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We consider a subclass of alternative theories of gravitation obtained by a first order formalism from a
Lagrangian densityr= f(R) =g+ Ly Where the matter field Lagrangian density does not depend on the
connection. For this theory we derive an analogue of the Einstein pseudotensor and the von Freud superpo-
tential. Then we derive, using the arbitrariness that is always present in the choice of pseudotensor and
superpotential, a generalization of the/lMo superpotential as associated with a double-index differential
conservation law. This superpotential allows us to deduce that there are two analogues of the Komar vector of
general relativityGR): one associated with the general connection and the other with the metric connection.
Astonishingly both of them satisfy the physical condition that the inertial mass must be equal to the gravita-
tional (active mass for any class of matter. We also obtain a generalization of Tolman’s expression for the
energy, and prove that those theories wiff®)=0 share with GR the property that the total energy is
independent of any two-dimensional surface which encloses the support of the matter distribution.
[S0556-282(199)03614-0

PACS numbses): 04.50:+h, 04.20.Cv, 04.25.Nx

[. INTRODUCTION suming the metric and the connection as independent vari-
ables. This formalism has also been applied to more general
Attempts to quantize general relativitgR) or to regular-  Lagrangian densities with quadratic teriff|§ or a general
ize the stress-energy-momentum tensor of quantum field&inction of the scalar curvaturs,7], to study other geo-
propagating in curved space-time have led investigators tmetrical theories of gravitation. More receni§], the latter
consider gravitational actions involving terms quadratic intheories have been extended by including a scalar field in the
the Ricci tensof1,2]. For example, the theory based on the Lagrangian and a connection allowing torsi@]. One ap-
Lagrangian £=(aR+BR?*+yR,,R%?)/—g has better parent conceptual advantage of these theories is that quan-
guantum properties than general relativity itself. The particledum fluctuations of the metric and the connection are inde-
spectrum of this theory, in the linear approximation, containgpendent of each other.
a massless graviton, a massive spin-2 ghost, and a physical The theory behaves in the Newtonian lirfiff] as a New-
scalar particle(spin-0, which are, respectively, associated tonian theory with a correction which is proportional to the
with the first, second, and last terms of the Lagrangian.  matter density at the field point. This behavior can be pro-
In modern cosmology, higher-derivative theories have beduced by a Yukawa potential with an atomic scale character-
come standard since the Starobinsky model with curvatureistic range\ and a coupling constamt proportional to 1x2.
squared terms leads automatically to the desired inflationaryhis type of potential is not excluded by the present experi-
period. In the limit of small energies the superstring theoriesnental datd10].
give an action for spacetime in the form of the Einstein- In the present work we consider those theories that are
Hilbert action plus terms which are quadratic in the scalaobtained from a Lagrangian densit¢ (R)=f(R)\—g
curvature and the Ricci tensor. + L), that depends on the curvature scalar and a matter La-
Higher-order theories of gravity are the generally covari-grangian that does not depend on the connection, and apply
ant extensions of GR when we consider in the LagrangiafPalatini’s method to obtain the field equation. Our investiga-
density nonlinear terms in the curvature. The field equationsion includes the particular cag¢R) =R+ wR? whose cos-
derived by second-order variation of this Lagrangian contairmological solutions has been discussed in some details by
metric derivatives of an order higher than the second. Th&hahid-Saleskl1,12.
second-order variation or second-order formalism consists of The theories obtained from this Lagrangian, using the
assuming a Riemannian geometry and considering variatiorsecond-order formalism, are, in vacuum, conformally
of the metric and its first derivatives equal to zero on the“equivalent” to Einstein gravity with a massive scalar field
boundary of a space-time regibfi However, it is possible to  [13]. This conformal equivalence follows from the prescrip-
modify the Einstein-Hilbert action by adding a boundarytion of a general Legendre transformatig®,15. Then, in
term such that, when the variation of this term is taken intovacuum, we have two frames: the Jordan frame with the
account, it cancels the unwanted term which appears wheaoriginal set of variables and the Einstein frame with the
we only impose a null variation of the metric on the bound-transformed set of variables. In the Jordan frame, gravity is
ary and leave its derivatives unrestric{ej4]. entirely described by the metric tensor. In the Einstein frame,
Alternatively, the Palatini approach, or first-order formal- the scalar field acts as a source for the transformed metric
ism, can be applied to obtain the field equations in GR astensor and formally plays the role of an external matter field
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for the Einstein field equations, which corresponds to the Il. GENERAL STRUCTURE OF THE THEORY

