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We discuss various approaches to extracting the full stress-energy tensor of the conformal field theory from
the corresponding supergravity solutions, within the framework of the Maldacena conjecture. This provides a
more refined probe of the AdS-CFT correspondence. We apply these techniques in considering the Casimir
energy of the conformal field theory on a torus. It seems that either generically the corresponding supergravity
solutions are singuldi.e., involve regions of large string-scale curvatiyes that they are largely insensitive
to the boundary conditions of the CFT on the tofi80556-282(99)05114-(

PACS numbse(s): 11.25.Hf, 04.60-m, 04.70.Dy

I. INTRODUCTION current-source term in the AdS-CFT generating functibn
couples the AdS graviton to the stress-energy tensor of the
The Maldacena conjectufé] has brought renewed inter- CFT [7,8]:
est in the holographic principl€2], which asserts that a
theory of gravity ind dimensions can be described in terms
of a nongravitational theory id— 1 dimensions. The current d—1., v.ab
activity in string theory is focused on the AdS-CFT corre- j d™ " h™Tap
spondencg3], which implements holography with a duality
between a gravitational theory didimensional anti—de Sit-
ter space and a conformal field theory living in a This coupling has been used to investigate two- and three-
(d—1)-dimensional “boundary” space. This duality is best point correlation functions of the stress teng®r11]. In
understood for a specific superstring example wdth 5 particular, considering correlations protected by supersym-
[1,3,4. In this case, the duality maintains an equivalencemetry provides a nontrivial consistency test of the duality
between type llb superstring theory on AdSS®, and ' between llb supergravity on AdSand four-dimensional
=4 super-Yang-Mills theory with gauge grou(N) in four  super-Yang-Mills theory8].
dimensions. Further in many interesting cases, it is sufficient Just as in asymptotically flat space, the energy of an as-
to only consider the low energy limit of the superstring ymptotically AdS solution can be determined by the
theory, namely, supergravity. asymptotic behavior of the metrjd2,13. In the context of
A precise formulation of the AdS-CFT correspondence isthe AdS-CFT correspondence, this result has the additional
made in equating the generating function of the connectethterpretation that the asymptotic metric perturbations deter-
correlation functions in the CFT with the string or gravity mine the energy of the corresponding CFT stateensemble
partition function on the AdS spa¢8,4]. In the approxima-  of stateg. This element of the correspondence was examined
tion of classical(supejgravity: in Ref.[14], where it lead to the conjecture of a new positive
energy theorem for general relativity. In the field theory, the
: energy is given bye= [(T), and so as in the general dis-
Zpad b)) = e"(‘f’i):<ef¢oyi0 >CFT (1)  cussion above, one is considering states for which the expec-
tation value of a particular operator, i.e., the stress-energy
tensor, is nonvanishing. In fact, the expectation value of all
wherel(¢;) is the classicalsupejgravity action as a func-  of the individual components of the stress-energy can be de-
tional of the supergravity fields¢y; are the asymptotic termined from the asymptotic metric, and this is the focus of
“boundary” values of the bulk fieldsp; up to a certain re- the present paper. Having the entire stress tensor provides a
Scallng[3] andO' are the dual CFT operators. Treating the more refined tool with which to investigate the AdS-CFT
“boundary” fields ¢g; as source currents inthe CFT, Efj)  correspondence, and we will apply it in order to extend the
is used in calculating the correlation functions of the operainvestigation of Casimir energies initiated in REf4].
tors O'. This framework also naturally allows one to evalu-  The remainder of the paper is organized as follows: In
ate the expectation values of the CFT operators in terms abec. Il, we consider in detail various techniques for calculat-
the asymptotiqsupejgravity fields[5,6]. ing the expectation value of stress-energy tensor in the CFT
Given that part of the duality is a theory of gravity in AdS from the corresponding supergravity solutions. In Sec. I,
space, one of the bulk fields will always be the graviton. Sowe apply these technigues to examine the Casimir energy of
it is natural to ask what the role of the gravitoor metric  the CFT on a toroidal geometry. Finally, we present a dis-
perturbationgis in the above construction. The appropriate cussion of our results in Sec. IV.
While this paper was in preparation, R¢t5] appeared
which discusses calculating the CFT stress-energy using
*Email address: rcm@hep.physics.mcgill.ca techniques similar to those in Sec. Il B.
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Il. STRESS-ENERGY TENSOR is we need to find a new radial coordinate such tthaff
=F(R) dR andr=F(R) R. The final result is that asymp-

As discussed above, the stress-energy tensor provides ?&ically

interesting tool with which to study the AdS-CFT correspon-
dence. In the following, we consider three different ap-
proaches to extracting the field theory stress tensor from the r=R
supergravity solutions vié) asymptotically flap-brane ge-

ometries, (i) the quasilocal energy defined by Brown and
York [22] and (iii) an expansion of the asymptotic metric
with an appropriate choice of coordinates. ds?=H(R) Y4 — f(R)2dt?+dx?+dy?+d 2]

4
1+ %) )

so that we may write the metric as

1/2 2 i\2
A. Asymptotically flat geometries FHR)TF(R)™(dxX) ©)

