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We propose a new constraint on the structure of strongly coupled, asymptotically free field theories. The
constraint takes the form of an inequality limiting the number of degrees of freedom in the infrared description
of a theory relative to the number of underlying, ultraviolet degrees of freedom. We apply the inequality to a
variety of theoriegboth supersymmetric and nonsupersymmgtrcere it agrees with all known results and
leads to interesting new constraints on low energy spectra. We discuss the relation of this constraint to
renormalization groug theorems[S0556-282(99)02416-9

PACS numbgs): 11.15—-q, 11.30.Rd, 12.66xi

I. INTRODUCTION equally well at long distances:

Four dimensional field theories have been remarkably Ar=Ayy - 2
successful at describing nature at energies less than several
hundred GeV. Unfortunately progress at higher energies hass the residue of a pole, the anomaly only receives contri-
been frustrated by a dearth of general theoretical tools thdsutions from physical massless degrees of freedom. If the
apply to strongly coupled models. Our understanding of fieldshort distance theory is weakly coupldike an asymptoti-
theory comes largely from perturbation thedwhich ap- cally free gauge theojyor calculable by other means, the
plies to weakly coupled systemand from QCD(where spe- anomaly condition provides an immediate relation of the
cific strong dynamics may be compared to experiment massless spectrum to the short distance physics, constraining
There are many examples where this understanding ighe appearance of massless fermions and Nambu-Goldstone
inadequate—for example, even the question of chiral symbosons. Anomaly matching, as implementation of this con-
metry breaking in a QCD-like gauge theory with a largedition is often called, has led to useful constraints on the
number of flavors is unsettldd —5]. possible low energy realizations of chiral gauge theories

Recently new tools have appeared in the context of supef7,8], as well as QCD-like(vector-like gauge theories
symmetric (SUSY) gauge theories. Known collectively as [9,10]. Anomalies have also played a fundamental role in
“duality,” these ideas have produced convincing pictures ofdiscovering and checking the dualities of supersymmetric
the pattern of symmetry breaking in many strongly coupledgauge theorie$ [11], and references thergin
supersymmetric theories. The wide variety of low-energy In this paper we propose a new constraint on the structure
phenomena that appear is remarkable, including dual gaugd strongly coupled field theories. Before stating and discuss-
groups, conformal fixed points, chiral symmetry breaking,ing this constraint, we note that, although the anomaly con-
etc. These results are obtained without a detailed solution fadition does not forbid the appearance of additiofwactor-
the dynamics at strong coupling, but rely on symmetries]ike) massless particles, it is usually assumed that the
inspired guesswork, and general properties of supersymmepectrum contains no massless particles that this condition
try. This shows that general constraints on the low energyloes not require. That is, if there are relevant operators not
properties of strongly coupled field theories are enormouslyorbidden by symmetries that would produce masses, it is
useful, especially when a complete solution is unavailable. (technically unnatural to assume that these operators are ab-

The most powerful general constraint known is thesent. Consequently we might say that nature generally abhors
anomaly matching condition introduced by 't Hop8]. Gen-  massless particles.
erally, we may define an anomaly as a residue of the pole in In fact when faced with the task of guessing the massless
a particular multi-current correlation function. As discussedspectrum of a strongly coupled field theory, we are often
by 't Hooft, this number is independent of renormalization guided by the idea that the number of massless particles is as
scale, and may therefore be computed at short distances, small as possible. Since the anomaly condition can always be

satisfied by a massless spectrum identical to the ultraviolet
degrees of freedom, this would disfavor massless composites

*Email address: thomas.appelquist@yale.edu if the number of such composites is too large.
"Email address: cohen@bu.edu In elevating this casual notion to a formal principle, we
*Email address: schmaltz@slac.stanford.edu need precise definitions of the number of degrees of freedom
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in both the infrared and ultraviolet. Although there are noperturbatively. To zeroth order in couplings the low-
unique such objects, we will choose to define quantities retemperature free energy density in three spatial dimensions is
lated to the free energy of the field theory. We will consider
only renormalizable theories, for which the free energy may
be rendered finite and cutoff independent by adjusting the
vacuum energy to zero, renormalizing a finite set of param-
eters, and then removing the cutdffolding physical quan- hereNg is the number of massleg®al) bosonic fields, and
tities and the temperature fixed=or reasons described later, N is the number of masslegswvo-component fermionic
we will consider only asymptotically free theories. fields. We have neglected the contributions of any massive
In terms of this properly renormalized free energy per unitfields, which vanish exponentially &—0. A similar ex-
volume, 7 (which is also equal to minus the pressuhe  pression applies in the infinit& limit, with Ng and N in-
quantity that we will use to characterize the number of infra-cluding massive as well as massless fields. These expressions