additional degrees of freedom, due to the higher order of the . . I —
field equations, in the Jordan frame. We have to decide Let us consider a Lagrangian densifyy=f(R)v—g

which frame should be taken as the physical one; i.e., th+£'\"’ where the matter Lagrangian does not depend on the

. ; . . Gonnection, the metric and the connection are independent
physical metric should be singled out already in the vacuum b

L . . variables, and the connection is torsionless. Then the field
theory: and the mlnlmal coupling of the matter field t_o theequationiG,?], if we vary with respect to the metric, are
Einstein frame’s metric or to the Jordan frame’s metric de-
pends on this decision. Magnano and Sokolow4k] have 1
studied this problem. F'(R)Rap= 5 F(R)Gap=Tap- @

On the other hand, in the theories considered here it is still
an open guestion whether they can be reformulated as GRhe variation with respect to the connection, recalling that
plus additional degrees of freedom; we expect to address thikis is fixed at the boundary, gives
point in a future paper.

One of the most intriguing problems to be solved in any VcGan=DbcGan, @
theory of gravitation is the definition of energy and, more b= —[Inf"(R)] 3)
generally, of conserved quantities associated with the gravi- ¢ €
tational field itself. Thus, we have a Weyl conformal geometry with a Weyl field

There are various approaches in the existing literaturegiven by Eq.(3).

One of them is directly based on suitable “covariance re-  The vanishing of the connection in a particular frame, for
quirements” for the Lagrangian of the theory, together withexample in a geodesic frame, however, does not mean that
suitable integration by parts on field equations, to generatthe metric is flat there, because, from E®), 9:9ap
families of “Noether currents” out of a vector densiy®  =b.g,,. Therefore the strong equivalence principle is in
which is usually the divergence of a skew-symmetric tensogeneral not satisfied.

density U®, called a “superpotential” for the conserved From Eqg.(1) we obtain

guantities themselves.

In this work we propose to consider the derivation of F(R)IR=2f(R)=T, (4)
conseryation laws anq the relateq problem of the symmet%hich shows thab, is determined byl and its derivative
propgzrtles qf the metrlc field, appI!cabIe to the above theoryexcept in the casé(R) = wR?, for which Rf —2f=0, and
obtained using a first-order formalism and the general mattel o we must consistently hadie=0.

Lagrangian. _ _ The connection is
In the next section, the general structure of the theory is

shown. In Sec. Ill “double-index” differential conservation a 1

laws (laws involving conserved quantities with two indiges b= C%c~ 5 (bt 8cbp—gncb?), (5)

are derived and the analogues of the Einstein pseudotensor

[17] and the von Freud superpotentjaB] are deduced. Fi- \whereC?,, is the metric connection. The Riemann tensor is

nally we obtain, for this theory, the generalization of thedefined as usual and then the Ricci tensor and scalar curva-
Mdller [19] superpotential of GR. ture are

In Sec. IV the “single-index” differential conservation
laws are discussed and from the generalization of thédvio o 3 1 1
superpotential we show that we can choose two analogues of ~Rab=Rap* 5 Dby~ 5Dpbat5gapD b= 5baby
the Komar vector of GR to construct a conserved quantity
for an isolated asymptotically flat system. One of these gen-

eralizations of the Komar vector of GR is obtained using the + Egabbz’ ©®)
connectionl” of the theory and the other using the metric
connection. 3

The application of the results of Secs. Il and Ill and the R=R%+3D-b+ Ebz, (7)

integral conservation laws is considered in Sec. V. In a gen-

eral nonlinear theory the active mass is not necessarily equ?JhereRgb, RC, andD, are the Ricci tensor, scalar curvature,

to the total mass-energipr inertial mass obtained as the  4nq covariant derivative defined from the metric connection,
conserved quantity associated with time symmetry. HOW‘respectiver.