The Maldacena conjectufd] originally emerged out of Wwith R*=37_;(x')?. Given this form of the metric, a
investigations of extended branes in string theory and Mstraightforward calculation of Eq3) yields
theory. Anti—de Sitter space arises as part of the near-
horizon geometry of certain branes, e.g., Ad$for M2-, T =
D3- and M5-branes, respectivdly,16]. So we begin by con- 166G,
sidering the supergravity solutions describing a near- ) ) .
extremal p-brane in ad-dimensional, asymptotically flat ~ Now this stress tensor may be regarded as including two
spacetime. The usual formula giving the mass of a point-likecontributions:(i) those appearing with the introduction of the
object in terms of the asymptotic metric can be extended tgéxtremal D3-brane andi) those due to excitations of the
give the mass per unjt-volume of such solutionf17]. A D3-brane above extremality, and hence which vanishwas
simple derivation of this result begins by considering an ex-—0. The precise nature of these sources can be understood
tendedp-dimensional source in the linearized gravity equa-by expanding the Born-Infeld actidi7,8,19, or by studying
tions. If we assume that the brane directions are also synlring scattering from D-brang0]. In the context of the
metry directions, these results may be further extended tdlaldacena conjecture, we are primarily interested in the lat-

yield the entire stress-energy tensor for fiérane world-  ter since they represent the contribution to t'he stress-energy
volume: tensor by excitations in the world-volume field theory. To

isolate these contributions, we subtract off the extremal con-

2
[— 7an(41%+ u*) +4u*8260]. )

1 d—p—2 i tribution but in doing so we must be careful to subtract off
Tap= 167Gy % dQgpor n that for an extremal D3-brane with the same RR five-form
, , charge as the solutiof#) given above. Thus the appropriate

X[ map(dih®c+dih'j = d;hY) = dihgp] (3)  extremal stress tensor is found by first settjagr 0 in Eq.

(7) and then replacingf*—1%(1*+ x*)Y2. It is most interest-
wheren' is a radial unit vector in the transverse subspaceing to make the subtraction in the lirhithat ull<1 which
while h,,=g,,—7,, is the deviation of the(Einstein yields
frame) metric from that for flat space. Note thay,, is not a

diffeomorphism invariant quantity, and in applying E8g), it 3000
must be calculated using asymptotically Cartesian coordi- m2ut u*l0 1 0 0
nates. Above, the labelsb=0,1, . .. p run over the world- ATab=E[46288+ Nab) = G-lo o 1 ol
volume directions, whilei,j=1,...d—p—1 denote the 10

transverse directions. Fa=b=0, Eq. (3) reduces to the 0 0 0 1
standard formula for the mass density of fitbrane[17]. ®)

As an application of this formula, let us consider a near-

extremal D3-brane for which the 10-dimensional spacetime This result has a form ch.aracterlstm of a ther_mal gas of
metric is[18] massless particles. In particular its trace vanishes, i.e.,

AT2,=»** AT,,=0. This is in keeping with the interpreta-
tion that this contribution arises from a thermal gas in the
super Yang-Mills theory on the world-volume of the D3-
dr2 brane.
+H1’2(f—2+r2d05) Repeating the calculations for near-extremal M5- and
M2-branes yields an analogowusT,,, which is again isotro-
. pic and traceless. Hence, this stress-energy lends itself to the
ﬁ) @ interpretation of being due to a thermal gas of massless par-
r ticles on the world-volume of these nondilatonic branes as

ds?=H"Y( - f2dt?+ dx®+dy?+d 2

| 4

with H=1+ and f?=1—

r

while we fix the constant background dilaton efs=1. As
mentioned above, to apply E3), we need to express the IThis corresponds to the decoupling linjit] in which [—0
metric in isotropic coordinates, at least asymptotically. Thatvhile holding /12 and/l fixed.
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well. In the case of a generalpBbrane, however, the result lem with the above definitions for the action and the surface
is isotropic but not traceless. Ratl’mﬂ'aaoc(p—:g)z indicat- stress tensor is that they will both diverge in the lirRit
ing the distinguished position of the D3-brane amongst the—. This problem can be curgd3] for the action by sub-
Dirichlet branes. Of course, an essential difference is that fotracting the same contributia®) for a reference background
the generic P-brane the dilaton is no longer constant. In geometry for which metriggv matchegy,,, asymptotically,
such a situation, there is an intrinsic ambiguity in the defini-i.e., the boundary M can be embedded in the reference
tion of the energysee, e.g.,[21]) and so one could with an background such thaygbz Yan- This background subtrac-
appropriate conformal transformation find a metric for whichtjon procedure produces a finite actidr; 1 (g) —1°(g°), and

Eq. (3) yields a traceless stress tensor. further yields a finite surface stress tensor

B. Quasilocal formulation 2 S
;_ab _
Ny 6%ab

Now consider the case that the spacetime has a Killing
vector & which is asymptotically time-like and surface

rming, and also thav. M is chosen so that the Killing
vector remains an isometry of the boundary, i.€D,¢y,
=0. In this situation, one can sho\#2] that

= 7_ab_(TO)ab_ (12)

As discussed above in a more general setting, the AdS-
CFT correspondence describes a duality between gravity in
AdS spacetimes and a “boundary” field theory. For any
theory including Einstein gravity coupled to matter fields, the,
boundary stress-energy tensor may be defined as follo
[22]:> Consider spacetime manifold with time-like
boundarydM .2 Denote the spacetime metric @s,, andn”
is the outward-pointing normal t@M normalized with
n#n,=1. The induced metric on the boundary,,=g,,
—n,n,, acts as a projection tensor onid1. The extrinsic
curvature orv. M is given by® ,,=—v,”V n,. Now given
the standard Einstein action including a boundary term

E(é)= ﬂd“xﬁga%abgb 19

with B, a hypersurface imM orthogonal to£?, is a con-

1
dy [ _
16defMd XVv—g(R—2A)

1
87TGd

§ d? x — YO+ natter 9
oM

the boundary stress tensor is given[B2]

ab_ 2 dl

— ab_ _abangc

(10

wherea,b,c denote directions parallel to the boundary. For a
background solving the equations of motion, this stress ten?

sor will satisfy[22]

D o= —T" (11)

served charge. If the boundary contains other spacelike Kill-
ing vectors, the latter can also be used to define other con-
served charges by replacing one of the factor§ bf a new
Killing vector in Eq. (13). Further with the choice that the
norm £2¢,=—1 on the boundaryiE(€) coincides precisely
with the standard definition of the enerfg2,13.

