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Stress tensors and Casimir energies in the AdS-CFT correspondence
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We discuss various approaches to extracting the full stress-energy tensor of the conformal field theory from
the corresponding supergravity solutions, within the framework of the Maldacena conjecture. This provides a
more refined probe of the AdS-CFT correspondence. We apply these techniques in considering the Casimir
energy of the conformal field theory on a torus. It seems that either generically the corresponding supergravity
solutions are singular~i.e., involve regions of large string-scale curvatures!, or that they are largely insensitive
to the boundary conditions of the CFT on the torus.@S0556-2821~99!05114-0#

PACS number~s!: 11.25.Hf, 04.60.2m, 04.70.Dy
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I. INTRODUCTION

The Maldacena conjecture@1# has brought renewed inter
est in the holographic principle@2#, which asserts that a
theory of gravity ind dimensions can be described in term
of a nongravitational theory ind21 dimensions. The curren
activity in string theory is focused on the AdS-CFT corr
spondence@3#, which implements holography with a dualit
between a gravitational theory ind-dimensional anti–de Sit
ter space and a conformal field theory living in
(d21)-dimensional ‘‘boundary’’ space. This duality is be
understood for a specific superstring example withd55
@1,3,4#. In this case, the duality maintains an equivalen
between type IIb superstring theory on AdS53S5, andN
54 super-Yang-Mills theory with gauge groupU(N) in four
dimensions. Further in many interesting cases, it is suffic
to only consider the low energy limit of the superstrin
theory, namely, supergravity.

A precise formulation of the AdS-CFT correspondence
made in equating the generating function of the connec
correlation functions in the CFT with the string or gravi
partition function on the AdS space@3,4#. In the approxima-
tion of classical~super!gravity:

ZAdS~f i !5e2I (f i )5^e*f0,iO i&CFT ~1!

whereI (f i) is the classical~super!gravity action as a func-
tional of the supergravity fields,f0,i are the asymptotic
‘‘boundary’’ values of the bulk fieldsf i up to a certain re-
scaling@3#, andO i are the dual CFT operators. Treating t
‘‘boundary’’ fieldsf0,i as source currents in the CFT, Eq.~1!
is used in calculating the correlation functions of the ope
torsO i . This framework also naturally allows one to eval
ate the expectation values of the CFT operators in term
the asymptotic~super!gravity fields@5,6#.

Given that part of the duality is a theory of gravity in Ad
space, one of the bulk fields will always be the graviton.
it is natural to ask what the role of the graviton~or metric
perturbations! is in the above construction. The appropria
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current-source term in the AdS-CFT generating function~1!
couples the AdS graviton to the stress-energy tensor of
CFT @7,8#:

E dd21x hab Tab . ~2!

This coupling has been used to investigate two- and th
point correlation functions of the stress tensor@9–11#. In
particular, considering correlations protected by supersy
metry provides a nontrivial consistency test of the dua
between IIb supergravity on AdS5 and four-dimensional
super-Yang-Mills theory@8#.

Just as in asymptotically flat space, the energy of an
ymptotically AdS solution can be determined by th
asymptotic behavior of the metric@12,13#. In the context of
the AdS-CFT correspondence, this result has the additio
interpretation that the asymptotic metric perturbations de
mine the energy of the corresponding CFT state~or ensemble
of states!. This element of the correspondence was exami
in Ref. @14#, where it lead to the conjecture of a new positi
energy theorem for general relativity. In the field theory, t
energy is given byE5*^Ttt&, and so as in the general dis
cussion above, one is considering states for which the ex
tation value of a particular operator, i.e., the stress-ene
tensor, is nonvanishing. In fact, the expectation value of
of the individual components of the stress-energy can be
termined from the asymptotic metric, and this is the focus
the present paper. Having the entire stress tensor provid
more refined tool with which to investigate the AdS-CF
correspondence, and we will apply it in order to extend
investigation of Casimir energies initiated in Ref.@14#.

The remainder of the paper is organized as follows:
Sec. II, we consider in detail various techniques for calcu
ing the expectation value of stress-energy tensor in the C
from the corresponding supergravity solutions. In Sec.
we apply these techniques to examine the Casimir energ
the CFT on a toroidal geometry. Finally, we present a d
cussion of our results in Sec. IV.

While this paper was in preparation, Ref.@15# appeared
which discusses calculating the CFT stress-energy u
techniques similar to those in Sec. II B.
©1999 The American Physical Society02-1
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ROBERT C. MYERS PHYSICAL REVIEW D 60 046002
II. STRESS-ENERGY TENSOR

As discussed above, the stress-energy tensor provide
interesting tool with which to study the AdS-CFT correspo
dence. In the following, we consider three different a
proaches to extracting the field theory stress tensor from
supergravity solutions via~i! asymptotically flatp-brane ge-
ometries,~ii ! the quasilocal energy defined by Brown a
York @22# and ~iii ! an expansion of the asymptotic metr
with an appropriate choice of coordinates.

A. Asymptotically flat geometries

The Maldacena conjecture@1# originally emerged out of
investigations of extended branes in string theory and
theory. Anti–de Sitter space arises as part of the ne
horizon geometry of certain branes, e.g., AdS4,5,7 for M2-,
D3- and M5-branes, respectively@1,16#. So we begin by con-
sidering the supergravity solutions describing a ne
extremal p-brane in a d-dimensional, asymptotically fla
spacetime. The usual formula giving the mass of a point-
object in terms of the asymptotic metric can be extended
give the mass per unitp-volume of such solutions@17#. A
simple derivation of this result begins by considering an
tendedp-dimensional source in the linearized gravity equ
tions. If we assume that the brane directions are also s
metry directions, these results may be further extended
yield the entire stress-energy tensor for thep-brane world-
volume:

Tab5
1

16pGd
R dVd2p22r d2p22 ni

3@hab~] ih
c
c1] ih

j
j2] jh

j
i !2] ihab# ~3!

whereni is a radial unit vector in the transverse subspa
while hmn5gmn2hmn is the deviation of the~Einstein
frame! metric from that for flat space. Note thathmn is not a
diffeomorphism invariant quantity, and in applying Eq.~3!, it
must be calculated using asymptotically Cartesian coo
nates. Above, the labelsa,b50,1, . . . ,p run over the world-
volume directions, whilei , j 51, . . . ,d2p21 denote the
transverse directions. Fora5b50, Eq. ~3! reduces to the
standard formula for the mass density of thep-brane@17#.

