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Finite cutoff on the string worldsheet?

Vipul Periwal and Øyvind Tafjord
Department of Physics, Princeton University, Princeton, New Jersey 08544

~Received 27 August 1998; published 8 July 1999!

D-brane backgrounds are specified in closed string theories by holes with appropriate mixed Dirichlet and
Neumann boundary conditions on the string worldsheet. As presently stated, the prescription defining D-brane
backgrounds is such that the Einstein equation is not equivalent to the condition for scale invariance on the
string worldsheet. A modified D-brane prescription is found that leads to the desired equivalence, while
preserving all known D-brane lore. A possible interpretation is that the worldsheet cutoff is finite. Possible
connections to recent work of Maldacena and Strominger and Gopakumar and Vafa are suggested.
@S0556-2821~99!05914-7#
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I. INTRODUCTION

One of the basic successes of the framework of str
theory is the consistent way in which one can introdu
background condensates of fields. Only certain configu
tions of background fields are allowed by conformal inva
ance on the string worldsheet. It is crucial for consistency
string propagation that conformal invariance on the wor
sheet is maintained—it implies unitarity, for example. A p
mary reason for thinking that string theories have someth
to do with fundamental physics is that the conditions
scale invariance on the worldsheet turn out to be equiva
to physically interesting equations of motion for the spa
time metric and other fields@1,2#.

For instance, consider bosonic closed string theory wit
background metricGmn(X) and dilaton fieldF(X) ~for sim-
plicity defined with zero expectation value!. This is de-
scribed by a sigma model action~we use the notation an
conventions as in Polchinski@3#!

S5
1

4pa8
E d2sAg@gabGmn~X!]aXm]bXn1a8RF~X!#.

~1!

Conformal invariance at the quantum level correspond
requiring the beta functions to vanish. At one loop th
means

bmn5a8Rmn12a8¹m¹nF50,

bF52
a8

2
¹2F1a8~¹F!250. ~2!

These equations are equivalent to the equations of mo
following from the spacetime action

Seff
closed5

1

2k2 E dDxA2Ge22F@R14~¹F!2#, ~3!

where we are dropping terms that are zero in the relev
case ofD526. Similarly, if we add open strings and a gau
field background on the boundary, we obtain conditions
conformal invariance equivalent to the equations of mot
0556-2821/99/60~4!/046004~6!/$15.00 60 0460
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for a spacetime Born-Infeld action including metric and d
laton contributionsSeff

open. Thus the total spacetime action
given bySeff

closed1cSeff
open. The constantc is determined by the

coupling between gravity and gauge fields, and it appe
for instance, multiplying the gauge field energy-momentu
tensor in the full Einstein equation.

The closed string beta functions~2!, which give the
vacuum Einstein equation, do not change if one add
boundary to the worldsheet, but the full equation is nevert
less obtained by a generalized form of conformal invarian
including the effects of worldsheets of different topologie
This all works due to the Fischler-Susskind mechanism@4#
where the extra breaking of conformal invariance com
from shrinking fixtures on the worldsheets of higher gen
In the present case it arises when the disk degenerates
sphere, i.e., we represent the disk as a sphere with a hol
out, and upon integrating the size of the hole there will b
logarithmic divergence for small hole size. The coefficient
the divergence looks similar to an insertion of a local ope
tor on the sphere. Identifying the cutoff on the hole size w
the cutoff used for the counterterms in the sphere amplitu
we can demand cutoff independence of the combined am
tude. This yields the full Einstein equation, and thus det
mines the constantc @4,5#.

The case of a D-brane background@6# is in many ways
analogous to the gauge field background, in fact, the latte
a special case~a D25-brane in the bosonic case!. A static flat
Dp-brane is introduced simply by adding a boundary on
worldsheet with Neumann boundary conditions onp11 of
the directions and Dirichlet boundary conditions on the o
ers. The sphere amplitude gives the same beta function
above, Eq.~2!, while the disk amplitude gives condition
corresponding to equations of motion following from
Dirac-Born-Infeld action@7# ~which in general also have
contributions from the background gauge field and antisy
metric tensor field!

