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Antiferromagnetic f4 model. I. The mean-field solution
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HervèMohrbach†

Laboratory of Theoretical Physics, Louis Pasteur University, 3 rue de l’Universite´ 67087 Strasbourg, Cedex, France
and LPLI-Institut de Physique, F-57070 Metz, France

Janos Polonyi‡

Laboratory of Theoretical Physics, Louis Pasteur University, 3 rue de l’Universite´ 67087 Strasbourg, Cedex, France
and Department of Atomic Physics, L. Eo¨tvös University, Puskin u. 5-7 1088 Budapest, Hungary

~Received 16 September 1998; published 22 July 1999!

Certain higher dimensional operators of the Lagrangian may render the vacuum inhomogeneous. A rather
rich phase structure of thef4 scalar model in four dimensions is presented by means of the mean-field
approximation. One finds para-, ferro-, ferri-, and antiferromagnetic phases and commensurate-
incommensurate transitions. There are several particles described by the same quantum field in a manner
similar to the species doubling of the lattice fermions. It is pointed out that chiral bosons can be introduced in
the lattice regularized theory.@S0556-2821~99!04614-7#
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I. INTRODUCTION

Only renormalizable quantum field theory models a
considered in particle physics. This was explained traditi
ally by inspecting the UV divergences generated by the
erators in the framework of the perturbation expansion i
homogeneous background field. The nonrenormaliza
theories were rejected due to the need of infinitely ma
coupling constants. This argument has been further de
oped in recent decades. First came the realization that w
really matters in particle physics are not the true UV div
gences, because we do not have a complete knowledge o
theory of everything and consequently we work with effe
tive theories. The characterization of the renormalizable
erators was modified by looking into their importance at lo
energies. In particular the equivalence of the renormaliza
ity of an operator with its relevance at the UV fixed point h
been established@1#. Nonrenormalizable operators are e
cluded because they do not change the universality class
their influence on the dynamics decreases as we move a
from the UV scaling regime towards the physical ener
scales.

There are different mechanisms which nevertheless m
turn a coupling constant which is found irrelevant in t
usual treatment into an important parameter of the theor

Loop corrections. Once the anomalous dimension is tak
into account in the power counting argument@2# new rel-
evant operators at the UV fixed point can be generated.
physical picture of the strong coupling massless Q
vacuum @3# which suggested this natural generalization
the power counting method is based on the observation
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the positronium may acquire a negative energy and colla
onto the size of the cutoff fore5O(1). Thecondensate of
these bound states breaks the chiral symmetry and the
features of the resulting vacuum are modified when co
pared to the perturbative ones.

Multiple fixed points. Starting from the theory of every
thing a unique renormalized trajectory describes the comp
ite models, grand unification, electroweak theory, QC
QED, condensed matter physics, and solid state phy
which appear as different ‘‘scaling islands’’ in the couplin
constants space. One operator which is irrelevant in the
cinity of one such fixed point may turn to be relevant arou
another one@4#.

Tree-level effects. The power counting argument trace
down the influence of the loop corrections to the scal
laws. The tree level effects of certain operators might
much more complicated in relating different length sca
and they may generate new important coupling consta
which defy the classification based on a perturbative imp
mentation of the Wilson-Kadanoff blocking procedure@5#.
The cutoff is usually ignored in the tree-level solution thou
it is actually present in any consistent regularization of
path integral. When the important configurations, the sad
points, have length scales close to the cutoff these tree-l
cutoff effects become more important@6#. In fact, if the
semiclassical vacuum is nonhomogeneous the succes
elimination of the degrees of freedom in the blocking proc
dure should be performed in the semiclassical approxim
tion. The nontrivial saddle points generate new contributio
to the scaling laws@7#.

The surprisingly strong tree-level effects of the nonhom
geneous saddle points raise the following issue. The use
ness of the ferromagnetic condensate in mass generation
long been been recognized in particle physics@8#. The
vacuum is a coherent state of particles with zero moment
What happens if particles with nonvanishing momentu
form a condensate? A close similarity can be found in
©1999 The American Physical Society06-1
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charge or spin density wave phases of solids@9#. The emer-
gence of these states from the normal ground state is a hi
involved dynamical nonequilibrium problem. Here we a
interested in the properties of the static modulated ph
only.

The field expectation value in this vacuum is a nontriv
function of the space-time coordinates with a characteri
length given by the inverse of the typical momentum of t
particles in the coherent state.

An oscillating saddle point configuration is formally sim
lar to the Nèel state of the antiferromagnetic Ising model, t
ground state of solids or the charge density wave state. S
a formal similarity leads to far reaching analogies betwe
solid state physics and the phenomenology of this cond
sate. The nonvanishing momentum of the condensed
ticles extends the symmetry breaking from the internal sy
metries to the external ones. The result is the dynam
breakdown of the space-time symmetries. It is well kno
that the ground state of the translational invariant Ham
tonian for photons, electrons and massive positively char
ions is not translational invariant for certain densities~solid
state crystals!. Due to the observed homogeneity of th
space-time in the particle reactions the absence of the
namical breakdown of the external symmetries was alw
assumed@10#, or taken for granted in high energy physics

