiz,-2>a

Einstein equation imply that the beta functions are set to zero

a

everywhere except at the source. xvia”?a'kf <T(— k. ,2[1 Va(za)>
CKG a s,
Il. THE BOSONIC CASE
2 _ 4
Let us look at the disk amplitude in more detail. For con- +a <D( Ky ’Z)l;[ Va(za)> +0@) |, (10
creteness we will consider the two graviton amplitude in the S2
background of a P-brane at the origin, first computed in i
Ref.[9], but the discussion is general. To isolate the part 01where Ky denotes the total transverse

the amplitude associated with the small hole, we represedfomentum =k, and T_(k’z)::elk *(2): and D(k,2)
the disk as a sphere with a hole cut out and integrate alsg (2/a’)(7M),,:9X*aX"e**(2): are (off-shell) tachyon
over the radiusa and positionz of the hole. This increases and graviton-dilaton vertex operatofisot properly normal-
the symmetry of the amplitude from &R) to SL(2,C) as ized for simplicity. The flat metric is »,,=diag(-1,1,
in the sphere amplitude. The amplitude can be writtenl,...,1) whileM ,,=diag(l,..,1-1,...,—1) with signature
[11,12 (pt1D—p—1). We denote expectation values on the
sphere and disk by)s, and()p,, respectively. In the sphere
) da ) ) amplitudes we have only kept the zero mode integration in
Adisk= 2 Tpf ¥J'Iz 7Z|>ad d | the Neumann direction, giving rise to a factor
‘ ’ (2m)PrePri(sk)).
For the special case of open stringpace-filling brang
<H Va(za)> : ®  we havek, =0, and the second term above gives rise to a
“ Dy logarithmic divergence in the hole size cutoff, proportional
to a zero-momentum dilaton. This is the Fischler-Susskind
Here 27721-p is the correct normalization for the@brane  mechanism yielding a cosmological constant in the Einstein
disk amplitude, withr, being the b-brane tensio3]. We  equation[4]. However, for localized D-branes there is an

X

1
Veke
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1,2 . . . . . H H
extra factor ofa®’*:’2, and integrating ovea gives rise to  Here the two first terms come from the normalization of the

poles ink? , rather than divergences. In the case of gravitorsPhere_amplitude and the prefactor of the action, respec-
scattering off the D-brane, these are physteathannel poles. tVely. The second and third terms come frdm, and the

Thus we reproduce the well-known result that the disk amnermalization ofD(—k, ,z). The momentum conservation

plitude is finite, and there is no need to introduce a cutoff o the Dirichlet directions has been used to integrate oyer

the hole size. A spacetime effective action can be deduced Hy® @dain only the zero modes in the Neumann directions
examining the poles in these well-defined disk amplituded®Main- In the background of a nontrivial metric, we should
[10]. Thus, if we were not interested in seeing how the full@lso correct the vertex operators so that they have the correct
Einstein equation is related to conformal invariance on th&onformal weights with respect to the new energy-

worldsheet, we would stop here and be content with thignomentum tensor. However, for the two-graviton amplitude
answer for the scattering amplitude. we consider here, the effect to this order will look similar to

Let us now examine the full equations of motion follow- & Wo-point sphere amplitude and thus vanish, so we can use

ing from the spacetime effective acti@@'f?sed+ cLB' . Con- the vertex operators for the flat metric.

sider a flat, static P-brane, then the metric and dilaton equa- Now we compare this to the disk amplitud&0). We
tions of motion can be written neglect the tachyon pole and focus on the massless pole. One

obvious contribution comes from using the second term in

20 c the a expansion while neglecting the higher order effects of

ﬁﬁﬂfze"b( nM)#,,cS'(xL), (1)  the integration domain. We can then integrate avewith a
Ka lower limit €, and we find that the-dependent part exactly
Con cancels thes dependence of the sphere amplituydd) pro-

. (880 28") —ce 5 (x,). (12) vided we choose

C=—1p, (15
In these equations we have already expanded the left hand o
sides for a flat background metric. We have defihedd  Precisely as expected. We only did this for 11, but, as we
—p—1, the number of transverse directions. To illustrate outVill see below, it holds for alp. Alternatively, we can say
point, let us for the moment concentrate on the qasell that the contribution from the sphere, with cuteffexactly
(andD = 26) where it is consistent to choode=0. It is then compensates for the piece left out from the disk amplitude by

easy to linearize by setting,,,= 7,,+h,, and solve for the cutting off the hole size at, provided we have ‘“synchro-
leading term in h In Hilbert gaGge we haveR nized” the sphere and the disk by choosing the correct met-
v nv

