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A new constraint on strongly coupled field theories
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We propose a new constraint on the structure of strongly coupled, asymptotically free field theories. The
constraint takes the form of an inequality limiting the number of degrees of freedom in the infrared description
of a theory relative to the number of underlying, ultraviolet degrees of freedom. We apply the inequality to a
variety of theories~both supersymmetric and nonsupersymmetric!, where it agrees with all known results and
leads to interesting new constraints on low energy spectra. We discuss the relation of this constraint to
renormalization groupc theorems.@S0556-2821~99!02416-9#
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I. INTRODUCTION

Four dimensional field theories have been remarka
successful at describing nature at energies less than se
hundred GeV. Unfortunately progress at higher energies
been frustrated by a dearth of general theoretical tools
apply to strongly coupled models. Our understanding of fi
theory comes largely from perturbation theory~which ap-
plies to weakly coupled systems! and from QCD~where spe-
cific strong dynamics may be compared to experime!.
There are many examples where this understanding
inadequate—for example, even the question of chiral sy
metry breaking in a QCD-like gauge theory with a lar
number of flavors is unsettled@1–5#.

Recently new tools have appeared in the context of su
symmetric ~SUSY! gauge theories. Known collectively a
‘‘duality,’’ these ideas have produced convincing pictures
the pattern of symmetry breaking in many strongly coup
supersymmetric theories. The wide variety of low-ener
phenomena that appear is remarkable, including dual ga
groups, conformal fixed points, chiral symmetry breakin
etc. These results are obtained without a detailed solution
the dynamics at strong coupling, but rely on symmetri
inspired guesswork, and general properties of supersym
try. This shows that general constraints on the low ene
properties of strongly coupled field theories are enormou
useful, especially when a complete solution is unavailab

The most powerful general constraint known is t
anomaly matching condition introduced by ’t Hooft@6#. Gen-
erally, we may define an anomaly as a residue of the pol
a particular multi-current correlation function. As discuss
by ’t Hooft, this number is independent of renormalizati
scale, and may therefore be computed at short distance
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equally well at long distances:

AIR5AUV . ~1!

As the residue of a pole, the anomaly only receives con
butions from physical massless degrees of freedom. If
short distance theory is weakly coupled~like an asymptoti-
cally free gauge theory! or calculable by other means, th
anomaly condition provides an immediate relation of t
massless spectrum to the short distance physics, constra
the appearance of massless fermions and Nambu-Golds
bosons. Anomaly matching, as implementation of this c
dition is often called, has led to useful constraints on
possible low energy realizations of chiral gauge theor
@7,8#, as well as QCD-like~vector-like! gauge theories
@9,10#. Anomalies have also played a fundamental role
discovering and checking the dualities of supersymme
gauge theories~ @11#, and references therein!.

In this paper we propose a new constraint on the struc
of strongly coupled field theories. Before stating and discu
ing this constraint, we note that, although the anomaly c
dition does not forbid the appearance of additional~vector-
like! massless particles, it is usually assumed that
spectrum contains no massless particles that this cond
does not require. That is, if there are relevant operators
forbidden by symmetries that would produce masses, i
~technically! unnatural to assume that these operators are
sent. Consequently we might say that nature generally ab
massless particles.

In fact when faced with the task of guessing the mass
spectrum of a strongly coupled field theory, we are oft
guided by the idea that the number of massless particles
small as possible. Since the anomaly condition can alway
satisfied by a massless spectrum identical to the ultravi
degrees of freedom, this would disfavor massless compos
if the number of such composites is too large.

In elevating this casual notion to a formal principle, w
need precise definitions of the number of degrees of freed
©1999 The American Physical Society03-1
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APPELQUIST, COHEN, AND SCHMALTZ PHYSICAL REVIEW D60 045003
in both the infrared and ultraviolet. Although there are
unique such objects, we will choose to define quantities
lated to the free energy of the field theory. We will consid
only renormalizable theories, for which the free energy m
be rendered finite and cutoff independent by adjusting
vacuum energy to zero, renormalizing a finite set of para
eters, and then removing the cutoff~holding physical quan-
tities and the temperature fixed!. For reasons described late
we will consider only asymptotically free theories.