ever, by choosing any of .the two anglogues of the _K_omar From Eq.(6) we obtain

vector we show that in this theorfas in general relativity

and in some models of higher-order theor[@§] and of Riab) = 9abp— dpba ; 8
scalar-tensor theorig1]) the active mass is equal to the

inertial mass, and then the weak equivalence principle is sathen, Eq.(3) givesR(ap)=Rap-

isfied. This property differentiates this theory from other al- Because the matter action must be invariant under diffeo-
ternative theories, such as, as for example, Brans Dickelorphisms and the matter field satisfies the matter field
theory[21]. equationsT,y is conserved:

044012-2



CONSERVATION LAWS, SYMMETRY PROPERTIES, AND ... PHYSICAL REVIEW B0 044012

D3T,,=0. 9) the infinite group of diffeomorphism, and then we obtain a
set of differential identities known as the generalized Bianchi
Therefore,we may conclude that a test particle will follow identities[23—25
the geodesics of the metric connection. Using E&s.and

(4) we have LAyt (LA7a1 ) ot (LAYa)*) 0p=0, (16)
YT whereLA={61/8g,p;81/5'%,,} and
be=— (10
f'(Rf"—f") £,Ya= Eyak— fk,|7Ak|+§k,|m7AkIm- 17

We assumef’#0. Except for the case of GR,’=0, the  WheneverY,=g,, andY,=I%,., we have
Weyl field is nonzero wherever the trace of the energy-

momentum tensor varies with respect to the coordinatés. If £:Gab= £ Vank— £ Yank - (18
is constant, theR is also constant).=0, and Eq.(1) takes A
the form £ 5= E Yok €1 7an™ + & imYark ™ (19
1 where
Gapt EAgabz aTap, (11
Yabk= ~ Jab ks 'Yabkl:z‘sl(agb)kv (20)
whereA and « are two constants depending BnThus, as
we have just proved6,7] all those cases with a constant Yabk =~ apk. ’)’abcklzzg(arcb)k_gﬁrlab'
trace of the energy-momentum tensor are equivalent to GR
for. a give_n cosmolog_ical _constant: This is the so-ca[@-l] Yap' ™= — 5§5|a§g1_ (22)
universality of the Einstein equations for matter with con-
stantT. Then the Bianchi identitie§16) can be written
IIl. DOUBLE-INDEX DIFFERENTIAL CONSERVATION =Lkt 2(LPgpp) i+ L2 %k
LAWS

— (LI 5p= 2L T %0 i = (L") =0, (22)
Differential identities analogous to the Bianchi identities ab

of GR are derived23] by considering the Lagrangian den- With L*> andL*" given by

sity as an arbitrary function of the coordinates, the field vari-

ables, and their first and second derivatives, ol L ab ol

Lab= :
. 8Yap’ ¢ ore
LY A YA OO YA =106 YR), (12) : @
which transforms as a scalar density under the group of gen'\-low’ expanding the variational derivative and making some

. . . extra algebra, we can show that
eral space-time coordinate transformation.
In the first-order formalism the metric and the connection
Cab,k: { | 5:(_{

(23

are independent field variables. Under an arbitrary infinitesi—Labgab’kjL Lab T

al al
i ) S0 9 Gab .k
mal coordinate transformation Qab,i Gabeei/ o

x'k=xk+ (%), [&x)]<1, (13 al a .
- (99—_9ab,k|_ re I apk
the scalar density will satisfy the equation ab,il 91 e, i
L(X"; Y A(X))d*X" =1(x; Y a(X))d*X. (14 (24
. ) . From the last result and E¢22) we have
Then, an infinitesimal coordinate transformation is a symme-
try transformation, i.e., a transformation which leaves the 1 al I
form of the equations of motion unaltered. We assume that —Opk— = |5‘k_{__( ) }gabk
the description of our physical system is given completely by I9bi 2 99ap,i | 9Yab.ei e ’
a system of function¥ ,(x), which includes the metric com-
ponents, the connection, and the matter fields. In the case of al al . a
an infinitesimal diffeomorphism the change in the form of E gabvk'_arc _F abkt ark ap
the fields is given by ' abi ab
S + o 2 o re 0 (25
SYa=E:Ya, 15 — |~ =0.
ATTETA 9 arkg | - Tarey P
! W

where¢ is a vector field called the generator of diffeomor-
phism. The symmetry transformation under consideration i$efining the analogue of the Einstein pseudotensor of GR as
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V-gt= {lak{

al ( al )
agab,ei e gab,k

9Yab,i
al al e 4 al r
T o Gab,ki PO ab,k e, ab
L2 PR (26)
ark; ;% ok

and using the field equation in E2), we can construct the
two-index conserved quantity

