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One loop back reaction on power law inflation
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We consider quantum-mechanical corrections to a homogeneous, isotropic, and spatially flat geometry
whose scale factor expands classically as a general power of the comoving time. The effects of both gravitons
and the scalar inflaton are computed at one loop using the manifestly causal formalism of SchiviNgh.

Phys.2, 407 (1961); Particles, Sources and Fieldéddison, Wesley, Reading, MA, 19Y0with the Feynman

rules recently developed by lliopoules al. [Nucl. Phys. B534, 419(1998]. We find no significant effect, in

marked contrast to the result obtained by Mukhanov and co-wofRéngs. Rev. Lett78, 1624(1998; Phys.

Rev. D 56, 3248 (1997] for chaotic inflation based on a quadratic potential. By applying the canonical
technique of Mukhanov and co-workers to the exponential potentials of power law inflation, we show that the
two methods produce the same results, within the approximations employed, for these backgrounds. We
therefore conclude that the shape of the inflaton potential can have an enormous impact on the one loop back
reaction.[S0556-282(199)04914-(

PACS numbs(s): 04.60—m, 98.80.Cq

[. INTRODUCTION cosmological wavelengths become trapped by the expansion
of the universe and are unable to recombine. Gravitational
In recent papers, Mukhanov, Abramo, and Brandenbergéghteractions between these virtual pairs, being always attrac-
[1,2] have investigated the problem of the back reaction ofive, slow the expansion rate. Because gravitational interac-
quantum fluctuations in chaotic inflation. Using canonicaltions are very weak, back reaction takes a long time before it
quantization, they calculated the one loop effective energycan become a sizeable effect. As an infrared effect that de-
momentum tensor induced by quantum fluctuations of théives from quantum fluctuations whose wavelengths are
matter and metric fields. For a quadratic scalar potential thegomparable to the Hubble radits *, back reaction can be
found that the expansion rate of the background Friedmanrstudied in the context of general relativity, whatever is the
Robertson-Walker space-time slows down as a result ofiitimate theory of gravity.
quantum deformations to the equations of motions. A second point of this paper is to prove that results ob-
Is this result generic for all inflationary models? In othertained by covariant quantization should coincide with those
words, does back reaction slow down the expansiontidte ~ Worked out using canonical quantization. This is relevant to
other scenarios? In this paper we extend the work of Mukhathe validity and interpretation of the canonical calculation,
nov et al. to a very different class of inflationary models, the Which was used by Mukhanov and co-workers to derive their
so-called power-law inflatiof8,4] in which the expansion of results and has recently been challenged by Un8jhin a
the universe is given by a scale fact) «t® with s>1. For ~ separate papel9] we go further and show that covariant
that purpose we employ the standard formalism of covarianfiuantization yields the same physical results as canonical
quantization, using the Feynman rules for these backgroundi/antization in the case of chaotic inflation with a quadratic

that have been worked out by lliopoulos, Tomaras, Tsamispotential as well.
and Woodard5]. The present paper is organized as follows. In Sec. Il we

We find that the one loop back reaction in power-lawdescribe the perturbative background. We write the Feynman
models is negligible and stays negligible through the inflafules for the gravity-scalar syste(taken from lliopouloset
tion of the universe. By comparison, the one loop infrared@! [5]) in Sec. lll. In Sec. IV we show how to use Schwing-
corrections can become nonperturbatively large at late time@l’s formalism to obtain expectation values for the metric
for a quadratic potential. and matter fields from the amputated one-point functions of

The effect discussed by Mukhanov and co-workers ighe theory. In Sec. V we derive the infrared parts of coinci-
closely related to the one found in earlier work by Tsamisdent propagators. Our results are given in Sec. VI. In Sec.
and Woodard6] in the context of pure gravity with a cos- VIl we rederive those results using gauge-fixed canonical
mological constant. Both mechanisms have a simple physicdluantization, and show that the two methods give identical
origin: the enhancement of zero-point energy of the quanturiésults, namely, that one loop back reaction is negligible in
fields by the expansion of the universe, also known in theoower-law inflation. Section VIII discusses the implications
literature assuperadiabatic amplificatianVirtual quanta of ~ Of this work.

*Present address: Theoretische Physik, Ludwig Maximilians Uni- This is precisely the reason why cosmologists are able to predict
versitd, Theresienstrasse 37, D-80333 hen, Germany. Email  the seeds of structure formation from quantum fluctuations in infla-
address: abramo@theorie.physik.uni-muenchen.de tionary models without regard to the true theory of quantum gravity

TEmail address: woodard@phys.ufl.edu [7].
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Il. CLASSICAL BACKGROUND ) 4 .
2_
The system we consider is general relativity with a mini- K
mally coupled scalar field )
1 V(go)= 7 (H+3H?). (10

1
L= TegRV -9~ 507#90(7»909“”\/—9—V(<P)\/—9-

(1)  Interms of the conformal scale factor, the expressions are

The background is comprised of a flat, homogeneous, and . 4 Q" O'\?
isotropic metric =2 " %ql | (13)
dsg= —dt?+a3(t)dx- dx=Q2(5)(—d7?>+dx-dx) (2) 5 110" [Q')2
V(@o):Fm ﬁ‘f' ﬁ) } (12

and scalar fieldpg(t). The conformal timez is related to
comoving time bydt=Q(7)dz. In this paper we examine |t we now substitute the expansion la@) into expres-

those scalar potentials which drive power-law expansionsgjons(11) and (12), it is easy to obtain the scalar field po-
that is, the scale factor grows as a function of time accordingentials which correspond to power-law inflatipi:

to

Hit)® ° Zno (13)
_ i ¢o=—=—In(Q),
ag(t)=| 1+ R (3 0 \/§ K
wheres andH; are constants. In terms of conformal time, 1\H2 K
V(p)=6|1— =— —exg ——=¢|. (14
7\ F6D 3s/ \/§
O(n)= (— : 4)
n The parametes therefore regulates the steepness of the sca-

lar potential as well as the rate of expansion. Notice that the

_ _ -1 H
and 7=—[(s—1)/s]H; °. The advantage of this class of o ation of state for the energy density and pressure of the
expansion laws is that the Feynman rules are already knowty.4r field is

