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Antiferromagnetic ¢* model. I. The mean-field solution
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Certain higher dimensional operators of the Lagrangian may render the vacuum inhomogeneous. A rather
rich phase structure of the* scalar model in four dimensions is presented by means of the mean-field
approximation. One finds para-, ferro-, ferri-, and antiferromagnetic phases and commensurate-
incommensurate transitions. There are several particles described by the same quantum field in a manner
similar to the species doubling of the lattice fermions. It is pointed out that chiral bosons can be introduced in
the lattice regularized theor{/S0556-282(199)04614-1

PACS numbgs): 03.70:+k, 11.30.Cp, 11.30.Qc

[. INTRODUCTION the positronium may acquire a negative energy and collapse
onto the size of the cutoff foe=0(1). Thecondensate of
Only renormalizable quantum field theory models arethese bound states breaks the chiral symmetry and the IR
considered in particle physics. This was explained traditionfeatures of the resulting vacuum are modified when com-
ally by inspecting the UV divergences generated by the opPared to the perturbative ones.

erators in the framework of the perturbation expansion in hir':guzlitlﬁﬁthee?er?(())rmmtgliszt:(;tltrrlgjgg?Qy%iszr?k?éﬁ fr:eegggp;os-
homogeneous background field. The nonrenormallzablIe models, grand unification, electroweak theory, QCD,

theorl_es were rejected_due to the need of infinitely many, ED, condensed matter physics, and solid state physics
couplmg constants. This argument has beep fL_thher develinich appear as different “scaling islands” in the coupling
oped in recent decades. First came the realization that whghnsiants space. One operator which is irrelevant in the vi-
really matters in particle physics are not the true UV diver-cinity of one such fixed point may turn to be relevant around
gences, because we do not have a complete knowledge of th@sther ond4].
theory of everything and consequently we work with effec-  Tree-level effectsThe power counting argument traces
tive theories. The characterization of the renormalizable opdown the influence of the loop corrections to the scaling
erators was modified by looking into their importance at lowjaws. The tree level effects of certain operators might be
energies. In particular the equivalence of the renormalizabilmuch more complicated in relating different length scales
ity of an operator with its relevance at the UV fixed point hasand they may generate new important coupling constants
been establishefil]. Nonrenormalizable operators are ex- which defy the classification based on a perturbative imple-
cluded because they do not change the universality class; i.enentation of the Wilson-Kadanoff blocking procedus.
their influence on the dynamics decreases as we move awde cutoff is usually ignored in the tree-level solution though
from the UV scaling regime towards the physical energyit is actually present in any consistent regularization of the
scales. path integral. When the important configurations, the saddle
There are different mechanisms which nevertheless magoints, have length scales close to the cutoff these tree-level
turn a coupling constant which is found irrelevant in thecutoff effects become more importaf®]. In fact, if the
usual treatment into an important parameter of the theory. semiclassical vacuum is nonhomogeneous the successive
Loop correctionsOnce the anomalous dimension is takenelimination of the degrees of freedom in the blocking proce-
into account in the power counting argumé@i new rel-  dure should be performed in the semiclassical approxima-
evant operators at the UV fixed point can be generated. Thgon. The nontrivial saddle points generate new contributions
physical picture of the strong coupling massless QEDto the scaling law$7].
vacuum|[3] which suggested this natural generalization of The surprisingly strong tree-level effects of the nonhomo-
the power counting method is based on the observation thajeneous saddle points raise the following issue. The useful-
ness of the ferromagnetic condensate in mass generation has
long been been recognized in particle physj&. The

