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Conservation laws, symmetry properties, and the equivalence principle in a class
of alternative theories of gravity

D. E. Barraco, E. Domı´nguez, and R. Guibert
Fa.M.A.F, Universidad Nacional de Co´rdoba, Ciudad Universitaria, Cordoba 5000, Argentina

~Received 3 September 1998; published 20 July 1999!

We consider a subclass of alternative theories of gravitation obtained by a first order formalism from a
Lagrangian densityLT5 f (R)A2g1LM where the matter field Lagrangian densityLM does not depend on the
connection. For this theory we derive an analogue of the Einstein pseudotensor and the von Freud superpo-
tential. Then we derive, using the arbitrariness that is always present in the choice of pseudotensor and
superpotential, a generalization of the Mo” ller superpotential as associated with a double-index differential
conservation law. This superpotential allows us to deduce that there are two analogues of the Komar vector of
general relativity~GR!: one associated with the general connection and the other with the metric connection.
Astonishingly both of them satisfy the physical condition that the inertial mass must be equal to the gravita-
tional ~active! mass for any class of matter. We also obtain a generalization of Tolman’s expression for the
energy, and prove that those theories withf (0)50 share with GR the property that the total energy is
independent of any two-dimensional surface which encloses the support of the matter distribution.
@S0556-2821~99!03614-0#

PACS number~s!: 04.50.1h, 04.20.Cv, 04.25.Nx
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I. INTRODUCTION

Attempts to quantize general relativity~GR! or to regular-
ize the stress-energy-momentum tensor of quantum fi
propagating in curved space-time have led investigator
consider gravitational actions involving terms quadratic
the Ricci tensor@1,2#. For example, the theory based on t
Lagrangian L5(aR1bR21gRabR

ab)A2g has better
quantum properties than general relativity itself. The parti
spectrum of this theory, in the linear approximation, conta
a massless graviton, a massive spin-2 ghost, and a phy
scalar particle~spin-0!, which are, respectively, associate
with the first, second, and last terms of the Lagrangian.

In modern cosmology, higher-derivative theories have
come standard since the Starobinsky model with curvat
squared terms leads automatically to the desired inflation
period. In the limit of small energies the superstring theor
give an action for spacetime in the form of the Einste
Hilbert action plus terms which are quadratic in the sca
curvature and the Ricci tensor.

Higher-order theories of gravity are the generally cova
ant extensions of GR when we consider in the Lagrang
density nonlinear terms in the curvature. The field equati
derived by second-order variation of this Lagrangian cont
metric derivatives of an order higher than the second. T
second-order variation or second-order formalism consist
assuming a Riemannian geometry and considering variat
of the metric and its first derivatives equal to zero on
boundary of a space-time regionU. However, it is possible to
modify the Einstein-Hilbert action by adding a bounda
term such that, when the variation of this term is taken i
account, it cancels the unwanted term which appears w
we only impose a null variation of the metric on the boun
ary and leave its derivatives unrestricted@3,4#.

Alternatively, the Palatini approach, or first-order forma
ism, can be applied to obtain the field equations in GR
0556-2821/99/60~4!/044012~8!/$15.00 60 0440
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suming the metric and the connection as independent v
ables. This formalism has also been applied to more gen
Lagrangian densities with quadratic terms@5# or a general
function of the scalar curvature@6,7#, to study other geo-
metrical theories of gravitation. More recently@8#, the latter
theories have been extended by including a scalar field in
Lagrangian and a connection allowing torsion@9#. One ap-
parent conceptual advantage of these theories is that q
tum fluctuations of the metric and the connection are in
pendent of each other.

The theory behaves in the Newtonian limit@7# as a New-
tonian theory with a correction which is proportional to th
matter density at the field point. This behavior can be p
duced by a Yukawa potential with an atomic scale charac
istic rangel and a coupling constanta proportional to 1/l2.
This type of potential is not excluded by the present exp
mental data@10#.

In the present work we consider those theories that
obtained from a Lagrangian densityLT(R)5 f (R)A2g
1LM that depends on the curvature scalar and a matter
grangian that does not depend on the connection, and a
Palatini’s method to obtain the field equation. Our investig
tion includes the particular casef (R)5R1vR2 whose cos-
mological solutions has been discussed in some details
Shahid-Saless@11,12#.