As the supergravity energy should match the total energy
measured in the field theory, this definiti¢h3d) is useful in
the last step required in matching the surface stress tensor
(12) with the expectation value of the stress energy in the
dual CFT. While the charge in EQLJ) is finite for asymp-
totically AdS spacetimes, the measufe- y is actually as-
mptotically divergent. In this situation, E¢L3) only yields

a finite result because the componenté—g;vanish asymp-
totically. In the AdS-CFT duality, the asymptotic boundary
geometry is related to the background geometry on which the
dual field theory lives by a conformal transformation which

where the source on the right-hand side is a projection of thalso diverges asymptotically. This conformal transformation

matter stress-energ¥."°=n,T#"y,?, andD, is the covari-

can be accounted for by writing the stress tensor expectation

ant derivative projected ontéM. Equation(11) expresses value in the field theory as follows:

the local conservation of the boundary stress-energy up to
the flow of matter energy-momentum across the boundary
into M. Due to the geometric confinement in asymptotically
AdS spacetimes, this source term will vanish in the follow-

ing

(14)

\/__hhab<Tbc>: lim \/__?’J’ab:fbc
R—o

. whereh,y, is the background metric of the field theory.

In the case of interest here, the boundary will be an At this point, it may be useful to examine an explicit
asymptotic surface at some large radRisA technical prob-  example in which to apply the above analysis. Hence con-
sider the spherically symmetric Schwarzschild-AdS metric in
d=p+2 dimensions

2Brown and York's quasilocal stress tena@] was first consid- 2 P I
ered in the context of the AdS-CFT correspondence in Ré&i. ds*=—f(r)°dt"+f(r) “dro+r de

3In general in a Minkowski-signature spacetime, one would ex- (2 p+1
pect the boundary to include space-like components as well, but in with f(r)?=—+1- Kl ) (15)
the present context, these components will not play a role. | [2rP~1
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(We have chosen a slightly unusual normalization for theSo again we can recognize the form characteristic of a ther-
mass term to facilitate comparisons with the results for thamal gas of massless particles. As a check, one can easily
planar black holes beloywThe normal vector to the surface verify that the total energy is

r=Ris
n“=f(R) &} (16) ff dQpy—h(Tw)= 16 Gy |2Mp“ (23)
g:gj so the nonvanishing components of the boundary metrlchere 0,2 (+DIZP[(p+1)/2] is the area of a unit

p- sphere This result agrees precisely with that calculated
previously in Ref[14]. One can also check that this result
agrees with the energy calculated from E#j3) with £%,
=f(R) Y?%,.

Another interesting example to consider are the planar
black holes described by the metric

yoo=—F(R?Z  va=R[ypla (17)

wherea andb denote angular directions, aﬁg(p)]g is the
metric on a unifp-sphere. In this simple situation, the extrin-
sic curvature reduces to

1 r2 Iup+1 _
0 .p=n,I"2p=— N3, Qap (18) ds?=15| —| 1- dt?+ (dx?)?
2 | pp+1
and with a straightforward calculation, EQ.0) yields wPt " 12
+|1— Ty 7dr (29
p f3(R) re
T T 8GR _ _ _
wherea=1, ... p. For certain values op, these metrics
R _ arise in the near-horizon geometry of near-extrepabtanes
Tab= g = trm L Y(p)lab (see, e.g., [1]). With =0, these metrics correspond to
871Gy f(R) ; . . :
AdS, , , space in horospheric coordinates. Following the cal-
R2 p uPtl culations as above, one finds that in this case the field theory
X\ Pztp=1-—F— 21’ (19 stress tensor is
. . L p+1
With this result, we see that the nonvanishing components of R 1 5050+ o5
the boundary stress tensor are all divergindRasas R—, (Taw) = 167Gyl p+2[(p ) Tab] (25)

making clear the necessity of the background subtraction in

Eq. (12). In the present case, the natural background geomwhere in this casd,,= 7, is simply the flat Minkowski
etry is simply Eq.(15) with x=0, which corresponds to metric in p+1 dimensions. Fop=3, Eq.(24) is precisely
AdS, , ,. In matching the boundaries, care must be taken tahe throat geometry of a near-extremal D3-brane, and com-
scale the time coordinate in the background metric by a conparing this result to the previous section, we find precise
stant so that at=R, we havey$=1y,. Equation(12) then  agreement between Ed8) and(25), when we use the iden-

yields tity G1o=Gs7°I°.
1
~__ P pP C. “Nice” coordinates
T 16nGy got o . .
d In considering absorption of gravitons by D3-branes, one
" finds that gravitons with polarizations parallel to the brane
— 1w — (20) couple to the world-volume stress ten$@(8]

T 167Gyl Rp—l[)’(p)]ab+ L
. . . linte=5 | d*x 3T, 26
where the ellipsis denotes terms that vanish more quickly as nt 2] X ab (26)
R—~. To apply Eq.(14), we first define the background _ _ _ _ _ o
metric for the field theory by stripping off the divergent con- As discussed in the introduction, this coupling is actually the

formal factor from the boundary metrid7): current-source coupling for the graviton in the AdS-CFT
generating functioiil), and has been used to investigate cor-
|2 -1 0 relation functions of the field theory stress teng®+11]. As
hab Iilm RZY=| g oyl (21)  observed in Ref[10], it is convenient to perform these cal-
— 0 p)la

culations in “radiation gauge” for which

The field theory stress-energy then becomes

h,,=0 (27)

p+1 . . . . -
(Tap)= '“—Jrz[ (p+1)8280+h,p]. (22)  so that the. graviton polarlzat|on§ are automatlcglly in the
167 GylP boundary directions. As the graviton propagates in a higher
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dimensional space than the field theory, one should under- p+1 .
stand the non-covariant couplin@) as being written with (Tab)= TG [p'ab (32)
this gauge choice in mind. d

