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One loop back reaction on power law inflation

L. R. Abramo* and R. P. Woodard†

Department of Physics, University of Florida, Gainesville, Florida 32611
~Received 18 December 1998; published 15 July 1999!

We consider quantum-mechanical corrections to a homogeneous, isotropic, and spatially flat geometry
whose scale factor expands classically as a general power of the comoving time. The effects of both gravitons
and the scalar inflaton are computed at one loop using the manifestly causal formalism of Schwinger@J. Math.
Phys.2, 407~1961!; Particles, Sources and Fields~Addison, Wesley, Reading, MA, 1970!# with the Feynman
rules recently developed by Iliopouloset al. @Nucl. Phys. B534, 419~1998!#. We find no significant effect, in
marked contrast to the result obtained by Mukhanov and co-workers@Phys. Rev. Lett.78, 1624~1998!; Phys.
Rev. D 56, 3248 ~1997!# for chaotic inflation based on a quadratic potential. By applying the canonical
technique of Mukhanov and co-workers to the exponential potentials of power law inflation, we show that the
two methods produce the same results, within the approximations employed, for these backgrounds. We
therefore conclude that the shape of the inflaton potential can have an enormous impact on the one loop back
reaction.@S0556-2821~99!04914-0#

PACS number~s!: 04.60.2m, 98.80.Cq
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I. INTRODUCTION

In recent papers, Mukhanov, Abramo, and Brandenbe
@1,2# have investigated the problem of the back reaction
quantum fluctuations in chaotic inflation. Using canonic
quantization, they calculated the one loop effective ener
momentum tensor induced by quantum fluctuations of
matter and metric fields. For a quadratic scalar potential t
found that the expansion rate of the background Friedma
Robertson-Walker space-time slows down as a result
quantum deformations to the equations of motions.

Is this result generic for all inflationary models? In oth
words, does back reaction slow down the expansion rateH in
other scenarios? In this paper we extend the work of Muk
nov et al. to a very different class of inflationary models, th
so-called power-law inflation@3,4# in which the expansion o
the universe is given by a scale factora(t)}ts with s.1. For
that purpose we employ the standard formalism of covar
quantization, using the Feynman rules for these backgrou
that have been worked out by Iliopoulos, Tomaras, Tsam
and Woodard@5#.

We find that the one loop back reaction in power-la
models is negligible and stays negligible through the in
tion of the universe. By comparison, the one loop infrar
corrections can become nonperturbatively large at late ti
for a quadratic potential.

The effect discussed by Mukhanov and co-workers
closely related to the one found in earlier work by Tsam
and Woodard@6# in the context of pure gravity with a cos
mological constant. Both mechanisms have a simple phys
origin: the enhancement of zero-point energy of the quan
fields by the expansion of the universe, also known in
literature assuperadiabatic amplification. Virtual quanta of

*Present address: Theoretische Physik, Ludwig Maximilians U
versität, Theresienstrasse 37, D-80333 Mu¨nchen, Germany. Emai
address: abramo@theorie.physik.uni-muenchen.de

†Email address: woodard@phys.ufl.edu
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cosmological wavelengths become trapped by the expan
of the universe and are unable to recombine. Gravitatio
interactions between these virtual pairs, being always att
tive, slow the expansion rate. Because gravitational inte
tions are very weak, back reaction takes a long time befor
can become a sizeable effect. As an infrared effect that
rives from quantum fluctuations whose wavelengths
comparable to the Hubble radiusH21, back reaction can be
studied in the context of general relativity, whatever is t
ultimate theory of gravity.1

A second point of this paper is to prove that results o
tained by covariant quantization should coincide with tho
worked out using canonical quantization. This is relevant
the validity and interpretation of the canonical calculatio
which was used by Mukhanov and co-workers to derive th
results and has recently been challenged by Unruh@8#. In a
separate paper@9# we go further and show that covarian
quantization yields the same physical results as canon
quantization in the case of chaotic inflation with a quadra
potential as well.