=V=0(T\+t), (27)
which satisfies

0';=0. (28)

PHYSICAL REVIEW D60 044012

Xi'=— (VWM ),
XM= — (WM +Z"m, ),
XklmnE

Uk=LAya)+ (L% ot (LA7a)") 0p=0,

VH=L a0k + L% yap + (L2 vap®®) a— 1 8k

nml
-7 s

bl bl 2 bl
—A® ')’abk_Aa eYabke—Ba e'}’abkev

Wli = Labe'yabek“ _Aabi,yabkl + Babli,yabk_ Babjiyabkl,j

_Aabic')’abckly
ZimlkE Babil,yabkm_Aabic,yabcka. (34)

Since£X are arbitrary, each coefficient in the expans(88)
must vanish separately. Therefore, we have the equations

Furthermore, associated with the infinitesimal symmetry
transformation, we can obtain a set of identities known as
basic identity[ 23]:

Vlk'|:0,

L
- SYp+t™ =0,

Vie=-W" o,

oY (29 VV(ml)k: _Zn(lm)k,l )
A
(nmi) _
Then, from Eqs(18) and(19) we have Z k=0, (39
where we have used the Bianchi identities in the first equa-
n I cl tion, i.e.,U,=0, in order to obtain a differential conservation
89ap S & Yabi € 47ani) 5rcab(§ Yabic ~ & Yan k law. From the remaining conditions we find that
+ & imYapi™ +t" n=0, (30 Vie=U", (36)
where 1 )
Ulmk:WImk+ §(Z”mk_zhmk),i . (37)
tM= AP £y o £ yapk ) H1OXMHBEPMER Ly
+ 8% apkn— £ 10 Vabl — £ YVabi )+ APMSTC,y As a result of Eq(35) we can put
(31) W(lm)k: _Zi(lm)k’j (39
and with and
Aabm_ al ( dl ) Zi(m), 4 zmi, 4 z0lilm), =0 (39
9 o ’ .
Gabm  \ abmn/ Therefore, the symmetric part of|"
gabmn 7! (am), _ L S mbi _ idm)
’?gab,mn’ U k_§(z k—Z k),j . (40
) Jl Using the fact that the Lagrangian is an arbitrary function of
M= T (32 the curvatureR and
ab,m

Now, expanding and recombining the derivative terms, the

basic identity(30) can be written as
EXiet € X+ E XM+ € X MM=0,  (33)
where we have used the definitions

X =U=Vaa,

t

M yay .
uv5a = = I(k5|)_ , (41)
g t e, g j
it is not difficult to prove that
al al
( . ——k> =0 (42
TN I A TR
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and thus Ul =\—gf"(gwg™' - gig" "+ B' M —BMS'y),
N N 54
(z{-z{(M =o. (43) 9
where
Finally, using the above equation it is easy to see the anti-
symmetry ofU'", 1 5
y y 2B'=>g1Clj—5(Inf")"! (55

Uilk:U[iI]k' (44)
. . andC'ij is the metric connection.
and thenU" is a superpotential for the conserved complex Finally, by adding to the von Freud superpotential the

|
Vi o skew-symmetric term
From the definitions o¥{, Eq.(34), and®2, Eq. (27),

. ‘ QK —2y—gf'Alls4;, 56
Vi=20'y. (45) Ute) ) (56)
. . Yvith
Therefore, we may generalize the von Freud superpotential,
i.e., the superpotential that satisfies =—[(Inf")'+B', (57)
Ul =0, (46)  we obtain the analogue of the Mer superpotential:
by defining Ul =V=99"0"[(Gkmf )1 = (Gf ) ] (58
Uil — EU” 47) The last expression with’ =1 is equal to the Miter super-
(VF) k= ke potential of GR.
As is well known, the addition of any antisymmetric quantity IV. SINGLE-INDEX CONSERVATION LAWS