2T4

T
Fireel T)=— W

7

Ng+ 5 (2Ng) |, )

red degrees of freedom is are exact in the case of free fixed points and approximately
correct for theories governed by weak fixed points. For spe-
¢ i F 90 @ cific theories we may include perturbative corrections.
R=—1IIM — —
T—o 1"

A. SUSY example

where T is the temperature. For a free field theofyR is For our first examp|e we consider a SUSN’J(N) gauge
simply the number of massless bosons plus 7/8 times thgheory withF flavors(“quarks” and “antiquarks”) of mass-
number of massless fermions. For an asymptotically fregess fermions and associated superpartners. The theory has a
theory, the corresponding expression in the laFdienit me-  free UV fixed point if the number of flavors is less than 3
saures the ultraviolet degrees of freedom in a similar way: times the number of color§<3N. In this case the quantity

fuy may be calculated using E¢p) to give

fuy=—lim = —. 3 7
LT fuy=[2(N?=1)+4NF]| 1+ =

1k (6)

Our qualitative discussion above suggests the new con-

;:glggslﬁr?bfeuﬁbvlvntﬁizihg qﬁg;&;@ﬂﬁﬁﬂﬁ altdite?s pcroertigcetw behavior of this theory is alternatively described through the
leads to restrictions on the physical properties of :stronglyuse Of!: flavors of massless magnetic q‘?af"s transforming
coupled field theories. Two examples are considered: a Suqccordlng to the fundamental ;epresentatlgn of a 9ual_gauge
: . group SU(F—N), along withF< massless “meson” chiral
persymmetricSU(N) gauge theory with flavors and a non- . ; o .
supersymmetric version of the same theory. In both cases t sperfields. Th|s theory is mfrared free provideek 3N/2.
inequality will constrain the low energy structure. In Sec. llI hder these circumstancég is
we describe dfailed) route to a proof of the inequality. The
line of argument is nevertheless interesting, and leads to a f _={2[(F—N)2—1]+4(F—N)F+2F2%
deeper understanding of the inequality and its relation to
so-called ‘c theorems”[12]. In Sec. IV, we discuss th& ) )
dependence for the two examples mentioned above. In Se&hus our fundamental inequality becomes
V we apply the inequality to a variety of strongly coupled ) ) )
field theories. Finally, in Sec. VI we summarize and con- 2[(F—N)*—1]+4(F—N)F+2F°<2(N°—1)+4NF.

The analysis of Seiber{fl3] suggests that the infrared

. (7

1-i-7
8

clude. ®
Becausef g grows quadratically with the number of fla-
II. INEQUALITY vors, this inequality limits the values &f for which the low
Our conjectured inequality is energy the_ory_can consist of ma_ssless magnetic degre_es of
freedom with infrared free coupling. Remarkably, this in-
fir<fuy. (4)  equality gives the bounBi<(3/2)N, corresponding precisely

to the boundary of the weak magnetic phase determined by

These limits are well defined for theories with both UV andthe analysis of Seiberid3]. At the boundaryF = (3/2)N the
IR fixed points. However, the inequality can be violated ininequality is saturatet. We will show that the inequality
the presence of non-trivial UV fixed points, as we show incontinues to hold foF>(3/2)N in Sec. V B.
Sec. V B. Hence our examples will involve asymptotically
free gauge theories, and most will be infrared free as well,
although the IR degrees of freedom may be different from IThe simplest example is the cabe=2: SU(2) gauge theory
those in the UV. with 3 flavors. The theory confines and has an infrared-free dual