Seff
DBI5cE dp11je2FA2G̃, ~4!

wherejA, A50,...,p are coordinates on the D-brane wor
volume, andG̃AB is the induced metric.
©1999 The American Physical Society04-1
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The full spacetime effective action should therefore
given by Seff

closed1cSeff
DBI , and the corresponding Einste

equation must have a source term due to the D-brane
analogy with the open string case above, it would be nat
to expect this source term to appear from the worldsh
point of view as a Fischler-Susskind@4# type effect. Thus
one expects that there is a logarithmic divergence in the
amplitude, whose coefficient represents the effect of
D-brane in the Einstein equation@8#. We would then have to
correct the sphere metric to one that solves these equatio
compute consistent amplitudes. This contradicts the presc
tion for introducing D-branes into the theory, which says th
one can either expand about background fields represen
the ~super!gravity solution of the soliton~and thus extract
restricted long-distance physics!, or one can use the remark
able prescription of adding boundaries with Dirichlet boun
ary conditions@6#, using a flat background metric. We shou
not need to do both. Indeed, explicit calculations involvi
D-branes show no logarithmic divergence in the disk am
tude for localized (p11,D) branes@9,10#. Furthermore,
Leigh @7# explicitly noted that the disk amplitude does n
change the closed string beta functions. The aim of this pa
is to resolve this puzzle.

The two ways of introducing D-branes mentioned abo
are analogous to two different interpretations of the spa
time effective action, where one can either expand sup
gravity about a vacuum corresponding to the D-brane su
gravity solution, or couple supergravity to a world-volum
action @the Dirac-Born-Infeld~DBI! action# representing the
D-brane. These two descriptions are useful in somew
complementary regimes, the latter for isolated D-branes,
the former forN superposed D-branes, withNgst not neces-
sarily small. We also note that a fact that does separate
case of localized branes from the open string case is tha
Einstein equation imply that the beta functions are set to z
everywhere except at the source.

II. THE BOSONIC CASE

Let us look at the disk amplitude in more detail. For co
creteness we will consider the two graviton amplitude in
background of a Dp-brane at the origin, first computed i
Ref. @9#, but the discussion is general. To isolate the par
the amplitude associated with the small hole, we repres
the disk as a sphere with a hole cut out and integrate
over the radiusa and positionz of the hole. This increase
the symmetry of the amplitude from SL~2,R! to SL~2,C! as
in the sphere amplitude. The amplitude can be writ
@11,12#

Adisk52p2tpE 2
da

a3 E
uza2zu.a

d2z)
a

d2za

3
1

VCKG
K)

a
Va~za!L

D2

. ~5!

Here 2p2tp is the correct normalization for the Dp-brane
disk amplitude, withtp being the Dp-brane tension@3#. We
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haveVa(za)5(k/pa8)emn
a ]Xm]̄Xneika•X(za) for gravitons,

andVCKG denote the volume of the conformal killing grou
which we need to divide out. TheXm(z) satisfy boundary
conditions appropriate for a Dp-brane

]nXI~z!u]S50, I 50,...,p, ~6!

Xi~z!u]S50, i 5p11,...,D21. ~7!

The exact Green functions for this geometry are for Ne
mann and Dirichlet directions, respectively:

^XJ~z1!XI~z2!&5
a8

2
h IJS 2 lnuz12z2u2

2 lnU12
a2

~z12z!~ z̄22 z̄!
U2D , ~8!

^Xj~z1!Xi~z2!&5
a8

2
h i j S 2 lnuz12z2u2

1 lnU12
a2

~z12z!~ z̄22 z̄!
U2

1 lnU~z12z!~z22z!

a U2D . ~9!

Note that the last term in Eq.~9! must be kept even if it
factorizes, due to the lack of momentum conservation in
transverse directions. We can now perform the contracti
in Adisk and expand the integrand for smalla. We find

Adisk52p2tpE 2
da

a3 E
uza2zu.a

d2z)
a

d2za

3
1

VCKG
a1/2a8k'

2F K T~2k' ,z!)
a

Va~za!L
S2

1a2K D~2k' ,z!)
a

Va~za!L
S2

1O~a4!G , ~10!

where k'
i denotes the total transvers

momentum (aka
i , and T(k,z)5:eik•X(z): and D(k,z)

5(2/a8)(hM )mn :]Xm]̄Xneik•X(z): are ~off-shell! tachyon
and graviton-dilaton vertex operators~not properly normal-
ized for simplicity!. The flat metric ishmn5diag(21,1,
1,...,1) whileMmn[diag(1,...,1,21,...,21) with signature
(p11,D2p21). We denote expectation values on t
sphere and disk bŷ&S2

and^ &D2
, respectively. In the spher

amplitudes we have only kept the zero mode integration
the Neumann direction, giving rise to a facto
(2p)p11dp11((ki).