The present paper is organized as follows. In Sec. II
describe the perturbative background. We write the Feynm
rules for the gravity-scalar system~taken from Iliopouloset
al @5#! in Sec. III. In Sec. IV we show how to use Schwing
er’s formalism to obtain expectation values for the met
and matter fields from the amputated one-point functions
the theory. In Sec. V we derive the infrared parts of coin
dent propagators. Our results are given in Sec. VI. In S
VII we rederive those results using gauge-fixed canon
quantization, and show that the two methods give ident
results, namely, that one loop back reaction is negligible
power-law inflation. Section VIII discusses the implicatio
of this work.

i- 1This is precisely the reason why cosmologists are able to pre
the seeds of structure formation from quantum fluctuations in in
tionary models without regard to the true theory of quantum grav
@7#.
©1999 The American Physical Society11-1
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II. CLASSICAL BACKGROUND

The system we consider is general relativity with a mi
mally coupled scalar field

L5
1

16pG
RA2g2

1

2
]mw]nwgmnA2g2V~w!A2g.

~1!

The background is comprised of a flat, homogeneous,
isotropic metric

ds0
252dt21a0

2~ t !dxW•dxW5V2~h!~2dh21dxW•dxW ! ~2!

and scalar fieldw0(t). The conformal timeh is related to
comoving time bydt5V(h)dh. In this paper we examine
those scalar potentials which drive power-law expansio
that is, the scale factor grows as a function of time accord
to

a0~ t !5S 11
H it

s D s

, ~3!

wheres andH i are constants. In terms of conformal time,

V~h!5S h i

h D s/(s21)

, ~4!

and h i52@(s21)/s#H i
21 . The advantage of this class o

expansion laws is that the Feynman rules are already kn
@5#.

We now write some useful formulas for the backgrou
quantities. The expansion rate is given by the logarithm
derivative of the scale factor with respect to comoving tim

H[
ȧ0

a0
5

V8

V2
5H iV

21/s, ~5!

where an overdot indicates]/]t and a prime denotes]/]h
5V]/]t.

The Einstein field equations are

3H25
1

2
k2F1

2
ẇ0

21V~w0!G , ~6!

22Ḣ23H25
1

2
k2F1

2
ẇ0

22V~w0!G , ~7!

and the integrability condition for this system is given by t
equation of motion for the background scalar field

ẅ013Hẇ01V,w~w0!50. ~8!

In the expressions above,k2516pG is the loop-counting
parameter of perturbative quantum gravity,V(w) is one of
the scalar field potentials of power-law inflation models, a
V,w[]V/]w.

It is useful to invert the Einstein equations and write t
scalar field quantities in terms of the Hubble parameteH

and its derivativeḢ:
04401
-

d

s,
g

n

c
:

d

ẇ0
252

4

k2Ḣ, ~9!

V~w0!5
2

k2 ~Ḣ13H2!. ~10!

In terms of the conformal scale factor, the expressions a

w08
25

4

k2F2
V9

V
12S V8

V D 2G , ~11!

V~w0!5
2

k2

1

V2FV9

V
1S V8

V D 2G . ~12!

If we now substitute the expansion law~4! into expres-
sions ~11! and ~12!, it is easy to obtain the scalar field po
tentials which correspond to power-law inflation@4#:

w05
2

As

1

k
ln~V!, ~13!

V~w!56S 12
1

3sDH i
2

k2
expF2

k

As
wG . ~14!

The parameters therefore regulates the steepness of the s
lar potential as well as the rate of expansion. Notice that
equation of state for the energy density and pressure of
scalar field is

w5
p

r
5

3H2

22Ḣ23H2
5211

2

3s
. ~15!

In the limit s˜` we recover exponential inflation and th
equation of state for de Sitter space,w521.

III. QUANTUM THEORY: FEYNMAN RULES

Before laying down the quantum theory, we would like
address an objection that is too often raised: that gen
relativity is not a perturbatively consistent quantum theory
gravity, and so cannot be used to study quantum effects

That judgment is only partially correct. The back reacti
of quantum fluctuations described here is aninfrared effect,
caused by fluctuations with cosmological wavelengths, a
we know, for example from the Fermi theory of neutrin
@10#, that infrared physicscan be studied by the low-energ
effective theory, regardless of the renormalizability of th
theory. Conversely, whatever the ultraviolet behavior of
true quantum theory of gravity may turn out to be, it will n
be affected by these infrared effects. As long as we are c
ful not to introduce a spurious time dependence through
ultraviolet regularization, back reaction is given at late tim
by ultraviolet finite terms whose form is entirely controlle
by the low-energy theory.