In field theories with weakly coupled fixed points the free description containing only a “meson” superfield, amigy= fg
energy, appearing in the definition §f may be computed =30(1+7/8).
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B. Non-SUSY example from 4 space-time dimensions will prove useful shortly
For our second example we consider the non-
supersymmetric version of the sar8éJ(N) gauge theory, f(T)=— F Q (12)
with F massless quark&@nd antiquarks The theory has a Td+1-7d

free UV fixed point forF<11N/2. Based on real QCD we

expect theSU(F) X SU(F) chiral symmetries of this theory where(), is a constant chosen such that the contribution to
to be realized in the Nambu-Goldstone mode—at least fof(T) from a free bosonic degree of freedom is 1. The quan-
small enougtF/N. If we assume that this is the case, the IRtities f,z and f, are just the limits of this function a$
theory consists oF?—1 Nambu-Goldstone bosons. The de- approaches zero and respectively.

rivative interactions of these particles are irrelevant in the As a first step we differentiate the functiérvith respect
infrared, and consequently this theory is described by a freey T. Using the standard relation§dF/dT=—u—p, F

IR fixed point. =—p wherep is the pressure and is the internal energy
At these free UV and IR fixed points we may use E5).  density, we have

to computef,g andfy,

of u—d 0
fir=F*-1 ﬁ:Qd -|—d+1pEQd-|—d+1 (13
7
fuy=2(N?=1)+ §(4N F), (99  where# is the (thermal average of therace of the energy-
momentum tensor. For a conformally invariant theory, the
and our inequality becomes tr_ace of the energy-momgntum tensor is zero. Under these
circumstances we see thHas a constant, anélk is equal to
7 fuy. Of course the theories that we are interested in are not
F2-1<2(N°-1)+ g (4NF), (100 conformally invariant—the lack of conformal invariance
arises from a scale dependence of coupling constants through
or, sinceF must be positive, renormalization. Consequently we expect the difference be-
tweenfy, and f,g to arise from the renormalization group
16 flow from the ultraviolet to the infrared. i is positive along
F<4/N*- 8T (1)  this trajectory, f,r will necessarily be smaller thafyy,
proving our inequality.
Since N must be 2 or larger, an& and N must both be Thus our inequality would follow from a positivity con-

integral, this is equivalent t&<4N. Remarkably, our in- dition on the thermal average of the trace of the energy-

equality says that for the number of flavors larger than ofmomentum tensor, that is from positivity of-dp. For non-

equal to 4 times the number of colors, this gauge theorynteracting systems, massive modes always hpveu/d

cannot break the full set of chiral symmetries. whereas massless modes haveu/d. Even for interacting
This new bound on the onset of the chiral phase transitiolglassical systems we expect_these conditions to remain valid.

[F<12 for SU(3)] is well above the transitional values sug- U_nfortunately the situation in quantum theories is not so

gested by preliminary lattice simulation8,4]. It is very ~ Simple[14,15,. _ o

close, however, to the value that emerges from the use of a Consider, for e_xample, a classically scale-invariant gauge

continuum gap equation together with the assumption thdf€ld theory. In this case the trace of the energy-momentum

the coupling is governed by an infrared fixed point appearind€nsor is given by

in the perturbative3 function[2]. In fact, a combination of

the ladder gap equation and the two-loop beta function gives azzéTrGZ (14)

a critical value FC°Y/N=(100N?—66)/(23N2—15)

(—4 asN—»). The reliability of this result is far from

clear, however, since higher order effects are not obviouslyvhere TG is the trace over gauge indices of the square of

small. So whether the chiral phase transition saturates thi@e gauge field strength, as well as over the thermal density

inequality in this way or takes place at a lower valugF¢N ~ matrix, andg is the renormalization groufRG) beta func-

remains an open question. tion. Note that, at least in perturbation theory,. the th(_armal
average of the field strength squared is negatimagnetic
Il RELATION TO ¢ fluctuations are less well screened than electric fluctuations

Therefore a negative beta function leads to a positivas
Having shown that the inequality Ed@4) is consistent we desire.