[5].
We now write some useful formulas for the background p 3H2 2
qguantities. The expansion rate is given by the logarithmic w=—= . 5= 1+ 35 (15
derivative of the scale factor with respect to comoving time: P —2H-3H S
an QO In the limit s—o we recover exponential inflation and the
= a—o === HQ s, (5) equation of state for de Sitter spages= — 1.
0

where an overdot indicateddt and a prime denote&/ d» lll. QUANTUM THEORY: FEYNMAN RULES

=Qalat. Before laying down the quantum theory, we would like to
The Einstein field equations are address an objection that is too often raised: that general
relativity is not a perturbatively consistent quantum theory of
6) gravity, and so cannot be used to study quantum effects.
That judgment is only partially correct. The back reaction
of quantum fluctuations described here isiafnared effect,
caused by fluctuations with cosmological wavelengths, and
' (7) we know, for example from the Fermi theory of neutrinos
[10], that infrared physicsan be studied by the low-energy
and the integrability condition for this system is given by theeffective theory, regardless of the renormalizability of that

1
3H?=5 «?

1.,
§<P0+V(<Po) ,

. 1 |1
—2H—3H?=3 k% 565~ V(o)

equation of motion for the background scalar field theory. Conversely, whatever the ultraviolet behavior of the
} . true quantum theory of gravity may turn out to be, it will not
o+ 3H@o+V (o) =0. (8) be affected by these infrared effects. As long as we are care-

ful not to introduce a spurious time dependence through the
In the expressions above’=167G is the loop-counting yitraviolet regularization, back reaction is given at late times
parameter of perturbative quantum gravity(¢) is one of by yltraviolet finite terms whose form is entirely controlled
the scalar field potentials of power-law inflation models, andhy the low-energy theory.

V ,=dVlde. We also note that quantizing some of the gravitational
It is useful to invert the Einstein equations and write thedegrees of freedom is crucial &l derivations of the density
scalar field quantities in terms of the Hubble paraméter perturbations and cosmic microwave background anisotro-

and its derivativeH: pies in inflationary cosmolog}/7]. Both we and Mukhanov
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et al.just carry the calculations out to the next stage, and ask 2\s 02
what effects quantum fluctuations might have on the back- D, “o1 —tt?
ground in which they propagate. D S=i g
The goal of this section is to summarize the Feynman = 2./s 02 2623542 1
rules for the Lagrangiafl). The fundamental fields are the — —\/— _2t#tV Q| 9%+ 5 5
metric and the scalar field s-1 (s=1)° n
(21
0= 047, x1,,)=077,,,, (16 wheret, = 7,,. To get back the quadratic terms of the La-
grangian(19), just multiply the supermatri© on the left by
o=@+ b. (170 (¢*"¢), and on the right by its transpose. The kinetic opera-
torD,,"” is given by
Here ¢, is the pseudograviton field, whose indices are 1 1 1
raised and lowered with the Lorentz metyic,,, . D pro=|_glPgo)__ — Zt,t,t°t7 D,
. . . mv 2 Mmoo 47];41/77 2 y7Ad%
Both the scalar-scalar and the graviton-scalar interaction
parts of the Lagrangian can be easily expanded in perturba- - )
tion theory from the fundamental Lagrangiéh). The pure HLet Mgv)t 1Ds, (22

gravitational interactions are more complicated, however, af-

ter some integrations by parts the whole Lagrangian reduceshere barred tensor symbols denote that the zero compo-
to the simple expression nents have been projected ouﬁ; 5, tt,t". The kinetic

operators above are given by

~ ~ 11 1 r 1

02+ _ afypoyuv| — vo,f_ oM,V 252_5 1
£|nv Q g99""9"" g leap‘,ulp 2¢aﬁ,p¢ DAEQ (92+ . Q, (23)

L (1-s)?7?

1 MV, 0 1 Bo,v

+ Zwaﬁ,pw T Z lpap,p,lp ' s 1

- _ ~ DE=Q| ¢? 2 7 Q. (24)
+ Q0N =999 Ypy b0, — Q3N 90 ,9% (1-s)

1, = ~ The off-diagonal term in Eq21), coupling g to ¢, can be
—5Q0V-g¢ ,¢ 9" removed by a change of variablgs):

S 10V gij=tij— 6ij oo, (25
—0-g3 (%) , (18)
X=¢ Sin O+ iy5nCOSH, (26)
up to total derivative terms. V= b COSO— 1o Sin b, (27)

Gauge fixing is achieved by adding a gauge fixing term
and the corresponding ghost action to the invariant Lagrangwhere taR¢=s and Latin letters denote spatial indices.
ian In terms of the new field&25)—(27) the quadratic, gauge-
fixed Lagrangian is

1 —
Lers=Liv— = 7"'F ,F,— Qo*6F . (19
w2 " a L= 2§u Alrs| 5 5I(r58)1 45 Ors

The symbolsF , represents the variation of the gauge fixing

functional under an infinitesimal diffeomorphism param- +5 §o. slojl— Sijl+ 5 vDev
etrized by the ghost field*. We follow lliopouloset al. in
the choice of the gauge fixing functional 1 s

2)(D x+ o' DSw;+ w’Diwg, (28

!