In terms of this properly renormalized free energy per u
volume,F ~which is also equal to minus the pressure!, the
quantity that we will use to characterize the number of inf
red degrees of freedom is

f IR[2 lim
T→0

F
T4

90

p2
~2!

where T is the temperature. For a free field theory,f IR is
simply the number of massless bosons plus 7/8 times
number of massless fermions. For an asymptotically f
theory, the corresponding expression in the largeT limit me-
saures the ultraviolet degrees of freedom in a similar wa

f UV[2 lim
T→`

F
T4

90

p2
. ~3!

Our qualitative discussion above suggests the new c
straint f IR< f UV . In Sec. II we formulate this idea precise
and describe how this inequality~assuming that it is correct!
leads to restrictions on the physical properties of stron
coupled field theories. Two examples are considered: a
persymmetricSU(N) gauge theory withF flavors and a non-
supersymmetric version of the same theory. In both cases
inequality will constrain the low energy structure. In Sec.
we describe a~failed! route to a proof of the inequality. Th
line of argument is nevertheless interesting, and leads
deeper understanding of the inequality and its relation
so-called ‘‘c theorems’’ @12#. In Sec. IV, we discuss theT
dependence for the two examples mentioned above. In
V we apply the inequality to a variety of strongly couple
field theories. Finally, in Sec. VI we summarize and co
clude.

II. INEQUALITY

Our conjectured inequality is

f IR< f UV . ~4!

These limits are well defined for theories with both UV a
IR fixed points. However, the inequality can be violated
the presence of non-trivial UV fixed points, as we show
Sec. V B. Hence our examples will involve asymptotica
free gauge theories, and most will be infrared free as w
although the IR degrees of freedom may be different fr
those in the UV.

In field theories with weakly coupled fixed points the fr
energy, appearing in the definition off, may be computed
04500
-
r
y
e
-

it

-

e
e

n-

y
u-

he

a
o

ec.

-

ll,

perturbatively. To zeroth order in couplings the low
temperature free energy density in three spatial dimension

Ff ree~T!.2
p2T4

90 FNB1
7

8
~2NF!G , ~5!

whereNB is the number of massless~real! bosonic fields, and
NF is the number of massless~two-component! fermionic
fields. We have neglected the contributions of any mass
fields, which vanish exponentially asT→0. A similar ex-
pression applies in the infiniteT limit, with NB and NF in-
cluding massive as well as massless fields. These expres
are exact in the case of free fixed points and approxima
correct for theories governed by weak fixed points. For s
cific theories we may include perturbative corrections.

A. SUSY example

For our first example we consider a SUSYSU(N) gauge
theory withF flavors~‘‘quarks’’ and ‘‘antiquarks’’! of mass-
less fermions and associated superpartners. The theory
free UV fixed point if the number of flavors is less than
times the number of colors,F,3N. In this case the quantity
f UV may be calculated using Eq.~5! to give

f UV5@2~N221!14NF#S 11
7

8D . ~6!

The analysis of Seiberg@13# suggests that the infrare
behavior of this theory is alternatively described through
use ofF flavors of massless magnetic quarks transform
according to the fundamental representation of a dual ga
group SU(F2N), along withF2 massless ‘‘meson’’ chiral
superfields. This theory is infrared free providedF<3N/2.
Under these circumstancesf IR is

f IR5$2@~F2N!221#14~F2N!F12F2%S 11
7

8D . ~7!

Thus our fundamental inequality becomes

2@~F2N!221#14~F2N!F12F2<2~N221!14NF.
~8!

Becausef IR grows quadratically with the number of fla
vors, this inequality limits the values ofF for which the low
energy theory can consist of massless magnetic degree
freedom with infrared free coupling. Remarkably, this i
equality gives the boundF<(3/2)N, corresponding precisely
to the boundary of the weak magnetic phase determined
the analysis of Seiberg@13#. At the boundaryF5(3/2)N the
inequality is saturated.1 We will show that the inequality
continues to hold forF.(3/2)N in Sec. V B.

1The simplest example is the caseN52: SU(2) gauge theory
with 3 flavors. The theory confines and has an infrared-free d
description containing only a ‘‘meson’’ superfield, andf UV5 f IR

530(117/8).
3-2
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A NEW CONSTRAINT ON STRONGLY COUPLED FIELD THEORIES PHYSICAL REVIEW D60 045003
B. Non-SUSY example

For our second example we consider the no
supersymmetric version of the sameSU(N) gauge theory,
with F massless quarks~and antiquarks!. The theory has a
free UV fixed point forF,11N/2. Based on real QCD we
expect theSU(F)3SU(F) chiral symmetries of this theory
to be realized in the Nambu-Goldstone mode—at least
small enoughF/N. If we assume that this is the case, the
theory consists ofF221 Nambu-Goldstone bosons. The d
rivative interactions of these particles are irrelevant in
infrared, and consequently this theory is described by a
IR fixed point.