*Email address: branchina@crnvax.in2p3.fr vacuum is a coherent state of particles with zero momentum.
"Email address: mohrbach@crnvax.in2p3.fr What happens if particles with nonvanishing momentum
*Email address: polonyi@fresnel.u-strasbg.fr form a condensate? A close similarity can be found in the
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charge or spin density wave phases of sof@ls The emer- conservation is traded into a “flavor” nonconserving dy-
gence of these states from the normal ground state is a highlyamics where the particles in a given “flavor” state propa-
involved dynamical nonequilibrium problem. Here we aregate in a homogeneous vacuum. When the momerf¢m
interested in the properties of the static modulated phaséiverges then the space-time structure of the “flavor” chang-
only. ing processes remain unresolved for the Igkiysica) mo-
The field expectation value in this vacuum is a nontrivialmentum observables.
function of the space-time coordinates with a characteristic [N the lattice regularized version of our model we find the
length given by the inverse of the typical momentum of theusual phases of solid state physics which belong to the para-,
particles in the coherent state. ferro-, ferri-, or antiferromagnetic vacuum. This rich phase
An oscillating saddle point configuration is formally simi- Structure is due to the presence of more than next neighbor
lar to the Nel state of the antiferromagnetic Ising model, thecouplings. In this case the dispersion relatitiee quadratic
ground state of solids or the charge density wave state. Sudiart of the action at vanishing figlthas two mimima ap”
a formal similarity leads to far reaching analogies betweer=0 and atp*=P#*=/a. The ferromagnetic or antiferro-
solid state physics and the phenomenology of this condermagnetic vacua occur when the first or the second minimum
sate. The nonvanishing momentum of the condensed pafecome negative. Having taken into account the condensa-
ticles extends the symmetry breaking from the internal symtion of the instable modes, the two minima of the new dis-
metries to the external ones. The result is the dynamicd])erSiOI”l relation COTI’GSpOﬂd to elementary excitations which
breakdown of the space-time symmetries. It is well knownallow us to identify two particles described by the same
that the ground state of the translational invariant Hamil-quantum field.
tonian for photons, electrons and massive positively charged The unusual features of the model can be traced back to
ions is not translational invariant for certain densitisslid ~ the fact that the condensate and the dynamical symmetry
state crystals Due to the observed homogeneity of the breaking are driven by the kinetic rather than the potential
space-time in the particle reactions the absence of the dyenergy terms of the action. It has already been remarked that
namical breakdown of the external symmetries was alwaye kinetic energy becomes dominant in high temperature
assumedlo]’ or taken for granted in high energy physics. QCD and leads to the dynamical breakdown of the funda-
In this paper we will consider the case of a single com-mental group symmetry in high energy processe. This
ponent self interacting scalar field theory in the presence offime the kinetic energy drives the formation of the nontrivial
higher derivative terms. The semiclassical solution of ourelementary cells in the ground state which break the space-
model reveals the possibility of breaking the space-timdime inversion symmetries and introduce a nontrivial length
symmetries at the cutoff scale in a manner which is compatscale in the vacuum.
ible with the homogeneity of the space-time at finite obser- Here we consider the theory in the mean-field approxima-
vational scales. The spontaneous breakdown of the interndPn. The organization of the paper is the following. In Sec.
symmetries is widely accepted and used in quantum fieldl we introduce our higher derivativé* scalar model. The
theories. The saddle point approximation which is based offee level phase structure of this model in dimensissd is
the construction of a condensate in the vacuum can be usddiesented in Sec. Ill. A more detailed analysis in the vicinity
without difficulties in exploring the possibility of the spon- of the simplest antiferromagnetic phasedef 4 is performed
taneous breakdown of external symmetries, too. In this cas@ Sec. IV. The elementary excitations are identified by the
the condensate is obviously inhomogeneous. This inhomogéwelp of the free propagator in Sec. V. The symmetry aspects
neity amounts to a periodic structure in our case. The appapf the phase diagram and the interpretation of the different
ence of an elementary cell repeated periodically in theparticle modes of the system is the subject of Sec. VI. Fi-
vacuum manifests itself in the possibility of exchanging non-nally, Sec. VIl is for the conclusions.
vanishing momentum between the propagating particles and
the particles condensed in the vacuum and in the presence of Il. HIGHER DERIVATIVE SCALAR MODEL

several branches in the dispersion relation, such as the acous- . . L .
tic and optical phonons in the solid state crystals. The To study the impact of higher derivative terms in the case

vacuum of the model considered in this paper consists of _Qf the single component scalar model we choose the follow-

condensate of particles with a given momentysti=pP#, N9 action:

Thus the inhomogeneity of the vacuum leads to the noncon- 1 (27)?

servation of the momentunp”— p# =+ P*. We constrain the s[q)(x)]:J ddx[_aﬂqnx)/c(_z_m)a#q)(x)
external symmetry by allowing those translations only which 2 A

bring one elementary cell into another. The momentum de- m2 A

fined by this subgroup of the original external symmetry +—<I>2(x)+—d>4(x)], 1)
group, pphys= P* mod(P#), is the analogous of the Bloch 2 4

momentum in solid state physics and it is obviously con-nere

served. The different branches of the dispersion relation are

interpreted as different “flavor” states of the elementary ex- K(z)=1+cyz+c,7°. 2
citations, the particles of the model. The umklapp process,

where a momentunt P# is exchanged with the vacuum is The dimension of the higher derivative terms is taken into
then a “flavor” changing reaction. Thus the momentum non-account by the introduction of the scale paraméter
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Models with higher order derivative terms have alreadylike the lattice regulator is used, there are two length scales
been considered recentl§2—15. We suppose first that the in the antiferromagnetic vacuum, the periodic length of the
vacuum is homogeneou8p (x))=const. The quantum fluc- condensate and the regulator itself. The phase structure is

tuations are then plane waves with the eigenvalues amazingly rich in this case due to the commensurate-
incommensurate phase transitions. We begin our investiga-
4 6 tion by looking for the lowest action solution of the equation

G Yp?=m?+ p2—c2(2w)2%+c4(2w)4% (3)  of motion for Eq.(1).

for the second functional derivative of the action. Modes A d=1

; ; —1(2 '
with negativeG™~(p“) are unstable and generate a conden- We h ved ically the finite diff i
sate. Whem?<0 andc;=0 we have a ferromagnetic insta- _ h € d{if\f/e sotve .”“m‘j\“,cf;y e(;r;{?li erer;]ce equation
bility. After filling up the most unstable modp=0, the N WO difierent regimes aan ~a, wherea s
system stabilizes itself and the only change in the interactioff® Step sizeregulatoy of tble equation.
is the apparence of a three particle vertex which describes the The continuum theoryd” “>a. The removal of the cutoff
processes where a particle is exchanged with the condensafe!S trivial for the tree level classical equation and one finds
If G~(p?) develops a second minimum pt:0, new par- the solution of the differential equation as-»0. In order to
ticles appear in the system. Wheg becomes largéand for find the lowest action solution we considered the configura-
simplicity we limit ourselves to consider the casé=0) an  tions which yield finite action density,
instability shows up for