We also note that quantizing some of the gravitatio
degrees of freedom is crucial toall derivations of the density
perturbations and cosmic microwave background aniso
pies in inflationary cosmology@7#. Both we and Mukhanov
1-2
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ONE LOOP BACK REACTION ON POWER LAW INFLATION PHYSICAL REVIEW D60 044011
et al. just carry the calculations out to the next stage, and
what effects quantum fluctuations might have on the ba
ground in which they propagate.

The goal of this section is to summarize the Feynm
rules for the Lagrangian~1!. The fundamental fields are th
metric and the scalar field

gmn5V2~hmn1kcmn![V2g̃mn , ~16!

w5w01f. ~17!

Here cmn is the pseudograviton field, whose indices a
raised and lowered with the Lorentz metrichmn .

Both the scalar-scalar and the graviton-scalar interac
parts of the Lagrangian can be easily expanded in pertu
tion theory from the fundamental Lagrangian~1!. The pure
gravitational interactions are more complicated, however,
ter some integrations by parts the whole Lagrangian redu
to the simple expression

Linv5V2A2g̃g̃abg̃rsg̃mnF1

2
car,mcns,b2

1

2
cab,rcsm,n

1
1

4
cab,rcmn,s2

1

4
car,mcbs,nG

1VV8A2g̃g̃rsg̃mncrs,mc0n2V2A2g̃w08f ,mg̃0m

2
1

2
V2A2g̃f ,mf ,ng̃mn

2V4A2g̃(
n51

`
1

n!

]nV~w0!

]wn fn, ~18!

up to total derivative terms.
Gauge fixing is achieved by adding a gauge fixing te

and the corresponding ghost action to the invariant Lagra
ian

LBRS5Linv2
1

2
hmnFmFn2Vv̄mdFm . ~19!

The symboldFm represents the variation of the gauge fixi
functional under an infinitesimal diffeomorphism param
etrized by the ghost fieldvm. We follow Iliopouloset al. in
the choice of the gauge fixing functional

Fm5VS cm,n
n 2

1

2
c ,m22

V8

V
cm01hm0kw08f D . ~20!

A great advantage of this gauge is that it decouples the te
structure of the propagators from their dependence on sp
time.

The quadratic part of the gauge-fixed Lagrangian~19! can
be written, up to ghost contributions, in terms of a kine
operator in ‘‘supermatrix’’ representation
04401
k
-

n

n
a-

f-
es

g-

or
ce-

D[S Dmn
rs

2
2As

s21

V2

h2
trts

2
2As

s21

V2

h2
tmtn VF ]21

2s223s12

~s21!2

1

h2GV
D ,

~21!

where tm5hm0. To get back the quadratic terms of the L
grangian~19!, just multiply the supermatrixD on the left by
(cmnf), and on the right by its transpose. The kinetic ope
tor Dmn

rs is given by

Dmn
rs[F1

2
d̄m

(rd̄n
s)2

1

4
hmnhrs2

1

2
tmtntrtsGDA

1@ tmtntrts2t (md̄n)
(rts)#DB , ~22!

where barred tensor symbols denote that the zero com
nents have been projected out:d̄m

n [dm
n 1tmtn. The kinetic

operators above are given by

DA
s [VF ]21

2s22s

~12s!2

1

h2GV, ~23!

DB
s [VF ]21

s

~12s!2

1

h2GV. ~24!