F.=Q| ¢, ,— SVu2q ot Nuokeed | (20) whereD3 and D} were defined above in Eq&3),(24) and
s .
¢ is given by

A great advantage of this gauge is that it decouples the tensor

structure of the propagators from their dependence on space- DS=0) -

time. ¢ (1—s)? #?
The quadratic part of the gauge-fixed Lagrandia® can

be written, up to ghost contributions, in terms of a kineticThe quantization of this system is trivial. There are three

operator in “supermatrix” representation modes associated with the three kinetic operators

2-s 1
9+

(29
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DY¥(7,k,1)=0. (30) [a(k,1),af(k’,1")]= 8, 83(K-K), (32

We note for now that by Eq30) and the definitions of the _ _
kinetic operator$23), (24), and(29), the mode functions are and the mode functions are normalized by
proportional to Hankel functionis (VT'Z)(kn) where the labels

vi(s) depends on the parameter In the limit whereky (kD)W *(n,k)=¥*(n,k,DH¥ (5,k1)=iQ 2
—o we find that the modes proportional k§*) have nega- (33
tive frequency, while those proportional Iftf,?’= Hf,f)* have

positive frequency. The scalar field propagator is defined by

The fundamental fieldg and ¢ can be expressed in terms

of the mode functions above. The scalar field, for example, is , T ,
ecomposed in the following manner: 144(xx")=(0[ T{$(x) ¢(x)}|0). (34)

R R We shall need pure graviton and mixed propagators as well.
d(7.)=2 Figa(7,%) (31)  All these can be expressed in terms of propagators of the
! diagonal fields(0|T{(x) ¢, (x’)}|0), which can be conve-
niently written in momentum space as

ke -
_Z f,f (277)3[6 v (7n,k,Dak,l) "

—eknik- (x—x")

iA,(x;x’)=f e °fe

(2m)°

: . . _ X[0(n—=n")V (9K DY (7" K]I)
The weightsf, can be found by inverting relatior{g6),(27),
so in the example above their values dig=sin6, fc +0(n' = W* (k)W (n' kD] (35
=cosd, andfg=0.
The quanta of negative energy are associated with thﬁ/ith | =
negative frequency modeg and the annihilation operators

+e kX (K Dal(k,D].

A,B,C. Explicit formulas for these propagators in
the infrared limit can be found in Sec. V.

a(k,1). Therefore the vacuum of the thed@) is defined as Finally, we transform from the diagonal variablés, v,
the state that is annihilated by ai(lz,l)’s andl=A,B,C. and y back to the original pseudogravitap,, and scalar

The creation and annihilation operatasanda obey the  field ¢ by using relationg25)—(27). The set of propagators
usual commutation relations below is the main result of this section:

1
(O T{ i () s (X"} 0) =T AZA(X; X" ) 2[ i B — 5rs]+i[AA(X;X’)+SAé(X;X,)]m GijOrs »

<0|T{¢’Oi(x)l/10r(xr)}|o>: _iASB(X;X,)gir )

1
(OT (oo ) oo X' )30} =1 AZ(6X') 15 HIAR(XX ) T
(O] T{ hoo(X) i (x" )} 0) = (O] T{ thoo( X) thoo(X") }|0) & ,
(O (a0 B 0) = 8306 2 +i206x) 22,

(OIT{ 415 () (X" )}0) = (O T{ ool X) $(x")}|0) 5 ,
(OIT(#00 90X O =iAF06x") g +1AB0GK) 15

(0] T{wo(x) wo(X")}0)= =i AZ(X:X"),

(O] T{@i(¥) (X" )}0) =i AROGX') &; (36)
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IV. ATTACHING EXTERNAL LINES 2\/5 02
po o
Back reaction can change the dynamics of the homoge- Duv s—1 ?tpt
neous and isotropic background in three ways: through a
redefinition of the time slicing(corrections to (o)), 24s 02 ol 7 2s*~3s+2 1
through a change in the scale factoorrections to the trace Cs—1 ?t#tv gt (s=1)2 52
(i), and through a shift in the scalar field that drives in-
flation. Because the initial state is homogeneous and isotro- O]k, ,/0) a(n);W+ y(mt,t,
pic, the expectation values of the pseudograviton and scalar X (0] |0) = S5(n) , (43

are functions only of timé:
. _ where the matrix on the left is the same differential operator
(0|, (7.X)[0)y=A(75) 7, +C(nt,t,, (37 defined above in Eq21). Substituting the expectation val-
) ues(37) and(38) gives
(0l #(7,%)[0)=D(7). (38)

1
The expectation values of the full metric and scalar field on (7)== 7DAA=C), (44
the statg0) are then
. 3 2\s 02
(0]ds?|0)= Q[ —(1-C)d7?+ (1+A)dx-dx] Y(m)==7Da(A=C)+DgC——7 ?D, (45)
= —dt?+a?(t)dx-dx, 39
® 39 d?> 2s°-3s+2 1 2\s 02
(=0 -—+————|0D-— —C.
2 dn?  (s=2)? 7 s=1 2
<0|K<P|0>:ﬁ|n(ﬂ)+D, (40) (46)