107 (1 (2m)? (2m)*
€= —J dx{ = 9P (x)| 1+ c,——5— 0+ ¢y——7— 2| dD(X)
C2 /(32_404< 5 2p2< C2 [Ca—4Cy 4 TJo 12 A A
2¢c, 4Ach (2m)" 3z 2¢c, 4cy “ 2 N
+7(I)2(X)+ Zq)A(X)] (6)

Thus a condensate of particles with nonvanishing momenta
is formed. The filling of this condensate by the most unstable
mOdevpgond: c,A%/2(2m)%c,, modifies the interaction be- The solutions of the variational equation are not constant
tween the plane wave modes in a rather complicated mannéince €(0)>€(pZ,,o). At the same time thab* potential
and particles with different momenta may appear in theenergy keep$®(x)| bounded. Thus we conjecture that all
stable condensate. It is reasonable to expect that the Fourig@lutions with finite action density are periodic and we im-
transform of the field expectation value is peaked aroundpose periodic boundary conditions on the figlg(x) = ®(x
p2: pgond' Its spread is a measure of the strength of thet T). The minimization of the action density with respect to
interaction within the condensate. Notice that the action igP(x) andT indeed leds to periodic solutions, one of them is
bounded from below foi >0 becauseS—x either when depicted in Fig. {a). It was checked by increasing the vol-
p2—o or when the amplitude of the oscillations tends tou?eT that the minimal action configuration remains peri-
infinity. odic.

Wg will explore the dynamics of the effective thed) This result can be compared with the a variational ap-
in the mean-field approximation. The first step will be theProach where the form
determination of the phase structure. The spectrum of the
free quantum fluctuations will be studied later. ®(x)=Asinwx (7

is assumed. The minimization of the action density with
IIl. THE MEAN-FIELD PHASE STRUCTURE

=27l w yields
In this section we classify the different phases of the sca-

lar theory(1) at the tree level. We identify the order param- CoA2 3c
eter with the condensatép (x)), which is a nontrivial func- w2:2— 1+ 14 8
. . . 3(2 2 2 | ( )
tion whose Fourier transform is (2m)7Cy C5

& dy, AipX and

Dyac(p)= | dXeP(D(X)). 5

A1 9

The ferromagnetic condensate is obtained ﬁ;r,ac(p) €~ 32 ©

=d 45 (p). For an antiferromagnetic condensate the func-

tion ®(p) has a peak ap~pmin- One may also have the  One can see that the periodicity length is determined by
ferrimagnetic phase where, ,.(p) displays two peaks, one the c; and the amplitude is controled by the ter?. By
atp=0 and another gi=p,;,# 0. When a consistent cutoff choosing for examplec,(27)?=1, c,(2m)*=0.1, m?=
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(1,3) in lattice regularization.
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—0.1A% and A=0.1A3, these two methods give\,,, ishing momentd17]. One can easily find the simple com-
=10.65A"2 A, =105N "2 ¢,,,=—120.75\ and mensurate phasell= 1, N not too large, cf. Fig. 2. The high
€yar=—117.94\. (M,N) commensurate points are presumably washed to-
Lattice regulated modelA ~*~a. The periodicity length, gether with the incommensurate regions when the quantum
| =0(Peond), Of the solution of the continuous differential fluctuations are taken into account.
equation is a “floating,” analytical expression of the cou- We will study the particle content of the simplest antifer-
pling constants. This may change when finite differenceeomagnetic phase,M,N)=(1,2) in the next section. The
equations are considered. In fact, the periodicity length of thgeneralization of our method for the higher commensurate
condensate may be incommensuidté] with the numerical theories is possible though complicated. The spectrum of the
discretization of the differential equatiohanda are com- elementary excitations of the incommensurate theories is
mensurate and belong to the clasé,(\) whenMI=Na, M rather involved and qualitatively different8].
and N being relative primes. In this cadelocks in as a The phases (N) with odd N are of ferrimagnetic type.
function of the coupling constants and creates a devil's stairThis is because there are an odd number of lattice field vari-
case. A similar phenomenon was analyzed for models wherables within a period which in general do not add up to zero,
the kinetic energy is quadratic but has minimum at nonvanef. Fig. 1(b).

045006-4



ANTIFERROMAGNETIC ¢* MODEL. I. THE MEAN- ... PHYSICAL REVIEW D 60 045006

40 the continuum theory i©(d) invariant and the most un-
stable modes at the minimum of the dispersion relation are
found on aS,_; sphere. The minima of the dispersion rela-
tion should form a discrete set of points in the restricted
Brillouin zone in order to have particle like excitations. The

3.0
degenerate modes on this sphere may achieve this by creat-
ing a complicated dynamic&(d) symmetry breaking pat-
tern. The staggered antiferromagnetic order can be realized
% 20 in dag dimensions, &dae<d. For the caseslyr=d, d

—1 anddae<d—1 we will use respectively the names rela-
tivistic, nonrelativistic and anisotropic vacuum.