The off-diagonal term in Eq.~21!, couplingc00 to f, can be
removed by a change of variables@5#:

z i j [c i j 2d i j c00, ~25!

x[f sinu1c00cosu, ~26!

y[f cosu2c00sinu, ~27!

where tan2u5s and Latin letters denote spatial indices.
In terms of the new fields~25!–~27! the quadratic, gauge

fixed Lagrangian is

LBRS
(2) 5

1

2
z i j DA

s z rsF1

2
d i (rds) j2

1

4
d i j d rsG

1
1

2
z0iDB

s z0 j@2d i j #1
1

2
yDC

s y

1
1

2
xDA

s x1v̄ iDA
s v i1v̄0DB

s v0 , ~28!

whereDA
s andDB

s were defined above in Eqs.~23!,~24! and
DC

s is given by

DC
s [VF ]21

22s

~12s!2

1

h2GV. ~29!

The quantization of this system is trivial. There are thr
modes associated with the three kinetic operators
1-3
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DI
sC~h,k,I !50. ~30!

We note for now that by Eq.~30! and the definitions of the
kinetic operators~23!, ~24!, and~29!, the mode functions are
proportional to Hankel functionsHn I

(1,2)(kh) where the labels

n I(s) depends on the parameters. In the limit wherekh
˜` we find that the modes proportional toHn I

(2) have nega-

tive frequency, while those proportional toHn I

(1)5Hn I

(2)* have

positive frequency.
The fundamental fieldsc andf can be expressed in term

of the mode functions above. The scalar field, for example
ecomposed in the following manner:

f~h,xW !5(
I

f Ic I~h,xW ! ~31!

5(
I

f IE d3k

~2p!3
@eikW•xWC~h,k,I !a~kW ,I !

1e2 ikW•xWC* ~h,k,I !a†~kW ,I !#.

The weightsf I can be found by inverting relations~26!,~27!,
so in the example above their values aref A5sinu, f C
5cosu, and f B50.

The quanta of negative energy are associated with
negative frequency modesC and the annihilation operator
a(kW ,I ). Therefore the vacuum of the theoryu0& is defined as
the state that is annihilated by alla(kW ,I )’s and I 5A,B,C.

The creation and annihilation operatorsa† anda obey the
usual commutation relations
04401
is

e

@a~kW ,I !,a†~kW8,I 8!#5d II 8d
(3)~kW2kW8!, ~32!

and the mode functions are normalized by

C~h,k,I !C8* ~h,k,I !2C* ~h,k,I !C8~h,k,I !5 iV22.
~33!

The scalar field propagator is defined by

iDf~x;x8![^0uT$f~x!f~x8!%u0&. ~34!

We shall need pure graviton and mixed propagators as w
All these can be expressed in terms of propagators of
diagonal fieldŝ 0uT$c I(x)c I(x8)%u0&, which can be conve-
niently written in momentum space as

iD I~x;x8!5E d3k

~2p!3
e2«keikW•(xW2xW8)

3@u~h2h8!C~h,k,I !C* ~h8,k,I !

1u~h82h!C* ~h,k,I !C~h8,k,I !#, ~35!

with I 5A,B,C. Explicit formulas for these propagators i
the infrared limit can be found in Sec. V.

Finally, we transform from the diagonal variablesz i j , y,
and x back to the original pseudogravitoncmn and scalar
field f by using relations~25!–~27!. The set of propagators
below is the main result of this section:
^0uT$c i j ~x!c rs~x8!%u0&5 iDA
s ~x;x8!2@d i (rds) j2d i j d rs#1 i @DA~x;x8!1sDC

s ~x;x8!#
1

11s
d i j d rs ,

^0uT$c0i~x!c0r~x8!%u0&52 iDB
s ~x;x8!d ir ,

^0uT$c00~x!c00~x8!%u0&5 iDA
s ~x;x8!

1

11s
1 iDC

s ~x;x8!
s

11s
,

^0uT$c00~x!c i j ~x8!%u0&5^0uT$c00~x!c00~x8!%u0&d i j ,

^0uT$c00~x!f~x8!%u0&52 iDA
s ~x;x8!

As

11s
1 iDC

s ~x;x8!
As

11s
,

^0uT$c i j ~x!f~x8!%u0&5^0uT$c00~x!f~x8!%u0&d i j ,

^0uT$f~x!f~x8!%u0&5 iDA
s ~x;x8!

s

11s
1 iDC

s ~x;x8!
1

11s
.