Since we are calculating expectation values, we must em-
where t(n)zfziﬂ(n’)dn’ is the background comoving ploy Schwinger's formalisnj12] instead of the usual rules
time and the scale factor in comoving time is given by for “in-out” matrix elements. For the one-loop one-point

functions, the only difference is that in Schwinger’s formal-
t ism the external lines are retarded propagators. In order to
a?(t)=a3(t) 1+A[77(t)]+H(t)f dt’Cln(t")]}. enforce this choice of external propagator we fix retarded
0 (41) boundary conditions such that the one-point functid(g),
C(7n), andD(#), along with their time derivatives, vanish

We do not measure expectation values directly, but rathe?n_me initial sgrﬁcer;tf 7 - btained by attaching th
combinations of them that constitute physical observables. € one-point functions are obtain€d by attaching the ex-
The observables should be independent of gauge fixifify tgrnal legs, i.e., _by Inverting the coupled d|ﬁer§nt|al equa-
In the case of homogeneous and isotropic backgrounds, oﬁ@ns (44)—(46) with appropriate boundary conditions. After

such physical observable is the effective expansionHate a change of variables and some algebra, one obtains

defined as the logarithmic derivative of the scale factor with 1 1 Js
respect to comoving time = |- i B
p g A D, da+ S_+_1(3oz-i-'y) S+15
_dlIna(t) s Js
eff™ + —|—Ba+y)+——
dt bolsrT et VT 519 (47
=H(t) 1+1C(t)+—A(t)+ H tdt’C(t’)+ 1] 1 Js
a 2 2H ' 2H Tl Nl P -V
0 C=balsr1Cet Y g1?
(42)
s Vs
Rather than computing the one-point functiohsC, and + D_C s+1 (Baty)+ s+1 9, (48)
D directly, we will compute the amputated one-point func- ’
tions instead, and then attach the external lines to find the 1 Js s
one-point functions. The amputated one-point functions are D=5~ g1 Bat N+ 79
X al s+l s+1
defined as
L] Vs 3a+y)+ ! S 49
De 1Bttt o7 | (49)

2This is only rigorously true within the perturbative formalism we . .
shall employ. It might be that a nonperturbative analysis wouldwhereD, andD¢ have been defined in Eq&3) and(29).
show symmetry breaking. Notice that sincey, vy, andé are functions only of time, the
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nonlocal operators D), in the expressions above denote two  The three diagonal propagators can be expressed in terms
time integrations. The explicit representations for the in-of the mode functiond ( ,k,l) which obey equation&30).

verted propagators are After a change of variables
1 K ro—2 ’ 7’ " " w S—
S5 f(m)=—| dp'Q (") | dn"t(%"), (50 V(nk=(kn"h(kyl), w=-—", (59
Da 7 7i 2(s=1)
1 7 we can solve Egs(30) in terms of Hankel functions
D—Cf( n=—Q"2 () | dn' Q> (y) H{Z(kn) of the first and second kind, where the indices
" v,(s) are given in terms of the parameteas|[5]
% 77 d?’]’/Q_2+2/S( n//)f( 77//)’ (51) 3 1
7 VA—E + s 1’ (55
where the lower limits of the integrals make clear that
1 1
A(7)=C(7)=D(7;)=0, vB=5 T g7 (56)
A’(7)=C'(7,)=D"(7;)=0. 1 1
. . . . ve=5 T 1 (57)
It is useful to derive explicit formulas for the integrals 2 s-1

(50),(51) when the integrand has the same functional form as L . L
the amputated one-point functions. The fastest-growing con-__1he normalization of the mode functions is given by Eq.
tributions to the amputated one-point functions have a timé33- The Hankel functions, on their own account, obey the

dependencex 04 25¢ (see next section and for such 'dentities
terms the integral$50),(51) reduce to *
e e HEY (y)=HAy), (59
1
5 (QA7T d d 4i 1
o HO() g HO ) ~HOW) g HP="0 (59

S

= which imply that the two linearly independent, normalized
Hi26(35_1+86) Py y P

mode functions are given by
3s—1+se Se

oY —(3s-1)Is 1
O e TEs ' W (n.k ) =50 mHD k), (60)
(52
1
VH(n.k ) =507 WmgH (k). (61)

1
. 4—2/s+ €
(279
The propagators are obtained by substituting the mode
g2 functions above into the definitio(85). In the coincidence
limit [x—x'|—0, #—%'—0 we have, after performing a
trivial angular integration

" H2(s+1+s€)(25—2+Se)

2s—2+se
x| —Q€+ 3 Q—(s+1)/s . 1 |77| L 2
S— IAI(X)Z%EJ dk kPe™ € H”I (k?])Hvl (kn). (62
st+1+se

—2(s—1)Is

~ -3 @ s (53 SinceH(?(y)cy =12 wheny—oo, the coincident propaga-
tors diverge a? in the ultraviolet. After these divergences
have been regularized at the initial value surfgcez;, the
counterterms should not affect the time evolution. Notice

In the next section we will sum the diagrams that contrib-that the details of the regularization procedure and the ultra-
ute to the amputated one-point functiomsy, ands. At one  violet behavior of the true, renormalizable quantum theory of
loop, the amputated one-point functions are found by actingravity are issues immaterial to the long-range phenomena
with the three-point vertex operators on the propagatorslescribed by the effective theory, general relativity.
iA(x;x") and then taking the coincidence limit>x’. In We are mainly interested in the infrared behavior of the
this section we study the coincidence limits of the propagaeffective theory, since the physical mechanism behind back
tors and point out those terms which can contribute to backeaction is superadiabatic amplification of quantum fluctua-
reaction. tions with physical wavelengths of the order of or bigger