The theories obtained from this Lagrangian, using
second-order formalism, are, in vacuum, conforma
‘‘equivalent’’ to Einstein gravity with a massive scalar fie
@13#. This conformal equivalence follows from the prescri
tion of a general Legendre transformation@14,15#. Then, in
vacuum, we have two frames: the Jordan frame with
original set of variables and the Einstein frame with t
transformed set of variables. In the Jordan frame, gravity
entirely described by the metric tensor. In the Einstein fram
the scalar field acts as a source for the transformed me
tensor and formally plays the role of an external matter fi
©1999 The American Physical Society12-1
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for the Einstein field equations, which corresponds to
additional degrees of freedom, due to the higher order of
field equations, in the Jordan frame. We have to dec
which frame should be taken as the physical one; i.e.,
physical metric should be singled out already in the vacu
theory, and the minimal coupling of the matter field to t
Einstein frame’s metric or to the Jordan frame’s metric d
pends on this decision. Magnano and Sokolowski@16# have
studied this problem.

On the other hand, in the theories considered here it is
an open question whether they can be reformulated as
plus additional degrees of freedom; we expect to address
point in a future paper.

One of the most intriguing problems to be solved in a
theory of gravitation is the definition of energy and, mo
generally, of conserved quantities associated with the gr
tational field itself.

There are various approaches in the existing literatu
One of them is directly based on suitable ‘‘covariance
quirements’’ for the Lagrangian of the theory, together w
suitable integration by parts on field equations, to gene
families of ‘‘Noether currents’’ out of a vector densityQa

which is usually the divergence of a skew-symmetric ten
density Uab, called a ‘‘superpotential’’ for the conserve
quantities themselves.

In this work we propose to consider the derivation
conservation laws and the related problem of the symm
properties of the metric field, applicable to the above the
obtained using a first-order formalism and the general ma
Lagrangian.

In the next section, the general structure of the theor
shown. In Sec. III ‘‘double-index’’ differential conservatio
laws ~laws involving conserved quantities with two indice!
are derived and the analogues of the Einstein pseudote
@17# and the von Freud superpotential@18# are deduced. Fi-
nally we obtain, for this theory, the generalization of t
Mo” ller @19# superpotential of GR.

In Sec. IV the ‘‘single-index’’ differential conservation
laws are discussed and from the generalization of the Mo” ller
superpotential we show that we can choose two analogue
the Komar vector of GR to construct a conserved quan
for an isolated asymptotically flat system. One of these g
eralizations of the Komar vector of GR is obtained using
connectionG of the theory and the other using the met
connection.

The application of the results of Secs. II and III and t
integral conservation laws is considered in Sec. V. In a g
eral nonlinear theory the active mass is not necessarily e
to the total mass-energy~or inertial mass!, obtained as the
conserved quantity associated with time symmetry. Ho
ever, by choosing any of the two analogues of the Kom
vector we show that in this theory~as in general relativity
and in some models of higher-order theories@20# and of
scalar-tensor theories@21#! the active mass is equal to th
inertial mass, and then the weak equivalence principle is
isfied. This property differentiates this theory from other
ternative theories, such as, as for example, Brans D
theory @21#.
04401
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II. GENERAL STRUCTURE OF THE THEORY

Let us consider a Lagrangian densityLM5 f (R)A2g
1LM , where the matter Lagrangian does not depend on
connection, the metric and the connection are independ
variables, and the connection is torsionless. Then the fi
equations@6,7#, if we vary with respect to the metric, are

f 8~R!Rab2
1

2
f ~R!gab5Tab . ~1!

The variation with respect to the connection, recalling th
this is fixed at the boundary, gives

¹cgab5bcgab , ~2!

bc52@ ln f 8~R!# ,c . ~3!

Thus, we have a Weyl conformal geometry with a Weyl fie
given by Eq.~3!.

The vanishing of the connection in a particular frame,
example in a geodesic frame, however, does not mean
the metric is flat there, because, from Eq.~2!, ]cgab
5bcgab . Therefore the strong equivalence principle is
general not satisfied.