^0uT$v̄0~x!v̄0~x8!%u0&52 iDB
s ~x;x8!,

^0uT$v̄ i~x!v̄ j~x8!%u0&5 iDA
s ~x;x8!d i j . ~36!
1-4
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IV. ATTACHING EXTERNAL LINES

Back reaction can change the dynamics of the homo
neous and isotropic background in three ways: throug
redefinition of the time slicing~corrections to ^c00&),
through a change in the scale factor~corrections to the trace
^c i i &), and through a shift in the scalar field that drives
flation. Because the initial state is homogeneous and iso
pic, the expectation values of the pseudograviton and sc
are functions only of time:2

^0ukcmn~h,xW !u0&5A~h!h̄mn1C~h!tmtn , ~37!

^0ukf~h,xW !u0&5D~h!. ~38!

The expectation values of the full metric and scalar field
the stateu0& are then

^0uds2u0&5V2@2~12C!dh21~11A!dxW•dxW #

52dt21a2~ t !dxW•dxW , ~39!

^0ukwu0&5
2

As
ln~V!1D, ~40!

where t(h)5*h i

h V(h8)dh8 is the background comoving

time and the scale factor in comoving time is given by

a2~ t !5a0
2~ t !H 11A@h~ t !#1H~ t !E

0

t

dt8C@h~ t8!#J .

~41!

We do not measure expectation values directly, but ra
combinations of them that constitute physical observab
The observables should be independent of gauge fixing@11#.
In the case of homogeneous and isotropic backgrounds,
such physical observable is the effective expansion rateHeff
defined as the logarithmic derivative of the scale factor w
respect to comoving time

Heff[
d ln a~ t !

dt

5H~ t !F11
1

2
C~ t !1

Ȧ~ t !

2H
1

Ḣ

2HE
0

t

dt8C~ t8!1•••G .

~42!

Rather than computing the one-point functionsA, C, and
D directly, we will compute the amputated one-point fun
tions instead, and then attach the external lines to find
one-point functions. The amputated one-point functions
defined as

2This is only rigorously true within the perturbative formalism w
shall employ. It might be that a nonperturbative analysis wo
show symmetry breaking.
04401
e-
a

-
o-
lar

n

er
s.

ne

h

-
e

re

S Dmn
rs

2
2As

s21

V2

h2
trts

2
2As

s21

V2

h2
tmtn VF ]21

2s223s12

~s21!2

1

h2GV
D

3S ^0ukcrsu0&

^0ukfu0&
D[S a~h!h̄mn1g~h!tmtn

d~h!
D , ~43!

where the matrix on the left is the same differential opera
defined above in Eq.~21!. Substituting the expectation va
ues~37! and ~38! gives

a~h!52
1

4
DA~A2C!, ~44!

g~h!52
3

4
DA~A2C!1DBC2

2As

s21

V2

h2
D, ~45!

d~h!5VF2
d2

dh2
1

2s223s12

~s22!2

1

h2GVD2
2As

s21

V2

h2
C.

~46!

Since we are calculating expectation values, we must
ploy Schwinger’s formalism@12# instead of the usual rule
for ‘‘in-out’’ matrix elements. For the one-loop one-poin
functions, the only difference is that in Schwinger’s forma
ism the external lines are retarded propagators. In orde
enforce this choice of external propagator we fix retard
boundary conditions such that the one-point functionsA(h),
C(h), and D(h), along with their time derivatives, vanis
on the initial surfaceh5h i .

The one-point functions are obtained by attaching the
ternal legs, i.e., by inverting the coupled differential equ
tions ~44!–~46! with appropriate boundary conditions. Afte
a change of variables and some algebra, one obtains

A5
1

DA
F24a1

1

s11
~3a1g!2

As

s11
dG

1
1

DC
F s

s11
~3a1g!1

As

s11
dG , ~47!

C5
1

DA
F 1

s11
~3a1g!2

As

s11
dG

1
1

DC
F s

s11
~3a1g!1

As

s11
dG , ~48!