V. INFRARED PARTS OF COINCIDENT PROPAGATORS
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than the Hubble radiusl ~1. We define the infrared as the _ Hi2 2T[3/2+ 1l(s—1)] [ s— 1|96~ D 2
scales larger than the Hubble scale, AR =——(s— _
872 N S
K (68)
kp=g>H(m)= HQ1s, (63)

VI. RESULTS
In the far infrared the Hankel functioml;f,z) can be approxi-

mated by In this section we obtain and discuss the results for the
expectation values of the metric and scalar field in the pres-
) B I'(v)[ 2\" ence of the quantum fluctuationg,, and ¢. Our strategy
H."(kn)= ST @ T (64) consists of summing up all contributions to the amputated
one-point functions(43) coming from cubic interactions,
so at coincidence the infrared limit of the propagat@®  then obtaining the expectation values of the metric and scalar
can be written as field by Egs.(47)—(49). There are three types of vertices
with cubic interactions in Eq(19): pure graviton verticeg®

H0l- 18 2ok (Table |, graviton-ghost verteyww (Table Il), and vertices
f dk(kzy)= ="1e" 7. with one or moreg’s (Table IlI).
(65) _ For simplicity, we have pa_rtially symmetrized tié ver-

tices of Table | so that the first field always corresponds to

One immediately sees that by E455)—(57), for largesthe  the external line. For example, the vertex
integral is infrared finite for thé8 and C modes, but it is
divergent for theA mode. a1 0

We can cure this infrared divergence by working on a 5 KHIQ™ 20 o (69
compact spatial manifold. The momenta are then bounded

from below, and the integrals above should be mode sums. If. . h ized . b 5 f
we set the size of the compact manifold to be He the gives rise to the symmetrized vertices numbers 1, 2, or 3 0

Hubble radius at the initial timey,, the infrared cutoff is | 20¢ | when the first, third, or seconds, respectively, are

iven byky=H;. In terms of physical wavelengths, the cut- taken as the external leg.
given byKe=Hi erms of pnys gins, As an example, consider the contributions to the ampu-
off is the size of the initially inflating patch redshifted by the d 1-noint f ! f h ized
expansion of the universaf™=27H, () Latel L—Jpqlnt t;}mcélom rom tI e syfmsmetrlllzle vertstx num-
: ) " er 1. Using the Feynman rules of Sec. Ill one obtains
With the cutoff ko=H; bounding the integra{65) from ng y b I
below, the propagatoA is given in the infrared limit K R
>HQ) by a’[l](ﬂ)—|><|K

22T%(y) 1
gr®  [7]Q?

AR (x) =

1
. H2 ><5KHiﬂsflls[ﬁa(X)@//(X)lﬂoa(x'))]xf—m
ANV ()= ——(s—1)
877 — _K2HiQ3*1/S(97]

2I'[3/2+1/(s—1)] (5_1)5/(5—1)12 N
Jm S X ——S+1IAA(X;X )_mIAC(X;X ) o

X (1-Q725), (66) (70)

where the numerical factor between square brackets ap-
proaches 1 in the limis— o,

The propagators for thB(+) and C(—) modes in the
infrared limit are best left as integrals,

We are looking for those terms that grow the fastest as a
function of time, such that after integration by E@S2) or

(53) there can be a sustained effect of back reactions on the
metric and scalar fiel&, C, andD. Clearly, the vertex above
fails to meet that condition and contributes at maximum a

+ — + _ 2
i AUR) H 2D rr1/2+ 1/(s—1)] (S—l) sHemy constant to the expectation values.
B,C 472 \/; S The terms which we are interested in arise when a time
derivative hits an external leg, as happens in vertex number
XQ_ZtZ/SJHiﬂlillsdk L7 20(s 1) 67) 3, for example. When that term is integrated by parts and the
H, ’ conformal time derivative hits the volume factar )35,

the result is a factor oH?Q*~ 25, This sort of term, when
where it is easy to see that they are dominated by the ultrantegrated with respect to the inverse of thdype propaga-
violet. In addition, they have an overall time factor@f 2*  tor by Eq.(52), gives a dominant logarithmic contribution.
which makes them subdominant when compared with the On the other hand, when vertex number 3 is integrated
constant part ong'R). The dominant contribution from the with respect to the inverse of tHe-type propagator by Eq.
infrared limit of the coincident propagators is therefore (53), the result is only a constant and other subdominant
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TABLE |. Vertex factors contracted int¢a151$a232$a3ﬂ3 with No. 1 external.