In this paper we will consider the case of a single co
ponent self interacting scalar field theory in the presence
higher derivative terms. The semiclassical solution of o
model reveals the possibility of breaking the space-ti
symmetries at the cutoff scale in a manner which is comp
ible with the homogeneity of the space-time at finite obs
vational scales. The spontaneous breakdown of the inte
symmetries is widely accepted and used in quantum fi
theories. The saddle point approximation which is based
the construction of a condensate in the vacuum can be
without difficulties in exploring the possibility of the spon
taneous breakdown of external symmetries, too. In this c
the condensate is obviously inhomogeneous. This inhomo
neity amounts to a periodic structure in our case. The ap
ence of an elementary cell repeated periodically in
vacuum manifests itself in the possibility of exchanging no
vanishing momentum between the propagating particles
the particles condensed in the vacuum and in the presen
several branches in the dispersion relation, such as the ac
tic and optical phonons in the solid state crystals. T
vacuum of the model considered in this paper consists
condensate of particles with a given momentum,pm5Pm.
Thus the inhomogeneity of the vacuum leads to the nonc
servation of the momentum,pm

˜pm6Pm. We constrain the
external symmetry by allowing those translations only wh
bring one elementary cell into another. The momentum
fined by this subgroup of the original external symme
group, pphys

m 5pm mod(Pm), is the analogous of the Bloc
momentum in solid state physics and it is obviously co
served. The different branches of the dispersion relation
interpreted as different ‘‘flavor’’ states of the elementary e
citations, the particles of the model. The umklapp proce
where a momentum6Pm is exchanged with the vacuum
then a ‘‘flavor’’ changing reaction. Thus the momentum no
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conservation is traded into a ‘‘flavor’’ nonconserving d
namics where the particles in a given ‘‘flavor’’ state prop
gate in a homogeneous vacuum. When the momentumPm

diverges then the space-time structure of the ‘‘flavor’’ chan
ing processes remain unresolved for the low~physical! mo-
mentum observables.

In the lattice regularized version of our model we find t
usual phases of solid state physics which belong to the pa
ferro-, ferri-, or antiferromagnetic vacuum. This rich pha
structure is due to the presence of more than next neigh
couplings. In this case the dispersion relation~the quadratic
part of the action at vanishing field! has two mimima atpm

50 and atpm5Pm5p/a. The ferromagnetic or antiferro
magnetic vacua occur when the first or the second minim
become negative. Having taken into account the conde
tion of the instable modes, the two minima of the new d
persion relation correspond to elementary excitations wh
allow us to identify two particles described by the sam
quantum field.

The unusual features of the model can be traced bac
the fact that the condensate and the dynamical symm
breaking are driven by the kinetic rather than the poten
energy terms of the action. It has already been remarked
the kinetic energy becomes dominant in high temperat
QCD and leads to the dynamical breakdown of the fun
mental group symmetry in high energy processes@11#. This
time the kinetic energy drives the formation of the nontriv
elementary cells in the ground state which break the spa
time inversion symmetries and introduce a nontrivial leng
scale in the vacuum.

Here we consider the theory in the mean-field approxim
tion. The organization of the paper is the following. In Se
II we introduce our higher derivativeF4 scalar model. The
tree level phase structure of this model in dimensiond<4 is
presented in Sec. III. A more detailed analysis in the vicin
of the simplest antiferromagnetic phase ofd54 is performed
in Sec. IV. The elementary excitations are identified by
help of the free propagator in Sec. V. The symmetry aspe
of the phase diagram and the interpretation of the differ
particle modes of the system is the subject of Sec. VI.
nally, Sec. VII is for the conclusions.

II. HIGHER DERIVATIVE SCALAR MODEL

To study the impact of higher derivative terms in the ca
of the single component scalar model we choose the follo
ing action:

S@F~x!#5E ddxH 1

2
]mF~x!KS ~2p!2

L2 h D ]mF~x!

1
m2

2
F2~x!1

l

4
F4~x!J , ~1!

where

K~z!511c2z1c4z2. ~2!

The dimension of the higher derivative terms is taken in
account by the introduction of the scale parameterL.
6-2
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ANTIFERROMAGNETIC f4 MODEL. I. THE MEAN- . . . PHYSICAL REVIEW D 60 045006
Models with higher order derivative terms have alrea
been considered recently@12–15#. We suppose first that th
vacuum is homogeneous,^F(x)&5const. The quantum fluc
tuations are then plane waves with the eigenvalues

G21~p2!5m21p22c2~2p!2
p4

L2 1c4~2p!4
p6

L4 ~3!

for the second functional derivative of the action. Mod
with negativeG21(p2) are unstable and generate a cond
sate. Whenm2,0 andcj50 we have a ferromagnetic insta
bility. After filling up the most unstable modep50, the
system stabilizes itself and the only change in the interac
is the apparence of a three particle vertex which describes
processes where a particle is exchanged with the conden
If G21(p2) develops a second minimum atp5” 0, new par-
ticles appear in the system. Whenc2 becomes large~and for
simplicity we limit ourselves to consider the casem250) an
instability shows up for

c2

2c4
2Ac2

224c4

4c4
2 ,~2p!2

p2

L2,
c2

2c4
1Ac2

224c4

4c4
2 . ~4!