These observations extend to situations where one is inyhich yields a precise agreement with the stress-energy in
terested in the expectation value of the stress tensor, rathgly, (22). The same proportionality constag@ind in fact pre-
than correlation functions. We wish to determine the stresgjsely the same transformation of the radial coordinate
tensor of some supergravity solution with a given megric  considering the planar black holé4) again yields the cor-
which is to be regarded as an excitation of a backgroungect stress-energ{25) using this procedure.
solution with metricg® — that is we are again calculating | the above example, we saw the traceless form of the
the stress-energy relative to some reference backgroundiress tensor emerging naturally from this choice of coordi-
Now a convenient choice of coordinates can be found suchates, as well as precise agreement with the results of the
that asymptotically for large radius previous section. In fact, one can show that the agreement
between the present prescription and that of the previous
section is quite general. Consider a metric of the above form
0 o (29). For some surface of fixed radius- R in the asymptotic
Ora— Gra— O(LPT7) (28)  region, the normal becomes

grr_g?r_’o(]-/errS)

whereo(1/r) indicates that these differences are falling off n,dx= Vol (Rydr (33
more rapidly than the indicated power ofln principle, one

could consider finding coordinates such that these differwhere to simplify the calculations we have assumed that
ences fall off even more rapidly, but the above behavior ng?a=O — these metric components can be eliminated with
sufficient to determine the expectation value of the stressan appropriate choice of coordinates for generic solutions.
energy. With the above choice of coordinates, the leadinghe complicated part of the construction is to match the

asymptotic perturbations of the metric are all in componentgsymptotic boundary geometries in general. That is one must
parallel to the boundary directions. To leading order, the lingind coordinates such that

element will take the form
) 996lr—r=(9%+ 89)aplr—r (34)

Tap
ds*=gp,dx“dx"+ rp;a_ldxadxbﬂL P (29 where we have denoted the metric deviation from the back-
ground aség,,=T.,/rP t+---. We will assume that we

One can now read off the stress tensor from the componenf&n accomplish this matching by a simple scaling of the
of the metric perturbationgT ,,)T,,. The constant of pro- coordinates, as in the examples considered above — this is a

portionality (which depends only on the spacetime dimen-"rr]'.qltlng astshumptlon on tthe fgtinetr)alltydof the (t:il'sc_ustsr:onb. Ink
sion) can be fixed by calculating the mass of the solution an& IS case, the components ot the boundary metric in the back-

demanding tha{T,) gives the correct mass density. ground become

Let us apply the above procedure to the spherically sym- (9°+ 69)an(R)
metric Schwarzschild-AdS metric as an example. The radial gb(r)o—ab (35)
component of the metri€l5) is Jan(R)

where above the values afandb are fixed. The extrinsic

g, =f(r) 2= 5 e (30 curvature of the boundary now simplifies as in Ef8) to
r .
o . yield
1
— 0
while using AdS space as the backgrourgf =(r%/I? Oap= 2\/g—%(gab,r+ 0Yan,r)- (36)

+1)~ L. Now by making a transformation=r + «/rP in the
asymptotic region, one can achieve the desired fall off in EqFor the background geometry one has
(28). To be precise, the™ (P*3) perturbation ing,, is elimi-
nated with the choicer= uP"/2(p+1). Inserting this coor-
dinate transformation into the metrid5), and comparing
with the asymptotic behavior in E¢29), one finds

1 (9°+69)an(R)
O%=— 599 (37)
ab 2\/5?: ab,r ggb(R)

where agaira andb are fixed in the above formula. Carrying
out the remaining calculations and substituting &g,y
=T.p/rP 1+ .. one then finds that Eq14) precisely re-
produces the above result

. p Mp+1 p+1

T“:p+_1|_2’ Tab=m[7(p)]£ (31

while Tz=0. In order to produce the correct energs
given in the previous sectignthe proportionality constant is (Tap)= pt1l - (39)
fixed to be b/ = 167 GyIP 2
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ll. CASIMIR ENERGIES 1 0 0
Now we apply the results of the previous section in a mN2 0 1 0
discussion of the Casimir stress-energy of the CFT on a (Tab)gauge = 27 (42)
. . . . . 6 B 0O 0 1
torus. The discussion will focus gm=3 for which the field
theory is best understood, however, for the most part the 0 0 0 -3

analysis can be extended to arbitrary dimensfovge begin

with a brief review of the results of Rdil4], which consid- Using any of the techniques in the previous Sec?iarstress

ered Casimir energies with a single compact direction. Theensor may also be calculated for the AdS soliton with the
investigation there focussed primarily on the AdS soliton,regyit

which is the double analytic continuation of a planar black
hole given in Eq(24). The AdS soliton metric fop=3 is

-1 0 0 O
2 4 m N3 0 1 0
d32=:—2{—dt2+dx2+dy2+ 1—/:—4 dz2] <Tab>5“9ra:?,8_ 0 0 1 (43)
o1 0O 0 0 -3
I
* 1_% r_zdrz' (39 These two stress-energy tensors, £d48) and (43), have

precisely the same form except for a single overall factor of

3/4. This discrepancy reflects the fact that the two results
Here the radial coordinate is restrictedrter 1, and geom- apply in different regimes of the dual gauge theory. The
etry is smooth atr = provided thatz is identified with  supergravity results, Eq$40) and (43), correspond to the
period 8= 72/ .. One can calculate the energy of this con-field theory for large 't Hooft coupling, i.egiyN>1,
figuration relative to a periodically identified AgSpacetime  while the explicit field theory results, Eq&tl) and(42), are
[14]. Using the relatiorisbetween the AdS supergravity pa- calculated for zero coupling, i.eg%N=0. One can expect
rameters and those in the CFT, whichN&=4 super-Yang- that the full stress-energy interpolates smoothly between
Mills theory with gauge group) (N), one finds that the cor- Egs.(42) and(43) as the coupling ranges between these two

responding energy density [i$4] extremes(see, for example, Ref§23,24)).
Motivated by the AdS-CFT correspondence, the authors
72 N2 in Ref.[14] conjectured that the AdS solitdB9) is actually
(Twsuge= — =& =7 (400  the minimum energy solution with these asymptotic bound-
8 B ary conditions. As further evidence of this conjecture, the

authors showed that the soluti@89) is perturbatively stable
ggainst quadratic fluctuations of the metric. This perturbative