As an application of this formula, let us consider a ne
extremal D3-brane for which the 10-dimensional spacet
metric is @18#

ds25H21/2~2 f 2 dt21dx21dy21dz2!

1H1/2S dr2

f 2 1r 2dV5D
with H511S l

r D
4

and f 2512S m

r D 4

~4!

while we fix the constant background dilaton asef51. As
mentioned above, to apply Eq.~3!, we need to express th
metric in isotropic coordinates, at least asymptotically. T
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is we need to find a new radial coordinate such thatdr/ f
5F(R) dR and r 5F(R) R. The final result is that asymp
totically

r .RS 11
m4

8R4D ~5!

so that we may write the metric as

ds2.H~R!21/2@2 f ~R!2 dt21dx21dy21dz2#

1H~R!1/2F~R!2~dxi !2 ~6!

with R25( i 51
6 (xi)2. Given this form of the metric, a

straightforward calculation of Eq.~3! yields

Tab5
p2

16G10
@2hab~4l 41m4!14m4da

0db
0#. ~7!

Now this stress tensor may be regarded as including
contributions:~i! those appearing with the introduction of th
extremal D3-brane and~ii ! those due to excitations of th
D3-brane above extremality, and hence which vanish am
→0. The precise nature of these sources can be unders
by expanding the Born-Infeld action@7,8,19#, or by studying
string scattering from D-branes@20#. In the context of the
Maldacena conjecture, we are primarily interested in the
ter since they represent the contribution to the stress-en
tensor by excitations in the world-volume field theory. T
isolate these contributions, we subtract off the extremal c
tribution but in doing so we must be careful to subtract
that for an extremal D3-brane with the same RR five-fo
charge as the solution~4! given above. Thus the appropria
extremal stress tensor is found by first settingm50 in Eq.
~7! and then replacingl 4→ l 2( l 41m4)1/2. It is most interest-
ing to make the subtraction in the limit1 that m/ l !1 which
yields

DTab5
p2m4

16G10
@4da

0db
01hab#5

p2m4

16G10S 3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D .

~8!

This result has a form characteristic of a thermal gas
massless particles. In particular its trace vanishes, i.
DTa

a5hab DTab50. This is in keeping with the interpreta
tion that this contribution arises from a thermal gas in t
super Yang-Mills theory on the world-volume of the D3
brane.

Repeating the calculations for near-extremal M5- a
M2-branes yields an analogousDTab which is again isotro-
pic and traceless. Hence, this stress-energy lends itself to
interpretation of being due to a thermal gas of massless
ticles on the world-volume of these nondilatonic branes

1This corresponds to the decoupling limit@1# in which l s→0
while holdingm/ l s

2 and l / l s fixed.
2-2
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STRESS TENSORS AND CASIMIR ENERGIES IN THE . . . PHYSICAL REVIEW D60 046002
well. In the case of a general Dp-brane, however, the resu
is isotropic but not traceless. RatherDTa

a}(p23)2 indicat-
ing the distinguished position of the D3-brane amongst
Dirichlet branes. Of course, an essential difference is that
the generic Dp-brane the dilaton is no longer constant.
such a situation, there is an intrinsic ambiguity in the defi
tion of the energy~see, e.g., @21#! and so one could with an
appropriate conformal transformation find a metric for whi
Eq. ~3! yields a traceless stress tensor.

B. Quasilocal formulation

As discussed above in a more general setting, the A
CFT correspondence describes a duality between gravit
AdS spacetimes and a ‘‘boundary’’ field theory. For a
theory including Einstein gravity coupled to matter fields, t
boundary stress-energy tensor may be defined as foll
@22#:2 Consider spacetime manifoldM with time-like
boundary]M.3 Denote the spacetime metric asgmn , andnm

is the outward-pointing normal to]M normalized with
nmnm51. The induced metric on the boundary,gmn5gmn

2nmnn , acts as a projection tensor onto]M. The extrinsic
curvature on]M is given byQmn52gm

r¹rnn . Now given
the standard Einstein action including a boundary term

I 5
1

16pGd
E
M

ddxA2g ~R22L!

2
1

8pGd
R

]M
dd21xA2g Q1I matter ~9!

the boundary stress tensor is given by@22#

tab[
2

A2g

dI

dgab
5

1

8pGd
~Qab2gab Qc

c! ~10!

wherea,b,c denote directions parallel to the boundary. Fo
background solving the equations of motion, this stress
sor will satisfy @22#

D atab52Tnb ~11!

where the source on the right-hand side is a projection of
matter stress-energy,Tnb5nmTmngn

b, andDa is the covari-
ant derivative projected onto]M. Equation~11! expresses
the local conservation of the boundary stress-energy u
the flow of matter energy-momentum across the bound
intoM. Due to the geometric confinement in asymptotica
AdS spacetimes, this source term will vanish in the follo
ing.

In the case of interest here, the boundary will be
asymptotic surface at some large radiusR. A technical prob-

2Brown and York’s quasilocal stress tensor@22# was first consid-
ered in the context of the AdS-CFT correspondence in Ref.@15#.

3In general in a Minkowski-signature spacetime, one would
pect the boundary to include space-like components as well, b
the present context, these components will not play a role.
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lem with the above definitions for the action and the surfa
stress tensor is that they will both diverge in the limitR
→`. This problem can be cured@13# for the action by sub-
tracting the same contribution~9! for a reference backgroun
geometry for which metricgmn

0 matchesgmn asymptotically,
i.e., the boundary]M can be embedded in the referen
background such thatgab

0 5gab . This background subtrac

tion procedure produces a finite action,Î 5I (g)2I 0(g0), and
further yields a finite surface stress tensor

t̂ab[
2

A2g

d Î

dgab
5tab2~t0!ab. ~12!