with other analyses of the SUSSU(N) theory and that it Unfortunately this observation immediately suggests ex-
leads to a new result for QCD-like theories, we next discusamples ofnegatived. If the low energy theory is a gauge
why it might be true generally. As an attempt at proof wefield theory governed by a free infrared fixed point, then the
may define a functiori(T) at all scales in an obvious way, A function will be positive at weak coupling where GF is
as minus the free energy density divided Dyaised to the known to be negative. This is realized if the low energy
number of spatial dimensions plus oftkis extension away theory is either an Abelian theory with massless fermions or
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a non-Abelian theory with matter content sufficient to rendercantly constrain the spectrum of 4 dimensional gauge field

it infrared free. The SUSYSU(N) theory in the weak mag- theories. The examples of Sec. Il have already shown that

netic phase, discussed in the previous section, is preciseBur inequalitydoesplace interesting constraints on the spec-

such an example. trum of 4 dimensional gauge theories. Other examples will
Of course this is not a counter-example to our conjecture®€ presented in Sec. V.

inequality: the fact thaf(T) is not monotonic does not con-

tradict the inequality involving ;g and fy. [We have al- IV. T DEPENDENCE

ready noted that the SUSSU(N) theory in the weak mag-

netic phase does in fact satisfy the inequality. means, We have stressed that the inequaliy does not require

however, that a proof of this inequality will be more in- the monotonicity off(T), and we have noted that for one
' ; example in which the inequality is satisfi¢the supersym-

V°'V99' thgn the_ simple e}rgL_Jment used here. ) metric SU(N) theory in the weak magnetic phdseonoto-

_ This discussion also indicates why we restrict our attenyqi s violated. In this section, we examine in more detail

tion to asymptotically free theories. Negative contributions,q T dependence of(T) for this example and for the other

to 6 decreasd ;,,— f|r; if these contributions persist over a example of Sec. II: the non-supersymmet@it((N) theory.

large temperature range, the inequality will be violated.|y each case, we record the dependence for both the

Since operators in the Hamiltonian contributeftaccording . and T—0 limits, where perturbation theory may be

to their scaling dimension, positive operators with a couplingemployed.

constant of negative mass dimensiguositive “irrelevant”

operatory make anegativecontribution tod. A renormaliz- A. SUSY SU(N) theory

able theory with a non-trivial UV fixed point may have such ) _ _

an operator which can make a negative contributiorpto ~ FOr T—o, perturbation theory in the underlying, asymp-

over a large range of temperature, invalidating the inequalitytotically free “electric” theory may be used, giving2]

(An explicit example of this type is mentioned at the end of 4562(T)

ﬁ:;:.. V B) We thus consider only asymptotically free theo f(T)="fyy— (N2=1)(N+3F) 32';2 e

Note that had the functiorf(T) been monotonic, we

would have proved a ¢ theorem”: the existence of a func- wheref,,, is given by Eq.(6) and whereT sets the scale for

tion that is monotonic along RG trajectories. For example, inthe electric couplingy.. Since theg function is negative,

one spatial dimension the functidT) is monotonic, since gg(T) decreases a$ increases, leading to positivé and

the energy density is always greater than or equal to thef/sT as discussed in Sec. Il

pressure in the thermal state. But the value of this function at For T— 0, with F<3N/2, perturbation theory gives

any fixed point(where #=0) is simply the conventionally

.., (15

defined central charge of the corresponding conformal field 4592 (T)
theory? The decrease in central charge between fixed points f(T)=f,r—[(F—N)2=1](4F —N) ——=
along an RG trajectory is the theorem of Zamolodchikov 3272
[12]. )

Our analysis implies that the existence of a monotonic —3F2(F—N)45y (M T (16)
function of T, equal tof (T) at conformal fixed points, would 3272 ’

lead to the inequality4). We have already demonstrated that

such a function does not exist in general theories, for dimenwhere f, is given by Eq.(7), g,, is the magnetic gauge
sions larger 'Fhan 2. Everj for qsymptotically frge theories, ifcoupling, andy is the Yukawa coupling of the magnetic
such a function does exist, it is cleanpt f(T) itself. We  theory. Theg% term is obtained from thgg term in Eq.(15)
have been unable to find an alternative monotonic functiorby the replacementi—F —N. The y? term is obtained by
for asymptotically free theories, nor have we been able tQyaluating the two-loop diagrams involving the Yukawa cou-
establish its ImpOSSIbIIIty. Note that the existence of such Q)“ngs and the four-scalar Coup"ngs that arise from the su-
monotonic function, while providing a proof of E¢4), is erpotential of the magnetic theory.

not a necessary condition for the correctness of our mucﬁ Since the theory is infrared free fér<3N/2, both cou-

milder inequality. ~ plings increase wit, showing tha) andTdf/JT are nega-
There have been several attempts to proegteeorem in  tjve for smallT. Still, the inequality is satisfied.