Continuum theoryA ~'>a. We found the local minima of
the action density corresponding to the relativistic and the
nonrelativistic vacuum ird=2 as depicted in Fig. 3. The
latter is the absolute minimum. Inspired by the numerical
results we have tried the following ansatz:

1.0

Do (X, y)=Asinwxsinwy, (10
0'00.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0
c2
FIG. 2. The phase diagram for the lattice regularized model ir@Nd
d=1. F stands for the ferromagnetic phase and the numbers denote
the parameteN of the antiferromagnetic phase K,
Dprei(X,Y) =Asinox. (13)

The complex phase structure of the lattice theory should
be present in any other regularization as well when the regu-

lator is introduced in a consistent manner at the tree levelhe variational method gives acceptable but less accurate
One may take the sharp momentum space cutoff, as an exasylt than in the one dimensional case dag,(x,y) due to
ample. Its implementation on the tree level leads to the acie tree-level interactions which split the degeneracy of the
ceptance of_ field configurations as_p0_53|ble saddle pointsyndensate alp|=Peong. The highly nontrivial effect of
whose Fourier components are vanishing for momenta besych a deformation of the saddle point on the elementary
yond the cutoff. We believe that the solutions of the Euler-gycitation will be investigated below.
Lag_range equations wh.ich satisfy such a cons.,t.raint display The issue of th@(d) symmetry breaking pattern can be
similar commensurate-incommensurate transitions thougRetter studied in lattice regularization where the regulator is
the details of the phase diagram may differ. explicit already at the tree level.
Lattice regulated model\ ~*~a. The lattice regulated ac-
B.d=234 tion in d>1 dimensions written in terms of the dimension-
For d>1 the staggered order generated dyis more less variables”, ¢=a%?"1®, mf=m?a? and the unit vec-

complicated. This is due to the fact that the kinetic energy otors (e,)"= 4, is

W
Y
R
HHRHn
SRR
R HTHHTHh
R T T T8,

R RS
T
TR W
W
N

\
X R 0
R ™
T HmHHt
HHn

R
R
RN
R

i
R
AR

W Y
RN
NHITRHR
R

(b)

FIG. 3. The elementary cell of the antiferromagnetic vacuum configurations in the continuum as the functidngaf=2. (a)
Relativistic vacuum, a local minimunib) The nonrelativistic vacuum, the absolute minimum.
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Gc2

(b)

FIG. 4. The phase diagrams (@ d=2, (b) d=3, and(c) d=4. The antiferromagnetic phase is found below the solid line. The lower
region below the dashed line is the phase (1,2). The hibhghases are not shown.

1
Se(x)]=2 [—zqo(x) Ae(x)+2 (BLe(x+e,)+e(x—e,)]+Cle(x+2e,)+ o(x—2eu)]+Dlo(x+3e,)
X I

+o(x—3e,) )+ E (E[e(x+e,t+e,)+2¢o(x+e,—e,)+o(x—e,—e,)]|+F[o(x+2e,+e,)
nFV

+o(x+2e,—e,)+o(x—2e,+e,)+o(x—2e,—e,))+G X (p(x+e,+e,+e,)+3¢(x+e,+e,—e,)
MFEVED

mﬁ 2 A 4
+3¢(x+e,—e,—e,)+te(x—e,—e,—¢,))) +7(p (x)+ 29 ), (12

where the coefficient&,B,C,D,E,F,G are defined by IV. THE c,=0 PHASES

We will determine the boundary of the para-, ferro-, and
the (1,2) antiferromagnetic phases by means of the mean-
field method. In the rest of this paper we will constrain our-

A= —2d+(4d2+2d)c,— (8d3+12d?)c,,

B=1—4dc,+(12d?+6d—3)c,, selves to the casg,=0. The explicit apparence of the cutoff
makes the action witle,=0 bounded from below.
C=c,—6dcy, We seek the vacuum in the form
D=c,, dar
()= po+ p1(—1) 2, ¥, (14)
E=c,—6dc,,
where ¢y and ¢4 are variational parameters adgr is the
F=3c,, number of antiferromagnetic directions. The action of the
lattice Laplace operator on the vacuum is
G:C4. (13) dar
Only the ferromagnetic phase and the antiferromagnetic He) Zl Lo(xte,)+ o(x—e,)=2¢(x)]
phase(1,2) were locatedFig. 4 by a numerical minimiza-
tion of the action. The absolute minimum of the action is = —4dae(e(X) = ¢o), (15

relativistic in the(1,2) antiferromagnetic phase, the nonrela-
tivistic and anisotropic vacua lie higher as local minima.  which yields
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m? % tice to split into two different noninteractingven and odd
sublattices. Approaching this line from the ferromagnetic

P side we have a ferromagnetic condensate of the same mag-
N / nitude and sign in each of these sublattices. Approaching this
line from the antiferromagnetic phase we have two ferromag-
netic condensates of the same magnitude but opposite sign in

% the two sublattices. We will show later that on this line our

\x

theory is the superposition of two independent standard fer-
N X romagneticé* models.
(b) Them?>0 case.