At these free UV and IR fixed points we may use Eq.~5!
to computef IR and f UV ,

f IR5F221

f UV52~N221!1
7

8
~4NF!, ~9!

and our inequality becomes

F221<2~N221!1
7

8
~4NF!, ~10!

or, sinceF must be positive,

F<4AN22
16

81
. ~11!

Since N must be 2 or larger, andF and N must both be
integral, this is equivalent toF,4N. Remarkably, our in-
equality says that for the number of flavors larger than
equal to 4 times the number of colors, this gauge the
cannot break the full set of chiral symmetries.

This new bound on the onset of the chiral phase transi
@F<12 for SU(3)# is well above the transitional values su
gested by preliminary lattice simulations@3,4#. It is very
close, however, to the value that emerges from the use
continuum gap equation together with the assumption
the coupling is governed by an infrared fixed point appear
in the perturbativeb function @2#. In fact, a combination of
the ladder gap equation and the two-loop beta function g
a critical value Fcrit /N5(100N2266)/(25N2215)
(→4 asN→`). The reliability of this result is far from
clear, however, since higher order effects are not obviou
small. So whether the chiral phase transition saturates
inequality in this way or takes place at a lower value ofF/N
remains an open question.

III. RELATION TO c

Having shown that the inequality Eq.~4! is consistent
with other analyses of the SUSYSU(N) theory and that it
leads to a new result for QCD-like theories, we next disc
why it might be true generally. As an attempt at proof w
may define a functionf (T) at all scales in an obvious way
as minus the free energy density divided byT raised to the
number of spatial dimensions plus one~this extension away
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from 4 space-time dimensions will prove useful shortly!:

f ~T![2
F

Td11
Vd ~12!

whereVd is a constant chosen such that the contribution
f (T) from a free bosonic degree of freedom is 1. The qu
tities f IR and f UV are just the limits of this function asT
approaches zero and̀ respectively.

As a first step we differentiate the functionf with respect
to T. Using the standard relationsT]F/]T52u2p, F
52p wherep is the pressure andu is the internal energy
density, we have

T
] f

]T
5Vd

u2dp

Td11
[Vd

u

Td11
~13!

whereu is the ~thermal average of the! trace of the energy-
momentum tensor. For a conformally invariant theory, t
trace of the energy-momentum tensor is zero. Under th
circumstances we see thatf is a constant, andf IR is equal to
f UV . Of course the theories that we are interested in are
conformally invariant—the lack of conformal invarianc
arises from a scale dependence of coupling constants thro
renormalization. Consequently we expect the difference
tween f UV and f IR to arise from the renormalization grou
flow from the ultraviolet to the infrared. Ifu is positive along
this trajectory, f IR will necessarily be smaller thanf UV ,
proving our inequality.

Thus our inequality would follow from a positivity con
dition on the thermal average of the trace of the ener
momentum tensor, that is from positivity ofu2dp. For non-
interacting systems, massive modes always havep,u/d
whereas massless modes havep5u/d. Even for interacting
classical systems we expect these conditions to remain v
Unfortunately the situation in quantum theories is not
simple @14,15#.

Consider, for example, a classically scale-invariant ga
field theory. In this case the trace of the energy-moment
tensor is given by

u52
b

g
Tr G2 ~14!

where TrG2 is the trace over gauge indices of the square
the gauge field strength, as well as over the thermal den
matrix, andb is the renormalization group~RG! beta func-
tion. Note that, at least in perturbation theory, the therm
average of the field strength squared is negative~magnetic
fluctuations are less well screened than electric fluctuatio!.
Therefore a negative beta function leads to a positiveu, as
we desire.

Unfortunately this observation immediately suggests
amples ofnegativeu. If the low energy theory is a gaug
field theory governed by a free infrared fixed point, then t
b function will be positive at weak coupling where TrG2 is
known to be negative. This is realized if the low ener
theory is either an Abelian theory with massless fermions
3-3
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APPELQUIST, COHEN, AND SCHMALTZ PHYSICAL REVIEW D60 045003
a non-Abelian theory with matter content sufficient to rend
it infrared free. The SUSYSU(N) theory in the weak mag
netic phase, discussed in the previous section, is prec
such an example.