Now consider the case that the spacetime has a Kil
vector jm which is asymptotically time-like and surfac
forming, and also that]M is chosen so that the Killing
vector remains an isometry of the boundary, i.e.,D(ajb)
50. In this situation, one can show@22# that

E~j!5 R
B
dd22xA2g jat̂abj

b ~13!

with B, a hypersurface in]M orthogonal toja, is a con-
served charge. If the boundary contains other spacelike K
ing vectors, the latter can also be used to define other c
served charges by replacing one of the factors ofj by a new
Killing vector in Eq. ~13!. Further with the choice that the
norm jaja521 on the boundary,E(j) coincides precisely
with the standard definition of the energy@22,13#.

As the supergravity energy should match the total ene
measured in the field theory, this definition~13! is useful in
the last step required in matching the surface stress te
~12! with the expectation value of the stress energy in
dual CFT. While the charge in Eq.~13! is finite for asymp-
totically AdS spacetimes, the measureA2g is actually as-
ymptotically divergent. In this situation, Eq.~13! only yields
a finite result because the components oft̂ab vanish asymp-
totically. In the AdS-CFT duality, the asymptotic bounda
geometry is related to the background geometry on which
dual field theory lives by a conformal transformation whi
also diverges asymptotically. This conformal transformat
can be accounted for by writing the stress tensor expecta
value in the field theory as follows:

A2hhab^Tbc&5 lim
R→`

A2ggabt̂bc ~14!

wherehab is the background metric of the field theory.
At this point, it may be useful to examine an explic

example in which to apply the above analysis. Hence c
sider the spherically symmetric Schwarzschild-AdS metric
d5p12 dimensions

ds252 f ~r !2dt21 f ~r !22dr21r 2dVp

with f ~r !25
r 2

l 2 112
mp11

l 2 r p21
. ~15!

-
in
2-3
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ROBERT C. MYERS PHYSICAL REVIEW D 60 046002
~We have chosen a slightly unusual normalization for
mass term to facilitate comparisons with the results for
planar black holes below.! The normal vector to the surfac
r 5R is

nm5 f ~R!d r
m ~16!

and so the nonvanishing components of the boundary m
are

g0052 f ~R!2, g āb̄5R2 @ ḡ (p)# āb̄ ~17!

whereā and b̄ denote angular directions, and@ ḡ (p)# āb̄ is the
metric on a unitp-sphere. In this simple situation, the extri
sic curvature reduces to

Qab5nrG
r
ab52

1

2
nr] rgab ~18!

and with a straightforward calculation, Eq.~10! yields

t tt52
p f3~R!

8pGdR
,

t āb̄5
R

8pGd f ~R!
@ ḡ (p)# āb̄

3S p
R2

l 2 1p212
p21

2

mp11

l 2 Rp21D . ~19!

With this result, we see that the nonvanishing component
the boundary stress tensor are all diverging asR2 asR→`,
making clear the necessity of the background subtractio
Eq. ~12!. In the present case, the natural background ge
etry is simply Eq.~15! with m50, which corresponds to
AdSp12. In matching the boundaries, care must be taken
scale the time coordinate in the background metric by a c
stant so that atr 5R, we haveg tt

0 5g tt . Equation~12! then
yields

t̂ tt5
p

16pGdl 3

mp11

Rp21
1•••,

t āb̄5
1

16pGdl

mp11

Rp21
@ ḡ (p)# āb̄1••• ~20!

where the ellipsis denotes terms that vanish more quickly
R→`. To apply Eq.~14!, we first define the backgroun
metric for the field theory by stripping off the divergent co
formal factor from the boundary metric~17!:

hab5 lim
R→`

l 2

R2 gab5S 21 0

0 l 2@ ḡ (p)# āb̄
D . ~21!

The field theory stress-energy then becomes

^Tab&5
mp11

16pGdl p12
@~p11!da

0db
01hab#. ~22!
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So again we can recognize the form characteristic of a th
mal gas of massless particles. As a check, one can e
verify that the total energy is

E5 R dVpA2h ^Ttt&5
p Vp

16pGdl 2 mp11 ~23!

where Vp52p (p11)/2/G@(p11)/2# is the area of a unit
p-sphere. This result agrees precisely with that calcula
previously in Ref.@14#. One can also check that this resu
agrees with the energy calculated from Eq.~13! with ja]a
5 f (R)21/2] t .

Another interesting example to consider are the pla
black holes described by the metric

ds25
r 2

l 2 F2S 12
mp11

r p11 D dt21~dxā!2G
1S 12

mp11

r p11 D 21
l 2

r 2 dr2 ~24!

where ā51, . . . ,p. For certain values ofp, these metrics
arise in the near-horizon geometry of near-extremalp-branes
~see, e.g., @1#!. With m50, these metrics correspond t
AdSp12 space in horospheric coordinates. Following the c
culations as above, one finds that in this case the field the
stress tensor is

^Tab&5
mp11

16pGdl p12
@~p11!da

0db
01hab# ~25!

where in this casehab5hab is simply the flat Minkowski
metric in p11 dimensions. Forp53, Eq. ~24! is precisely
the throat geometry of a near-extremal D3-brane, and c
paring this result to the previous section, we find prec
agreement between Eqs.~8! and~25!, when we use the iden
tity G105G5p3l 5.

C. ‘‘Nice’’ coordinates

In considering absorption of gravitons by D3-branes, o
finds that gravitons with polarizations parallel to the bra
couple to the world-volume stress tensor@7,8#

I int5
1

2E d4x habTab . ~26!

As discussed in the introduction, this coupling is actually t
current-source coupling for the graviton in the AdS-CF
generating function~1!, and has been used to investigate c
relation functions of the field theory stress tensor@9–11#. As
observed in Ref.@10#, it is convenient to perform these ca
culations in ‘‘radiation gauge’’ for which

hrm50 ~27!

so that the graviton polarizations are automatically in
boundary directions. As the graviton propagates in a hig
2-4
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STRESS TENSORS AND CASIMIR ENERGIES IN THE . . . PHYSICAL REVIEW D60 046002
dimensional space than the field theory, one should un
stand the non-covariant coupling~2! as being written with
this gauge choice in mind.