From Eq.~1! we obtain

f 8~R!R22 f ~R!5T, ~4!

which shows thatbc is determined byT and its derivative
except in the casef (R)5vR2, for which R f822 f [0, and
then we must consistently haveT[0.

The connection is

Gbc
a 5Ca

bc2
1

2
~db

abc1dc
abb2gbcb

a!, ~5!

whereCa
bc is the metric connection. The Riemann tensor

defined as usual and then the Ricci tensor and scalar cu
ture are

Rab5Rab
0 1

3

2
Dabb2

1

2
Dbba1

1

2
gabD•b2

1

2
babb

1
1

2
gabb

2, ~6!

R5R013D•b1
3

2
b2, ~7!

whereRab
0 , R0, andDc are the Ricci tensor, scalar curvatur

and covariant derivative defined from the metric connecti
respectively.

From Eq.~6! we obtain

R[ab]5]abb2]bba ; ~8!

then, Eq.~3! givesR(ab)5Rab .
Because the matter action must be invariant under diff

morphisms and the matter field satisfies the matter fi
equations,Tab is conserved:
2-2
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DaTab50. ~9!

Therefore,we may conclude that a test particle will follo
the geodesics of the metric connection. Using Eqs.~3! and
~4! we have

bc52
f 9¹cT

f 8~R f92 f 8!
. ~10!

We assumef 8Þ0. Except for the case of GR,f 9[0, the
Weyl field is nonzero wherever the trace of the ener
momentum tensor varies with respect to the coordinates.T
is constant, thenR is also constant,bc50, and Eq.~1! takes
the form

Gab1
1

2
Lgab5aTab , ~11!

whereL anda are two constants depending onR. Thus, as
we have just proved@6,7# all those cases with a consta
trace of the energy-momentum tensor are equivalent to
for a given cosmological constant. This is the so-called@22#
universality of the Einstein equations for matter with co
stantT.

III. DOUBLE-INDEX DIFFERENTIAL CONSERVATION
LAWS

Differential identities analogous to the Bianchi identiti
of GR are derived@23# by considering the Lagrangian den
sity as an arbitrary function of the coordinates, the field va
ables, and their first and second derivatives,

I „xi ;YA~x!;YA, j~x!;YA, jk~x!…[I ~x;YA!, ~12!

which transforms as a scalar density under the group of g
eral space-time coordinate transformation.

In the first-order formalism the metric and the connect
are independent field variables. Under an arbitrary infinite
mal coordinate transformation

x8k5xk1jk~x!, ujk~x!i!1, ~13!

the scalar density will satisfy the equation

I „x8;YA8 ~x8!…d4x85I „x;YA~x!…d4x. ~14!

Then, an infinitesimal coordinate transformation is a symm
try transformation, i.e., a transformation which leaves
form of the equations of motion unaltered. We assume
the description of our physical system is given completely
a system of functionsYA(x), which includes the metric com
ponents, the connection, and the matter fields. In the cas
an infinitesimal diffeomorphism the change in the form
the fields is given by

d̄YA5£jYA , ~15!

wherej is a vector field called the generator of diffeomo
phism. The symmetry transformation under consideratio
04401
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the infinite group of diffeomorphism, and then we obtain
set of differential identities known as the generalized Bian
identities@23–25#

LAgA j1~LAgA j
a! ,a1~LAgA j

ab! ,ab50, ~16!

whereLA5$dI /dgab ;dI /dGc
ab% and

£jYA5jkgAk2jk
,lgAk

l1jk
,lmgAk

lm. ~17!

WheneverYA5gab andYA5Ga
bc , we have

£jgab5jkgabk2jk
,lgabk

l , ~18!

£jGab
c 5jkĝabk

c 2jk
,lgab

c
k
l1jk

,lmgab
c
k
lm, ~19!

where

gabk52gab,k , gabk
l52d (a

l gb)k , ~20!

ĝabk
c52Gc

ab,k , gab
c
k
l52d (a

l Gc
b)k2dk

cG l
ab ,

gab
c
k
lm52dk

cda
l db

m . ~21!