No. Vertex factor No. Vertex factor
1 %KHiQ3*1/S7701131 ,7&2/32(9(2“%33) 22 %KQZ pelas nﬁa)ﬂzgg“lgfl)
2 %KHiQ3*1/577a232 77“3533(3"‘1t51) 23 %KQZ 77“3(“1 ,731)33(9(1”‘2(952)
3 2 kH Q3 Usyasbs nalﬁl,y(l"Ztﬁz) 24 %KQZ(g(z"l,]ﬁl)(%,;gT*) neh2
4 — kH, Q3" Vs paaler nﬁz)ﬁ10(2“3t53) 25 %KQZQ?Z ,7:5‘2)(011(9/131) n%hs
5 _ KHiQs—1/sna2(a3nﬁ3)ﬁ2l9(3ﬂ1tﬁ1) 26 %Kﬂza(l%nﬂs)(“zafz) ph
6 - KHiQ3*1’377“3(a1nﬁ1)ﬂ3,9(l“2tﬂz) 27 3 nga(zalnﬁl)(awgz) 7*3hs
7 — KHiQ3*1/St(H37]53)(ﬂ1(9§1) n*2P2 28 %KQZ(pé‘)‘Z nﬁz)(aa(;f3) 711
8 _ KHiQ3_1/St(0‘17]ﬁ1)(a2(9§2) 73Ps 29 i KQZQ(1“3,753)(0110§1) P2
9 — KkH, Q3 Vstlaz nﬁz)(a33f3) pb1 30 L Q2 Bryabapashag, . g,
10 %KQZ 7]“131‘92"2 nﬂz)(a332ﬁ3) 31 %KQZ 77&151 77“25277“3133(93. 91
11 %KQZ nﬂzﬁz,;(l“3 7]53)(&1(9331) 32 - %KQZ pelezpPPrpasbsg, . g,
12 %KQZ 7]“3B3(9(2“1 nﬁl)(azng) 33 - %ng nﬂz(as ,7B3)52 7P195- 9,
13 — Kﬂzaé"l,7131)(0(27752)(‘13353) 34 — %KQZ peale1yhlBspabag, . g,
14 _ KQZ(;(lO‘Z 7]ﬁz)(% 77:33)(a1(9§1) 35 — leKQ Zg(zalggl) 7]‘1232 7]“333
15 _ KQZ(9(2“3 ,7/33)(011 nBl)(ﬂz(;fZ) 36 — %KQ 2(9;“2,952) 7]01353 7]011/31
16 -1 ngagaznﬁz)(al,,Bl)(asagﬁ 37 — Lk Q2paBrpealas pBbag,. 5,
17 — KQZ(9(1“3 ,733)(&27732)(01351) 38 — %KQZ pePapslaryfibsg,. o,
18 _ %Kﬂzﬂalﬂlnazﬂzg(z%(;gﬁ 39 %KQZ77“1)(&27732)(037733)(31(92.(93
19 _ %ngﬂazﬁzﬂa?ﬁ?‘ﬁ;alﬁfl) 40 Kﬂznal)(“Z 7732)(“377'33)(131‘93' o
20 — %KQZ 7*3hs 7’“1513(1“2352) 41 %Kﬂzgé“lggl) 7,02(03,7133)132
21 %KQZ 77“1(“2 7752)51(9(2“3(953) 42 %KQZQE:‘Z(;:LBZ) 77113(%7]31)33

terms. Since integration by ti@&-type propagator gives only H2 —s

subdominant contributions, we ignore them in what follows. A(n)=— - —

It can be verified by inspection that no terms with factors 87 (s+1)°

that grow faster thaf)*~2* arise in the Einstein Lagrangian.
Those are the types of contributions we are looking for, and
only the terms with the right structure to contribute a factor
of at leastH?Q*~ %5 will be collected in the following ex-

2I°[3/2+1/(s—1)] ( S— 1) sl(s— 1)1 2

J s

i s s
pressions. w<|Ino— + Q(3s1)/s} 74
Our results for the amputated one-point functions to lead- 3s—1 3s-1 9
ing order are as follows:
1
L1 C(m)=—ZA(n), (75
- _ - _ 2 22042 A (R)
a(mn) 5 or1 3 S)K Hi Q) A, (7D
D(7) 1
N =sA), (76)
y(m)=—a(n), (72)
where we keep the subdominant terms after the logarithm
2 only to stress that expectation values vanish at the initial
8(n)=——=a(n), (73  value surface)=1. The prefactor in square brackets of ex-
Vs pression(74), which we callo(s), is approximately 1 for
larges.

The effective Hubble expansion parameter can be evalu-
where iAﬂR) is given in expressior{68). The expectation ated by substituting the expressions above for the expecta-
values can be found with the help of expressi#ig—(49)  tion value of the metric into Eq42). It can be easily seen
and(52): that the logarithmic contributions cancel, and all that remains
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are subdominant terms. The effective expansion rate is urdifficulties would be unsurmountable if we wanted to calcu-
changed up to terms which are either constant and decayirlgte quantum corrections beyond one loop, for example.

as functions of time, Nevertheless, within the scope of this one loop calculation
the truncated canonical method is perfectly suited to study
Heﬁ(7)=H(t)[1+(subdominar)t]. (77 the leading contributions to back reaction.

The back reaction on the homogeneous and isotropic

We conclude therefore that there is no one loop back rebackground is determined by the expectation values of Ein-
action of quantum fluctuations on power-law inflation to Stein’s field equations
leading order. Presumably there is a two loop effect, analo-
gous to the one found by Tsamis and Woodfd, that
grows and would become dominant, but we did not attempt
to calculate those diagrams. In the next section we will check
the results above with a vastly simpler canonical version otind the equation of motion for the scalar field
this calculation, and provide a physical justification for the
differences among the power-law and chaotic inflation cases. <0|D<p+v,¢|0>=0, (79

K2
(0|G4]0y="(0|T4|0) (78)

As a check on our previous results, and in its own right, it

is interesting to study the same problem of back reaction in V((p)=6( 1— 3i (80)
s

VII. THE CANONICAL RESULT where the inflaton potential is

Hi2 ;{ K

—exg——=¢|.
power-law inflation using canonical quantization. This was K2 Vs
the method used by Mukhanov and co-workers to derive
their results. The terms in Einstein’s equations which are quadratic in the