_ The transition line between the paramagnetic and the an-
FIG. 5. The phase boundary between the paramag(®@tider-  tiferromagnetic phases is given by the equation
romagnetic(F) and theN=2 antiferromagneti¢AF) phase forc,

=0. The chiral symmetric regionge, xar and the critical point mE_;_ME:o_ (20)

CR are on the phase boundatg) The plane (? , M 2). (b) The

plane €,,m?). The chiral linexp splits the paramagnetic phase As before at the line\ E=0, the next to neighbor coupling

into two parts. On the left ofp the particle of the restricted zone B=0. We will see later that on this line our model corre-

B, is the lighter one. The particle of the zofigs is the lighter one  sponds to the superposition of two standard paramagmétic

?hnetZEi?;r;rvigzﬁt-rsﬁtiiglowjr?thcé:vghe possible continuum limits aheories, 1fA12>0 thenB>0 and the phase is paramagnetic
point, LK. as expected. For mf</\/lf<0, B is negative but the phase

5 is still paramagnetic. The phase is antiferromagnetic when
~OK@)e(x)=M(dae C)(e(X) =0, (16) 2. "2

where
V. THE ELEMENTARY EXCITATIONS

2 _ _ _ _
M(dar,C2) = 4darK(—4dar) = 4dar(1 - 4darCo). The quasiparticles of the mean-field approximation are

(17 given by the help of the free propagator. We will obtain the
The minimization of the action density propagator in the different phases considered above. We start
with
(63,60 = 3mielt 5 (Mt Mg ap
2 2 (6(x)b(y)= pr< mie TGP, 2D
A
+ 7 (0ot 6050t + ), (18 where
givesd,r=d and leads to the phase diagram in Fig. 5. G Y(p)=m{+p,p"K(—p,p*), (22
Them?<0 case. nd
The equation a
ME=0 (19 p,=2 sin%. (23)
is a ferromagnetic-antiferromagnetic transition line. Clearly_l_he mass parameter is given b
for c,=0 there is no frustration in the system because the P 9 y
coupling constants C and E are both positive and then both mf p
of the ferromagnetic type. Foxt E>O (i.e.,c,<1/4d) the B - 5
next to neighbor coupling is also positive and then the phase mE=4 —2mg F, (24
is ferromagnetic. For the saddle point we finp%= —2mf—3/\/l E(d,Cz) AF,

—m?/\, ¢3=0. Nevertheless it is important to notice that
this phase is very different from the standard ferromagnetién the different phases. We write

phase of the theory without higher derivatives terms, where ., 5 4 ~

C=E=0 andB>0. In fact, as we will show later, in each G H(p)=P(p)—Cc,P*(p)+mi, (25
phase of our modelthe antiferromagnetic as well as the

paramagnetic and the ferromagnetic gnes find two kind with the notation

of particles. pt
On the contrary forM 2<0, B is negative(that is of the PAp)=4, sin27. (26)
antiferromagnetic typeand the phase is antiferromagnetic. m
In this case the saddle point, §§=0, p2=—mZ+ MZ/\. The excitations may take a momentum
On the transition lineM ?=0, we haveB=0. The ab-
sence of interactions between next neighbors causes the lat- P (a)=mn,(a), (27)
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(a)

FIG. 6. The propagator id=2 dimensions in théa) ferro-, (b) antiferromagnetic phase arid) at the phase boundary.

from the vacuum whereé ,(a)=0 or 1. The relation be-

tween the index &a=<29 and the vecton ,(a) is d(a)=§ n.(a) (34)
‘ is th b f di i ith antif ti it
_ is the number of dimensions with antiferromagnetic excita-
a=1+ 21 n,(a)2# L, (28 oot 9
u= .

The second derivative of the propagator is
It is then advantageous to split the

Gt
— _ 2
B={k,. kJ=m} (29 .7, Orr COPAL=8CPP))
. : 2/

Brillouin zone into 2' restricted zones, +8sinp, sinp,(12¢,P%(p)—Cz). (39

- The Brillouin zoneB;. We find

Ba=[|kM—PM(a)|sE}. (30 P

5 -2, (36

The fluctuations around an extremum which is at the same P p=P(1)

time a minimum of the propagator are the particle like exci-
tations. In this manner the single quantum fiel¢x) might SO the Bloch waves of the longest wavelength zone are al-
describe several particles at the same time. We will use th&ays particle like.

restricted zone notation in each phase and will see that only The Brillouin zones3 .

the particle modes survive in the continuum limiee

Fig. 6). Gt

ap?

— —2(1-8dcy). (37)
p=P(29)

A. The extrema of the free propagator

In order to distinguish the particle like modes from other The right hand side is positive, aril,« describes particle
excitations we have to locate the extrema of the propagatoliké excitations in the region of the coupling constant space

The derivative of the inverse propagator, considered in the previous section.
The Brillouin zoness,, a«=2,...,15 We present here
-1 , ) the casew=2 only whereP ,(2)=(,0,0,0),
dp_ =~ 2Sinp,(1-2¢P%(p)), (31
p(r &ZGfl
shows that the propagator has indeddeRtrema at the cen- (9pi =~ 2(1~8c,164cy),
ters of the restricted Brillouin zones. The other extrema sat- P=P(2)
isfy the equation 2G-1
=2(1—8c,+48c,), (38)
P*(p)= = (32) L P
P 2¢c,’
for 1=2,3,4 and
which are maxima. The inverse propagator takes the values -
G~
_ ~ =0 39
G P, (a))=ME(d(a),c)+m?, (33) PPy | ooy (39

at the center of the Brillouin restricted zones where the twdor u# v. The other zones yield similar result and they con-
variables function/\/lf is defined in Eq(17) and tain no extrema but saddle points only.
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TABLE I. The parameters of the propagator #85, =1 and  lower side of this line lies on the sign of the ferromagnetic