Of course this is not a counter-example to our conjectu
inequality: the fact thatf (T) is not monotonic does not con
tradict the inequality involvingf IR and f UV . @We have al-
ready noted that the SUSYSU(N) theory in the weak mag
netic phase does in fact satisfy the inequality.# It means,
however, that a proof of this inequality will be more in
volved than the simple argument used here.

This discussion also indicates why we restrict our att
tion to asymptotically free theories. Negative contributio
to u decreasef UV2 f IR ; if these contributions persist over
large temperature range, the inequality will be violate
Since operators in the Hamiltonian contribute tou according
to their scaling dimension, positive operators with a coupl
constant of negative mass dimension~positive ‘‘irrelevant’’
operators! make anegativecontribution tou. A renormaliz-
able theory with a non-trivial UV fixed point may have su
an operator which can make a negative contribution tou
over a large range of temperature, invalidating the inequa
~An explicit example of this type is mentioned at the end
Sec. V B.! We thus consider only asymptotically free the
ries.

Note that had the functionf (T) been monotonic, we
would have proved a ‘‘c theorem’’: the existence of a func
tion that is monotonic along RG trajectories. For example
one spatial dimension the functionf (T) is monotonic, since
the energy density is always greater than or equal to
pressure in the thermal state. But the value of this functio
any fixed point~whereu50) is simply the conventionally
defined central charge of the corresponding conformal fi
theory.2 The decrease in central charge between fixed po
along an RG trajectory is thec theorem of Zamolodchikov
@12#.

Our analysis implies that the existence of a monoto
function ofT, equal tof (T) at conformal fixed points, would
lead to the inequality~4!. We have already demonstrated th
such a function does not exist in general theories, for dim
sions larger than 2. Even for asymptotically free theories
such a function does exist, it is clearlynot f(T) itself. We
have been unable to find an alternative monotonic func
for asymptotically free theories, nor have we been able
establish its impossibility. Note that the existence of suc
monotonic function, while providing a proof of Eq.~4!, is
not a necessary condition for the correctness of our m
milder inequality.

There have been several attempts to prove ac theorem in
4 dimensions@16–21#. The values of thesec functions at
fixed points are numerically quite different fromf UV and
f IR . The inequalities similar to Eq.~4! that would arise as
consequences of thesec theorems in general do not signifi

2Although our argument involves a flow in temperature, the us
RG arguments and dimensional analysis may be used to rew
everything in terms of a change in scale parameter,m.
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cantly constrain the spectrum of 4 dimensional gauge fi
theories. The examples of Sec. II have already shown
our inequalitydoesplace interesting constraints on the spe
trum of 4 dimensional gauge theories. Other examples
be presented in Sec. V.

IV. T DEPENDENCE

We have stressed that the inequality~4! does not require
the monotonicity off (T), and we have noted that for on
example in which the inequality is satisfied@the supersym-
metric SU(N) theory in the weak magnetic phase#, monoto-
nicity is violated. In this section, we examine in more det
the T dependence off (T) for this example and for the othe
example of Sec. II: the non-supersymmetricSU(N) theory.
In each case, we record theT dependence for both theT
→` and T→0 limits, where perturbation theory may b
employed.

A. SUSY SU„N… theory

For T→`, perturbation theory in the underlying, asym
totically free ‘‘electric’’ theory may be used, giving@22#

f ~T!5 f UV2~N221!~N13F !
45ge

2~T!

32p2
1•••, ~15!

wheref UV is given by Eq.~6! and whereT sets the scale for
the electric couplingge . Since theb function is negative,
ge

2(T) decreases asT increases, leading to positiveu and
] f /]T, as discussed in Sec. III.

For T→0, with F<3N/2, perturbation theory gives

f ~T!5 f IR2@~F2N!221#~4F2N!
45gm

2 ~T!

32p2

23F2~F2N!
45y2~T!

32p2
1•••, ~16!

where f IR is given by Eq.~7!, gm is the magnetic gauge
coupling, andy is the Yukawa coupling of the magneti
theory. Thegm

2 term is obtained from thege
2 term in Eq.~15!

by the replacementN→F2N. The y2 term is obtained by
evaluating the two-loop diagrams involving the Yukawa co
plings and the four-scalar couplings that arise from the
perpotential of the magnetic theory.