In order to simplify the full Lagrangiafl), we perform quantum fluctuations can be collected in effectivestress-

the following approximations: first, ignore the spini@av-  energy tensor,,, which is a source term in addition to the
ity waves and spin-1(“vector” fluctuations) projections of  stress-energy tensor of the background maltieP]. The
the graviton degrees of freedom, and concentrate on the scaquation of motion fore is similarly corrected by source
lar fluctuations of the metric that couple to the fluctuations ofterms quadratic in the quantum fields. In this section we shall
the scalar fieldp. Second, use the constraints of the Einsteinregard back reaction as the response of the background to the
field equations explicitly in Eq(1) to eliminate the fluctua- source terms induced by quantum fluctuations, found by
tions of the scalar field and reduce the number of degrees @olving for the expectation values of Einstein’s equations
freedom to one: the so-called Newtonian poterdtalThird, and the equation of motion for the scalar field.
the expectation values are given in terms of the “spectrum” We write the metric in longitudinal gauge,
of the canonically quantized field in power-law inflation,

which can be read right off the standard formulas in the ds?=—[1+ 2<I>(t,>2)]dt2+aS(t)[l—Z(b(t,i)
literature on quantum fluctuations in inflationary universe o
models[7,13,14. +2w(t)]dx- dx (81

The motivation for the first assumption lies in the obser-
vation that the infrared limits of coincident propagators ofand the scalar field is
the spin-1 and spin-2 degrees of freedom are dominated by
the ultraviolet and fall off as a function of time. Since cross = @o(t) + B(t,X) +v(t), (82)
correlations are irrelevant at one loop, we can ignore those

degrees of freedom altogether and concentrate on the domjhered and¢ are, as before, quantum fields which ought to
nant,_scalar degrees o_f freedom of_the graviton. be canonically quantized, ana(t) and v(t) are, respec-

_ This truncated version of canonical quantization has Obgyely corrections to the scale factor and to the scalar field
vious shortcomings, such as its inadequacy to study pertufzom hack reactiorl. We have taken advantage of the free-

bative corrections above lowest order and the exclusion °<§om of gauge at the second order to fix any correction to the
many of the degrees of freedom from the calculation. Thesgme gjicing (the N of earlier sectionsto zero. Therefore, in

this gaugew is the correction to the Hubble expansion rate,

TABLE II. Vertex factors contracted intg, Ea W, - . .
Vs @@ H#=H +w that will eventually be compared with the effec-

No. Vertex factor No. Vertex factor tive expansion rat¢77) of the last section.
The spectrum| s (k,t)| is defined by the expectation
1 — 1 QPydegfiesg,. 9, 6 5 kQ 2 PLS29 value of the square of the canonically quantized Newtonian
2 _ KQZﬂ%(Qlﬁgﬂagz 7 — KHiQ37’ﬂlﬁ1g32taz potential
3 _ Kanaz(alﬁgl)ﬁ;ts 8 _ 2KHi9377a3(a119§1)ta2
4 2KHi9377“2(“1é’§1)t“3 9 — kHQ3p1brg et
5 K2 patesghy) 522 10 2kHZQ A pr1hrtoatas *We have adopted a notation different from earlier sections to

avoid confusion, since in the section we work in a different gauge.
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TABLE lll. Cubic interactions involvinge.

No. Interaction No. Interaction
1 6 1 2 po
1 ZKQ ¢p¢ (7171/
—KH-QS_ 1ls 41 .12 ) )
as o'
2 1 7 1
_ KH‘Q3*1/S 1,1 po ” (37 - KHZQ4 2/s 2
2\/5 i oY ‘rl/p 4\/— s 24
3 8 1 1
IKH 1O R -5 \/—(35) kHEQY 2yroy,,
4 9 1 1 20y4-2/s
\/—KH 93 st ¢o¢p”¢ " 2s 3__ kH{Q ‘l’ U
5 _1,.02 » 10
iK b, Y 1 1 2y4-2/s ;3
253/2 3__ KHEQ™" 56
11

2 _
— KHiﬂsflIst‘,d)’Uwpw”

Vs

ground in chaotic models can grow as a function of time
during the inflation of the universe.
The distinguishing facts about power-law inflation &g
the equation of statew=p/p=-1+2/3s is constant
throughout inflation and2) the kinetic and potential energy
ensities of the background scalar field, as well as the
ubble parameter, are at fixed ratios with respect to each
r%her at any given time. Consequently, the amplitude of fluc-
tuations on large scales, which couple to these ratios, freeze

- - dk
Ot B(t0]0)- [ Llonko (63

The spectrum is proportional o when k—o, and conse-
quently the expectation value above diverge&%am the far
ultraviolet. Just as was done in Sec. V, we assume that
proper renormalization of these infinities has been performe
and that the appropriate counterterms have no bearing on t
long-range interactions described by the effective theory.
The expectation valuéJ) is also divergent in the infra- to a constant value.

red since the spectrum is approximately constant for very We often flnd_clalms in th_e I|tgrature to the effect that

small momenta. Again the solution is to work in a compactquamum fluctuations during |nf|qt|on ffe.eze gftgr they be-

spatial manifold, wheré is cut off at the valueH; corre-  OMe larger than the Hubble radius. While this is exact for
[l I

sponding to the radius of the manifold at the initial time S?Yr\ﬁ;iﬁ)vx inflation, it is only approximate for most models
=0. .