These observations extend to situations where one is
terested in the expectation value of the stress tensor, ra
than correlation functions. We wish to determine the str
tensor of some supergravity solution with a given metricg
which is to be regarded as an excitation of a backgro
solution with metricg0 — that is we are again calculatin
the stress-energy relative to some reference backgro
Now a convenient choice of coordinates can be found s
that asymptotically for large radius

grr 2grr
0→o~1/r p13!

gra2gra
0 →o~1/r p11! ~28!

whereo(1/r q) indicates that these differences are falling o
more rapidly than the indicated power ofr. In principle, one
could consider finding coordinates such that these dif
ences fall off even more rapidly, but the above behavio
sufficient to determine the expectation value of the stre
energy. With the above choice of coordinates, the lead
asymptotic perturbations of the metric are all in compone
parallel to the boundary directions. To leading order, the l
element will take the form

ds25gmn
0 dxmdxn1

T̂ab

r p21
dxadxb1•••. ~29!

One can now read off the stress tensor from the compon
of the metric perturbations:^Tab&}T̂ab . The constant of pro-
portionality ~which depends only on the spacetime dime
sion! can be fixed by calculating the mass of the solution a
demanding that̂Ttt& gives the correct mass density.

Let us apply the above procedure to the spherically sy
metric Schwarzschild-AdS metric as an example. The ra
component of the metric~15! is

grr 5 f ~r !225
1

r 2

l 2 112
mp11

l 2 r p21

~30!

while using AdS space as the background:grr
0 5(r 2/ l 2

11)21. Now by making a transformationr 5 r̃ 1a/ r̃ p in the
asymptotic region, one can achieve the desired fall off in
~28!. To be precise, ther 2(p13) perturbation ingrr is elimi-
nated with the choicea5mp11/2(p11). Inserting this coor-
dinate transformation into the metric~15!, and comparing
with the asymptotic behavior in Eq.~29!, one finds

T̂tt5
p

p11

mp11

l 2
, T̂āb̄5

mp11

p11
@ ḡ (p)# āb̄ ~31!

while T̂tā50. In order to produce the correct energy~as
given in the previous section!, the proportionality constant is
fixed to be
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^Tab&5
p11

16pGdl pT̂ab ~32!

which yields a precise agreement with the stress-energ
Eq. ~22!. The same proportionality constant~and in fact pre-
cisely the same transformation of the radial coordinate! in
considering the planar black holes~24! again yields the cor-
rect stress-energy~25! using this procedure.

In the above example, we saw the traceless form of
stress tensor emerging naturally from this choice of coo
nates, as well as precise agreement with the results of
previous section. In fact, one can show that the agreem
between the present prescription and that of the previ
section is quite general. Consider a metric of the above fo
~29!. For some surface of fixed radiusr 5R in the asymptotic
region, the normal becomes

nmdxm5Agrr
0 ~R!dr ~33!

where to simplify the calculations we have assumed t
gra

0 50 — these metric components can be eliminated w
an appropriate choice of coordinates for generic solutio
The complicated part of the construction is to match
asymptotic boundary geometries in general. That is one m
find coordinates such that

gab
0 u r̄ 5R5~g01dg!abur 5R ~34!

where we have denoted the metric deviation from the ba
ground asdgab5T̂ab /r p111•••. We will assume that we
can accomplish this matching by a simple scaling of
coordinates, as in the examples considered above — this
limiting assumption on the generality of the discussion.
this case, the components of the boundary metric in the ba
ground become

gab
0 ~r !

~g01dg!ab~R!

gab
0 ~R!

~35!

where above the values ofa and b are fixed. The extrinsic
curvature of the boundary now simplifies as in Eq.~18! to
yield

Qab52
1

2Agrr
0 ~gab,r

0 1dgab,r !. ~36!

For the background geometry one has

Qab
0 52

1

2Agrr
0

gab,r
0 ~g01dg!ab~R!

gab
0 ~R!

~37!

where againa andb are fixed in the above formula. Carryin
out the remaining calculations and substituting indgab

5T̂ab /r p111•••, one then finds that Eq.~14! precisely re-
produces the above result

^Tab&5
p11

16pGdl pT̂ab . ~38!
2-5
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ROBERT C. MYERS PHYSICAL REVIEW D 60 046002
III. CASIMIR ENERGIES

Now we apply the results of the previous section in
discussion of the Casimir stress-energy of the CFT o
torus. The discussion will focus onp53 for which the field
theory is best understood, however, for the most part
analysis can be extended to arbitrary dimensions.4 We begin
with a brief review of the results of Ref.@14#, which consid-
ered Casimir energies with a single compact direction. T
investigation there focussed primarily on the AdS solito
which is the double analytic continuation of a planar bla
hole given in Eq.~24!. The AdS soliton metric forp53 is

ds25
r 2

l 2 F2dt21dx21dy21S 12
m4

r 4 D dz2G
1S 12

m4

r 4 D 21
l 2

r 2 dr2 . ~39!

Here the radial coordinate is restricted tor>m, and geom-
etry is smooth atr 5m provided thatz is identified with
periodb5p l 2/m. One can calculate the energy of this co
figuration relative to a periodically identified AdS5 spacetime
@14#. Using the relations5 between the AdS supergravity pa
rameters and those in the CFT, which isN54 super-Yang-
Mills theory with gauge groupU(N), one finds that the cor
responding energy density is@14#

^Ttt&sugra52
p2

8

N2

b4 . ~40!

Now this negative energy density can be thought of as
Casimir energy that is generated in the CFT when the fer
ons are antiperiodic on the circle parametrized byz. These
asymptotic boundary conditions arise for the supergra
fermions because theS1 contracts to a point atr 5m. The
Casimir energy density can also be calculated directly in
field theory at weak coupling, with the result being

^Ttt&gauge52
p2

6

N2

b4 . ~41!