D5
1

DA
F2

As

s11
~3a1g!1

s

s11
dG

1
1

DC
F As

s11
~3a1g!1

1

s11
dG , ~49!

whereDA andDC have been defined in Eqs.~23! and ~29!.
Notice that sincea, g, andd are functions only of time, the

d

1-5
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nonlocal operators 1/DI in the expressions above denote tw
time integrations. The explicit representations for the
verted propagators are

1

DA
f ~h!52E

h i

h
dh8V22~h8!E

h i

h8
dh9 f ~h9!, ~50!

1

DC
f ~h!52V221 2/s~h!E

h i

h
dh8V224/s~h8!

3E
h i

h8
dh9V2212/s~h9! f ~h9!, ~51!

where the lower limits of the integrals make clear that

A~h i !5C~h i !5D~h i !50,

A8~h i !5C8~h i !5D8~h i !50.

It is useful to derive explicit formulas for the integra
~50!,~51! when the integrand has the same functional form
the amputated one-point functions. The fastest-growing c
tributions to the amputated one-point functions have a t
dependence}V422/s1e ~see next section!, and for such
terms the integrals~50!,~51! reduce to

1

DA
~V422/s1e!

5
s

H i
2e~3s211se!

3S 2Ve1
3s211se

3s21
2

se

3s21
V2(3s21)/sD ,

~52!

1

DC
~V422/s1e!

5
s2

H i
2~s111se!~2s221se!

3S 2Ve1
2s221se

s23
V2(s11)/s

2
s111se

s23
V22(s21)/sD . ~53!

V. INFRARED PARTS OF COINCIDENT PROPAGATORS

In the next section we will sum the diagrams that contr
ute to the amputated one-point functionsa, g, andd. At one
loop, the amputated one-point functions are found by ac
with the three-point vertex operators on the propaga
iD I(x;x8) and then taking the coincidence limitx˜x8. In
this section we study the coincidence limits of the propa
tors and point out those terms which can contribute to b
reaction.
04401
-

s
n-
e

-

g
rs

-
k

The three diagonal propagators can be expressed in te
of the mode functionsC(h,k,I ) which obey equations~30!.
After a change of variables

C~h,k,I !5~kh!wh~kh,I !, w5
3s21

2~s21!
, ~54!

we can solve Eqs.~30! in terms of Hankel functions
Hn I (s)

(1,2)(kh) of the first and second kind, where the indic

n I(s) are given in terms of the parameters as @5#

nA5
3

2
1

1

s21
, ~55!

nB5
1

2
1

1

s21
, ~56!

nC5
1

2
2

1

s21
. ~57!

The normalization of the mode functions is given by E
~33!. The Hankel functions, on their own account, obey t
identities

Hn
(1)* ~y!5Hn

(2)~y!, ~58!

Hn
(2)~y!

d

dy
Hn

(1)~y!2Hn
(1)~y!

d

dy
Hn

(2)~y!5
4i

p

1

y
, ~59!

which imply that the two linearly independent, normalize
mode functions are given by

C~h,k,I !5
1

2
V21AphHn I

(2)~kh!, ~60!

C* ~h,k,I !5
1

2
V21AphHn I

(1)~kh!. ~61!

The propagators are obtained by substituting the m
functions above into the definition~35!. In the coincidence
limit ixW2xW8i˜0, h2h8˜0 we have, after performing a
trivial angular integration

iD I~x!5
1

8p

uhu

V2E dk k2e2ekHn I

(1)~kh!Hn I

(2)~kh!. ~62!

SinceHn
(1,2)(y)}y21/2 when y˜`, the coincident propaga

tors diverge ask2 in the ultraviolet. After these divergence
have been regularized at the initial value surfaceh5h i , the
counterterms should not affect the time evolution. Not
that the details of the regularization procedure and the ul
violet behavior of the true, renormalizable quantum theory
gravity are issues immaterial to the long-range phenom
described by the effective theory, general relativity.