Since the theory is infrared free forF<3N/2, both cou-
plings increase withT, showing thatu andT] f /]T are nega-
tive for smallT. Still, the inequality is satisfied.

B. SU„N… theory

We next record the T dependence for the non
supersymmetricSU(N) theory~@23#, e.g.! For T→`, pertur-
bation theory gives

f ~T!5 f UV210~N221!~N15F/N!
g2~T!

16p2
1•••, ~17!

l
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A NEW CONSTRAINT ON STRONGLY COUPLED FIELD THEORIES PHYSICAL REVIEW D60 045003
where f UV is given by Eq.~9! andg is the gauge coupling
Asymptotic freedom leads to positiveu and] f /]T.

For T→0, corrections to the free-field behavior of th
Nambu-Goldstone bosons may be computed using chiral
turbation theory. The leading correction arises at second
der in 1/Fp

2 , whereFp is the Nambu-Goldstone decay co
stant, and contains a chiral logarithm. The result, forT
!Fp , is @24#

f ~T!5 f IR1
F2~F221!

144

T4

Fp
4

lnS Fp

T D1•••, ~18!

where f IR is given by Eq.~9!. Thus for smallT, f (T) in-
creases withT.

Interestingly, for the non-supersymmetric theory in t
Nambu-Goldstone phase, the functionf (T) is positive mono-
tonic for both largeT and smallT, the limits in which it may
be computed reliably, using perturbation theory.

V. OTHER EXAMPLES

In this section we apply our inequality to several exam
field theories for which weakly coupled UV and IR descri
tions have been proposed. We first discuss a number of
ditional asymptotically free supersymmetric theories w
infrared-free dual descriptions. We find the inequality to
satisfied in all cases. We then discuss the supersymm
SU(N) theory in the regimeF.3N/2, where the dual mag
netic theory exhibits a non-trivial infrared fixed point. Th
inequality is again satisfied where it can be checked per
batively. Finally, we go on to discuss QED in 211 dimen-
sions, where the inequality gives an interesting constrain
the infrared spectrum.

A. Infrared-free supersymmetric examples

All examples in this section are supersymmetric theor
for which infrared-free dual descriptions have been p
posed. We present each example in a format where we
describe the ‘‘electric’’ theory by giving its gauge grou
matter content, and superpotential. We then give the ga
group and matter content of the dual ‘‘magnetic’’ descripti
~and a reference to where this dual was first described in
literature!. We show the range of flavors for which the ma
netic description exists and is infrared free. In each case,
is well within the flavor range for which the electric theory
asymptotically free. This is therefore the regime for whi
free field theory calculations off UV and f IR are exact. We
then quote the answers forf UV and f IR which are obtained
by simply counting the number of superfields and multip
ing them by a factor of 2(117/8)515/4, the contribution to
the free energy from a single free superfield. Finally we co
pute the constraint following fromf IR< f UV and check
whether it is satisfied in the range of flavors for which t
calculation is valid. We find this to be the case in eve
example.

~A! The electric theory hasSO(N) gauge group withF
vectors and no tree level superpotential. The magnetic d
has gauge groupSO(F2N14) with F vectors andF(F
04500
r-
r-

e

d-

e
ric

r-

n

s
-
rst

ge

e

is

-

-

al

11)/2 meson superfields@25#. As one can see from the fol
lowing table the inequality is satisfied in the entire range
flavors where our calculation of thef ’s is applicable. Inter-
estingly, as in the case of SUSY QCD the inequality is sa
rated at the boundary between the conformal and free ph
of the dual description, which lies atF5(3/2)(N22).

range of validity 4N22<F< 3
2 (N22)

f UV
15
4 FN~N21!

2
1FNG

f IR
15
4 F~2F2N14!2

2
1

N24

2 G
inequality F< 3

2 (N22).

~B! The electric theory hasSp(2N) gauge group with 2F
fundamentals and no tree level superpotential. The magn
dual has gauge groupSp(2F22N24) with 2F fundamen-
tals andF(2F21) mesons@26#. As one can see from the
table the inequality is satisfied in the entire range of flav
where our calculation of thef ’s is applicable. As in the case
of SO andSU SUSY QCD, the inequality is saturated at th
boundary between the conformal and free phases of the
description,F5(3/2)(N11).

range of validity N13<F< 3
2 (N11)

f UV
15
4 @N(2N11)14FN#

f IR
15
4 @2(2F2N22)22N22#

inequality F< 3
2 (N11).