For the special case of open strings~space-filling brane!
we havek'50, and the second term above gives rise to
logarithmic divergence in the hole size cutoff, proportion
to a zero-momentum dilaton. This is the Fischler-Sussk
mechanism yielding a cosmological constant in the Einst
equation@4#. However, for localized D-branes there is a
4-2
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FINITE CUTOFF ON THE STRING WORLDSHEET? PHYSICAL REVIEW D60 046004
extra factor ofaa8k'
2 /2, and integrating overa gives rise to

poles ink'
2 , rather than divergences. In the case of gravi

scattering off the D-brane, these are physicalt-channel poles.
Thus we reproduce the well-known result that the disk a
plitude is finite, and there is no need to introduce a cutoff
the hole size. A spacetime effective action can be deduce
examining the poles in these well-defined disk amplitud
@10#. Thus, if we were not interested in seeing how the f
Einstein equation is related to conformal invariance on
worldsheet, we would stop here and be content with t
answer for the scattering amplitude.

Let us now examine the full equations of motion follow
ing from the spacetime effective actionSeff

closed1cSeff
DBI . Con-

sider a flat, static Dp-brane, then the metric and dilaton equ
tions of motion can be written

e22F

2k2a8
bmn5

c

4
e2F~hM !mnd l~x'!, ~11!

e22F

2k2a8
~8bF22bm

m!5ce2Fd l~x'!. ~12!

In these equations we have already expanded the left h
sides for a flat background metric. We have definedl 5D
2p21, the number of transverse directions. To illustrate
point, let us for the moment concentrate on the casep511
~andD526) where it is consistent to chooseF50. It is then
easy to linearize by settingGmn5hmn1hmn and solve for the
leading term in hmn . In Hilbert gauge we haveRmn

52 1
2 ]2hmn , and we get~for l 514)

hmn5k2c~hM !mnE dlq'

~2p! l

1

q'
2 eiq'•x'. ~13!

We now investigate what we get when we insert this me
perturbation on the sphere. To leading order the effect is
insertion ofhmn]Xm]̄Xn into the amplitude. We normal orde
this operator usingeiqx5ea8q2/2:eiqx: wheree is the cutoff
on the worldsheet. In addition, there are contractions
tween the exponential inhmn and ]Xm]̄Xn. The term with
both derivatives contracted contributes to the tachyon p
and will be neglected together with similar terms below. T
terms with one derivative contracted give rise to a total
rivative, while contracting the derivatives with each oth
gives worldsheet curvature terms important for the dila
equation of motion, as discussed in Refs.@12,13#. We will
also not worry about these for our purposes as we con
trate on thebmn equation of motion.

Taking this into account, the leading order effect of usi
the metric~13! in the sphere amplitude is given by

Asphere
(1) 52

32p3

a8k2

1

2pa8
k2c

a8

2

e1/2a8k'
2

k'
2 E d2z)

a
d2za

3K D~2k' ,z!)
a

Va~za!L
S2

. ~14!
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Here the two first terms come from the normalization of t
sphere amplitude and the prefactor of the action, resp
tively. The second and third terms come fromhmn and the
normalization ofD(2k' ,z). The momentum conservatio
in the Dirichlet directions has been used to integrate overq'

~so again only the zero modes in the Neumann directi
remain!. In the background of a nontrivial metric, we shou
also correct the vertex operators so that they have the co
conformal weights with respect to the new energ
momentum tensor. However, for the two-graviton amplitu
we consider here, the effect to this order will look similar
a two-point sphere amplitude and thus vanish, so we can
the vertex operators for the flat metric.