4 dimensiong16-21]. The values of these functions at

fixed points are numerically quite different frofy,, and

fir. The inequalities similar to Eq4) that would arise as B. SU(N) theory

consequences of thesetheorems in general do not signifi- ~ We next record theT dependence for the non-
supersymmetriSU(N) theory([23], e.g) For T— oo, pertur-
bation theory gives

2Although our argument involves a flow in temperature, the usual 2(T)
RG arguments and dimensional analysis may be used to rewrite f(T)=fyy—10(N?2—1)(N+5F/N) 9 +.--, (17)
everything in terms of a change in scale parameier, 1672
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wherefy is given by Eq.(9) andg is the gauge coupling. +1)/2 meson superfield25]. As one can see from the fol-

Asymptotic freedom leads to positiveand df/JT. lowing table the inequality is satisfied in the entire range of
For T—0, corrections to the free-field behavior of the flavors where our calculation of thigs is applicable. Inter-

Nambu-Goldstone bosons may be computed using chiral peestingly, as in the case of SUSY QCD the inequality is satu-

turbation theory. The leading correction arises at second orated at the boundary between the conformal and free phases

der in 1F2, whereF . is the Nambu-Goldstone decay con- of the dual description, which lies &= (3/2)(N—2).

stant, and contains a chiral logarithm. The result, Tor

<F_, is[24] range of validity MN-2<F=<3(N-2)
N(N—1
F2F2-1) T* [F, fuv %”[ ( 5 )+FN}
f(T)=f|R+——In(— +-- (18
144 g AT (2F—N+42 N-4
e 12 "z
where f g is given by Eq.(9). Thus for smallT, f(T) in- . )
creaseisvvitﬁI'? Y ) inequality F<2(N-2).
Interestingly, for the non-supersymmetric theory in the
Nambu-Goldstone phase, the functiqT) is positive mono- (B) The electric theory haSp(2N) gauge group with 2
tonic for both largeT and smallT, the limits in which it may  fundamentals and no tree level superpotential. The magnetic
be computed reliably, using perturbation theory. dual has gauge groupp(2F —2N—4) with 2F fundamen-
tals andF(2F—1) mesong26]. As one can see from the
V. OTHER EXAMPLES table the inequality is satisfied in the entire range of flavors

. ) ] . where our calculation of th€s is applicable. As in the cases
In this section we apply our inequality to several examplegf SO andSU SUSY QCD, the inequality is saturated at the

field theories for which weakly coupled UV and IR descrip- houndary between the conformal and free phases of the dual
tions have been proposed. We first discuss a number of agscription,F = (3/2)(N+1).

ditional asymptotically free supersymmetric theories with

infrared-free dual descriptions. We find the inequality to berange of validity N+3<F<3(N+1)
satisfied in all cases. We then discuss the supersymmetr}c LIN(2N+1)+4FN]
SU(N) theory in the regimé>3N/2, where the dual mag- 15 2(2F —N=2)2— N—2
netic theory exhibits a non-trivial infrared fixed point. The 'R ) al 3( ) ]
inequality is again satisfied where it can be checked pertufneduality F<3(N+1).

batively. Finally, we go on to discuss QED intZL dimen-

sions, where the inequality gives an interesting constraint on (C) The electric theory haSU(N) gauge group witHe

the infrared spectrum. flavors and an adjoint chiral superfied Without a tree
level superpotential no weakly coupled dual is known. With
A. Infrared-free supersymmetric examples the superpotentialV=tr A*> a magnetic dual has been found

27] with gauge groulSU(2F —N). The matter content of
his dual isF flavors of dual quarks, a chiral superfield trans-
rming in the adjoint of the dual gauge group, anB22

All examples in this section are supersymmetric theorie
for which infrared-free dual descriptions have been pro-