16. condensate on each of these sublattices.
The patrticle of the restricted zor® is the lighter one in
Phase m2(1) m?(16) Z(1)  Z(16) the ferromagnetic phase and on the left of the chiral jse
P 2 ERVE 1 1432, in the pgramagnetic_ phase. The staggereq excitatiossof
. —2an2 —2an2+/\tl p 1 _1+3% are the lighter ones in the antiferromagnetic phase and on the
, + L 2 right of xp. The excitations of the restricted zotsa are
AF —2mi-3Mp —2mp=2Mp 1 1482  4juavs massless along the transition IPe AF.
Thus one finds two particle modes in the phases consid- C. The momentum conservation
ered. The other 14 reduced Brillouin zones have excitations The momentum is not conserved in the antiferromagnetic
which are nonparticle type. phase because the particles may exchange momentum with
the inhomogeneous vacuum. One can recover the momentum
B. The continuum limit conservation by the introduction of the momentum

In order remove the 14 unusual excitations found above
= modr), 43
we take the continuum limita—0. This is quite a simple Pu=PaFu=Pul ) 43

procedure in the mean-field approximation where the quanypere the quanta of the momentum which can be borrowed
tum quctuatlzons are kept noninteracting. We keep the masg,m the vacuum is removed. Whenever this happens the
parametem® of the Lagrangian cutoff independent in this nicle type changes. The simultaneous shift of all compo-

o 2_
approximation sani =0(a?). nents,p— p-+ P(2%), corresponds to the exchange of the two
The propagator particles, k-29.
G Y(p)=mi+P%(p)—c,P*(p), (40

VI. THE SYMMETRIES

yields The phase structure and the order parameter of the model

, 1 ~5 ) 4 is quite involved so it is all the more important to find the
imG, " (p)=m(a)+Z(a)p*+0O(p%), (4)  symmetries relevant to the phase transitions. We can identify
p—0 two kind of symmetries, one which is realized at certain
points only of the phase boundary and others which distin-

for the fluctuations inB, and B;5. The mass and the wave guish the different phases.

function renormalization constant are given in Table | for

a=1 and 16. )

Notice that the finiteness of the mass fig requires a A. Chiral symmetry
tree-level renormalization ofc,, such that M7 (4.c,) There are two particles in the model so one expects that
=0(a?%. The continuum limit of the mean-field solution is the theory where the two particle species become symmetri-
achieved at the critical point CR of Fig. 5. cal might be special. The transformation

In the other restricted Brillouin zones in each phase we
get X (—(~1)2 g(x), (44)
limG~1(P(a)+p)=p?[1—8c,d(a)]—p'Y1—8c,d(a
p—0 (Pla)+p)=p 20(@)] =P 2d(a)] which amounts to the shift

+4d(a)—16c,d%(a) +M3(a), (42) p,—P,+P,(29 (45)

whered(«) is given by Eq.(34) and p’=P(16)—p. The  connecting the particle species will be called chiral transfor-
particular form ofV1?(a) depends on the phase and divergesmation [19]. It always leaves the ultralocal even potential
asO(a 2) when the masses in the=1 anda=16 regions  €nergy invariant. The propagator and with it the kinetic en-

are kept finite. ergy changes as
The mass spectruniVe define the chiral linegp, xg and 5
xar as the lines where the masses of the two partitiggl ) G H(p)=P2(p)—c,P*(p)+m;
and an(16) are degenerate in each of the three phases con- _
sidered above. These lines are actually given by the equation —1-P3(p)—c[1—P2(p) P+ m?
M?=0 [see Fig. B)]. As this line form?<0 is also the
F-AF phase transition lineyr and yag are actually one and =(—1+8dc,)P?(p)+(—cy)P4p)
the same line. The energy density and the particle content _
approaching this line from the two sides are the same. It is +ME(d,cy)+mp . (46)

worth to remind that in this case the even and odd sublattices
are decoupled and that the difference between the upper afdhe theory which is invariant undey,
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Com g 61=0, @7 BalY)=Aagbply). (54

The chiral transformation is diagonal on the chiral field
will be called chiral symmetrical. Note that mass parametebasis,
of the kinetic energy is vanishing\ f(d,cz)zo and the
two particle species are degenerate in such a theory. X' b(Y)=x(n(a)du(y), (55
The operatofP.. = 3(1+ x) projects on the fields belong-

ing to the even or odd sublattices, where

Potpi=g-. (48 x()=(—1)2 W= (~EO, (56)

The kinetic energy coupleg, and¢_ in general. Since the  The vector of the last expression is defined as
transformation(44) acts as

1 k=su,
e (49 E, (k)= "

0 otherwise. ®7
the fields¢, and¢_ decouple in the chiral invariant theory.