Thus a condensate of particles with nonvanishing mome
is formed. The filling of this condensate by the most unsta
mode, pcond

2 5c2L2/2(2p)2c4, modifies the interaction be
tween the plane wave modes in a rather complicated ma
and particles with different momenta may appear in
stable condensate. It is reasonable to expect that the Fo
transform of the field expectation value is peaked arou
p25pcond

2 . Its spread is a measure of the strength of
interaction within the condensate. Notice that the action
bounded from below forl.0 becauseS˜` either when
p2
˜` or when the amplitude of the oscillations tends

infinity.
We will explore the dynamics of the effective theory~1!

in the mean-field approximation. The first step will be t
determination of the phase structure. The spectrum of
free quantum fluctuations will be studied later.

III. THE MEAN-FIELD PHASE STRUCTURE

In this section we classify the different phases of the s
lar theory~1! at the tree level. We identify the order param
eter with the condensate,^F(x)&, which is a nontrivial func-
tion whose Fourier transform is

F̃vac~p!5E ddxeipx^F~x!&. ~5!

The ferromagnetic condensate is obtained forF̃vac(p)
5F0d (d)(p). For an antiferromagnetic condensate the fu
tion F̃(p) has a peak atp'pmin . One may also have th
ferrimagnetic phase whereF̃vac(p) displays two peaks, one
at p50 and another atp5pmin5” 0. When a consistent cutof
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like the lattice regulator is used, there are two length sca
in the antiferromagnetic vacuum, the periodic length of t
condensate and the regulator itself. The phase structur
amazingly rich in this case due to the commensura
incommensurate phase transitions. We begin our invest
tion by looking for the lowest action solution of the equatio
of motion for Eq.~1!.

A. d51

We have solved numerically the finite difference equat
in two different regimes,L21@a and L21'a, wherea is
the step size~regulator! of the equation.

The continuum theory,L21@a. The removal of the cutoff
a is trivial for the tree level classical equation and one fin
the solution of the differential equation asa˜0. In order to
find the lowest action solution we considered the configu
tions which yield finite action density,

e5
1

TE0

T

dxH 1

2
]F~x!F11c2

~2p!2

L2 h1c4

~2p!4

L4 h2G]F~x!

1
m2

2
F2~x!1

l

4
F4~x!J . ~6!

The solutions of the variational equation are not const
since e(0).e(pcond

2 ). At the same time theF4 potential
energy keepsuF(x)u bounded. Thus we conjecture that a
solutions with finite action density are periodic and we im
pose periodic boundary conditions on the field,F(x)5F(x
1T). The minimization of the action density with respect
F(x) andT indeed leds to periodic solutions, one of them
depicted in Fig. 1~a!. It was checked by increasing the vo
ume T that the minimal action configuration remains pe
odic.

This result can be compared with the a variational a
proach where the form

F~x!5A sinvx ~7!

is assumed. The minimization of the action density withT
52p/v yields

v25
c2L2

3~2p!2c4
S 11A12

3c4

c2
2 D , ~8!

and

e52
3lA4

32
. ~9!

One can see that the periodicity length is determined
the cj and the amplitude is controled by the termf4. By
choosing for examplec2(2p)251, c4(2p)450.1, m25
6-3
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FIG. 1. Field configuration in function ofx
which minimizes of the action density with per
odic boundary condition ind51 dimension.~a!
Continuum theory.~b! The vacuum of the phase
(1,3) in lattice regularization.
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20.1L2 and l50.1L3, these two methods giveAnum
510.65L21/2, Avar510.59L21/2, enum52120.75L and
evar52117.94L.

Lattice regulated model,L21'a. The periodicity length,
l 5O(pcond

21 ), of the solution of the continuous differentia
equation is a ‘‘floating,’’ analytical expression of the co
pling constants. This may change when finite differen
equations are considered. In fact, the periodicity length of
condensate may be incommensurate@16# with the numerical
discretization of the differential equation.l and a are com-
mensurate and belong to the class (M ,N) whenMl 5Na, M
and N being relative primes. In this casel locks in as a
function of the coupling constants and creates a devil’s st
case. A similar phenomenon was analyzed for models wh
the kinetic energy is quadratic but has minimum at nonv
04500
e
e

r-
re
-

ishing momenta@17#. One can easily find the simple com
mensurate phases,M51, N not too large, cf. Fig. 2. The high
(M ,N) commensurate points are presumably washed
gether with the incommensurate regions when the quan
fluctuations are taken into account.

We will study the particle content of the simplest antife
romagnetic phase, (M ,N)5(1,2) in the next section. The
generalization of our method for the higher commensur
theories is possible though complicated. The spectrum of
elementary excitations of the incommensurate theories
rather involved and qualitatively different@18#.

The phases (1,N) with odd N are of ferrimagnetic type.
This is because there are an odd number of lattice field v
ables within a period which in general do not add up to ze
cf. Fig. 1~b!.
6-4



u
g
ve

e
a
in
b

er
la

ug

o

-
are
a-
ed
e

reat-

ized

a-

the

cal

rate

the

tary

e
r is

-
n-

l i
n

ANTIFERROMAGNETIC f4 MODEL. I. THE MEAN- . . . PHYSICAL REVIEW D 60 045006
The complex phase structure of the lattice theory sho
be present in any other regularization as well when the re
lator is introduced in a consistent manner at the tree le
One may take the sharp momentum space cutoff, as an
ample. Its implementation on the tree level leads to the
ceptance of field configurations as possible saddle po
whose Fourier components are vanishing for momenta
yond the cutoff. We believe that the solutions of the Eul
Lagrange equations which satisfy such a constraint disp
similar commensurate-incommensurate transitions tho
the details of the phase diagram may differ.