Q3 to ¢ yields a new differential conservation law
Single-index conservation laws can be derived by consid-

ﬁf‘az 0, (48) ering Egs.(16), (18), and (30) to obtain a differential con-
servation law
where
| ol 4l dl
[ b _ ¢l Iy I . kI

0.2 ®a+Q a (49 [ t'+ ¢ 5gab7ab1 ST, ngj (5rgb7’gbj ) J
The new pseudotensor and superpotential become, respec- '
tively, i .c Im Sl

+& mYabi Lo, =0. (59
t2=tg+ Q2] (50) ab) |

and From the above identity and requiring the gravitational field

[at] [at] [at] equations to hold, we can introduce a double-index superpo-

U =Upct Qi (51)  tential
Finally, Eq.(46) becomes [—t'+2\—gTd]= |J] (60)
0=V =-g(t'}+Tp). (52 where we have used E¢RO).

From the equality52) we can write
gt =d0/'=-gd(Tj+t/). (61)

Completing the derivative on the left hand side we obtain

Now, Ul'™ is equal to

1.
ylm = witm, — ~ZUlim,

R IR jryr Okl — [T Ne (Tt
:_,/_gf’ Zrcbkrc—_r[alb Fk (gUJ ),k gg (TJ+tJ)1 (62)
o[lm] 9L Jav],m) where we have defined
1 4R i i _
+3 (—‘9 ) ——(J_ )i (53 =t €01 -geh) (63)
(9F|[m|] |[m|]

By comparing Eq(60) with Eq. (62), it is clear that we can

The scalar curvature depends on the derivative of the corfhoose
nection only through the terrg" 6", (I}, ;— I} 4). Then, — -
Eqg. (53) becomes ' U['klzzgjurjllk] '
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t=—2J/—q 95’?] . (64) It i.s. believed that a gqod choice of one qf these two vector
densities would be one in which the equality between active
and inertial mass is satisfied.

For example, in GR, we have to také; as the Einstein )
From Egs.(68) and(71) it follows that

pseudotensor andJ’["‘ as the von Freud superpotential

[26]. @ =0 N ligriil
The conserved vector quantity given by E§2), Ok =01 +2y=g(&'f""),;;. (73

=gl == g'(T' +t") (65) Finally, comparing the Komar superpotential in GR,
Ul ;n with its analogues we have
is clearly dependent upon the choice of superpotential. In B B o
particular, when we use Mler's superpotential58), we find U[K'” =yl 4+2\/—gelif"i (74
Ol =(&UR - (66) ulin=frulil . 75

By adding a quantity It is easy to see that in the first-order formalism the candi-
T T [ fr e oM fr e ~imyq dates to covariant energy-density flow are all equal to the GR
Wi =INV-9(fEng Fema™], 7 Komar expression, for all kind of sources, only whgifR)
is constant for alR; thenf(R)=CR whereC is a constant.
Now, in order to have the correct newtonian limit the con-
_ PN f1 £ stantC must be equal to 1/8G.
=V=gl(f &) = (&)1, (68) q

to @}, we obtain one analogue of the Komar veoc® :

where(;) is the covariant derivative defined from the metric V. ACTIVE MASS

connection. Note tha®, is locally covariant. It is obvious In the last section we have obtained two vector densitiess,
that this vector has an analogue of the Komar superpotentig{ich are candidates for covariant energy flow in the first-

Ul=2—g(f’&V), which can be written as order formalism. In this section, we shall select one of them
-~ o by asking it to satisfy the equality between active mass and
uldl=2\—gf'vligl (69 inertial mass.