=—1%h, and we getfor |=14) ric, i.e., squed the correct Einstein equation w!th source term
and specific value of. We can takee to zero if we want,
dgq, 1 then the sphere contribution vanishes, and the disk gives the
h,,= ch(nM)Wf ——7 et (13)  full answer. If we want to extract a sensible long distance
(2m)" gy answer from the sphere by itself, as we would expect to be

. . . . _able to do, we will have to fix a nonzere and look at
We now investigate what we get when we insert this metrlcprocesses of very low momentum transfer

perturbation on the sphere. To leading order the effect is an

insertion ofh,,,,dX*3X" into the amplitude. We normal order , 21
this operator using'®= e 9729 where ¢ is the cutoff ki<g linel
on the worldsheet. In addition, there are contractions be- ,

tween the exponential ih,, and 9X*9X”. The term with  Then e“'kﬂ2=1+%a’kf Ine+ ..., eindependent ampli-
both derivatives contracted contributes to the tachyon poleude which corresponds to the semiclassical approximation
and will be neglected together with similar terms below. Theof the amplitude, coinciding with the amplitude found from
terms with one derivative contracted give rise to a total dePolchinski's prescription in the same limit.

rivative, while contracting the derivatives with each other There are also other contributions to the massless pole in
gives worldsheet curvature terms important for the dilatorthe disk amplitude. One comes from the tachyon insertion,

uvo

(16)

equation of motion, as discussed in Rdfs2,13. We will considering®(a?) effects of the integration region. Another
also not worry about these for our purposes as we concercomes from certain parts of tiig(a®) term in the expansion,
trate on theg,,, equation of motion. for which integration over yields extra 142 singularities.
Taking this into account, the leading order effect of usingThese two contributions should cancel as discussed in Ref.
the metric(13) in the sphere amplitude is given by [12].
A more formal way of deriving the same results is to
3273 1 o' e2ak consider the sphere amplitude with an arbitrary metric. We
A(S%,?}erei,: L ch? K2 f dZZH d%z, then need to introduce a cutoff, and at one loop we must put
- “ in a counterterm of the typg,,,dX*dX"In €. This is formal
because the metrics involved here are not so smooth as to
X{D(—kg ,2)1;[ Va(za)> : (14 allow the normal coordinate expansion employed in deriving
S this. Nevertheless we can consider the sum of the sphere and
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the disk amplitude and ask for cutoff independence in some |B,y=4X 221,68 (%))
X P p@ AL
sense. Neglecting the tachyon pole, we want to demand that .
€d(Aspherst Agisk) Vanishes to leading order ia(note that D —u
away fromk, =0 this derivative always vanishes for the disk xXexg — ~ ﬁ( M) @t qay

amplitude as we taketo zerg. This will precisely be true if

B, is given as in Eq(11), with ¢ given in Eq.(15), using -

the same normal ordering considerations as we did above - /223/2 (M) 9% 110). (19)
(treating B, as e-independent when taking the derivative YRSz

This hOIdS. for any. Thus we have a way of extracting th? There is also a ghost piece [iB,) which will not be impor-

full Einstein equation—not by demanding conformal invari- i, here The normalization is chosen such that amplitudes
ance, which we already have on the disk alone—but by ingo ¢ jteq usingB,) agree with the corresponding disk am-
troducing a CUtOﬁ anyway and demanding agreement .bef)litudes. In closed string operator language, the disk ampli-
tween the contributions from the sphere and the dlsktuole then reads

cancelling theleading ordercutoff dependencéneglecting

tachyon effectseven if the dependence vanishes as the cut- Adisk:<V|VAV"'A|Bp>y (20)

off goes to zero.
where the propagator is

Ill. THE SUPERSTRING CASE 2
1 ~ 1 d“z -
PR A=—(Lo+L _1)—1H_ _2_ZL0—1/22|:0— 1/2’
Let us now do the same calculation in the case of the type 2 \-0T ko arn ] 17|
[l superstring. In this case we want to reproduce the full (22)
supergravity equations of motion, including a source term for
the Dp-brane. The source term should again arise from thavhere the last expression also includes a projection over
disk-amplitude, while the rest of the equation is given instates annihilated by,—L, (as is the case for physical
terms of theg functions on the sphere and involve the met-gtates. For completeness, we give
ric, the dilaton, and the appropriate Ramond-Ramond gauge
field. These equations are well known, as are thpehbane o o
solutions. For clarity, we again concentrate on the constant LOZZDZ-F > at an,+ > rg b, (22)
dilaton example, the D3-brane. For our purposes we simply n=1 r=12302,..