. - f
poseo_l. We prssent ea},(:h example na fOTma‘ where we ﬂr?ﬁesonﬁ As we see from the table the inequality is satisfied
describe the “electric” theory by giving its gauge group, . . .
) . in the entire range of flavors where our calculation of tte
matter content, and superpotential. We then give the gauge

group and matter content of the dual “magnetic” description S applicable.
(and a reference to where this dual was first described in the

Iiterature). We shovv_ the range_of flavors for which the mag- range of validity E<F$2N

netic description exists and is infrared free. In each case, this 2

is well within the flavor range for which the electric theory is f B[2(N?-1)+2FN]
asymptotically free. This is therefore the regime for whichfIR B2(7F?2—5FN+N2-1)]
free field theory calculations dfyy andfr are exact. We  jnequality F<EN.

then quote the answers fér,, and f;g which are obtained

by simply counting the number of superfields and multiply- ]

ing them by a factor of 2(& 7/8)= 15/4, the contribution to (D) The electric theory haSO(N) [or Sp(N)] gauge

the free energy from a single free superfield. Finally we com-9roup withF vectors[fundamental¥ and a symmetriganti-

pute the constraint following fromf,g<f,, and check symmetrid tensorT of the gauge group. The tree level su-

whether it is satisfied in the range of flavors for which the

calculation is valid. We find this to be the case in every

example. 3Note that there are also known duf®8] for more general su-
(A) The electric theory haSQ(N) gauge group wittF  perpotential termsV=tr A¥, but these theories do not have a weak

vectors and no tree level superpotential. The magnetic dualV fixed point so that we cannot calculatg,, .

has gauge grouO(F—N+4) with F vectors andF(F “In the case oSpbothN andF are even.
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fuy andf g as a function ofF/N in the neighborhood off

2
f N = (32)N.
1 To calculate the corrections we choose lakgyandF with
15 F tuned slightly larger than (3/R). To see that for these
values ofN andF the fixed point of the magnetic theory is
perturbative, define the small parameters (2F—3N)/N
10 T which measures the departuie F) from the free magnetic
phase. Then the fixed point values for the couplings of the
| | | magnetic theory may be computed in termsedy setting
43/30 32 ar30 F the two-loop B functions for the gauge and Yukawa cou-
N plings to zero. We find
FIG. 1. Plot off, andf g in units of N? as functions of/N. 14 ¢
We have taken the largd-and F limit and show only the neigh- gﬁq: 16m2— —
borhood of the interesting poit/N=3/2. ForF/N<3/2 one sees 3N
thatf,g<fyy, atF/N=3/2 the twof’s touch, and folF/N>3/2 we
again findf g<fy, but only after taking into account the interac- 2_2 5
tions. For comparison we also shdﬂ.g , the expression fof,g with y —7gm ) (19

no interactions included.

and one sees that perturbation theorygjp andy holds as
perpotential isW=tr T>. The magnetic dugl29] has gauge long ase<1.
group SO(2F +8—N) [Sp(2F—8—N)] with F vectors We now check that the inequality is also satisfied in this
[fundamentall a symmetric[anti-symmetri¢ tensor, and interacting theory by computing and comparifig, and f 5

F(F=1) mesons. Here and in the following the upperat smalle. Equation(6) expanded to first order ia gives
(lower) sign corresponds to th8Q Sp] model. Again we

find from the table that the inequality is satisfied in the entire 5
range of flavors where our calculation of tii&s is appli- fuy=18N" 1+ 7€) (20)
cable.

o . B 0 f,r receives contributions of orderfrom expanding the free
range of validity §§N”;2+ 8)<F=3(N+4) theory result, Eq(7), as well as from interactions. The inter-
fuv Z[N“=1+FN] action contribution is easily obtained from E@.6) by set-
fir P[7F2—=5FN+N?+41F + 16N + 63] ting g2(T) andy?(T) equal to their fixed point values at
inequality 7F2+41F+64 =0, Eqg.(19). We obtain

>
6F+16 31
f|r=15N? 1+e—7e), (21)