. T i , The weak field limit of this theory7] is
and the covariant derivativg is defined using the connec-

tionI" . ] ) ) Gab= Nap— (4alp+272p) VN — 728 7f"(0)p,  (76)
In fact, formally this superpotential differs from the Ko-

mar superpotential by the conformal facfd(R), but there  wheret? is the time direction of our global inertial coordi-

is a deep difference: the Komar superpotential in generahate system an¥, is the Newtonian potential; i.e., it satis-
relativity depends on the metric connection and not on thdies the Poisson equatioi?Vy=4mp. Suppose we have a
other connection. Also, it is worth noting, as we have justgood theory; thus there must exist solutions of the field equa-
said, that the test particles follow the geodesics of the metritions which have a region, far from the sources, where the
connection. Therefore one must choose the last one as tlield may be considered as weak fields and the weak field

physical connection. limit equations are valid. In particular, such a region may be
If, instead ofwlii] i, we add a quantity taken as the exterior of a spherical sh&llTo construct a
B ' o o solution, we impose adequate boundary conditionsSoto
W =[—g(f" & g™m—f'& a™]; match the fields to the interior & and a general multipole
S i expansion at infinity. From this multipole expansion we ob-
+[V—g(fEg-1"1E)];, (70)  tain that the leading order terms fgg, are
we would obtain another analogue of the Komar veélQr, 2GM
Yoo= —1+ ——, (77
=2y—g(f" ey, (72)

hereM is a constant which can be determined from the

oundary conditions ors. Usually, this coefficient of the
leading order term in the multipole expansion gy, near

ulill=2—gf" iil=¢ il (72)  infinity is called the active mass or gravitational mass.
As in GR, it is easy to prove from Eq77) that the cova-

WhereUI[(IJ]GR is the Komar Superpotent|a| in genera| relativ- riant expression of the total active mass, seen at spatial in-
ity. It is important to note that the last result is not casual, thdinity for a static, asymptotically flat spacetime, is given by
difference between two quantities of the tyge-gvli ¢! [3]
with different covariant derivatives being an antisymmetric
pseudotensot/— gClil, &2 then it is natural that both quan- j; gbalgs, (79)
tities are pseudotensor superpotentials. " 477G b

and the corresponding superpotential is, using the metri
connection, formally equal to E¢69):
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where 2 is a timelike Killing vector field,S(r) is a topo- Now, when T,,#0 near infinity andT,, is a well-
logical two-sphere at spatial infinity, amth,,=2n;,N,dS.  behaved function in the entirety of space-time, we could ap-
In the expression fod S,;,, dSis the natural surface element ply Gauss'’s law to the volume integral in E@®O), and we

on Sinduced by the spacetime metrN, is the unit outward obtain again a surface integral in spatial infinity, but in this
pointing normal toS which is orthogonal toé?, and n®  surfacef’'2=0; then the second term in E(B0) vanishes.
=£3/U [with U%=(—&3¢,)andU—1 near infinity. When the stellar object has a sharp boundary, the volume

For isolated gravitating systentgse., asymptotically flat integral of Eq.(80) could be evaluated using distribution
space-timg application of Gauss’s theorem shows that thetheory[27] and in this case we obtain that this volume inte-
integral gral is null again. Finally, in both cases, for a stellar object
with sharp boundary or not, we obtain

P(g):f 0'n;d3x (79 _
3 P(g)zf Kknid3x
s
is independent of the open spacelike hypersurface over
which it is evaluated, and represents a conserved quantity. In

— i 3
the above equatio®' is any of the two vector®, and®} fz Kmidx
andn; is the orthonormal vector t&.

Since the conserved vectdi88) depend on the choice of _ L
&2, there will be an infinity of conserved quantities corre- 47G
sponding to the infinite group of diffeomorphisms. It is gen-
erally thought, however, that physically significant con-But according to Eq(78) this integral is the active mada.
served quantities are generated by those infinitesimal Hence, usin@ or ®ﬁ as the energy density flow, the
transformations which represent intrinsic symmetry properconserved quantitfE=P(¢) is
ties of the gravitational field. The conserved quantities, cor-
responding to the temporal invariance of the solution, ob- E=P(§)=M. (82

tained by the above-described method, are the total energ%/ . . .
and inertial mass of the theory. herefore, the weak equivalence principégjuality between

In particular we can assume we have a static stellar objedfertial and active magss sgmsﬁgd_ for any kind of sources.
which can have a sharp boundary (s discontinuous Now, the Killing vector¢® satisfies the equation
throught a two-surfacégV which is the boundary of a vol- VoY £o= RCg 83)
ume V) or T,,#0 near infinity but approaches zero suffi- d ds o
ciently rapidly for the space time to be asymptotically flat. In
the first case across the sharp boundary we have to satis
obviously, the junction conditions. Also, we assume that
f’(R) is an analytic function; then in the case of a sharp
boundary and from Eq4), f'(R) is discontinuous through 02=2\-g
dV, its derivative is divergent over this surface, aRer0
outside this surface.