B. d52,3,4

For d.1 the staggered order generated byc2 is more
complicated. This is due to the fact that the kinetic energy

FIG. 2. The phase diagram for the lattice regularized mode
d51. F stands for the ferromagnetic phase and the numbers de
the parameterN of the antiferromagnetic phase (1,N).
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the continuum theory isO(d) invariant and the most un
stable modes at the minimum of the dispersion relation
found on aSd21 sphere. The minima of the dispersion rel
tion should form a discrete set of points in the restrict
Brillouin zone in order to have particle like excitations. Th
degenerate modes on this sphere may achieve this by c
ing a complicated dynamicalO(d) symmetry breaking pat-
tern. The staggered antiferromagnetic order can be real
in dAF dimensions, 0<dAF<d. For the casesdAF5d, d
21 anddAF,d21 we will use respectively the names rel
tivistic, nonrelativistic and anisotropic vacuum.

Continuum theory,L21@a. We found the local minima of
the action density corresponding to the relativistic and
nonrelativistic vacuum ind52 as depicted in Fig. 3. The
latter is the absolute minimum. Inspired by the numeri
results we have tried the following ansatz:

F rel~x,y!5A sinvx sinvy, ~10!

and

Fnrel~x,y!5A sinvx. ~11!

The variational method gives acceptable but less accu
result than in the one dimensional case forF rel(x,y) due to
the tree-level interactions which split the degeneracy of
condensate atupu5pcond. The highly nontrivial effect of
such a deformation of the saddle point on the elemen
excitation will be investigated below.

The issue of theO(d) symmetry breaking pattern can b
better studied in lattice regularization where the regulato
explicit already at the tree level.

Lattice regulated model,L21'a. The lattice regulated ac
tion in d.1 dimensions written in terms of the dimensio
less variablesxm, w5ad/221F, mL

25m2a2 and the unit vec-
tors (em)n5dmn is

n
ote
FIG. 3. The elementary cell of the antiferromagnetic vacuum configurations in the continuum as the functions ofxm in d52. ~a!
Relativistic vacuum, a local minimum.~b! The nonrelativistic vacuum, the absolute minimum.
6-5
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S@w~x!#5(
x

H 2
1

2
w~x!FAw~x!1(

m
„B@w~x1em!1w~x2em!#1C@w~x12em!1w~x22em!#1D@w~x13em!

1w~x23em!#…1 (
mÞn

„E@w~x1em1en!12w~x1em2en!1w~x2em2en!#1F@w~x12em1en!

1w~x12em2en!1w~x22em1en!1w~x22em2en!#…1G (
mÞnÞr

„w~x1em1en1er!13w~x1em1en2er!

13w~x1em2en2er!1w~x2em2en2er!…G1
mL

2

2
w2~x!1

l

4
w4~x!J , ~12!

FIG. 4. The phase diagrams in~a! d52, ~b! d53, and~c! d54. The antiferromagnetic phase is found below the solid line. The lo
region below the dashed line is the phase (1,2). The higherN phases are not shown.
et

is
a-

nd
an-
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ff

he
where the coefficientsA,B,C,D,E,F,G are defined by

A522d1~4d212d!c22~8d3112d2!c4 ,

B5124dc21~12d216d23!c4 ,

C5c226dc4 ,

D5c4 ,

E5c226dc4 ,

F53c4 ,

G5c4 . ~13!

Only the ferromagnetic phase and the antiferromagn
phase~1,2! were located~Fig. 4! by a numerical minimiza-
tion of the action. The absolute minimum of the action
relativistic in the~1,2! antiferromagnetic phase, the nonrel
tivistic and anisotropic vacua lie higher as local minima.
04500
ic

IV. THE c450 PHASES

We will determine the boundary of the para-, ferro-, a
the ~1,2! antiferromagnetic phases by means of the me
field method. In the rest of this paper we will constrain ou
selves to the casec450. The explicit apparence of the cuto
makes the action withc450 bounded from below.

We seek the vacuum in the form

w~x!5w01w1~21!(
m51

dAF

xm
, ~14!

wherew0 and w1 are variational parameters anddAF is the
number of antiferromagnetic directions. The action of t
lattice Laplace operator on the vacuum is

hw~x!5 (
m51

dAF

@w~x1em!1w~x2em!22w~x!#

524dAF„w~x!2w0…, ~15!

which yields
6-6
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ANTIFERROMAGNETIC f4 MODEL. I. THE MEAN- . . . PHYSICAL REVIEW D 60 045006
2hK~h !w~x!5M L
2~dAF ,c2!„w~x!2w0…, ~16!

where

M L
2~dAF ,c2!54dAFK~24dAF!54dAF~124dAFc2!.

~17!

The minimization of the action density

s~w0
2 ,w1

2!5
1

2
mL

2w0
21

1

2
~mL

21M L
2!w1

2

1
l

4
~w0

416w0
2w1

21w1
4!, ~18!

givesdAF5d and leads to the phase diagram in Fig. 5.
The mL

2,0 case.
The equation

M L
250 ~19!

is a ferromagnetic-antiferromagnetic transition line. Clea
for c450 there is no frustration in the system because
coupling constants C and E are both positive and then b
of the ferromagnetic type. ForM L

2.0 ~i.e.,c2,1/4d) the B
next to neighbor coupling is also positive and then the ph
is ferromagnetic. For the saddle point we findw0

25

2mL
2/l, w1

250. Nevertheless it is important to notice th
this phase is very different from the standard ferromagn
phase of the theory without higher derivatives terms, wh
C5E50 andB.0. In fact, as we will show later, in eac
phase of our model~the antiferromagnetic as well as th
paramagnetic and the ferromagnetic ones! we find two kind
of particles.