This decoupling gives another insight into the dynamics of C. Space-time inversions
the phase transitions. The chiral theory contains two inde-
pendent and equivalert* theories. If they are in the sym-

metry broken phase then their condensate has the same

The space-time inversions will serve two purposes: On
dpe one hand, they demonstrate the formal similarity between

solute magnitude. The relative phase is undetermined an e field 4,(y) and the chiral fermions. On the other hand,

will be the result of the microscopic differences between the edy ﬁre the_fsymmetrles_ Wh'hCh d|s_tr|rr:gg|sh tg_e f?rrr(]) magnetic
fluctuations of the two fields, in a manner similar to a spon-2"d the antiferromagnetic phase. The inversipof the co-

taneous symmetry breaking. The ferromagnetic phase is ré)_rdlnate
alized when the sign of the condensates agree. The sign is the |
opposite in the antiferromagnetic case. The spontaneous

symmetry breaking is the result of the infrared modes in thes gefined in such a manner that it maps the elementary cells
independent theorles: In case when the sign of the condemyio each other. It flips the.-th components of the elemen-
sate happens to be different then the resulting vacuum of tht%lry cell vectom

M )

original theory which contains both sublattices has an ultra-

violet condensate. In this manner the original, infrared o d(y)—=U,é(1,y), (59)
mechanism appears in the ultraviolet and generates dynami-

cal symmetry breaking for the observables of the completevhere the matrixy « acting on the elementary cell is defined

Lo XEo ] xHE=(—1)%kexH, (59

lattice. as
B. Chiral bosons 1 if n,+m,=4, ,(mod2),
. . (U,u)n,m= 0 h . (60)
The origin of the chiral symmetry becomes clearer by otherwise.
introducing the hypercube variablgg=2y*+n#* wheren* ) ) q )
labels the different sites of the elementary cell of thg2) ~ The space inversioR=II{_,l,, is
antiferromagnetic vacuum and the chiral fie|@€)]
P ¢(y)—=Upd(Py), (61)

¢n(Y)=da(y)= 2y +n(a)). (50

We need the linear superpositiofil]

where

d 1 if n+m=E(1)(mod2),
ba(Y)=Aapdp(y), sy Upna|ILU nm:[o otherwise.

where the matrix (62

The field Up¢(y) will be called the P-helicity partner of
¢(y). The combined effect of the time inversidr=1, and
the space inversion is represented by

Aaﬁ=2_d/2( —1)N(a)n(B) (52

performs theZ, Fourier transformation in the elementary
cell. Since

PT:  &(y)—Uprd(PTy), (63
(A?), =279 (—)™ (=5 (53) 1 1 if n+m=E(0)(mod2),
; (Uerdnm= P U“)n [0 otherwise.
the inverse Fourier transformation is (64)
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Upté(y) will be called the PT-helicity partner ap(y). Fi-  we may callé.(x) and ¢,(y) chiral fields. The excitations

nally we definep as aroundp=P(1) andP(16) of the Brillouin zone correspond
to the slowly varying fieldsps(x) and ¢4(x), respectively.
P evend, Note that the projection of the angular momentum on the
P=IPT oddd, 69 momentum is the same, 0, for all members of @) mul-

tiplet of the chiral scalar particle as for thé€l+1)-
which maps the fields of the two sublatticés, and¢_ into  dimensional fermions.
each other in a specific manner. Chiral symmetryThe chiral spinors decouple in the mass-
We found that the chiral transformation is diagonal andless fermionic theory as our chiral boson fields do at the
the space-time inversions are nondiagonal in the chiral fieldheory (47). The analogue of the discrete chiral transforma-
basis. The situation is just the opposite after a Fourier trangion, ¢— ysi, is ¢— x ¢, given by Eq.(44). The standard
formation. First we show that the Fourier transformed fieldsrepresentation for the Dirac bispinors provides fields with

resentsl, on the Fourier transformed elementary cell is fields of the scalar model. _ o
given byUMA=AU#, what yields Chiral charge The chiral charge of a chiral spinor is its

eigenvalue forys. The sum of the chiral charge is zero for
(Up) = (AUpA), 1 the naive fermions on the lattice. The chirgl chf'irge of the
’ ' scalar modes on the even or the odd sublatticeslior —1,
respectively. Thus the total chiral charge is vanishing in our
=27 (—q1)ym(n+n)+nEQ) model as long as there are as many degrees of freedom on
m the even as on the odd sublattice.

Chiral particles The chiral fermions represent a serious
problem in lattice regularization because the theory with a
d single chiral fermion is not covariant under space inversion.
= Snnr(—1)%1=2", (66)  The realization of this condition meets difficulties in the
usual lattice theorie$22]. There is more flexibility in the
scalar model where we might as well use the symmetrical or
~ sd 4 the anti-symmetrical combination of the two particle modes
(Upnnn = 0nn (= 1)7u=1%=380x(n). (67 in B, and By for the chiral symmetrical theory. In fact,
hese modes are degenerate and decouple. Such a combina-
jons correspond to the field$. constructed in Eq(48).
Since these fields have no interactions between themselves
one of them can be set to zero. The resulting model which
exists only at the chiral point contains a single particle with
nonvanishing chiral charge and a freely adjustable mass and
coupling constant,

= 5n,n’(_1)n.E(l)
In a similar manner we have

Thus the Fourier transformed fields have well defined spac
and time inversion parities,

op=(—1)%-aM,  gp=(-1)". (689)

On the contrary, the chiral transformation becomes non
diagonal after a Fourier transformation,

L By =By (69) 1 2, ™2 N s 71
X- oY Y), E:_E(aﬂd’:) +7¢:+Z¢t’ (72)

with a=29+1—a. The corresponding transformation of the

vector indexn ,(«) is
w(@) in the continuum limit of the mean-field approximation.