Hence one finds that this result and the negative energy
sity of the supergravity solutions only differ by an overa
factor of 3/4. The weak coupling field theory calculatio
readily yield not just the energy density but also the en
stress-energy tensor which is

4In particular, the five-dimensional supergravity solutions cons
ered below are easily generalized to other dimensions@26#.

5That is@1# gY M
2 52pg, l 454pgNls

4 andG558p3g2l s
8/ l 5 where

g and l s are the string theory coupling and length scale, resp
tively.
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^Tab&gauge5
p2

6

N2

b4S 21 0 0 0

0 1 0 0

0 0 1 0

0 0 0 23

D . ~42!

Using any of the techniques in the previous section,6 a stress
tensor may also be calculated for the AdS soliton with
result

^Tab&sugra5
p2

8

N2

b4S 21 0 0 0

0 1 0 0

0 0 1 0

0 0 0 23

D . ~43!

These two stress-energy tensors, Eqs.~42! and~43!, have
precisely the same form except for a single overall factor
3/4. This discrepancy reflects the fact that the two res
apply in different regimes of the dual gauge theory. T
supergravity results, Eqs.~40! and ~43!, correspond to the
field theory for large ’t Hooft coupling, i.e.,gY M

2 N@1,
while the explicit field theory results, Eqs.~41! and~42!, are
calculated for zero coupling, i.e.,gY M

2 N50. One can expec
that the full stress-energy interpolates smoothly betw
Eqs.~42! and~43! as the coupling ranges between these t
extremes~see, for example, Refs.@23,24#!.

Motivated by the AdS-CFT correspondence, the auth
in Ref. @14# conjectured that the AdS soliton~39! is actually
the minimum energy solution with these asymptotic boun
ary conditions. As further evidence of this conjecture, t
authors showed that the solution~39! is perturbatively stable
against quadratic fluctuations of the metric. This perturbat
stability actually extends to many finite deformations whi
continuously vary the metric~39! which the authors explored
in their investigations@25#.

If more than one of the spatial coordinates were comp
i.e., one might consider the CFT inR23T2 or R3T3 rather
thanR33S1 as above, then a natural question one might
if the Casimir energy is further reduced by introducing an
periodic boundary conditions for the fermions around mo
than one of the compact directions. It is straightforward
repeat the weak gauge coupling calculation of the stress
ergy for such generalized boundary conditions. Recall t
theN54 super-Yang-Mills theory contains aU(N) gauge
field, six scalars in the adjoint representation, and their
perpartner fermions. The stress-energy tensor for this the
may be found in Ref.@8#. To leading order in a gauge cou
pling expansion, the Casimir stress tensor may be calcul
by point-splitting the fields in the stress tensor with the a
propriate free-field Green’s function and then removing
vacuum divergence before taking the limit of coincide

-

-

6Note for the purposes of Sec. II A, that Eq.~39! can be extended
to an asymptotically flat solution by taking a doubly analytica
continued near-extremal D3-brane solution~4!.
2-6
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fields @27#. The calculation is simplified by choosing orthogonal coordinates to describe the background geometry, i.

habdxadxb52dt21dx21dy21dz2 . ~44!

To introduce the identifications producing a torus in the spatial part of this geometry, we must now specify three basis

vW i and points are then identified according to

~x,y,z!5~x,y,z!1n1vW 11n2vW 21n3vW 3 ~45!

where theni are any integers. To simplify the following discussion, we will only consider the case ofR23T2, in which case
we will drop the vectorvW 3. A convenient choice for the remaining two vectors is

vW 15~0,0,bz!

vW 25~0,bycosu,bysinu![~0,byc,bys! ~46!

where we will assume cosu.0.
The desired Green’s functions may now be determined by the method of images@27#. The point-splitting calculation then

yields as the nonvanishing components of the stress tensor:

^Ttt&52^Txx&52
4N2

p2 ( 8
m,n52`

`
@12~21!q#

@~nbz!
21~mby!212nmsbzby#

2 ~47!

^Tyy&5
4N2

p2 ( 8
m,n52`

`
@12~21!q#@~mcby!223~nbz1msby!2#

@~nbz!
21~mby!212nmsbzby#

3

^Tzz&5
4N2

p2 ( 8
m,n52`

`
@12~21!q#@~nbz1msby!223~mcby!2#

@~nbz!
21~mby!212nmsbzby#

3

^Tyz&52
16N2

p2 ( 8
m,n52`

`
@12~21!q#~mcby!~nbz1msby!

@~nbz!
21~mby!212nmsbzby#

3

where the prime on the summations indicates that summation does not include (m,n)5(0,0). The choice of the exponentq

depends on the fermion boundary conditions around thevW 1 andvW 2 cycles:

q 5 0 ~vW 1 ,vW 2! 5 ~1,1 !

5 n 5 ~1,2 !

5 m 5 ~2,1 !

5 n1m 5 ~2,2 !. ~48!

Of course,̂ Tab&50 for the (1,1) boundary conditions for which supersymmetry remains unbroken. In the remaining c
one sees that as expected the result is traceless, i.e.,hab^Tab&50. Also for generic angles, one has an off-diagonal con
bution in ^Tyz&. However, it is straightforward to show that this term vanishes for the special case thatbysinu5kbz for some
integerk. In this case, one can reorganize the calculation in terms of new orthogonal basis vectors, (vW 1 ,vW 28) wherevW 1•vW 28
50. So one may assume thatbyusinuu,bz without loss of generality.

We are particularly interested in the energy density, which may be rewritten as

^Ttt&52
p2

6
N2S d1,2

bz
4

1
d2,2

by
4 D 2

16N2

p2 (
n,m51

`
@12~21!q#@~n2bz

21m2by
2!214~nmsbzby!2#

@~n2bz
21m2by

2!224~nmsbzby!2#2 ~49!

whered i ,250 for periodic boundary conditions around thei cycle, andd i ,251 for antiperiodic boundary conditions. Wit
antiperiodic boundary conditions around the first cycle, we recover the previous result~41! by taking the limitby→`. For
finite by , it is clear that the extra contributions make the Casimir energy density even more negative.7 In particular, even when

7Even without performing the final summation, it is clear that individual terms in the sum are either zero or negative, and that the t
is finite.
046002-7
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ROBERT C. MYERS PHYSICAL REVIEW D 60 046002
the second cycle has periodic boundary conditions, e
though the second term above vanishes the infinite sum
making a negative contribution to lower the Casimir ene
below that in the previous result.