(E) In addition to the examples above we have also ap-
plied the predictions of the inequality geconfining theories. \yhere the+e comes from expanding the free expression
These areN=1 SUSY gauge theories with no tree level whereas the- & e comes from the interactions. Thus we see
superpotential which confine without chiral symmetry break-inat our inequalityf ;= f,r is satisfied once the interactions
ing. All s-confining theories have been identified and their IR5re taken into account.
spectra are knowf80]. We find that the confined spectra for A similar analysis may be used to construct a theory with
all these theories satisfy the inequality. Saturation occurg non-trivial UV fixed point in whichf ,y<f,r.%> When the
only for thes-confining SU(2) theory with 3 flavors which  ymper of flavors is just belowls the electric theory has a

we already mentioned in footnote 1 of Sec. Il A. weakly coupled fixed point. At this fixed point, the theory at
the origin of moduli space is in a conformally invariant

B. Supersymmetric example phase. At this point the interactions reduckelow its free

with an interacting infrared fixed point field value[cf. Eq. (16)]. Away from the origin of moduli

We consider SUSY QCD foF >(3/2)N. Recall from SPace the UV behavior of the theory is still described by this

Sec. Il that in this regimédy, is smaller tharf,, computed ~ fx€d point, while in the IR the gauge group is partially bro-
at zero(magneti¢ coupling. Thus it seems that our inequal- ken and some of the flavors become massive. The infrared

ity might be violated. However, precisely Bt=(3/2)N the theory will either be free or flow to a nonzero fixed _point
magnetic theory ceases to be infrared free and instead flowgnaller than the UV value. The net differenige—fyy will
to an interacting fixed point. At this fixed poififg receives P€ Positive if the number of flavors that have expectation
corrections from the relevant interactions. These correctionalUes is not too large.

are calculable in perturbation theory if the fixed point is

weakly coupled and — as we will show below — are of the

correct sign and magnitude to ensure that the inequality Swe thank Matt Strassler for showing us a similar theory, which
holds. These results are summarized in Fig. 1, which showied us to this example.
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C.QED in d=3 VI. CONCLUSION

For 2+1 dimensional QED (QEE) we will show that We have proposed a general constraint on the structure of
the inequality gives an interesting constraint on the allowechsymptotica”y free field theories, the inequalitg). Al-
infrared phase structure. QBDvith 2F charged Weyl fer-  though we have not proved this inequality, we have shown
mions (F Dirac fermiong is believed to have a phase tran- that it agrees with a large number of known results. In addi-
sition as the number of flavors is varig81,32. The mass- tion it places interesting restrictions on the pattern of sym-
less theory has &(2F) global symmetry. For larg€, the  metry breaking in many cases. The inequaliy one similar
screening effect of the fermions prevents the formation of ao it) would arise as a consequence o€ gheorem in four
condensate and the infrared theory is expected to be confogimensions, but is a weaker condition, and can be true even
mal. For smallF, on the other hand, one expects global sym-in circumstances where @theorem is not. It nevertheless
metry breaking and dynamical mass generation for the ferprovides a constraint on the general character of renormal-
mions. An analysis of the breaking using a gap equationzation group flows for a wide variety of asymptotically free
indicates that a parity conserving mass term is formed, corfield theories with IR fixed points. In specific cases it may be
responding to the breaking of the gloh#{2F) symmetryto  possible to prove the inequality via the route of Sec. Ill. We
its U(F)XU(F) subgroup. have noted that the inequality can be violated for field theo-

The inequality places a tight constraint on this pattern ofries with non-trivial UV fixed points, and have provided an
breaking. QER is free in the ultraviolet and using E(L2)  example of such a theory in Sec. V B. The inequality can
we havé also be valid for theories with non-trivial ultraviolet fixed

points, provided tha# is sufficiently positive over a large
foy=1+ SaF, (27 temperawre range. o
4 Finally, it is interesting to apply the inequality to chiral
gauge theories. In particular, in a model due to Bars and
where 4 counts the fermionic degrees of freedom. Thevankielowicz [33] in which the anomaly matching condi-
breaking of theU(2F) symmetry toU(F)XU(F) leads to tjons are consistent with the formation of massless composite
2F2 Nambu-Goldstone bosons. Since the theory does ndermions, the inequality leads to a nontrivial constraint on
confine, the photon remains in the infrared spectrum, so Wehe infrared spectrum. In a future pajgg84], in preparatiohn
have we will discuss the application of the inequality to this and

several other chiral gauge models.
flr=1+2F2, (23
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