Y. h—n=n+E(0)(mod2). 70 The no-go theo_ren[,2_2], about the i_mposs_ibility of hav-
ing a single fermion with nonvanishing chiral charge has
topological origin. The nontrivial elementary cell of the an-

D. Bosonic chiral theory tiferromagnetic phase which becomes small in the continuum
It is worthwhile to compare our result with the fermionic limit offers the possibility of avoiding the usual transforma-
case. tion rules with respect the space-inversions and thereby cir-

Particle speciesThe naive fermion theory has' Zpecies cumvents the problem at least for bosons. The differences of
in lattice regularization which is just the number of restrictedthe physical properties of a chiral and an ordinary boson with
Brillouin zones in the antiferromagnetic phade?). Out of ~ Well defined parity will only be seen after coupling the chiral
the 2 restricted Brillouin zones only two contain particle Poson to other particles.
modes for smalt,. The helicity, the projection of the angu- ~ When the theory with broken chiral symmetry is consid-
lar momentum on the momentum of a scalar particle is idenered then the chiral fieldg.. are coupled. The low energy
tically vanishing. Nevertheless one can construct a pair oflementary excitations are made of the slowly varying fields
scalar fieldse-. (X) = ¢5(X) = ¢ps(X), Which are exchanged ¢. as
under space inversion by the help of a scalar and a pseudo-
scalar field,¢s(X), ¢ps(X), respectively. The chiral spinors 5
are exchanged by the space inversidp=iy,. By analogy =P, P_. (72
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TABLE Il. The symmetry of different regions of the coupling VII. CONCLUSION

constant space. A symmetry can be manife3t broken explicitly . .

(E), spontaneously by the IR modéS), or dynamically by the UV We shpwed an interplay between the symmetr)_/ breaking

modes(D). patterns in the internal and the external space realized by the
higher dimensional pieces of the kinetic energy term of the

Phase Y p y action of a¢* theory. The strongly distance dependent inter-
actions described by these pieces generate nontrivial elemen-

P E tary cells in the vacuum and render the dynamics of the

F E S system somewhat similar to solid state physics.

AF E D D

A complex phase structure was found with a number of
CR commensurate incommensurate transitions. Concerning the
Xp elementary excitations there are two particle modes in the
XF vicinity of the antiferromagneti¢l1,2) phase, the analogues
XAF D of the acoustic and optical phonons of the solid states be-
cause they correspond to the in phase and the out of phase
5 oscillations in the elementary cell. The emergence of the
Thep parity of the field¢-. is =1 and it belongs to the zone nonhomogeneous condensate of the plas® reduces the

B, and Byg. The effective theory obtained on the tree level, translation invariance into translation by even number of the
Eq. (18), is lattice spacing. Nevertheless no Goldstone bosons appear.
This is because the condensate is at the cutoff scale where

O -

1 - 1 - mi., m’_ the continuous translation symmetry is broken by th -
1 ,, 1 o, Mi~p Mo, y y is broken by the regu
L= z(aﬂ¢+) + 2(‘%‘75—) + 2 P+ 2 L= larization.
The space inversion exchanges the two particles of the
N~y ~ ~2~ theory. This opens the possibility of constructing chiral
~Ha 4 2752 .
* 4 (¢2+-+6426%), (73 bosons on the lattice for such a choice of the coupling con-

stants where these two particles decouple. We showed that
for low enough energy where the further influence of thethe dynamical breaking of the space inversion symmetry is
higher order derivatives on the propagator is negligible.  characteristic to the formation of the nontrivial elementary
cells of the antiferromagnetic phase.
E. The symmetries of the phase diagram We believe that the phenomena mentioned in the frame-

4 . .
For the more complete characterization of the symmetrieg\’orkbOf the_ scal:;kbl moﬂel are gei-nerlc afnd c?]n be fodunld n
of the model we finally introduce the discrete analogue of thé"y bosonic model. A theoretical test of such a model as a

charge conjugation to our real field more realistic effective theory is the possibility of removing
' the length scale of the elementary cell of the vacuum in order
yi p(X)—— @(X). (74)  to suppress the non-unitary processes related to the creation

of the lattice defect§19,23,24. The period length of the

The symmetries of different regions of the coupling constaniyacuum can be sent to zero in the one-loop approximation
space (nf ,C,) is shown forc,=0 in Table Il. One can see [25]. It remains to be seen if this result generalizes to higher
that the ferromagnetic condensate is detectable by the inteleop order.
nal space order parameter only. The dynamical breakdown of

the space inversion symmetry in the vacuum is characteristic

of the antiferromagnetic phase. In agreement with this re-

mark the particle scattering off such a vacuum may borrow J.P. thanks Jochen and Werner Fingberg for illuminating
the momentunP(29%) and change its parity. discussions.
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