~C! The electric theory hasSU(N) gauge group withF
flavors and an adjoint chiral superfieldA. Without a tree
level superpotential no weakly coupled dual is known. W
the superpotentialW5tr A3 a magnetic dual has been foun
@27# with gauge groupSU(2F2N). The matter content of
this dual isF flavors of dual quarks, a chiral superfield tran
forming in the adjoint of the dual gauge group, and 2F2

mesons.3 As we see from the table the inequality is satisfi
in the entire range of flavors where our calculation of thef ’s
is applicable.

range of validity
N

2
,F<2

3N

f UV
15
4 @2(N221)12FN#

f IR
15
4 @2(7F225FN1N221)#

inequality F< 6
7 N.

~D! The electric theory hasSO(N) @or Sp(N)# gauge
group withF vectors@fundamentals#4 and a symmetric@anti-
symmetric# tensorT of the gauge group. The tree level s

3Note that there are also known duals@28# for more general su-
perpotential termsW5tr Ak, but these theories do not have a we
UV fixed point so that we cannot calculatef UV .

4In the case ofSp both N andF are even.
3-5
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APPELQUIST, COHEN, AND SCHMALTZ PHYSICAL REVIEW D60 045003
perpotential isW5tr T3. The magnetic dual@29# has gauge
group SO(2F182N) @Sp(2F282N)# with F vectors
@fundamentals#, a symmetric@anti-symmetric# tensor, and
F(F61) mesons. Here and in the following the upp
~lower! sign corresponds to theSO@Sp# model. Again we
find from the table that the inequality is satisfied in the en
range of flavors where our calculation of thef ’s is appli-
cable.

range of validity 1
2 (N1278)<F< 2

3 (N74)
f UV

15
4 @N2211FN#

f IR
15
4 @7F225FN1N2641F616N163#

inequality
N>

7F2641F164

6F616
.

~E! In addition to the examples above we have also
plied the predictions of the inequality tos-confining theories.
These areN51 SUSY gauge theories with no tree lev
superpotential which confine without chiral symmetry brea
ing. All s-confining theories have been identified and their
spectra are known@30#. We find that the confined spectra fo
all these theories satisfy the inequality. Saturation occ
only for thes-confiningSU(2) theory with 3 flavors which
we already mentioned in footnote 1 of Sec. II A.

B. Supersymmetric example
with an interacting infrared fixed point

We consider SUSY QCD forF.(3/2)N. Recall from
Sec. II that in this regimef UV is smaller thanf IR computed
at zero~magnetic! coupling. Thus it seems that our inequa
ity might be violated. However, precisely atF5(3/2)N the
magnetic theory ceases to be infrared free and instead fl
to an interacting fixed point. At this fixed pointf IR receives
corrections from the relevant interactions. These correcti
are calculable in perturbation theory if the fixed point
weakly coupled and — as we will show below — are of t
correct sign and magnitude to ensure that the inequa
holds. These results are summarized in Fig. 1, which sh

FIG. 1. Plot of f UV and f IR in units of N2 as functions ofF/N.
We have taken the large-N and -F limit and show only the neigh-
borhood of the interesting pointF/N53/2. ForF/N,3/2 one sees
that f IR, f UV , atF/N53/2 the twof ’s touch, and forF/N.3/2 we
again findf IR, f UV , but only after taking into account the intera
tions. For comparison we also showf IR

0 , the expression forf IR with
no interactions included.
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f UV and f IR as a function ofF/N in the neighborhood ofF
5(3/2)N.

To calculate the corrections we choose largeN andF with
F tuned slightly larger than (3/2)N. To see that for these
values ofN andF the fixed point of the magnetic theory i
perturbative, define the small parametere[(2F23N)/N
which measures the departure~in F) from the free magnetic
phase. Then the fixed point values for the couplings of
magnetic theory may be computed in terms ofe by setting
the two-loopb functions for the gauge and Yukawa co
plings to zero. We find

gm
2 516p2

14

3

e

N

y25
2

7
gm

2 , ~19!

and one sees that perturbation theory ingm and y holds as
long ase!1.