One may now ask which dual supergravity solutions
scribe these field theory configurations. From the discuss
in Sec. II C, one can infer the asymptotic form of the so
tions. However, finding the full solutions of the nonline
supergravity equations is a difficult problem. Fortunately,
lutions which appear to describe the case where sinu50,
i.e., vW 1•vW 250, are already available in the literature@26#.
The five-dimensional metric may be written as

ds25
l 2 dr2

r 2S 12
m4

r 4 D 1
r 2

l 2 F S 12
m4

r 4 D (1/2)(12a12a2)

3~2dt21dx2!1S 12
m4

r 4 D a1

dy21S 12
m4

r 4 D a2

dz2G
~50!

while the dilaton remains constant. The exponents in
~50! lie on the ellipse given by

3~a1
21a2

2!12~a1a22a12a2!51. ~51!

It is straightforward to solve this quadratic constraint
eliminatea1 with

a165
1

3
@12a262~11a222a2

2!1/2# . ~52!
al
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One may note here that if one allowsm4 to take negative
values, the solutions characterized by (m4,a1 ,a2) and

(m̃4,ã1 ,ã2)5(2m4, 1
2 2a1 , 1

2 2a2) are identical up to a dif-

feomorphism. Sinceã175 1
2 2a16 , one need only conside

the positive brancha11 in Eq. ~52! by including negative
values ofm4.

Equation ~50! becomes the AdS soliton~39! for
(a1 ,a2)5(1,0) or (0,1), and in the limitm→0 the solution
reduces to AdS space in horospheric coordinates. Apart f
these special cases, the geometry is singular atr 5m. For
example,RmnabRmnab;m2/ l 4/(r 2m)2 as r approachesm.

To determine the corresponding field theory stre
energy, we use the prescription of Sec. II C. We consider
background to be AdS space, and so asymptotically the
dial part of the metric can be put in the AdS form with th
coordinate transformation

r 5RS 11
m4

8R4D . ~53!

Asymptotically the metric~50! becomes

ds2.
l 2

R2 dR21
R2

l 2 F S 11
~2a112a221!m4

4R4 D ~2dt21dx2!

1S 11
~124a1!m4

4R4 Ddy21S 11
~124a2!m4

4R4 Ddz2G .
~54!

From this asymptotic metric, one can read off the met
perturbation and then applying Eq.~32! yields
^Tab&5
m4

16pG5l 5 S 2~2a112a221! 0 0 0

0 2a112a221 0 0

0 0 124a1 0

0 0 0 124a2

D ~55!
ods
al
the
the

e in
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which has a form reminiscent of the field theory result~47!,
i.e., the stress tensor is traceless and generically2^Ttt&
5^Txx&Þ^Tyy&Þ^Tzz&. Since this stress tensor is diagon
however, it seems that this solution can only describe
situation with sinu50, i.e., the cycles on the torus are o
thogonal.

Up to this point, no consideration has been made of id
tification of they andz coordinates in the supergravity bac
ground ~50!. To parallel the field theory calculation, w
should identifyy;y1by andz;z1bz . In the special case
of the AdS soliton, demanding that the geometry be free
singularities relates the periodicity of one of the coordina
to the parameterm @as described below Eq.~39!#. However,
in the present case with generic exponents, one cannot a
a curvature singularity atr 5m. Therefore without under-
standing the stringy physics that underlies this region
,
e

-

f
s

oid

f

strong curvature, there is no natural way to relate the peri
to the parameterm. Given the results for the near-extrem
D-branes and the AdS soliton, one might expect that
ratios of the various components of the stress-energy are
same in the strong coupling supergravity regime as aris
the weak coupling calculations. With this assumption fo
given pair of periodicities~and sinu50), one could calculate
the relative size of the components of the weak coupl
stress tensor~47!, and then match these ratios in the stro
coupling result~55! with a choice of exponents. Given th
infinite double sums in Eq.~47!, we have no analytical re
sults to offer. However, one can examine the field the
stress tensor numerically, and it is clear~for sinu50) that
one can always choose the exponents in Eq.~55! to match
the overall form of^Tab& in the two calculations. For ex
ample, with (2,2) boundary conditions, asbz /by varies
2-8
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STRESS TENSORS AND CASIMIR ENERGIES IN THE . . . PHYSICAL REVIEW D60 046002
from 1 to `, ^Tab& is matched by choosinga11 in Eq. ~52!
and choosinga2 between (11A3)/4 and 1. There remain
the question of the overall normalization of the strong co
pling stress-energy, but this seems to require a knowledg
physics at string scale curvatures.

IV. DISCUSSION

The field theory stress-energy tensor provides an inter
ing tool with which to study the AdS-CFT correspondenc
In Sec. II, we have provided a number of different a
proaches to calculatinĝTab& for a given supergravity solu
tion. Note that each of the calculations presented there
quires a background solution, which essentially defines
zero for the stress tensor. That is the calculations yield
stress-energy of the given solution relative to the refere
background.

The presence of a background solution is useful in m
ing contact with earlier discussions of expectation values
CFT operators@5#. This discussion originally relied on con
sidering solutions of the linearized equations of moti
around AdS space, however, it was actually extended to
lutions of the full nonlinear supergravity equations in cons
ering D-instantons@5#. One can~at least roughly! classify the
solutions of the linearized equations as modes which are
gular at the boundary of AdS, and those which are singula
the interior. The modes that are singular at the boundary
the ones associated with the source currents for the CF
calculating correlation functions@3#, while those that are sin
gular at the interior are associated with expectation val
@5#. However the fact that the latter modes are singu
~i.e., reach large values! in the interior of AdS means tha
one must go beyond the linearized equations of motion
consider expectation values in general.8 The black hole so-
lutions in Eqs.~15! and~24! are a good example in that the
are solutions of the full nonlinear~super!gravity equations of
motion. However, asymptotically these solutions appro
AdS space, and one can regard the deviations of the m
from the AdS solution as solutions of the linearized grav
equations. Closer examination shows that these linear
solutions correspond to modes which become singular in
interior of AdS, which now simply means that the full sol
tions enter a nonlinear regime. With the choice of coor
nates in Sec. II C, one can further match the expecta
value of the stress-energy to the general calculations
cussed in Ref.@5#.