We are mainly interested in the infrared behavior of t
effective theory, since the physical mechanism behind b
reaction is superadiabatic amplification of quantum fluct
tions with physical wavelengths of the order of or bigg
1-6



e

a
de
s.

t-
e

a

ltr

th

the
es-

ted
,
alar
s

to

of

pu-
-

s a

the

a

me
ber
the

ted
.
ant

ONE LOOP BACK REACTION ON POWER LAW INFLATION PHYSICAL REVIEW D60 044011
than the Hubble radiusH21. We define the infrared as th
scales larger than the Hubble scale,

kp5
k

V
.H~h!5H iV

121/s. ~63!

In the far infrared the Hankel functionsHn
(2) can be approxi-

mated by

Hn
(2)~kh!5

G~n!

ip S 2

kh D n

1•••, ~64!

so at coincidence the infrared limit of the propagators~62!
can be written as

iD I
(IR)~x!5

22n IG2~n I !

8p3

1

uhuV2EH iV
121/s

dk~kh!222n Ie2«k.

~65!

One immediately sees that by Eqs.~55!–~57!, for larges the
integral is infrared finite for theB and C modes, but it is
divergent for theA mode.

We can cure this infrared divergence by working on
compact spatial manifold. The momenta are then boun
from below, and the integrals above should be mode sum
we set the size of the compact manifold to be theH i , the
Hubble radius at the initial timeh i , the infrared cutoff is
given byk05H i . In terms of physical wavelengths, the cu
off is the size of the initially inflating patch redshifted by th
expansion of the universe,l0

phys52pHiV.
With the cutoff k05H i bounding the integral~65! from

below, the propagatorA is given in the infrared limit (k
.HV) by

iDA
(IR)~h!5

H i
2

8p2
~s21!

3F2G@3/211/~s21!#

Ap
S s21

s D s/(s21)G 2

3~12V22/s!, ~66!

where the numerical factor between square brackets
proaches 1 in the limits˜`.

The propagators for theB(1) and C(2) modes in the
infrared limit are best left as integrals,

iDB,C
(IR)5

H i
62/(s21)

4p2 FG@1/261/~s21!#

Ap
S s21

s D 61/(s21)G 2

3V2262/sE
H i

H iV
121/s

dk k172/(s21), ~67!

where it is easy to see that they are dominated by the u
violet. In addition, they have an overall time factor ofV22/s

which makes them subdominant when compared with
constant part ofiDA

(IR) . The dominant contribution from the
infrared limit of the coincident propagators is therefore
04401
d
If

p-

a-

e

iDA
(IR)5

H i
2

8p2
~s21!F2G@3/211/~s21!#

Ap
S s21

s D s/(s21)G 2

.

~68!

VI. RESULTS

In this section we obtain and discuss the results for
expectation values of the metric and scalar field in the pr
ence of the quantum fluctuationscmn and f. Our strategy
consists of summing up all contributions to the amputa
one-point functions~43! coming from cubic interactions
then obtaining the expectation values of the metric and sc
field by Eqs. ~47!–~49!. There are three types of vertice
with cubic interactions in Eq.~19!: pure graviton verticesc3

~Table I!, graviton-ghost vertexcw̄w ~Table II!, and vertices
with one or moref ’s ~Table III!.

For simplicity, we have partially symmetrized thec3 ver-
tices of Table I so that the first field always corresponds
the external line. For example, the vertex

1

2
kH iV

321/scc ,aca0 ~69!

gives rise to the symmetrized vertices numbers 1, 2, or 3
Table I when the first, third, or secondc ’s, respectively, are
taken as the external leg.

As an example, consider the contributions to the am
tated 1-point functiona from the symmetrized vertex num
ber 1. Using the Feynman rules of Sec. III one obtains

a [1]~h!5 i 3 ik

3
1

2
kH iV

321/s@]a~x!^c~x!c0a~x8!&#x8˜x

52k2H iV
321/s]h

3F2
2

s11
iDA~x;x8!2

2s

s11
iDC~x;x8!G

x8˜x

.

~70!

We are looking for those terms that grow the fastest a
function of time, such that after integration by Eqs.~52! or
~53! there can be a sustained effect of back reactions on
metric and scalar fieldA, C, andD. Clearly, the vertex above
fails to meet that condition and contributes at maximum
constant to the expectation values.