need the long distance behavior of the metric, conveniently

given by Garousi and Meyef40] as with a similar expression fdr,. We can then derive the key
result
2 6
—ﬂ — 2 d a. i iq, -x 1 d2z
hMV_47T3X4 (nM)MV_K 7-3( nM)ﬂvf (277)6 q2 eH L L, A|Bp>:4><27727'p—f _2|Z|l/2arkf
- g 47 ) T
17
_|5|2n T~u v
When this solution is inserted in the sphere amplitude, there x ln_lr exr{ 2| (”M);wn X-—n-n

will be a term of the following form:

0;—> ki>

—|2ZZ(gM) 9" ",

1,2
32773 1 a’ 61/2(1 ki

Asphere™ — —7 25— 7K' T35 2 deZH d’z, d
2 2 k a a 'k ) v
@ KCema . =4m’r, J —z a2 - a(gM) i o
X D(_kLaz)].—.[ Va(za)> . (18) 2
; S, +0(a%)]]0;— > k, . (23

There will be other terms, from the worldsheet fermions and HereXk, denotes the total transverse momentum of the
the Ramond-Ramond gauge field, but these will follow fromother vertex operators in the amplitude. The quargity|z|

this term by worldsheet and spacetime supersymmetry, sindggow plays the role of the hole radius in the bosonic discus-
the Dp-brane is a Bogomoln'yi-Prasad-Sommerf¢BPS  sion above. Whea— 0, the boundary state moves to infinite
state. This amplitude has all the same features as the corrdistance, and we recover a sphere amplitude with insertions
sponding bosonic amplitude, and we now want to show thaof closed string operators. Again there are polekfirfrom

the disk amplitude reproduces this behavior, again in fullthe integration around~0. The first term is associated with
analogy with the bosonic case. To evaluate the superstrinthe type Il tachyon and should never appear in appropriately
disk amplitude, we find it convenient to use the boundaryGSO projected amplitudes. The next term is the interesting
state formalisn{14,15, where the P-brane is represented one as it has a massless pole. The corresponding closed
by a closed string boundary state: string operator insertion is
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directly related to Shenker's observatidig]. Since strings
0?_2 k¢>v (24) are related to othep-branes in various dual formulations,

such cutoffs are presumably in the quantum field theories
which we recognize as part of the graviton vertex operator idiving on the world volumes of such objects as well. For
the ghost number-<1,— 1) picture. Of course, the insertion example, the remarkable matrix discretization of membranes
in Eq. (18) was nothing but a part of the graviton vertex in due to de Wit, Hoppe, and Nicolgl8] may be more directly
the (0,0) picture, so we see again that there is a corresponrelevant forM theory than the continuum limit. A finite
dence between the disk and the sphere, exactly as in theorldsheet cutoff has a number of physical consequences:
bosonic case. We can further confirm that the dependencé$) it implies a cutoff on the number of propagating massive
on e andk?® are identical, and for complete agreement wemodes(2) nonrenormalization theorems may receive correc-

also verify that the numerical coefficients are the same, sincéons of ordere, and (3) the decoupling of the conformal
mode needs to be reconsidered.

(M), 0" 100" 115

327 1 o 5 , 2 A rather more drastic cutoff, but still something difficult
K2 2ma 2 K T3=4m 3, (29 to see in string perturbation theory, is a possible connection

with the “stringy exclusion principle” suggested by Mal-
We have thus seen that the analysis for the superstring cag@cena and Stroming¢i9]; see also Ref[20]. This prin-
goes through exactly as the bosonic case, i.e., the full equ&iple suggests that the maximum allowed occupation num-
tion of motion is not reproduced simply by demanding con-bers of bosonic BPS particle modes grows in inverse
formal invariance fore— 0. proportion to the coupling constant. If it applies in general
[21], though it is not entirely clear why it should, then one
would expect a cutoff on the worldsheet that behaveg as
Qg Which is considerably more drastic than the cutoff sug-