On the contrary forM L
2,0, B is negative~that is of the

antiferromagnetic type! and the phase is antiferromagnet
In this case the saddle point, isw0

250, w1
252mL

21M L
2/l.

On the transition lineM L
250, we haveB50. The ab-

sence of interactions between next neighbors causes the

FIG. 5. The phase boundary between the paramagnetic~P!, fer-
romagnetic~F! and theN52 antiferromagnetic~AF! phase forc4

50. The chiral symmetric regionsxF , xAF and the critical point
CR are on the phase boundary.~a! The plane (mL

2 ,M L
2). ~b! The

plane (c2 ,mL
2). The chiral linexP splits the paramagnetic phas

into two parts. On the left ofxP the particle of the restricted zon
B1 is the lighter one. The particle of the zoneB 2d is the lighter one
on the other side. The arrows show the possible continuum limit
the chiral invariant critical point, CR.
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tice to split into two different noninteracting~even and odd!
sublattices. Approaching this line from the ferromagne
side we have a ferromagnetic condensate of the same m
nitude and sign in each of these sublattices. Approaching
line from the antiferromagnetic phase we have two ferrom
netic condensates of the same magnitude but opposite sig
the two sublattices. We will show later that on this line o
theory is the superposition of two independent standard
romagneticf4 models.

The mL
2.0 case.

The transition line between the paramagnetic and the
tiferromagnetic phases is given by the equation

mL
21M L

250. ~20!

As before at the lineM L
250, the next to neighbor coupling

B50. We will see later that on this line our model corr
sponds to the superposition of two standard paramagneticf4

theories. IfM L
2.0 thenB.0 and the phase is paramagne

as expected. For2mL
2,M L

2,0, B is negative but the phas
is still paramagnetic. The phase is antiferromagnetic wh
M L

2,2mL
2 .

V. THE ELEMENTARY EXCITATIONS

The quasiparticles of the mean-field approximation
given by the help of the free propagator. We will obtain t
propagator in the different phases considered above. We
with

^f~x!f~y!&5E
upu<p

ddp

~2p!d e2 ipxG~p!, ~21!

where

G21~p!5m̃L
21 p̂mp̂mK~2 p̂mp̂m!, ~22!

and

p̂m52 sin
pm

2
. ~23!

The mass parameter is given by

m̃L
25H mL

2 P,

22mL
2 F,

22mL
223M L

2~d,c2! AF,

~24!

in the different phases. We write

G21~p!5P 2~p!2c2P 4~p!1m̃L
2 , ~25!

with the notation

P 2~p!54(
m

sin2
pm

2
. ~26!

The excitations may take a momentum

Pm~a!5pnm~a!, ~27!

at
6-7
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FIG. 6. The propagator ind52 dimensions in the~a! ferro-, ~b! antiferromagnetic phase and~c! at the phase boundary.
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from the vacuum wherenm(a)50 or 1. The relation be-
tween the index 1<a<2d and the vectornm(a) is

a511 (
m51

d

nm~a!2m21. ~28!

It is then advantageous to split the

B5$km , ukmu<p% ~29!

Brillouin zone into 2d restricted zones,

Ba5H ukm2Pm~a!u<
p

2 J . ~30!

The fluctuations around an extremum which is at the sa
time a minimum of the propagator are the particle like ex
tations. In this manner the single quantum fieldf(x) might
describe several particles at the same time. We will use
restricted zone notation in each phase and will see that
the particle modes survive in the continuum limit~see
Fig. 6!.

A. The extrema of the free propagator

In order to distinguish the particle like modes from oth
excitations we have to locate the extrema of the propaga
The derivative of the inverse propagator,

dG21

dps
52 sinps„122c2P 2~p!…, ~31!

shows that the propagator has indeed 2d extrema at the cen
ters of the restricted Brillouin zones. The other extrema s
isfy the equation

P 2~p!5
1

2c2
, ~32!

which are maxima. The inverse propagator takes the val

G21
„Pm~a!…5M L

2
„d~a!,c2…1m̃L

2 , ~33!

at the center of the Brillouin restricted zones where the t
variables functionM L

2 is defined in Eq.~17! and
04500
e
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e
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d~a!5(
m

nm~a! ~34!

is the number of dimensions with antiferromagnetic exci
tions.

The second derivative of the propagator is

]2G21

]ps]pr
52drs cosps„128c2P 2~p!…

18 sinps sinpr„12c4P 2~p!2c2…. ~35!

The Brillouin zoneB1. We find

]2G21

]pi
2 U

p5P(1)

52, ~36!

so the Bloch waves of the longest wavelength zone are
ways particle like.

The Brillouin zoneB 2d.

]2G21

]pi
2 U

p5P(2d)

522~128dc2!. ~37!

The right hand side is positive, andB 2d describes particle
like excitations in the region of the coupling constant spa
considered in the previous section.