On the other hand, matching the asymptotic geometry
the~super!gravity solutions to that of a reference backgrou
is a technical nuisance. In fact there are solutions for wh
there is no natural choice of a background solutio
e.g., Taub-NUT-AdS — as discussed in@28#. From this
point of view, Balasubramanian and Kraus@15# recently pre-
sented a superior technique. While the basis of their calc
tions is the quasilocal stress-energy@22# discussed in Sec

8The linearized modes are still useful in considering the expe
tion values associated with test probes moving in the supergra
spacetime@5,6#.
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II B, they avoid the background subtraction by introducing
‘‘counterterm subtraction,’’ which only relies on the intrins
boundary geometry of the solution of interest. This new te
nique provides a definition of the total energy which th
represents a remarkable departure from previous inves
tions of gravitational energy, which appears to be unique
asymptotically AdS spacetimes. While relying on a bac
ground subtraction was sufficient for our investigation of t
Casimir energies on toroidal geometries in Sec. III, it see
that the counterterm subtraction technique will be essen
in calculating the Casimir stress-energy for more comp
cated geometries. For example, one can determine the
simir energy for the super-Yang-Mills theory onR3S3 from
a supergravity calculation on AdS5 alone@15#.

By considering the expectation value of the stress-ene
tensor in the dual CFT, we seem to have found an interes
interpretation of the supergravity solutions~50! found in Ref.
@26#. These solutions appear to be dual to the CFT o
two-torus with nonsupersymmetric boundary conditions i
posed on the fermions around the cycles of the torus.
mentioned previously, the solutions provided by Ref.@26#
are general enough that the discussion here and in Sec
can be extended to the CFT onT3 or T4, as well as the
AdS-CFT correspondence in higher dimensions. Howev
these solutions appear to be limited to the case where
cycles on the torus are orthogonal, e.g., sinu50 in Eq.~46!.
It may be interesting to extend this family of solutions
include tori with non-orthogonal cycles, for which gene
cally the stress tensor acquires off-diagonal terms. From
discussion of Sec. II C then, one sees that the new superg
ity solutions will include nontrivial off-diagonal metric com
ponents. Of course, the coordinates of Sec. II C may no
the optimal choice for actually determining the full nonline
solutions. It may be that considering the transformation pr
erties of the stress-energy under the action ofSL(d,Z) on Td

~see, e.g., @29#! may be useful in trying to construct th
extended family of solutions. In any event, given such a
of solutions, it would be interesting to understand the act
of the SL(d,Z) symmetry on the supergravity spacetime.
could be that this symmetry would be a useful tool in det
mining the overall normalization of the strong couplin
stress-energy without recourse to a complete understan
of string theory in regions of strong curvature.

We should remark that we have only found an interest
interpretation for a subset of the solutions in Eq.~50!. Fixing
a2 ~and hencea11) determines the ratio of the componen
of the stress-energy~55!, and so for a certain set of bounda
conditions in the CFT, this then fixes the ratiobz /by from
Eq. ~47!. Fixing m4 then sets the overall scale, and
through some unknown stringy physics, this determinesbz .
However, any identifications iny andz are left implicit in the
supergravity solution~50!, and so for fixeda2 andm4, these
solutions exist for arbitrary values ofby andbz . Therefore
our interpretation in terms of antiperiodic fermion bounda
conditions only applies to a set of measure zero in the
space of solutions implicitly given by Eq.~50!. It may be that
more creative boundary conditions may allow one to prov
a CFT interpretation for some~discrete number! of the other
solutions, but it seems unlikely that a reasonable interpr

a-
ity
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ROBERT C. MYERS PHYSICAL REVIEW D 60 046002
tion can be found for a generic set of parameters in
family of solutions.

This then raises the question of which singularities
which singular solutions are physically interesting in t
context of the AdS-CFT correspondence. One respo
would be that such singularities simply represent regions
strong curvature where the low energy~super!gravity theory
breaks down, but that the singularity would be ‘‘resolved’’
a physically sensible way by the full theory of quantum gra
ity ~e.g., superstring or M theory!. It was argued in Ref.@30#
that this point of view cannot be correct, by consideri
negative mass Schwarzschild solution of the Einstein eq
tions. The argument there applies equally well in pres
context with a negative cosmological constant. If the tim
like singularities at the center of negative mass ‘‘bla
hole’’-AdS solutions were resolved within the full quantu
gravity theory, no stable ground state would exist. Hence
clear that certain singularities must be unphysical and so
all singular solutions~or solutions with regions of strong
curvature! are physically relevant.

In certain special cases, singular solutions may be dis
guished by being supersymmetric, and so there may
greater merit in considering such singularities. We rem
the reader that such a solution implicitly played a role in S
III. The background solution in that case was AdS space w
periodic identifications in the horospheric coordinates. T
solution has a conical singularity at the null surfacer 50,
which is a horizon in the absence of any identifications. T
fact that the background is supersymmetric would appea
add weight to our assumption that string theory is able
resolve this singularity. In the AdS-CFT context, charg
black hole solutions have an interesting interpretation@31#,
but it turns out that the corresponding supersymmetric s
tions @32# are actually naked~null! singularities whose role
remains to be determined.

In the case of the metric~50!, the singularity is again a
null singularity as in the two preceding examples, but
solution is not supersymmetric. We might add that if o
evaluates the supergravity action~making a background sub
traction with AdS! the result is finite@26#. This comes abou
because the metric is a solution of the supergravity eq
tions, and so the curvature singularity atr 50 does not mani-
fest itself in the Ricci scalar. Divergences are present in
curvature scalars which appear as the higher ordera8 cor-
rections to the supergravity action — see, for example,@23#.
Of course, to properly evaluate the action including su
corrections, one would have to construct a solution of
higher order equations of motion. However, if the high
order terms play more than a perturbative role~as they would
near the singularity!, one must~determine and! solve the full
superstring equations of motion to produce a consistent
lution.