The volume integral 0BY has two parts: one is the vol-

ume integral of@ﬂ. Although the vecto@ﬁ is always ob-
tained from a two-index superpotential, its volume integral
over 3 cannot be straightforwardly transformed, in the case
of sharp boundary, by Gauss’s law into a surface integral :2J
[since the second term on the right hand side of [#8) is s
divergent ondV]. But the volume integral o@ﬁ could be

3€S§[b?a]n[aNb]dS (81)

nd using the field equations, the vector den@_)ﬁ/ can be
ritten

1
Tac+Ef(R)gac+VaVCf’(R))§°. (84)
The conserved quantitig(£) turns out to be

E(¢)= Jzﬁ)anadv

1
Tapt 5T (R)Gapt VoV ’(R)) £n2dV.

transformed into a surface integral: (85)
By expressingR as a function off we obtain a generalization
p(g):f @Knid3x of Tolman’s formula for the energy, i.e., the energy as an
s

integral of the sources.
Let us suppose we have a source of compact support
3€2f’(R)§[b?a]n[aNb]dS+f 2(fbaghly n d3x, Because of the analyticity of(R), outsideV, Eq. (4) can
S z have only a discrete set of solutions, nameRsr,, and
(80) when the solutions are asymptotically flat must be zero.
And from Eg.(4) we can also see that for any asymptotically
wheren, is a unit timelike vector andN,, is a unit normal flat solution withT—0 at spatial infinity to exist, the theory
vector toSand ton, . But Sis in spatial infinity andR=0 on  must satisfy the necessary conditibf0)=0.
S so in order to have the appropriate Newtonian limit Since the sources are confined in a compact subregion
f’'(0)=1/87G must hold. 3’ C3, then the total energy can be expressed as an integral
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over any such subregions. Thus, under this condition, th®icke scalar tensor theories there is no vector density de-
total energy defined by Eq82) is independent of the two- duced from symmetry properties, which gives an inertial

dimensional surfac& which encloses,’. mass(energy equal to the active mass.
Since the tensof2° satisfiesT??.,=0, the test particles
VI. CONCLUSIONS follow the metric geodesic. Therefore, the physical connec-

_ ) tion is the metric connection. Thus, it is natural that one of
The_conservanon laws de_rlved_ above appear to be naturghe analogues of the Komar vect(ihat obtained using the

extensions of the work of Einstein, Mer, Bergmann, and  metric connectiois associated with the active mass of the
Komar to the theories obtained from an arbitrd(R) La-  theory. But we have obtained that both vector densities cor-
grangian and using the first-order formalism. In particular,respond to the possible energy flow, because they satisfy the
we have derived conservation laws of two kinds: doublequality between inertial mass and active mass. Therefore we
index conservation laws and their corresponding superpotenqg not have a single energy flow density, and then the local-
tial for the conserved complex, and single-index conservai ation of the energy in the interior of the system is impos-
tion laws. In the first case we have obtained that a possiblgjpe. Finally, the only theories which can have asymptoti-
superpotential of the theory is an analogue of théllédo 4|1y flat solutions are theories with(0)=0. On the other
superpotential of general relativity. One of the main resultshand, these theories share with GR the property that, for
of this part was to establish the antisymmetry of the quantitygrces with a compact support, the total energy is indepen-
UR® introduced in Eq.(37). In the second case, we have dent of any two-dimensional surface which encloses the sup-
proved that there are two conserved vector analogues of thgort of the matter distribution.
Komar vector of GR: one using the connection and the other
the metric connection. Astonishingly both of them satisfy the ACKNOWLEDGMENTS
physical condition that the inertial mass must be equal to the
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