Then the Bianchi identities~16! can be written

2Labgab,k12~Libgbk! ,i1Lab
cG

c
ab,k

2~Lab
kG

i
ab22Lib

cG
c
bk! ,i2~Li j

k! ,i j 50, ~22!

with Lab andLab
c given by

Lab[
dI

dgab
, Lab

c[
dI

dGc
ab

. ~23!

Now, expanding the variational derivative and making so
extra algebra, we can show that

Labgab,k1Lab
cG

c
ab,k5H Idk

i 2F ]I

]gab,i
2S ]I

]gab,ei
D

,e
Ggab,k

2
]I

]gab,i l
gab,kl2

]I

]Gc
ab,i

Gc
ab,kJ

,i

.

~24!

From the last result and Eq.~22! we have

S ]I

]gbi
gbk2

1

2 H Idk
i 2F ]I

]gab,i
2S ]I

]gab,ei
D

,e
Ggab,k

2
]I

]gab,i l
gab,kl2

]I

]Gc
ab,i

Gc
ab,k1

]I

]Gk
ab

G i
ab

1S ]I

]Gk
j i
D

, j

22
]I

]Gc
bi

Gc
bkJ D

,i

50. ~25!

Defining the analogue of the Einstein pseudotensor of GR
2-3
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A2gtk
i [

1

2 H Idk
i 2F ]I

]gab,i
2S ]I

]gab,ei
D

,e
Ggab,k

2
]I

]gab,i l
gab,kl

]I

]Gc
ab,i

Gc
ab,k1

]I

]Gk
ab

G i
ab

1S ]I

]Gk
j i
D

, j

22
]I

]Gc
bi

Gc
bkJ , ~26!

and using the field equation in Eq.~22!, we can construct the
two-index conserved quantity

Qk
i [A2g~Tk

i 1tk
i !, ~27!

which satisfies

Q i
k,i50. ~28!

Furthermore, associated with the infinitesimal symme
transformation, we can obtain a set of identities known
basic identity@23#:

dL

dYA
dYA1tm

,m50. ~29!

Then, from Eqs.~18! and ~19! we have

dI

dgab
~jkgabk2jk

,lgabk
l !1

dI

dGc
ab

~jkĝabk
c2jk

,lgab
c
k
l

1jk
,lmgab

c
k
lm!1tm

,m50, ~30!

where

tm[Aabm~jkgabk2jk
,lgabk

l !1Idxm1Babmn~jk
,ngabk

1jkgabk,n2jk
,lngabk

l2jk
,lgabk

l
,n!1Ac

abmdGc
ab

~31!

and with

Aabm[
]I

]gab,m
2S ]I

]gab,mn
D

,n

,

Babmn[
]I

]gab,mn
,

Ac
abm[

]I

]Gc
ab,m

. ~32!

Now, expanding and recombining the derivative terms,
basic identity~30! can be written as

jkXk1jk
,lXk

l1jk
,lmXk

lm1j ,lmn
k Xk

lmn50, ~33!

where we have used the definitions

Xk[Uk2Va
k,a ,
04401
y
s

e

Xk
l[2~Vl

k1Wml
k,m!,

Xk
lm[2~Wml

k1Znlm
k,n!,

Xk
lmn[2Znml

k ,

Uk[LAgA j1~LAgA j
a! ,a1~LAgA j

ab! ,ab50,

Vl
k[Labgabk

l1Lab
egab

e
k
l1~Lab

egab
e
k
ld! ,d2Id l

k

2Aablgabk2Aabl
eĝabk

e2Bablegabk,e ,

Wli
k[Lab

egab
e
k
li 2Aabigabk

l1Babligabk2Bab jigabk
l
, j

2Aabi
cgab

c
k
l ,

Ziml
k[Babilgabk

m2Aabi
cgab

c
k
ml. ~34!

Sincejk are arbitrary, each coefficient in the expansion~33!
must vanish separately. Therefore, we have the equation

Vl
k,l50,

Vl
k52Wlm

k,m ,

W(ml)
k52Zn( lm)

k,l ,

Z(nml)
k50, ~35!

where we have used the Bianchi identities in the first eq
tion, i.e.,Uk50, in order to obtain a differential conservatio
law. From the remaining conditions we find that

Vl
k5Uli

k,i , ~36!