Now we compare this to the disk amplitude~10!. We
neglect the tachyon pole and focus on the massless pole.
obvious contribution comes from using the second term
the a expansion while neglecting the higher order effects
the integration domain. We can then integrate overa, with a
lower limit e, and we find that thee-dependent part exactly
cancels thee dependence of the sphere amplitude~14! pro-
vided we choose

c52tp , ~15!

precisely as expected. We only did this forp511, but, as we
will see below, it holds for allp. Alternatively, we can say
that the contribution from the sphere, with cutoffe, exactly
compensates for the piece left out from the disk amplitude
cutting off the hole size ate, provided we have ‘‘synchro-
nized’’ the sphere and the disk by choosing the correct m
ric, i.e., solved the correct Einstein equation with source te
and specific value ofc. We can takee to zero if we want,
then the sphere contribution vanishes, and the disk gives
full answer. If we want to extract a sensible long distan
answer from the sphere by itself, as we would expect to
able to do, we will have to fix a nonzeroe and look at
processes of very low momentum transfer,

k'
2 !

2

a

1

u ln eu
. ~16!

Then ea8k'
2 /2511 1

2 a8k'
2 ln e1 . . . , e-independent ampli-

tude which corresponds to the semiclassical approxima
of the amplitude, coinciding with the amplitude found fro
Polchinski’s prescription in the same limit.

There are also other contributions to the massless pol
the disk amplitude. One comes from the tachyon inserti
consideringO(a2) effects of the integration region. Anothe
comes from certain parts of theO(a4) term in the expansion
for which integration overz yields extra 1/a2 singularities.
These two contributions should cancel as discussed in
@12#.

A more formal way of deriving the same results is
consider the sphere amplitude with an arbitrary metric. W
then need to introduce a cutoff, and at one loop we must
in a counterterm of the typebmn]Xm]̄Xn ln e. This is formal
because the metrics involved here are not so smooth a
allow the normal coordinate expansion employed in deriv
this. Nevertheless we can consider the sum of the sphere
4-3
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VIPUL PERIWAL AND ØYVIND TAFJORD PHYSICAL REVIEW D 60 046004
the disk amplitude and ask for cutoff independence in so
sense. Neglecting the tachyon pole, we want to demand
e]e(Asphere1Adisk) vanishes to leading order ine ~note that
away fromk'50 this derivative always vanishes for the di
amplitude as we takee to zero!. This will precisely be true if
bmn is given as in Eq.~11!, with c given in Eq.~15!, using
the same normal ordering considerations as we did ab
~treatingbmn as e-independent when taking the derivative!.
This holds for anyp. Thus we have a way of extracting th
full Einstein equation—not by demanding conformal inva
ance, which we already have on the disk alone—but by
troducing a cutoff anyway and demanding agreement
tween the contributions from the sphere and the d
cancelling theleading ordercutoff dependence~neglecting
tachyon effects! even if the dependence vanishes as the c
off goes to zero.

III. THE SUPERSTRING CASE

Let us now do the same calculation in the case of the t
II superstring. In this case we want to reproduce the
supergravity equations of motion, including a source term
the Dp-brane. The source term should again arise from
disk-amplitude, while the rest of the equation is given
terms of theb functions on the sphere and involve the m
ric, the dilaton, and the appropriate Ramond-Ramond ga
field. These equations are well known, as are the Dp-brane
solutions. For clarity, we again concentrate on the cons
dilaton example, the D3-brane. For our purposes we sim
need the long distance behavior of the metric, convenie
given by Garousi and Meyers@10# as

hmn5
k2t3

4p3x'
4 ~hM !mn5k2t3~hM !mnE d6q'

~2p!6

1

q'
2 eiq'•x'.

~17!

When this solution is inserted in the sphere amplitude, th
will be a term of the following form:

Asphere;2
32p3

a8k2

1

2pa8
k2t3

a8

2

e1/2a8k'
2

k'
2 E d2z)

a
d2za

3K D~2k' ,z!)
a

Va~za!L
S2

. ~18!

There will be other terms, from the worldsheet fermions a
the Ramond-Ramond gauge field, but these will follow fro
this term by worldsheet and spacetime supersymmetry, s
the Dp-brane is a Bogomoln’yi-Prasad-Sommerfeld~BPS!
state. This amplitude has all the same features as the c
sponding bosonic amplitude, and we now want to show t
the disk amplitude reproduces this behavior, again in
analogy with the bosonic case. To evaluate the superst
disk amplitude, we find it convenient to use the bound
state formalism@14,15#, where the Dp-brane is represente
by a closed string boundary state:
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uBp&5432p2tpd l~x'!