How should one interpret the prescription that we havegested above. Nevertheless, given the strong divergence of
presented above? To take a scale invariant prescripibn string perturbation theorj23], it is not clear that such de-
and introduce a scale dependence in order to cancel it againséndence of the cutoff is immediately ruled out. The space-
another term, may appear to be reckless, but has an illustriime length scale corresponding to Ed6), |~ /|In ¢ still
ous precedent in string theory—the Fradkin-Tseyflin2]  diverges, but as/[Ing|. Further, even with this kind of cou-
term in the sigma model that is required for obtaining con-pling constant dependence of the cutoff, the interpretation of
sistent dilaton equations of motion. It is us(i&] to restate  peta functions suggested above still holds.
the sort of analysis we have gone through in terms of a Gopakumar and Vafd22] have recently suggested a
normalization scale dependence, phrasing the argumentatigipvel picture for the relation of the closed string sigma
in terms of anomalies in conformal invariance. Thisnst  model description to the hole description of D-branes. They
possible when one introduces a scale dependencdinité&  propose, in a topological sigma model description, that a
amplitude. The “virtual anomaly’[a phrase due to Polchin- phase separation mechanism might account for the appear-
ski (private communicatiorj in scale invariance introduced ance of holes, which would be regions on the worldsheet
by the finite cutoff is required for spacetime diffeomorphismwhere the fields would be frozen. If this is indeed the case,
invariance, much as finite counterterms in ordinary fieldthen it might in fact be natural for the size of the holes to be
theories are required in many instances for preserving synfunctions of the coupling constant, though perhaps not in a
metries in the renormalized theories. The difference here igopological string theory.
that we are concerned with conformally invariant, hence fi- As we go to higher order in the string perturbation theory
nite, theories, and the introduction of a scale in such a theoryye would expect similar effects to take place, with additional
requires that the scale have a physical interpretation. It igomplications due to regimes of colliding holes, etc. We em-
also of interest to recall that Banks and Martirj@é] first  phasize that all the technical details of these calculations are
suggested that the Wilsonian renormalization group undersimilar to those involved in the usual Fischler-Susskind
lies string theory—of course, the Wilsonian renormalizationmechanism. While there is no mathematical proof that the
group automatically comes with a finite cutoff. Fischler-Susskind mechanism is consistent to all orders in

If we do take the worldsheet cutoff seriously, we mustperturbation theory, there has appeared no evidence for any
attempt to reconcile it with spacetime physics. The followinginconsistency in the physics literature. Therefore, while we
remarks are speculative, but we will attempt to err on themake no claims to mathematical rigor, we are confident that
conservative side in our interpretation of the string phantasour scheme is on the same footing as the standard Fischler-
magoria. Susskind mechanism in this regard.

Clearly, e must be very small in string perturbation theory  Starting at the annulus level, there are real divergences in
for self-consistency, so it is natural to conjecture an inversgy-brane amplitudes in the limit of shrinking handles. These
relation, [Ine~gy”, with «>0. This would imply e  divergences are related to the effects of the finite mass DO-
~exp(—Clgg), which would be consistent with perturbative brane recoiling[24], and need to be taken into account as
string theory. With this kind of dependence in the cutoff, wewell. It is interesting to note that through the current analysis
suggest the interpretation that the vanishing of beta functionse have related the sphere and the disk amplitude, and thus
is just the requirement that the weak-coupling limit is nons-the formalism knows about the finite DO-brane mass. In par-
ingular. The worldsheet cutoff scale does not seem to bécular, we can use the full equations of motion, derived here

IV. CONCLUSIONS AND SPECULATIONS
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from a worldsheet point of view, to calculate semiclassicalviolates open-closed string duality—this duality is, however,
scattering amplitudes involving gravitons and DO-branesmanifestly a perturbative phenomenon. Theradsvidence
The classical solutions for this scattering process will necesthat it continues to have a physical significance at finite
sarily involve a recoiling DO-brane, recalling that the Ein- string coupling. Indeed, a0, the very validity of a string

stein equation implies the geodesic equation in general.  pijcture is rather unclear, given theR2growth of string per-
In summary, we have shown how the case of Iocallzec{)urbation theory[23].

D-branes differs from the open string case in that demanding
conformal invariance on the worldsheet does not immedi-
ately imply the full spacetime equations of motion. Instead
the correct background metric and other fields arise as a sec-
ondary effect from adding boundaries with Dirichlet bound- Conversations with T. Banks, E. D'Hoker, D. Gross, |.
ary conditions. We can still infer the full spacetime equationsKlebanov, E. Martinec, S. Shenker, A. Strominger, W. Tay-
of motion though, by introducing a cutoff by hand and de-lor, L. Thorlacius, and especially C. Callan, W. Fischler, and
manding that the leading cutoff dependence cancel betweeh Polchinski, are gratefully acknowledged. This work was
the sphere and the disk amplitudes. This prescription is corsupported in part by NSF Grant No. PHY96-00258. @.T. was
sistent withT duality. It should be noted that a finite cutoff supported in part by the Research Council of Norway.
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