Ulm
k5Wlm

k1
1

3
~Zilm

k2Zlim
k! ,i . ~37!

As a result of Eq.~35! we can put

W( lm)
k52Zj ( lm)

k, j ~38!

and

Zj ( lm)
k1Z(ml) j

k1Z( l u j um)
k50. ~39!

Therefore, the symmetric part ofUk
lm is

U ( lm)
k5

1

3
~Z(ml) j

k2Zj ( lm)
k! , j . ~40!

Using the fact that the Lagrangian is an arbitrary function
the curvatureR and

guvda
t

]G t
ua,v

]G j
ik,l

5gl (kd i )
j , ~41!

it is not difficult to prove that

S ]I

]Gk
l ( i , j )

2
]I

]Gk
i j ,l

D
,l

50 ~42!
2-4
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and thus

~Zk
l ( i j )2Zk

( i j ) l ! ,l50. ~43!

Finally, using the above equation it is easy to see the a
symmetry ofUil

k ,

Uil
k5U [ i l ]

k , ~44!

and thenUil
k is a superpotential for the conserved comp

Vl
k .
From the definitions ofVk

a , Eq. ~34!, andQk
a , Eq. ~27!,

Vi
k52Q i

k . ~45!

Therefore, we may generalize the von Freud superpoten
i.e., the superpotential that satisfies

U (vF) k, j
[ i j ] 5Q i

k , ~46!

by defining

U (vF) k
i j [

1

2
Ui j

k . ~47!

As is well known, the addition of any antisymmetric quant
Vk,b

[ab] to Qk
a yields a new differential conservation law

Qk,a8a 50, ~48!

where

Qk8
a5Qk

a1Vk ,b
[ab] . ~49!

The new pseudotensor and superpotential become, res
tively,

tk8
a5tk

a1Vk ,b
[ab] ~50!

and

U8k
[ab]5UvF k

[ab] 1Vk
[ab] . ~51!

Finally, Eq. ~46! becomes

Qk8
a5U8k,b

[ab]5A2g~ t k8
a1Tk

a!. ~52!

Now, U [ lm]
k is equal to

U [ lm]
k5W[ lm]

k2
1

3
Z[ l u i um]

k,i

52A2g f8F2Gc
bk

]R

]Gc
b[ l ,m]

2Gab
[ l ]R

]G uabu,m]
k

1
1

3 S ]R

]G i [m,l ]
k D

,i
G2

1

3
~A2g f8! ,i

]R

]G i [m,l ]
k

. ~53!

The scalar curvature depends on the derivative of the c
nection only through the termgi j du

v(Gv
iu, j2Gv

i j ,u). Then,
Eq. ~53! becomes
04401
ti-

al,

ec-

n-

U [ml]
k5A2g f8~gikgim,l2gikgil ,m1Bldm

k2Bmd l
k!,

~54!

where

2Bl[
1

2
gi j Cl

i j 2
5

2
~ ln f 8! ,l ~55!

andCl
i j is the metric connection.

Finally, by adding to the von Freud superpotential t
skew-symmetric term

V ik
j[U (vF) j

ik 22A2g f8L [ idk]
j , ~56!

with

L i[2@~ ln f 8! ,i1Bi #, ~57!

we obtain the analogue of the Mo” ller superpotential:

U (M ) k
[ i j ] 5A2ggil gjm@~gkmf 8! ,l2~gkl f 8! ,m#. ~58!

The last expression withf 851 is equal to the Mo” ller super-
potential of GR.

IV. SINGLE-INDEX CONSERVATION LAWS

Single-index conservation laws can be derived by cons
ering Eqs.~16!, ~18!, and ~30! to obtain a differential con-
servation law

H 2t l1j jF dI

dgab
gab j

l1
dI

dGab
c

gab
c

j
l1S dI

dGab
c

gab
c

j
klD

,k
G

1j ,m
j gab

c
j
lm

dI

dGab
c J

,l

50. ~59!