The Brillouin zonesBa , a52, . . . ,15. We present here
the casea52 only wherePm(2)5(p,0,0,0),

]2G21

]p1
2 U

p5P(2)

522~128c2164c4!,

]2G21

]pl
2 U

p5P(2)

52~128c2148c4!, ~38!

for l 52,3,4 and

]2G21

]pm]pn
U

p5P(2)

50 ~39!

for m5” n. The other zones yield similar result and they co
tain no extrema but saddle points only.
6-8
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Thus one finds two particle modes in the phases con
ered. The other 14 reduced Brillouin zones have excitati
which are nonparticle type.

B. The continuum limit

In order remove the 14 unusual excitations found ab
we take the continuum limit,a˜0. This is quite a simple
procedure in the mean-field approximation where the qu
tum fluctuations are kept noninteracting. We keep the m
parameterm2 of the Lagrangian cutoff independent in th
approximation somL

25O(a2).
The propagator

G21~p!5m̃L
21P 2~p!2c2P 4~p!, ~40!

yields

lim
p˜0

Ga
21~p!5m̃L

2~a!1Z~a!p21O~p4!, ~41!

for the fluctuations inB1 andB16. The mass and the wav
function renormalization constant are given in Table I
a51 and 16.

Notice that the finiteness of the mass inB16 requires a
tree-level renormalization ofc2, such that M L

2(4,c2)
5O(a2). The continuum limit of the mean-field solution
achieved at the critical point CR of Fig. 5.

In the other restricted Brillouin zones in each phase
get

lim
p˜0

G21
„P~a!1p…5p2@128c2d~a!#2p82@128c2d~a!#

14d~a!216c2d2~a!1M̃2~a!, ~42!

where d(a) is given by Eq.~34! and p85P(16)2p. The
particular form ofM̃2(a) depends on the phase and diverg
asO(a22) when the masses in thea51 anda516 regions
are kept finite.

The mass spectrum. We define the chiral linesxP , xF and
xAF as the lines where the masses of the two particlesm̃L

2(1)

andm̃L
2(16) are degenerate in each of the three phases

sidered above. These lines are actually given by the equa
M L

250 @see Fig. 5~b!#. As this line for mL
2,0 is also the

F-AF phase transition line,xF andxAF are actually one and
the same line. The energy density and the particle con
approaching this line from the two sides are the same.
worth to remind that in this case the even and odd sublatt
are decoupled and that the difference between the upper

TABLE I. The parameters of the propagator forBa , a51 and
16.

Phase m̃L
2(1) m̃L

2(16) Z(1) Z(16)

P mL
2 mL

21M L
2 1 21132c2

F 22mL
2 22mL

21M L
2 1 21132c2

AF 22mL
223M L

2 22mL
222M L

2 1 21132c2
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lower side of this line lies on the sign of the ferromagne
condensate on each of these sublattices.

The particle of the restricted zoneB1 is the lighter one in
the ferromagnetic phase and on the left of the chiral linexP
in the paramagnetic phase. The staggered excitations ofB 2d

are the lighter ones in the antiferromagnetic phase and on
right of xP . The excitations of the restricted zoneB 2d are
always massless along the transition lineP2AF.

C. The momentum conservation

The momentum is not conserved in the antiferromagn
phase because the particles may exchange momentum
the inhomogeneous vacuum. One can recover the momen
conservation by the introduction of the momentum

pm˜pAFm5pm~modp!, ~43!

where the quanta of the momentum which can be borrow
from the vacuum is removed. Whenever this happens
particle type changes. The simultaneous shift of all com
nents,p˜p1P(2d), corresponds to the exchange of the tw
particles, 1↔2d.

VI. THE SYMMETRIES

The phase structure and the order parameter of the m
is quite involved so it is all the more important to find th
symmetries relevant to the phase transitions. We can iden
two kind of symmetries, one which is realized at certa
points only of the phase boundary and others which dis
guish the different phases.

A. Chiral symmetry

There are two particles in the model so one expects
the theory where the two particle species become symm
cal might be special. The transformation

x: f~x!˜~21!(
m

xm
f~x!, ~44!

which amounts to the shift

pm˜pm1Pm~2d! ~45!

connecting the particle species will be called chiral transf
mation @19#. It always leaves the ultralocal even potent
energy invariant. The propagator and with it the kinetic e
ergy changes as

G21~p!5P 2~p!2c2P 4~p!1m̃L
2

˜12P 2~p!2c2@12P 2~p!#21m̃L
2

5~2118dc2!P 2~p!1~2c2!P 4~p!

1M L
2~d,c2!1m̃L

2 . ~46!

The theory which is invariant underx,
6-9
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c25
1

4d
, c450, ~47!

will be called chiral symmetrical. Note that mass parame
of the kinetic energy is vanishing,M L

2(d,c2)50 and the
two particle species are degenerate in such a theory.

The operatorP65 1
2 (16x) projects on the fields belong

ing to the even or odd sublattices,

P6f65f6 . ~48!