Now this negative energy density can be thought of as th - - : .
Casimir energy that is generated in the CFT when the fermiStability actually extends to many finite deformations which

ons are antiperiodic on the circle parametrizedzbyrhese continuously vary the metri@9) which the authors explored

asymptotic boundary conditions arise for the supergravit))n tl?e" |nvtehst|gat|ons{f2t£a. tial dinat ¢
fermions because th8!' contracts to a point at=u. The more than one of the spatial coordinates were compact,

Casimir energy density can also be calculated directly in thé- 9N€ T'ght consider the CFT R X T# or RXT* rather
field theory at weak coupling, with the result being _thanR XS. as above,_then a natural questlgn one m'ght a_sk
if the Casimir energy is further reduced by introducing anti-
periodic boundary conditions for the fermions around more
w2 N? than one of the compact directions. It is straightforward to
(Ttt) gauge™ — 6 F- (41) repeat the weak gauge coupling calculation of the stress en-
ergy for such generalized boundary conditions. Recall that
the N=4 super-Yang-Mills theory contains @(N) gauge
Hence one finds that this result and the negative energy deffield, six scalars in the adjoint representation, and their su-
sity of the supergravity solutions only differ by an overall perpartner fermions. The stress-energy tensor for this theory
factor of 3/4. The weak coupling field theory calculationsmay be found in Ref[8]. To leading order in a gauge cou-
readily yield not just the energy density but also the entirepling expansion, the Casimir stress tensor may be calculated
stress-energy tensor which is by point-splitting the fields in the stress tensor with the ap-
propriate free-field Green’s function and then removing the
vacuum divergence before taking the limit of coincident

“In particular, the five-dimensional supergravity solutions consid-
ered below are easily generalized to other dimensjag$

SThat is[1] g% y=2mg, |*=4mgNI? andGs=83g?¥/1° where ®Note for the purposes of Sec. Il A, that H§9) can be extended
g and | are the string theory coupling and length scale, respecto an asymptotically flat solution by taking a doubly analytically
tively. continued near-extremal D3-brane soluti@n.
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fields[27]. The calculation is simplified by choosing orthogonal coordinates to describe the background geometry, i.e.,
hapdX@dxP= —dt?+ dx?+ dy?+d 7. (44)

To introduce the identifications producing a torus in the spatial part of this geometry, we must now specify three basis vectors
\7i and points are then identified according to

(X,Y,2) = (X,Y,2) + N1V1+NaVa+ N3V (45)

where then; are any integers. To simplify the following discussion, we will only consider the caB%fT2, in which case
we will drop the vectow,. A convenient choice for the remaining two vectors is

v1=(0,08,)

Vo=(0,8,c0s0, B,sin §)=(0,8,C, 3,5) (46)

where we will assume cas>0.
The desired Green'’s functions may now be determined by the method of if&@e¥he point-splitting calculation then
yields as the nonvanishing components of the stress tensor:

IN? O, [1-(—1)9]
<Ttt>:_<Txx>:_ ?m,sz [(nﬁz)2+(mﬁy)2+2nm58zﬁy]2 (47)

LN G [ (- DII(MeBy)? - 3N, msBy))
(Tyy= 2m,,2,w [(nB,)?+(mB,y)*+2nmsB,B,]°

w

o

LN G [ (S D)LB+ msBy)*—3(mp,)’]
< ZZ>_ P m,IZ—OO [(nBZ)Z"‘(mBy)Z"'znmSBzﬂyP

[1-(=1)9](mcBy)(nB,+msBy)
[(nB,)?+(mBy)*+2nmsB,B,]°

where the prime on the summations indicates that summation does not inatae=((0,0). The choice of the exponeqt
depends on the fermion boundary conditions aroundvthandv, cycles:

o0

16N2 ,
(Tyd== " .

q = 0 (V1,V5) (+,+)
= n = (+!_)
= m = (=)
= n+m = (=,—). (48)

Of course{T,,)=0 for the (+,+) boundary conditions for which supersymmetry remains unbroken. In the remaining cases,
one sees that as expected the result is traceless, #&(T,,)=0. Also for generic angles, one has an off-diagonal contri-
bution in(T,,). However, it is straightforward to show that this term vanishes for the special cage, #ilmt=kg, for some
integerk. In this case, one can reorganize the calculation in terms of new orthogonal basis vei‘ito;@ (/vhere\71~\7§
=0. So one may assume thaj|sin <3, without loss of generality.

We are particularly interested in the energy density, which may be rewritten as

(61,- 62,-) 16N2 & [1-(—D)9[(n?B2+m?B2)%+4(nmsB,B,)%]
4 + 4| T2 2 22 222\2_ 212
B IBy T nm=1 [(n°Bz+m By) 4(nms€zﬁy) ]

where 6; _=0 for periodic boundary conditions around theycle, ands; =1 for antiperiodic boundary conditions. With
antiperiodic boundary conditions around the first cycle, we recover the previous (@Bulty taking the limit3,— . For
finite B, itis clear that the extra contributions make the Casimir energy density even more nédaidaeticular, even when

0

2 )
<Ttt>: ——=N

6 (49)

"Even without performing the final summation, it is clear that individual terms in the sum are either zero or negative, and that the total sum
is finite.
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the second cycle has periodic boundary conditions, eve®ne may note here that if one allows to take negative
though the second term above vanishes the infinite sum 'rﬁalues the solutions characterized by *(a;,a,) and
making a negative contribution to lower the Casimir energy(7;4 . a,)=(— u*, al,%_ a,) are identical up to a dif-
below that in the previous result.