From the above identity and requiring the gravitational fie
equations to hold, we can introduce a double-index supe
tential

@2t l12A2gTj
l j j #5Ū , j

[ l j ] , ~60!

where we have used Eq.~20!.
From the equality~52! we can write

j j~U8 j
[ ik] ! ,k5j jQ j8

i5A2gj j~Tj
i 1t j8

i !. ~61!

Completing the derivative on the left hand side we obtain

~j jU j8@ ik#! ,k5A2gj j~Tj
i 1 t̄ j

i !, ~62!

where we have defined

t̄ j
i 5t j8 i 1j jj

l
,kU8 l

[ ik]~A2gj2!21. ~63!

By comparing Eq.~60! with Eq. ~62!, it is clear that we can
choose

Ū [ ik]52j jU8 j
[ ik] ,
2-5
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t i522A2gj j t̄ i
j . ~64!

For example, in GR, we have to taket̄ j
i as the Einstein

pseudotensor andU8 j
[ ik] as the von Freud superpotenti

@26#.
The conserved vector quantity given by Eq.~62!,

Q i5~jkU8k
[ i j ] ! , j5A2gj j~Tj

i 1t8 j
i ! ~65!

is clearly dependent upon the choice of superpotential
particular, when we use Mo” ller’s superpotential~58!, we find

QM
i 5~jkUMk

[ i j ] ! , j . ~66!

By adding a quantity

W̄, j
[ i j ]5@A2g~ f 8j ,m

j gim2 f 8j ,m
i gjm!# , j ~67!

to QM
i we obtain one analogue of the Komar vectorQ̄K

i :

Q̄K
i 5A2g@~ f 8j j ! ; i2~ f 8j i ! ; j # ; j , ~68!

where~;! is the covariant derivative defined from the met
connection. Note thatQ̄K

i is locally covariant. It is obvious
that this vector has an analogue of the Komar superpote
ŪK

[ i j ]52A2g( f 8j [ j ) ; i ] , which can be written as

ŪK
[ i j ]52A2g f8¹ [ ij j ] , ~69!

and the covariant derivative¹ is defined using the connec
tion G .

In fact, formally this superpotential differs from the Ko
mar superpotential by the conformal factorf 8(R), but there
is a deep difference: the Komar superpotential in gen
relativity depends on the metric connection and not on
other connection. Also, it is worth noting, as we have ju
said, that the test particles follow the geodesics of the me
connection. Therefore one must choose the last one as
physical connection.

If, instead ofW̄[ i j ]
, j , we add a quantity

W[ i j ]
, j5@A2g~ f 8j ,m

j gim2 f 8j ,m
i gjm!# , j

1@A2g~ f 8, jj i2 f 8,ij j !# , j , ~70!

we would obtain another analogue of the Komar vectorQK
i ,

QK
i 52A2g~ f 8j [ j ; i ] ! ; j , ~71!

and the corresponding superpotential is, using the me
connection, formally equal to Eq.~69!:

UK
[ i j ]52A2g f8j [ j ; i ]5 f 8UK GR

[ i j ] , ~72!

whereUK GR
[ i j ] is the Komar superpotential in general relati

ity. It is important to note that the last result is not casual,
difference between two quantities of the typeA2g¹ [ i j j ]

with different covariant derivatives being an antisymmet
pseudotensorA2gC[ i j ]

aja; then it is natural that both quan
tities are pseudotensor superpotentials.
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It is believed that a good choice of one of these two vec
densities would be one in which the equality between ac
and inertial mass is satisfied.

From Eqs.~68! and ~71! it follows that

Q̄K
i 5QK

i 12A2g~j [ j f 8; i ] ! ; j . ~73!

Finally, comparing the Komar superpotential in G
UK GR

[ i j ] , with its analogues we have

ŪK
[ i j ]5UK

[ i j ]12A2gj [ j f 8; i ] , ~74!

UK
[ i j ]5 f 8UK GR

[ i j ] . ~75!

It is easy to see that in the first-order formalism the can
dates to covariant energy-density flow are all equal to the
Komar expression, for all kind of sources, only whenf 8(R)
is constant for allR; then f (R)5CR whereC is a constant.
Now, in order to have the correct newtonian limit the co
stantC must be equal to 1/8pG.