We now check that the inequality is also satisfied in t
interacting theory by computing and comparingf UV and f IR
at smalle. Equation~6! expanded to first order ine gives

f UV515N2S 11
1

4
e D . ~20!

f IR receives contributions of ordere from expanding the free
theory result, Eq.~7!, as well as from interactions. The inte
action contribution is easily obtained from Eq.~16! by set-
ting gm

2 (T) andy2(T) equal to their fixed point values atT
50, Eq. ~19!. We obtain

f IR515N2S 11e2
31

2
e D , ~21!

where the1e comes from expanding the free expressi
whereas the2 31

2 e comes from the interactions. Thus we s
that our inequalityf UV> f IR is satisfied once the interaction
are taken into account.

A similar analysis may be used to construct a theory w
a non-trivial UV fixed point in whichf UV, f IR .5 When the
number of flavors is just below 3N the electric theory has a
weakly coupled fixed point. At this fixed point, the theory
the origin of moduli space is in a conformally invaria
phase. At this point the interactions reducef below its free
field value @cf. Eq. ~16!#. Away from the origin of moduli
space the UV behavior of the theory is still described by t
fixed point, while in the IR the gauge group is partially br
ken and some of the flavors become massive. The infra
theory will either be free or flow to a nonzero fixed poi
smaller than the UV value. The net differencef IR2 f UV will
be positive if the number of flavors that have expectat
values is not too large.

5We thank Matt Strassler for showing us a similar theory, wh
led us to this example.
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C. QED in d53

For 211 dimensional QED (QED3) we will show that
the inequality gives an interesting constraint on the allow
infrared phase structure. QED3 with 2F charged Weyl fer-
mions (F Dirac fermions! is believed to have a phase tra
sition as the number of flavors is varied@31,32#. The mass-
less theory has aU(2F) global symmetry. For largeF, the
screening effect of the fermions prevents the formation o
condensate and the infrared theory is expected to be con
mal. For smallF, on the other hand, one expects global sy
metry breaking and dynamical mass generation for the
mions. An analysis of the breaking using a gap equat
indicates that a parity conserving mass term is formed, c
responding to the breaking of the globalU(2F) symmetry to
its U(F)3U(F) subgroup.

The inequality places a tight constraint on this pattern
breaking. QED3 is free in the ultraviolet and using Eq.~12!
we have6

f UV511
3

4
4F, ~22!

where 4F counts the fermionic degrees of freedom. T
breaking of theU(2F) symmetry toU(F)3U(F) leads to
2F2 Nambu-Goldstone bosons. Since the theory does
confine, the photon remains in the infrared spectrum, so
have

f IR5112F2. ~23!

The inequality is satisfied only forF<3/2 which implies that
chiral symmetry breaking is excluded for allF>2.

The critical number of flavors separating the two pha
has been estimated, using the gap equation with a 1/F ex-
pansion of the kernel, to be in the range 3,Fcrit,4 @31,32#.
The discrepancy between this result and our inequality s
gests that the gap equation over-estimatesFcrit .

6In (211) dimensions free bosons and fermions, respectiv
contribute 1 and 3/4 tof.
ys

w-

s
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VI. CONCLUSION

We have proposed a general constraint on the structur
asymptotically free field theories, the inequality~4!. Al-
though we have not proved this inequality, we have sho
that it agrees with a large number of known results. In ad
tion it places interesting restrictions on the pattern of sy
metry breaking in many cases. The inequality~or one similar
to it! would arise as a consequence of ac theorem in four
dimensions, but is a weaker condition, and can be true e
in circumstances where ac theorem is not. It nevertheles
provides a constraint on the general character of renorm
ization group flows for a wide variety of asymptotically fre
field theories with IR fixed points. In specific cases it may
possible to prove the inequality via the route of Sec. III. W
have noted that the inequality can be violated for field th
ries with non-trivial UV fixed points, and have provided a
example of such a theory in Sec. V B. The inequality c
also be valid for theories with non-trivial ultraviolet fixe
points, provided thatu is sufficiently positive over a large
temperature range.

Finally, it is interesting to apply the inequality to chira
gauge theories. In particular, in a model due to Bars a
Yankielowicz @33# in which the anomaly matching cond
tions are consistent with the formation of massless compo
fermions, the inequality leads to a nontrivial constraint
the infrared spectrum. In a future paper~@34#, in preparation!,
we will discuss the application of the inequality to this a
several other chiral gauge models.
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