The kinetic energy couplesf1 andf2 in general. Since the
transformation~44! acts as

f6˜6f6 , ~49!

the fieldsf1 andf2 decouple in the chiral invariant theory
This decoupling gives another insight into the dynamics
the phase transitions. The chiral theory contains two in
pendent and equivalentf4 theories. If they are in the sym
metry broken phase then their condensate has the sam
solute magnitude. The relative phase is undetermined
will be the result of the microscopic differences between
fluctuations of the two fields, in a manner similar to a spo
taneous symmetry breaking. The ferromagnetic phase is
alized when the sign of the condensates agree. The sign i
opposite in the antiferromagnetic case. The spontane
symmetry breaking is the result of the infrared modes in
independent theories. In case when the sign of the con
sate happens to be different then the resulting vacuum o
original theory which contains both sublattices has an ul
violet condensate. In this manner the original, infrar
mechanism appears in the ultraviolet and generates dyn
cal symmetry breaking for the observables of the comp
lattice.

B. Chiral bosons

The origin of the chiral symmetry becomes clearer
introducing the hypercube variablesxm52ym1nm wherenm

labels the different sites of the elementary cell of the~1,2!
antiferromagnetic vacuum and the chiral fields@20#

fn~y!5fa~y!5f„2y1n~a!…. ~50!

We need the linear superpositions@21#

f̃a~y!5Aabfb~y!, ~51!

where the matrix

Aab522d/2~21!n(a)•n(b) ~52!

performs theZ2 Fourier transformation in the elementa
cell. Since

~A2!n,n8522d(
m

~21!m•(n1n8)5dn,n8 , ~53!

the inverse Fourier transformation is
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fa~y!5Aabf̃b~y!. ~54!

The chiral transformation is diagonal on the chiral fie
basis,

x: fa~y!˜x„n~a!…fa~y!, ~55!

where

x~n!5~21!(
m

nm
5~21!E(0)•n. ~56!

The vector of the last expression is defined as

Em~k!5H 1 k<m,

0 otherwise.
~57!

C. Space-time inversions

The space-time inversions will serve two purposes:
the one hand, they demonstrate the formal similarity betw
the fieldfa(y) and the chiral fermions. On the other han
they are the symmetries which distinguish the ferromagn
and the antiferromagnetic phase. The inversionI n of the co-
ordinate

I n : xm
˜I nxm5~21!dmnxm, ~58!

is defined in such a manner that it maps the elementary c
into each other. It flips them-th components of the elemen
tary cell vectornm ,

I m : f~y!˜Umf~ I my!, ~59!

where the matrixUm acting on the elementary cell is define
as

~Um!n,m5H 1 if nn1mn5dm,n~mod2!,

0 otherwise.
~60!

The space inversion,P5) l 52
d I l , is

P: f~y!˜UPf~Py!, ~61!

where

~UP!n,m5S )
l 52

d

Ul D
n,m

5H 1 if n1m5E~1!~mod2!,

0 otherwise.

~62!

The field UPf(y) will be called the P-helicity partner o
f(y). The combined effect of the time inversionT5I 1 and
the space inversion is represented by

PT: f~y!˜UPTf~PTy!, ~63!

~UPT!n,m5S)
m

UmD
n,m

5H 1 if n1m5E~0!~mod2!,

0 otherwise.

~64!
6-10
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UPTf(y) will be called the PT-helicity partner off(y). Fi-
nally we definer as

r5H P even d,

PT odd d,
~65!

which maps the fields of the two sublattices,f1 andf2 into
each other in a specific manner.

We found that the chiral transformation is diagonal a
the space-time inversions are nondiagonal in the chiral fi
basis. The situation is just the opposite after a Fourier tra
formation. First we show that the Fourier transformed fie
are eigenvectors of the space-time inversions.Ũm which rep-
resentsI m on the Fourier transformed elementary cell
given byŨmA5AUm , what yields

~ŨP!n,n85~AUPA!n,n8

522d(
m

~21!m•(n1n8)1n•E(1)

5dn,n8~21!n•E(1)

5dn,n8~21!( l 52
d nl. ~66!

In a similar manner we have

~ŨPT!n,n85dn,n8~21!(m51
d nm5dn,n8x~n!. ~67!

Thus the Fourier transformed fields have well defined sp
and time inversion parities,

sP5~21!( l 52
d nl, sT5~21!n1

. ~68!

On the contrary, the chiral transformation becomes n
diagonal after a Fourier transformation,

x: f̃a~y!˜f̃ā~y!, ~69!

with ā52d112a. The corresponding transformation of th
vector indexnm(a) is

x: n˜n̄5n1E~0!~mod2!. ~70!

D. Bosonic chiral theory

It is worthwhile to compare our result with the fermion
case.

Particle species. The naive fermion theory has 2d species
in lattice regularization which is just the number of restrict
Brillouin zones in the antiferromagnetic phase~1,2!. Out of
the 2d restricted Brillouin zones only two contain partic
modes for smallc4. The helicity, the projection of the angu
lar momentum on the momentum of a scalar particle is id
tically vanishing. Nevertheless one can construct a pai
scalar fieldsf6(x)5fs(x)6fps(x), which are exchanged
under space inversion by the help of a scalar and a pse
scalar field,fs(x), fps(x), respectively. The chiral spinor
are exchanged by the space inversion,UP5 ig0. By analogy
04500
ld
s-
s

e

-

-
f

o-

we may callf6(x) andfa(y) chiral fields. The excitations
aroundp5P(1) andP(16) of the Brillouin zone correspond
to the slowly varying fieldsfs(x) andfps(x), respectively.
Note that the projection of the angular momentum on
momentum is the same, 0, for all members of theO(d) mul-
tiplet of the chiral scalar particle as for the~111!-
dimensional fermions.