V. ACTIVE MASS

In the last section we have obtained two vector densitie
which are candidates for covariant energy flow in the fir
order formalism. In this section, we shall select one of th
by asking it to satisfy the equality between active mass
inertial mass.

The weak field limit of this theory@7# is

gab5hab2~4tatb12hab!VN2hab8p f 9~0!r, ~76!

where ta is the time direction of our global inertial coord
nate system andVN is the Newtonian potential; i.e., it satis
fies the Poisson equation¹2VN54pr. Suppose we have a
good theory; thus there must exist solutions of the field eq
tions which have a region, far from the sources, where
field may be considered as weak fields and the weak fi
limit equations are valid. In particular, such a region may
taken as the exterior of a spherical shellS. To construct a
solution, we impose adequate boundary conditions onS, to
match the fields to the interior ofS, and a general multipole
expansion at infinity. From this multipole expansion we o
tain that the leading order terms forg00 are

g005211
2GM

r
, ~77!

where M is a constant which can be determined from t
boundary conditions onS. Usually, this coefficient of the
leading order term in the multipole expansion ofg00 near
infinity is called the active mass or gravitational mass.

As in GR, it is easy to prove from Eq.~77! that the cova-
riant expression of the total active mass, seen at spatia
finity for a static, asymptotically flat spacetime, is given
@3#

M5
1

4pG R
S
j [b;a]dSab , ~78!
2-6
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CONSERVATION LAWS, SYMMETRY PROPERTIES, AND . . . PHYSICAL REVIEW D60 044012
whereja is a timelike Killing vector field,S(r ) is a topo-
logical two-sphere at spatial infinity, anddSab52n[aNb]dS.
In the expression fordSab , dS is the natural surface elemen
on S induced by the spacetime metric,Na is the unit outward
pointing normal toS which is orthogonal toja, and na

5ja/U @with U25(2jaja)andU˜1 near infinity#.
For isolated gravitating systems~i.e., asymptotically flat

space-time!, application of Gauss’s theorem shows that t
integral

P~j!5E
S
Q inid

3x ~79!

is independent of the open spacelike hypersurface o
which it is evaluated, and represents a conserved quantit
the above equationQ i is any of the two vectorsQK

i andQ̄K
i

andni is the orthonormal vector toS.
Since the conserved vectors~68! depend on the choice o

ja, there will be an infinity of conserved quantities corr
sponding to the infinite group of diffeomorphisms. It is ge
erally thought, however, that physically significant co
served quantities are generated by those infinitesi
transformations which represent intrinsic symmetry prop
ties of the gravitational field. The conserved quantities, c
responding to the temporal invariance of the solution,
tained by the above-described method, are the total en
and inertial mass of the theory.

In particular we can assume we have a static stellar ob
which can have a sharp boundary (r is discontinuous
throught a two-surface]V which is the boundary of a vol
ume V) or TabÞ0 near infinity but approaches zero suf
ciently rapidly for the space time to be asymptotically flat.
the first case across the sharp boundary we have to sa
obviously, the junction conditions. Also, we assume th
f 8(R) is an analytic function; then in the case of a sha
boundary and from Eq.~4!, f 8(R) is discontinuous through
]V, its derivative is divergent over this surface, andR50
outside this surface.

The volume integral ofQ̄K
b has two parts: one is the vo

ume integral ofQK
b . Although the vectorQ̄K

b is always ob-
tained from a two-index superpotential, its volume integ
over S cannot be straightforwardly transformed, in the ca
of sharp boundary, by Gauss’s law into a surface integ
@since the second term on the right hand side of Eq.~73! is
divergent on]V]. But the volume integral ofQK

b could be
transformed into a surface integral:

P~j!5E
S
Q̄K

i nid
3x

5 R
S
2 f 8~R!j [b;a]n[aNb]dS1E

S
2~ f 8[,ajb] ! ;bnad3x,

~80!

wherena is a unit timelike vector andNb is a unit normal
vector toSand tona . But S is in spatial infinity andR50 on
S, so in order to have the appropriate Newtonian lim
f 8(0)51/8pG must hold.
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Now, when TabÞ0 near infinity andTab is a well-
behaved function in the entirety of space-time, we could
ply Gauss’s law to the volume integral in Eq.~80!, and we
obtain again a surface integral in spatial infinity, but in th
surfacef 8,a50; then the second term in Eq.~80! vanishes.