One may now ask which dual supergravity solutions de-,
scribe these field theory configurations. From the discussio

in Sec. IIC, one can infer the asymptotic form of the solu- Equation (50 becomes the AdS soliton(39) for

tions. However, finding the full solutions of the nonlinear a : o :
supergravity equations is a difficult problem. Fortunately, so{@1,@2)=(1,0) or (0,1), and in the limi.—0 the solution
Iut|0ns which appear to describe the case wheredsi, reduces to AdS space in horospheric coordinates. Apart from

these special cases, the geometry is singular=at.. For
i.e., v;-v,=0, are already available in the literatui26]. P g Y guiar=af

example R ,,,sR*"*F~ u?/1%/(r — n)? asr approacheg.
The five-dimensional metric may be written as To determine the corresponding field theory stress-

feomorphism. Slncezl+ — a4+, one need only consider
Hwe posmve branchy, |n Eq. (52) by including negative
values ofu”.

12 dr2 ;2 4\ (12)(1- ay— ap) energy, we use the prescription of Sec. Il C. We consider the
d?=————+ || 1- =% background to be AdS space, and so asymptotically the ra-
2[1_ M | r dial part of the metric can be put in the AdS form with the
r4 coordinate transformation
4\ a; 4\ ap 4
X (— dt2+ dx?) + 1—’:—4) dy?+ 1—’;—4) dzz} r:R(1+ %). (53)

(50 Asymptotically the metrid50) becomes

1 (26!1"’20{2_1)/1,4
4R*

while the dilaton remains constant. The exponents in Eq. 2 R2

(50) lie on the ellipse given by d32=@dR2+ = (—dt?+dx?)

dz?|.

3(a?+ad)+2(aja— ay—az)=1. (51
( 4R* 4R*

(1—4al>u4>d ) <1+<1—4az)u4

It is straightforward to solve this quadratic constraint to
eliminate o, with

(54)
11— 2(1+ 1 From this asymptotic metri_c, one can read off the metric
[ ap®2(1+ay—203)"] . 2 perturbation and then applying E(g2) yields
|
—(2a1+2a,-1) 0 0 0
4 0 21+ 2a5—1 0 0
M 1 2
(Tap)= =% B (55
0 0 0 1-4a,

which has a form reminiscent of the field theory regdli), strong curvature, there is no natural way to relate the periods
i.e., the stress tensor is traceless and genericalfily;) to the parametep. Given the results for the near-extremal
=(Tx) #(Tyy) #(T,,. Since this stress tensor is diagonal, D-branes and the AdS soliton, one might expect that the
however, it seems that this solution can only describe theatios of the various components of the stress-energy are the
situation with sing=0, i.e., the cycles on the torus are or- same in the strong coupling supergravity regime as arise in
thogonal. the weak coupling calculations. With this assumption for a
Up to this point, no consideration has been made of idengiven pair of periodicitiegand siné=0), one could calculate
tification of they andz coordinates in the supergravity back- the relative size of the components of the weak coupling
ground (50). To parallel the field theory calculation, we stress tensof47), and then match these ratios in the strong
should identifyy~y+ B8, andz~z+ j,. In the special case coupling result(55 with a choice of exponents. Given the
of the AdS soliton, demanding that the geometry be free ofnfinite double sums in Eq47), we have no analytical re-
singularities relates the periodicity of one of the coordinatesults to offer. However, one can examine the field theory
to the parameter [as described below E¢39)]. However, stress tensor numerically, and it is cldéor sin#=0) that
in the present case with generic exponents, one cannot avoihe can always choose the exponents in &§) to match
a curvature singularity at= . Therefore without under- the overall form of(T,;,) in the two calculations. For ex-
standing the stringy physics that underlies this region ofample, with (—,—) boundary conditions, ag,/3, varies
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from 1 to, (T,p) is matched by choosing, , in Eq. (52 II B, they avoid the background subtraction by introducing a
and choosingy, between (3 3)/4 and 1. There remains ‘“counterterm subtraction,” which only relies on the intrinsic

the question of the overall normalization of the strong cou-boundary geometry of the solution of interest. This new tech-
pling stress-energy, but this seems to require a knowledge afique provides a definition of the total energy which then

physics at string scale curvatures. represents a remarkable departure from previous investiga-
tions of gravitational energy, which appears to be unique to
IV. DISCUSSION asymptotically AdS spacetimes. While relying on a back-

ground subtraction was sufficient for our investigation of the

The field theory stress-energy tensor provides an interestasimir energies on toroidal geometries in Sec. Ill, it seems
ing tool with which to study the AdS-CFT correspondence.that the counterterm subtraction technique will be essential
In Sec. Il, we have provided a number of different ap-in calculating the Casimir stress-energy for more compli-
proaches to calculatingT,,) for a given supergravity solu- cated geometries. For example, one can determine the Ca-
tion. Note that each of the calculations presented there resimir energy for the super-Yang-Mills theory & S® from
quires a background solution, which essentially defines thg supergravity calculation on Ag%lone[15].
zero for the stress tensor. That is the calculations yield the By considering the expectation value of the stress-energy
stress-energy of the given solution relative to the referencgensor in the dual CFT, we seem to have found an interesting
background. interpretation of the supergravity solutiof&0) found in Ref.