The infrared limit of the spectrum of the Newtonian po- ton\'/\afl:ih t:;ﬁf;@iﬁﬁ:?gﬁ;gg (ﬁ);?tepstattl)onEv(laslg)e of the New-
tential during power-law inflation i§13] lan p alt ! Imit1s, by '

(R) o KH is)(_) 2= R - s—1 k?H?
|85 (k,)|?= 23202 s |H, : (84 <o|<1>(t,x)c1>(t,x)|o>—a(s)T 22 =const. (86)
where
Notice that this is in accord with expressiof86) and (68)
20[3/2+1/(s—1)](s—1|6~ 1)]2 for larges (remember thatygo=2®). The expectation value
o(s)= , (85 of the scalar field can be deduced from this expression by
Vm S using the following useful constraint in momentum space,
_ ) valid in longitudinal gauge:
is the same factor defined below E@4), and approaches 1
ass>1.
The physical information contained in this spectrum is \% Js

$(1K) =~ 25— D(t,k) =2~ D(t,k). (87)

¢

that the amplitudes of long-wavelength fluctuations are as-
ymptotically constant in power-law inflation. The amplitudes
of infrared fluctuations in chaotic inflation with a quadratic
potential, by comparison, grow slowly with time. Where The Einstein equations with quantum corrections are found
back reaction is concerned, quantum corrections to powetby using the metri¢81) and scalar field82) into Egs.(78).

law inflation from a fluctuation with a fixed comoving wave- The generalresult (the spatial gradient terms have been ig-
length can be at most constant, while corrections to the backiored since we consider only infrared modess
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have neglected subdominant terms which decay as a function
of time in the present calculation, by discarding several of
K2[1. ) 1., o a0y the degrees of freedom of the fundamental Lagrangian.
= 7{§¢0+V+ 5 (¢ —4eo(dP) +4ep(P7) Therefore, the inhomogeneous solutions are unreliable
within our approximation scheme and will be discarded.
Substituting the homogeneous part of Eg4) into Eq.
) (88) (91) we get the following equation for the correction to the
scale factor:

3H2+ 3(D2)+ 12H( D2) + 6HW

R |
+2¢0v)+sz<¢2>+v,¢v

3H2+ 2H + 4(H2+ 2H)(D?) + BH(D D) + (D) + 6HW

, t2w+ 3stw=0. (95)

. K 1. 1 . .
+2W=7{—§<P(2)+V_§(<¢2>—4<Po<¢‘b> o ,
The solution is also straightforward, and we get

. | .
+4(P%<q)2>+2¢0\/)+ EV,¢¢<¢2>+V,¢V}: w=0 (96)
(89)
exactly since the decaying solutien<t 3 has to be zero to

where angular brackets Qenote vacuum expectation Values‘satisfy the retarded boundary conditions. The effective ex-
As we have argued in the discussion of the spectrum

terms containing time derivatives df and ¢ should vanish. pansion rate is therefore given by

Using the identity(87), we can finally write the Einstein

equations with quantum corrections above in terms of only Her=H(1). (97)
(®?), w(t), andv(t):

5 We have thus obtained the back reaction on the metric

A KV 2 and scalar field by finding the solutions to the expectation
BHW= 71 pov—V $+2<¢) | (90 Values of the Einstein field equatioid8) and the equation
of motion for the scalar field79). Expectation values were
_ 2l v evaluated using the canonically quantized Newtonian poten-
BHW+2W= —| oov—V| —+2(®?) ||. (91) tial d.
\/; The result of the canonical calculation is that the back

_ ) ) ) ) ~reaction of quantum fluctuations during power-law inflation
It is also instructive to write down the equation of motion goes not affect the expansion rate of the universe, at least to

for the scalar field to second order, leading order. This is in agreement with the results of the
- ) o . o covariant calculation of last section.
V+3HV+3wgeg+V v —4H D) —do(DD) As pointed out earlier in this section, infrared fluctuations
1 of a fixed comoving wavelength in power-law inflation have
+2V (D )+ EV1<P<P<P<¢2>:O’ (92)  constant amplitudes. Those fluctuations exiting the Hubble

radius at a later time in the inflation epoch have a smaller
amplitude than the ones that exited earlier, since the scale of
inflation is decreasing ast 2. The cumulative effect of
superimposing modes of different comoving momenta is not
) sufficient to make the expectation values of the quantum
tx+3s(x+2(d?))=0, (93)  fields grow in time, and the momentum mode sum is domi-
nated by modes that exited the horizon early in the inflation

wherex= xv/+/s. Since this equation is second order in time, €POCh-

we can always find solutions such the(to)Z\'/(to) =0. No-
tice that(d?) is a constant by E¢(86). It is straightforward
to solve this equation, and the result is

which, after use of Eq(87), the background identities and
the Einstein field equatio(®0) read

o 3s+1
tox+
S

VIll. DISCUSSION

351 We have calculated the back reaction of quantum fluctua-
x= KV _ _ol1— 3s—1 t_0+ 1 (t_O) }<¢2> tions on the expansion rate of homogeneous backgrounds of
Vs 3s—2t 3s—2\t ' power-law inflation models. Two methods were employed:
(94) covariant quantization of the full scalar-graviton system, and
) ) canonical quantization of a reduced system where the spin-1
where we have chosen the mtegraﬂon constants such that g spin-2 degrees of freedom of the graviton were purged.
the initial value surface(0)=x(0)=0. The results of the two calculations are identical: to lead-
The dominant contribution tx=«v/+/s is therefore a ing order, there is no effect of the quantum fluctuations on
constant, corresponding to the homogeneous solution to E¢he effective Hubble parameter in power-law inflation. The
(93). However, as happened in the covariant calculation, weghysical reason is that long wavelength modes have constant
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