When the stellar object has a sharp boundary, the volu
integral of Eq. ~80! could be evaluated using distributio
theory@27# and in this case we obtain that this volume int
gral is null again. Finally, in both cases, for a stellar obje
with sharp boundary or not, we obtain

P~j!5E
S
Q̄K

i nid
3x

5E
S
QK

i nid
3x

5
1

4pG R
S
j [b;a]n[aNb]dS. ~81!

But according to Eq.~78! this integral is the active massM.
Hence, usingQ̄K

b or QK
b as the energy density flow, th

conserved quantityE5P(j) is

E5P~j!5M . ~82!

Therefore, the weak equivalence principle~equality between
inertial and active mass! is satisfied for any kind of sources

Now, the Killing vectorja satisfies the equation

¹d¹djc5Rd
cjd, ~83!

and using the field equations, the vector densityQ̄K
a can be

written

Q̄K
a 52A2gS Ta

c1
1

2
f ~R!ga

c1¹a¹cf 8~R! D jc. ~84!

The conserved quantityE(j) turns out to be

E~j!5E
S
QanadV

52E
S
S Tab1

1

2
f ~R!gab1¹a¹bf 8~R! D jbnadV.

~85!

By expressingR as a function ofT we obtain a generalization
of Tolman’s formula for the energy, i.e., the energy as
integral of the sources.

Let us suppose we have a source of compact suppoV.
Because of the analyticity off (R), outsideV, Eq. ~4! can
have only a discrete set of solutions, namely,R5r a , and
when the solutions are asymptotically flatr a must be zero.
And from Eq.~4! we can also see that for any asymptotica
flat solution withT˜0 at spatial infinity to exist, the theory
must satisfy the necessary conditionf (0)50.

Since the sources are confined in a compact subre
S8,S, then the total energy can be expressed as an inte
2-7
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over any such subregions. Thus, under this condition,
total energy defined by Eq.~82! is independent of the two
dimensional surfaceS which enclosesS8.

VI. CONCLUSIONS

The conservation laws derived above appear to be na
extensions of the work of Einstein, Mo” ller, Bergmann, and
Komar to the theories obtained from an arbitraryf (R) La-
grangian and using the first-order formalism. In particul
we have derived conservation laws of two kinds: doub
index conservation laws and their corresponding superpo
tial for the conserved complex, and single-index conser
tion laws. In the first case we have obtained that a poss
superpotential of the theory is an analogue of the Mo” ller
superpotential of general relativity. One of the main resu
of this part was to establish the antisymmetry of the quan
Uk

ab introduced in Eq.~37!. In the second case, we hav
proved that there are two conserved vector analogues o
Komar vector of GR: one using the connection and the ot
the metric connection. Astonishingly both of them satisfy t
physical condition that the inertial mass must be equal to
gravitational~active! mass for any class of matter, even
the case of matter with a sharp boundary. The equality
tween energy and active mass is not necessarily true in
other alternative theory of gravity. For example, in Bran
n-

.

n.

.

tiv
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Dicke scalar tensor theories there is no vector density
duced from symmetry properties, which gives an inert
mass~energy! equal to the active mass.

Since the tensorTab satisfiesTab
;b50, the test particles

follow the metric geodesic. Therefore, the physical conn
tion is the metric connection. Thus, it is natural that one
the analogues of the Komar vector~that obtained using the
metric connection! is associated with the active mass of t
theory. But we have obtained that both vector densities c
respond to the possible energy flow, because they satisfy
equality between inertial mass and active mass. Therefore
do not have a single energy flow density, and then the lo
ization of the energy in the interior of the system is impo
sible. Finally, the only theories which can have asympto
cally flat solutions are theories withf (0)50. On the other
hand, these theories share with GR the property that,
sources with a compact support, the total energy is indep
dent of any two-dimensional surface which encloses the s
port of the matter distribution.
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