The presence of a background solution is useful in makf26]. These solutions appear to be dual to the CFT on a
ing contact with earlier discussions of eXpeCtation values Ofwo-torus with nonsupersymmetric boundary conditions im-
CFT operatorg5]. This discussion originally relied on con- posed on the fermions around the cycles of the torus. As
sidering solutions of the linearized equations of motionmentioned previously, the solutions provided by R
around AdS space, however, it was actually extended to sggre general enough that the discussion here and in Sec. IlI
lutions of the full nonlinear supergravity equations in consid-can be extended to the CFT & or T4, as well as the
ering D-instanton$5]. One carlat least roughlyclassify the  AdS-CFT correspondence in higher dimensions. However,
solutions of the linearized equations as modes which are Sifhese solutions appear to be limited to the case where the
gular at the boundary of AdS, and those which are Singular aéyc|es on the torus are orthogonaL e.g., &HO in Eq(46)
the interior. The mOdes that are Singular at the boundary arﬁ may be interesting to extend this fam"y of solutions to
the ones associated with the source currents for the CFT ifhclude tori with non-orthogonal cycles, for which generi-
calculating correlation functior{8], while those that are sin- cajly the stress tensor acquires off-diagonal terms. From the
gulal‘ at the interior are associated with eXpeCtation Valueaiscussion of Sec. IIC then, one sees that the new supergrav-
[5]. However the fact that the latter modes are singulajity solutions will include nontrivial off-diagonal metric com-
(i.e., reach large valugsn the interior of AdS means that ponents. Of course, the coordinates of Sec. Il C may not be
one must go beyond the linearized equations of motion tghe optimal choice for actually determining the full nonlinear
consider expectation values in genérdlhe black hole so-  solutions. It may be that considering the transformation prop-
lutions in Egs.(15) and(24) are a good example in that they erties of the stress-energy under the actio8bfd,z) on T¢
are solutions of the full nonlinedsupeygravity equations of  (seg, e.g., [29])) may be useful in trying to construct the
motion. However, asymptotically these solutions approachxtended family of solutions. In any event, given such a set
AdS space, and one can regard the deviations of the metrigr sojutions, it would be interesting to understand the action
from the AdS solution as solutions of the linearized gravity of the SL(d,Z) symmetry on the supergravity spacetime. It
equations. Closer examination shows that these linearizeghyld be that this symmetry would be a useful tool in deter-
solutions correspond to modes which become singular in thgyining the overall normalization of the strong coupling
interior of AdS, which now simply means that the full solu- syress-energy without recourse to a complete understanding
tions enter a nonlinear regime. With the choice of coordi-¢ string theory in regions of strong curvature.
nates in Sec. IIC, one can further match the expectation \ye should remark that we have only found an interesting
value of the stress-energy to the general calculations dignterpretation for a subset of the solutions in E&). Fixing
cussed in Ref|5]. _ _ a, (and hencex; ) determines the ratio of the components

On the other hand, matching the asymptotic geometry off the stress-energ5), and so for a certain set of boundary

the (supepgravity solutions to that of a reference backgroundggnditions in the CFT, this then fixes the rafi/ B, from
is a technical nuisance. In fact there are solutions for whicteq (47). Fixing x# then sets the overall scale, and so