Thus the AdS-CFT correspondence seems to provide
other situation in which curvature singularities seem to p
an interesting role in string theory~see, for example,@33#!.
Given the discussion up to this point, it appears remarka
that the case with the CFT onR33S1 corresponds to a dua
supergravity solution which is everywhere smooth. Ho
ever, we would now like to present an alternative point
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view which argues that this behavior should not be exc
tional. The motivation for these arguments will be cosm
censorship@34#.

Let us begin by considering the AdS5 spacetime in horo-
spheric coordinates, i.e., Eq.~39! with m450, in which one
of the spatial coordinates is periodically identified, sayy
5y1by . Further we expect the following conclusion abo
the supergravity to be independent of any boundary con
tions on the supergravity fermions in this direction. No
introducing a planar configuration of matter into this spa
time with sufficient density, we expect that the system w
collapse to form a black hole which settles to a metric of
form in Eq. ~24! with p53. This expectation is prejudice
by our experience with cosmic censorship and black h
uniqueness theorems@35# in other settings. Distinguishing
the metric componentgyy from the other spatial direction
would be like adding ‘‘hair’’ to the black hole and produce
singular configuration similar to the solutions~50!. Cosmic
censorship dictates that gravity avoid this solution dyna
cally by radiating away any such hair during the collapse t
leads to the formation of the black hole. Thus the black h
solution ~24! would appear to be the physically relevant s
lution independent of the periodby . Given this conclusion,
one would expect that a double analytic continutation w
yield the supergravity solution dual to the CFT onR23T2.
Certainly the calculations for the thermal ensemble onS1

and the Casimir stress-energy onT2 have a common Euclid-
ean framework, as discussed in Ref.@14#. One would thus
conclude that the AdS soliton~39! is still the relevant dual
supergravity solution independent of any additional comp
tifications, as well as of the boundary conditions imposed
those directions.

Hence independent of the periodby , the expectation
value of the stress tensor would be that of the AdS soliton
given in Eq. ~43!. In particular then one has 3^Ttt&
523^Txx&523^Tyy&5^Tzz&, independent ofby or the
boundary conditions imposed on they-cycle. Certainly this
result does not match the form of the weak coupling res
~even with sinu50) given in Eq.~47!. Of course, the form of
the latter result does go over to that of the supergravity c
culation in the limit thatby→`. There is no inconsistency
here, of course. One would simply conclude that the vari
components of the stress tensor evolve independently as
’t Hooft parameter increases from zero in the explicit fie
theory calculation to large values where the supergravity
sult applies. Thus the effects of the additional identificatio
seem to be erased by the supergravity dynamics in the l
N limit.

While this scenario may be reasonable in a situat
where the periodicity of one direction is much smaller th
that of any others, it should appear problematic for perio
icities of roughly the same size. Analogous to the discuss
in Ref. @3#, a possible resolution is that the supergravity p
tition function ~1! includes contributions from different AdS
solitons in each of which one of the compact directions w
antiperiodic fermions shrinks to zero on the interior. For
given set of periodicities, the relative size of the contrib
tions of the different supergravity solutions would be det
mined by their Euclidean action. In the case where one of
2-10
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STRESS TENSORS AND CASIMIR ENERGIES IN THE . . . PHYSICAL REVIEW D60 046002
periodicities is much smaller than the others, the correspo
ing AdS soliton dominates the partition function. When t
periodicities are roughly the same size, no single solut
would be dominant. The expectation^Tab& would presum-
ably then be given by a weighted sum of that calculated
the individual solutions.9

Thus we have presented two very different pictures of
supergravity description of the dual CFT on a torus. The fi
involves singular solutions, but relies on the assumption
the ratios of the various components of the stress tenso
preserved as the ’t Hooft coupling varies. The only eviden
given to support of this assumption was that it was obser
to be true for the CFT onR33S1. However, this is not a very
strong argument since in that case, the form of the str
energy is really determined by the symmetries of the ba
ground geometry and the traceless property of the stress
sor. In the second scenario, the supergravity dynamics er
the complicated details which the field theory boundary c
ditions produce at weak coupling. This picture is motivat
by cosmic censorship and black hole uniqueness wh
however, have not been well studied in the context of A
space. Another weakness in these arguments about the
namics is that while it is claimed that the post-collapse bla
hole should be nonsingular, the pre-collapse configura
will almost certainly contain a singularity at the interior du
to the periodic identification ofz. Even if the second scenari
is correct, it seems that the gravitational abhorence of sin

9It appears that with this approach that there can be a ‘‘pha
transition in the thermal ensemble on a torus from the high entr
black hole to the zero-entropy AdS soliton at low temperatu
@38# — see Refs.@3,31,36# for discussions of similar phase trans
tions.
’’
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larities must only be a largeN effect in the CFT. It would be
interesting to understand the physics of these configurat
at finite N where it is claimed that the super-Yang-Mil
theory should resolve the singularities associated with gr
tational collapse@37#.

Finally we would like to comment on the implications o
the present results for the positive energy theorem of R
@14#. We have found that there are singular supergravity
lutions which have a lower energy than the AdS solito
which was conjectured to be a minimum energy solutio
This should not come as a surprise. One can easily find
gular solutions with arbitrarily negative energies, such
negative mass ‘‘black holes.’’ The positive energy theore
at least in the form of conjectures 2 and 3 in Ref.@14# is that
the AdS soliton should be the minimum energy soluti
within the space of smooth solutions. The important po
that was considered here was that some singular solut
may be physically relevant for Type IIb supergravity, sin
the singularities are resolved in the full string theory. If th
is the case, it would certainly affect conjecture 1 which w
phrased in terms of the ten-dimensional type IIb supergr
ity. As we have discussed above though, string theory m
still choose to ignore these singular solutions and desc
the dual CFT in terms of asymptotically AdS geometri
which are everywhere smooth.
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