Chiral symmetry. The chiral spinors decouple in the mas
less fermionic theory as our chiral boson fields do at
theory ~47!. The analogue of the discrete chiral transform
tion, c˜g5c, is f˜xf, given by Eq.~44!. The standard
representation for the Dirac bispinors provides fields w
well defined parity similar to the Fourier transformed chir
fields of the scalar model.

Chiral charge. The chiral charge of a chiral spinor is it
eigenvalue forg5. The sum of the chiral charge is zero fo
the naive fermions on the lattice. The chiral charge of
scalar modes on the even or the odd sublattices is11 or 21,
respectively. Thus the total chiral charge is vanishing in o
model as long as there are as many degrees of freedom
the even as on the odd sublattice.

Chiral particles. The chiral fermions represent a serio
problem in lattice regularization because the theory with
single chiral fermion is not covariant under space inversi
The realization of this condition meets difficulties in th
usual lattice theories@22#. There is more flexibility in the
scalar model where we might as well use the symmetrica
the anti-symmetrical combination of the two particle mod
in B1 and B 2d for the chiral symmetrical theory. In fact
these modes are degenerate and decouple. Such a com
tions correspond to the fieldsf6 constructed in Eq.~48!.
Since these fields have no interactions between themse
one of them can be set to zero. The resulting model wh
exists only at the chiral point contains a single particle w
nonvanishing chiral charge and a freely adjustable mass
coupling constant,

L65
1

2
~]mf6!21

m2

2
f6

2 1
l

4
f6

4 , ~71!

in the continuum limit of the mean-field approximation.
The no-go theorem,@22#, about the impossibility of hav-

ing a single fermion with nonvanishing chiral charge h
topological origin. The nontrivial elementary cell of the a
tiferromagnetic phase which becomes small in the continu
limit offers the possibility of avoiding the usual transform
tion rules with respect the space-inversions and thereby
cumvents the problem at least for bosons. The difference
the physical properties of a chiral and an ordinary boson w
well defined parity will only be seen after coupling the chir
boson to other particles.

When the theory with broken chiral symmetry is cons
ered then the chiral fieldsf6 are coupled. The low energ
elementary excitations are made of the slowly varying fie
f6 as

f̃65f16f2 . ~72!
6-11
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Ther parity of the fieldf̃6 is 61 and it belongs to the zon
B1 andB16. The effective theory obtained on the tree lev
Eq. ~18!, is

L5
1

2
~]mf̃1!21

1

2
~]mf̃2!21

m1
2

2
f̃1

2 1
m2

2

2
f̃2

2

1
l

4
~f̃1

4 1f̃2
4 16f̃1

2 f̃2
2 !, ~73!

for low enough energy where the further influence of t
higher order derivatives on the propagator is negligible.

E. The symmetries of the phase diagram

For the more complete characterization of the symmet
of the model we finally introduce the discrete analogue of
charge conjugation to our real field,

g: f~x!˜2f~x!. ~74!

The symmetries of different regions of the coupling const
space (mL

2 ,c2) is shown forc450 in Table II. One can see
that the ferromagnetic condensate is detectable by the in
nal space order parameter only. The dynamical breakdow
the space inversion symmetry in the vacuum is character
of the antiferromagnetic phase. In agreement with this
mark the particle scattering off such a vacuum may borr
the momentumP(2d) and change its parity.

TABLE II. The symmetry of different regions of the couplin
constant space. A symmetry can be manifest (A), broken explicitly
~E!, spontaneously by the IR modes~S!, or dynamically by the UV
modes~D!.

Phase x r g

P E A A

F E A S
AF E D D
CR A A A

xP A A A

xF A A S
xAF A D D
o,

04500
,

s
e

t

r-
of
tic
-

VII. CONCLUSION

We showed an interplay between the symmetry break
patterns in the internal and the external space realized by
higher dimensional pieces of the kinetic energy term of
action of af4 theory. The strongly distance dependent int
actions described by these pieces generate nontrivial elem
tary cells in the vacuum and render the dynamics of
system somewhat similar to solid state physics.

A complex phase structure was found with a number
commensurate incommensurate transitions. Concerning
elementary excitations there are two particle modes in
vicinity of the antiferromagnetic~1,2! phase, the analogue
of the acoustic and optical phonons of the solid states
cause they correspond to the in phase and the out of p
oscillations in the elementary cell. The emergence of
nonhomogeneous condensate of the phase~1,2! reduces the
translation invariance into translation by even number of
lattice spacing. Nevertheless no Goldstone bosons app
This is because the condensate is at the cutoff scale w
the continuous translation symmetry is broken by the re
larization.

The space inversion exchanges the two particles of
theory. This opens the possibility of constructing chir
bosons on the lattice for such a choice of the coupling c
stants where these two particles decouple. We showed
the dynamical breaking of the space inversion symmetry
characteristic to the formation of the nontrivial elementa
cells of the antiferromagnetic phase.

We believe that the phenomena mentioned in the fram
work of the scalarf4 model are generic and can be found
any bosonic model. A theoretical test of such a model a
more realistic effective theory is the possibility of removin
the length scale of the elementary cell of the vacuum in or
to suppress the non-unitary processes related to the cre
of the lattice defects@19,23,24#. The period length of the
vacuum can be sent to zero in the one-loop approxima
@25#. It remains to be seen if this result generalizes to hig
loop order.
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