3expF2 (
n51

`
1

n
~hM !mnã2n

m a2n
n

2 (
r 5 1/2 ,3/2 ,...

~hM !mnc̃2r
m c2r

n G u0&. ~19!

There is also a ghost piece inuBp& which will not be impor-
tant here. The normalization is chosen such that amplitu
calculated usinguBp& agree with the corresponding disk am
plitudes. In closed string operator language, the disk am
tude then reads

Adisk5^VuVDV¯DuBp&, ~20!

where the propagator is

D5
1

2
~L01L̃021!21→ 1

4p E d2z

uzu2 zL02 1/2z̄L̃02 1/2,

~21!

where the last expression also includes a projection o
states annihilated byL02L̃0 ~as is the case for physica
states!. For completeness, we give

L05
a8

4
p21 (

n51

`

a2n
m anm1 (

r 5 1/2 ,3/2 ,...
rc2r

m c rm , ~22!

with a similar expression forL̃0 . We can then derive the ke
result

DuBp&5432p2tp

1

4p E d2z

uzu2
uzu1/2a8k'

2

3)
n,r

expF2uzu2n~hM !mn

1

n
ã2n

m a2n
n

2uzu2r~hM !mnc̃2r
m c2r

n GU0;2( k'L
54p2tpE da

a2 a1/2a8k'
2
@12a~hM !mnc̃21/2

m c21/2
n

1O~a2!#U0;2( k'L . ~23!

Here (k' denotes the total transverse momentum of
other vertex operators in the amplitude. The quantitya5uzu
now plays the role of the hole radius in the bosonic disc
sion above. Whena→0, the boundary state moves to infini
distance, and we recover a sphere amplitude with insert
of closed string operators. Again there are poles ink'

2 from
the integration arounda'0. The first term is associated wit
the type II tachyon and should never appear in appropria
GSO projected amplitudes. The next term is the interes
one as it has a massless pole. The corresponding cl
string operator insertion is
4-4
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FINITE CUTOFF ON THE STRING WORLDSHEET? PHYSICAL REVIEW D60 046004
~hM !mnc̃21/2
m c21/2

n U0;2( k'L , ~24!

which we recognize as part of the graviton vertex operato
the ghost number (21,21) picture. Of course, the insertio
in Eq. ~18! was nothing but a part of the graviton vertex
the ~0,0! picture, so we see again that there is a corresp
dence between the disk and the sphere, exactly as in
bosonic case. We can further confirm that the depende
on e and k'

2 are identical, and for complete agreement
also verify that the numerical coefficients are the same, s

32p3

a8k2

1

2pa8

a8

2
k2t354p2t3

2

a8
. ~25!

We have thus seen that the analysis for the superstring
goes through exactly as the bosonic case, i.e., the full e
tion of motion is not reproduced simply by demanding co
formal invariance fore→0.

IV. CONCLUSIONS AND SPECULATIONS

How should one interpret the prescription that we ha
presented above? To take a scale invariant prescription@6#,
and introduce a scale dependence in order to cancel it ag
another term, may appear to be reckless, but has an illu
ous precedent in string theory—the Fradkin-Tseytlin@1,2#
term in the sigma model that is required for obtaining co
sistent dilaton equations of motion. It is usual@5# to restate
the sort of analysis we have gone through in terms o
normalization scale dependence, phrasing the argument
in terms of anomalies in conformal invariance. This isnot
possible when one introduces a scale dependence in afinite
amplitude. The ‘‘virtual anomaly’’@a phrase due to Polchin
ski ~private communication!# in scale invariance introduce
by the finite cutoff is required for spacetime diffeomorphis
invariance, much as finite counterterms in ordinary fie
theories are required in many instances for preserving s
metries in the renormalized theories. The difference her
that we are concerned with conformally invariant, hence
nite, theories, and the introduction of a scale in such a the
requires that the scale have a physical interpretation. I
also of interest to recall that Banks and Martinec@16# first
suggested that the Wilsonian renormalization group und
lies string theory—of course, the Wilsonian renormalizati
group automatically comes with a finite cutoff.

If we do take the worldsheet cutoff seriously, we mu
attempt to reconcile it with spacetime physics. The followi
remarks are speculative, but we will attempt to err on
conservative side in our interpretation of the string phan
magoria.