there is no natural choice _of a background solgtlon,through some unknown stringy physics, this determigs
e.g., Taub-NUT-AdS — as discussed [@8]. From this o yever, any identifications ipandz are left implicit in the
point of view, B.alasubra.maman a}nd Kl’é{l]§]. recently Pre-  supergravity solutiori50), and so for fixedr, and x4, these
s_entec_i a superior technique. While the b_aS|s of thglr calculasg|ytions exist for arbitrary values ¢f, and 3,. Therefore
tions is the quasilocal stress-eneri@p] discussed in Sec. o interpretation in terms of antiperiodic fermion boundary
conditions only applies to a set of measure zero in the full
space of solutions implicitly given by EG0). It may be that
8The linearized modes are still useful in considering the expectamore creative boundary conditions may allow one to provide
tion values associated with test probes moving in the supergravitg CFT interpretation for somgliscrete numberof the other
spacetimg5,6]. solutions, but it seems unlikely that a reasonable interpreta-
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tion can be found for a generic set of parameters in thizziew which argues that this behavior should not be excep-
family of solutions. tional. The motivation for these arguments will be cosmic
This then raises the question of which singularities orcensorshif34].
which singular solutions are physically interesting in the Let us begin by considering the AgSpacetime in horo-
context of the AdS-CFT correspondence. One responsspheric coordinates, i.e., E@9) with u*=0, in which one
would be that such singularities simply represent regions obf the spatial coordinates is periodically identified, say
strong curvature where the low ener@upejgravity theory — =y+ B, . Further we expect the following conclusion about
breaks down, but that the singularity would be “resolved” in the supergravity to be independent of any boundary condi-
a physically sensible way by the full theory of quantum grav-tions on the supergravity fermions in this direction. Now
ity (e.g., superstring or M theoyyit was argued in Ref30]  introducing a planar configuration of matter into this space-
that this point of view cannot be correct, by consideringtime with sufficient density, we expect that the system will
negative mass Schwarzschild solution of the Einstein equasollapse to form a black hole which settles to a metric of the
tions. The argument there applies equally well in presenform in Eq. (24) with p=3. This expectation is prejudiced
context with a negative cosmological constant. If the time-by our experience with cosmic censorship and black hole
like singularities at the center of negative mass “blackuniqueness theoreni85] in other settings. Distinguishing
hole”-AdS solutions were resolved within the full quantum the metric componeng,, from the other spatial directions
gravity theory, no stable ground state would exist. Hence it isvould be like adding “hair” to the black hole and produce a
clear that certain singularities must be unphysical and so natingular configuration similar to the solutios0). Cosmic
all singular solutions(or solutions with regions of strong censorship dictates that gravity avoid this solution dynami-
curvature are physically relevant. cally by radiating away any such hair during the collapse that
In certain special cases, singular solutions may be distinleads to the formation of the black hole. Thus the black hole
guished by being supersymmetric, and so there may beolution(24) would appear to be the physically relevant so-
greater merit in considering such singularities. We remindution independent of the period, . Given this conclusion,
the reader that such a solution implicitly played a role in Secone would expect that a double analytic continutation will
1. The background solution in that case was AdS space witlyield the supergravity solution dual to the CFT BAX T2,
periodic identifications in the horospheric coordinates. ThisCertainly the calculations for the thermal ensembleS3n
solution has a conical singularity at the null surface0, and the Casimir stress-energy & have a common Euclid-
which is a horizon in the absence of any identifications. Theean framework, as discussed in Rgf4]. One would thus
fact that the background is supersymmetric would appear taonclude that the AdS solito(89) is still the relevant dual
add weight to our assumption that string theory is able tesupergravity solution independent of any additional compac-
resolve this singularity. In the AdS-CFT context, chargedtifications, as well as of the boundary conditions imposed in
black hole solutions have an interesting interpretafi@h],  those directions.
but it turns out that the corresponding supersymmetric solu- Hence independent of the perig6l,, the expectation
tions [32] are actually nakednull) singularities whose role value of the stress tensor would be that of the AdS soliton as
remains to be determined. given in Eg. (43). In particular then one has (B;)
In the case of the metri¢50), the singularity is again a =—3(T,,)=—3(T,,)=(T,,, independent of3, or the
null singularity as in the two preceding examples, but theboundary conditions imposed on tlgecycle. Certainly this
solution is not supersymmetric. We might add that if oneresult does not match the form of the weak coupling result
evaluates the supergravity actitmaking a background sub- (even with sing=0) given in Eq.(47). Of course, the form of
traction with Ad9 the result is finitg26]. This comes about the latter result does go over to that of the supergravity cal-
because the metric is a solution of the supergravity equaeulation in the limit thatg,—o. There is no inconsistency
tions, and so the curvature singularityrat O does not mani- here, of course. One would simply conclude that the various
fest itself in the Ricci scalar. Divergences are present in theomponents of the stress tensor evolve independently as the
curvature scalars which appear as the higher oedecor- 't Hooft parameter increases from zero in the explicit field
rections to the supergravity action — see, for examf@8].  theory calculation to large values where the supergravity re-
Of course, to properly evaluate the action including suchsult applies. Thus the effects of the additional identifications
corrections, one would have to construct a solution of theseem to be erased by the supergravity dynamics in the large
higher order equations of motion. However, if the higherN limit.
order terms play more than a perturbative r@e they would While this scenario may be reasonable in a situation
near the singularity one mustdetermine angdsolve the full  where the periodicity of one direction is much smaller than
superstring equations of motion to produce a consistent sahat of any others, it should appear problematic for period-
lution. icities of roughly the same size. Analogous to the discussion
Thus the AdS-CFT correspondence seems to provide arin Ref.[3], a possible resolution is that the supergravity par-
other situation in which curvature singularities seem to playtition function (1) includes contributions from different AdS
an interesting role in string theorfgee, for example,33]).  solitons in each of which one of the compact directions with
Given the discussion up to this point, it appears remarkablentiperiodic fermions shrinks to zero on the interior. For a
that the case with the CFT dR®x S! corresponds to a dual given set of periodicities, the relative size of the contribu-
supergravity solution which is everywhere smooth. How-tions of the different supergravity solutions would be deter-
ever, we would now like to present an alternative point ofmined by their Euclidean action. In the case where one of the
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periodicities is much smaller than the others, the correspondarities must only be a largd effect in the CFT. It would be

ing AdS soliton dominates the partition function. When theinteresting to understand the physics of these configurations
periodicities are roughly the same size, no single solutiorait finite N where it is claimed that the super-Yang-Mills
would be dominant. The expectatidii,,) would presum- theory should resolve the singularities associated with gravi-
ably then be given by a weighted sum of that calculated foitational collaps¢37].

the individual solutiong. Finally we would like to comment on the implications of

Thus we have presented two very different pictures of théh€ present results for the positive energy theorem of Ref.
supergravity description of the dual CFT on a torus. The first14]- We have found that there are singular supergravity so-

involves singular solutions, but relies on the assumption that!tions which have a lower energy than the AdS soliton,

the ratios of the various components of the stress tensor a h_'Ch was conjectured to be a minimum energy solution.

preserved as the 't Hooft coupling varies. The only evidence is should not come as a surprise. One can easily find sin-

. . . . 8u|ar solutions with arbitrarily negative energies, such as
given to support of this assumption was that it was observene ative mass “black holes.” The positive enerav theorem
to be true for the CFT oR3Xx St. However, this is not a very g ' P 9y

. ) at least in the form of conjectures 2 and 3 in R&#] is that
strong ?‘fgume”t since in that case, the form of the SlreS§ke AdS soliton should be the minimum energy solution
energy is really determined by the symmetries of the backyithin the space of smooth solutions. The important point

ground geometry and the traceless property of the stress teflja¢ was considered here was that some singular solutions
sor. In the second scenario, the supergravity dynamics erasgfay be physically relevant for Type Ilb supergravity, since
the complicated details which the field theory boundary conthe singularities are resolved in the full string theory. If this
ditions produce at weak coupling. This picture is motivatedis the case, it would certainly affect conjecture 1 which was
by cosmic censorship and black hole uniqueness whichghrased in terms of the ten-dimensional type Ilb supergrav-
however, have not been well studied in the context of AdSty. As we have discussed above though, string theory may
space. Another weakness in these arguments about the datill choose to ignore these singular solutions and describe
namics is that while it is claimed that the post-collapse blackhe dual CFT in terms of asymptotically AdS geometries
hole should be nonsingular, the pre-collapse configuratiogyhich are everywhere smooth.

will almost certainly contain a singularity at the interior due
to the periodic identification af. Even if the second scenario

is correct, it seems that the gravitational abhorence of singu- ACKNOWLEDGMENTS
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