Clearly,e must be very small in string perturbation theo
for self-consistency, so it is natural to conjecture an inve
relation, u ln eu;gst

2a , with a.0. This would imply e
;exp(2C/gst

a), which would be consistent with perturbativ
string theory. With this kind of dependence in the cutoff, w
suggest the interpretation that the vanishing of beta funct
is just the requirement that the weak-coupling limit is non
ingular. The worldsheet cutoff scale does not seem to
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directly related to Shenker’s observations@17#. Since strings
are related to otherp-branes in various dual formulations
such cutoffs are presumably in the quantum field theo
living on the world volumes of such objects as well. F
example, the remarkable matrix discretization of membra
due to de Wit, Hoppe, and Nicolai@18# may be more directly
relevant for M theory than the continuum limit. A finite
worldsheet cutoff has a number of physical consequen
~1! it implies a cutoff on the number of propagating mass
modes,~2! nonrenormalization theorems may receive corr
tions of ordere, and ~3! the decoupling of the conforma
mode needs to be reconsidered.

A rather more drastic cutoff, but still something difficu
to see in string perturbation theory, is a possible connec
with the ‘‘stringy exclusion principle’’ suggested by Ma
dacena and Strominger@19#; see also Ref.@20#. This prin-
ciple suggests that the maximum allowed occupation nu
bers of bosonic BPS particle modes grows in inve
proportion to the coupling constant. If it applies in gene
@21#, though it is not entirely clear why it should, then on
would expect a cutoff on the worldsheet that behaves ae
}gst

a , which is considerably more drastic than the cutoff su
gested above. Nevertheless, given the strong divergenc
string perturbation theory@23#, it is not clear that such de
pendence of the cutoff is immediately ruled out. The spa
time length scale corresponding to Eq.~16!, l'Au ln eu still
diverges, but asAu ln gu. Further, even with this kind of cou
pling constant dependence of the cutoff, the interpretation
beta functions suggested above still holds.

Gopakumar and Vafa@22# have recently suggested
novel picture for the relation of the closed string sigm
model description to the hole description of D-branes. Th
propose, in a topological sigma model description, tha
phase separation mechanism might account for the app
ance of holes, which would be regions on the worldsh
where the fields would be frozen. If this is indeed the ca
then it might in fact be natural for the size of the holes to
functions of the coupling constant, though perhaps not i
topological string theory.

As we go to higher order in the string perturbation theo
we would expect similar effects to take place, with addition
complications due to regimes of colliding holes, etc. We e
phasize that all the technical details of these calculations
similar to those involved in the usual Fischler-Susski
mechanism. While there is no mathematical proof that
Fischler-Susskind mechanism is consistent to all orders
perturbation theory, there has appeared no evidence for
inconsistency in the physics literature. Therefore, while
make no claims to mathematical rigor, we are confident t
our scheme is on the same footing as the standard Fisc
Susskind mechanism in this regard.

Starting at the annulus level, there are real divergence
D0-brane amplitudes in the limit of shrinking handles. The
divergences are related to the effects of the finite mass
brane recoiling@24#, and need to be taken into account
well. It is interesting to note that through the current analy
we have related the sphere and the disk amplitude, and
the formalism knows about the finite D0-brane mass. In p
ticular, we can use the full equations of motion, derived h
4-5
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from a worldsheet point of view, to calculate semiclassi
scattering amplitudes involving gravitons and D0-bran
The classical solutions for this scattering process will nec
sarily involve a recoiling D0-brane, recalling that the Ei
stein equation implies the geodesic equation in general.

In summary, we have shown how the case of localiz
D-branes differs from the open string case in that demand
conformal invariance on the worldsheet does not imme
ately imply the full spacetime equations of motion. Inste
the correct background metric and other fields arise as a
ondary effect from adding boundaries with Dirichlet boun
ary conditions. We can still infer the full spacetime equatio
of motion though, by introducing a cutoff by hand and d
manding that the leading cutoff dependence cancel betw
the sphere and the disk amplitudes. This prescription is c
sistent withT duality. It should be noted that a finite cuto
cl.
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violates open-closed string duality—this duality is, howev
manifestly a perturbative phenomenon. There isno evidence
that it continues to have a physical significance at fin
string coupling. Indeed, atgst.0, the very validity of a string
picture is rather unclear, given the 2n! growth of string per-
turbation theory@23#.
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