The terms which we are interested in arise when a ti
derivative hits an external leg, as happens in vertex num
3, for example. When that term is integrated by parts and
conformal time derivative hits the volume factorH iV

321/s,
the result is a factor ofH i

2V422/s. This sort of term, when
integrated with respect to the inverse of theA-type propaga-
tor by Eq.~52!, gives a dominant logarithmic contribution.

On the other hand, when vertex number 3 is integra
with respect to the inverse of theC-type propagator by Eq
~53!, the result is only a constant and other subdomin
1-7
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TABLE I. Vertex factors contracted intoca1b1
ca2b2

ca3b3
with No. 1 external.

No. Vertex factor No. Vertex factor

1 1
2 kH iV

321/sha1b1ha2b2]2
(a3tb3) 22 1

2 kV2ha2(a3hb3)b2]3
(a1]1

b1)

2 1
2 kH iV

321/sha2b2ha3b3]3
(a1tb1) 23 1

2 kV2ha3(a1hb1)b3]1
(a2]2

b2)

3 1
2 kH iV

321/sha3b3ha1b1]1
(a2tb2) 24 1

2 kV2]2
(a1hb1)(a3]3

b3)ha2b2

4 2kH iV
321/sha1(a2hb2)b1]2

(a3tb3) 25 1
2 kV2]3

(a2hb2)(a1]1
b1)ha3b3

5 2kH iV
321/sha2(a3hb3)b2]3

(a1tb1) 26 1
2 kV2]1

(a3hb3)(a2]2
b2)ha1b1

6 2kH iV
321/sha3(a1hb1)b3]1

(a2tb2) 27 1
2 kV2]2

(a1hb1)(a2]3
b2)ha3b3

7 2kH iV
321/st (a3hb3)(a1]2

b1)ha2b2 28 1
2 kV2]3

(a2hb2)(a3]1
b3)ha1b1

8 2kH iV
321/st (a1hb1)(a2]3

b2)ha3b3 29 1
2 kV2]1

(a3hb3)(a1]2
b1)ha2b2

9 2kH iV
321/st (a2hb2)(a3]1

b3)ha1b1 30 1
8 kV2ha1b1ha2b2ha3b3]2•]3

10 1
4 kV2ha1b1]3

(a2hb2)(a3]2
b3) 31 1

4 kV2ha1b1ha2b2ha3b3]3•]1

11 1
4 kV2ha2b2]1

(a3hb3)(a1]3
b1) 32 2

1
2 kV2ha1(a2hb2)b1ha3b3]2•]3

12 1
4 kV2ha3b3]2

(a1hb1)(a2]1
b2) 33 2

1
2 kV2ha2(a3hb3)b2ha1b1]3•]1

13 2kV2]3
(a1hb1)(a2hb2)(a3]2

b3) 34 2
1
2 kV2ha3(a1hb1)b3ha2b2]1•]2

14 2kV2]1
(a2hb2)(a3hb3)(a1]3

b1) 35 2
1
4 kV2]2

(a1]3
b1)ha2b2ha3b3

15 2kV2]2
(a3hb3)(a1hb1)(a2]1

b2) 36 2
1
2 kV2]3

(a2]1
b2)ha3b3ha1b1

16 2
1
2 kV2]3

(a2hb2)(a1hb1)(a3]2
b3) 37 2

1
8 kV2ha1b1ha2(a3hb3)b2]2•]3

17 2kV2]1
(a3hb3)(a2hb2)(a1]3

b1) 38 2
1
4 kV2ha2b2ha3(a1hb1)b3]3•]1

18 2
1
4 kV2ha1b1ha2b2]2

(a3]3
b3) 39 1

2 kV2ha1)(a2hb2)(a3hb3)(b1]2•]3

19 2
1
4 kV2ha2b2ha3b3]3

(a1]1
b1) 40 kV2ha1)(a2hb2)(a3hb3)(b1]3•]1

20 2
1
4 kV2ha3b3ha1b1]1

(a2]2
b2) 41 1

4 kV2]2
(a1]3

b1)ha2(a3hb3)b2

21 1
2 kV2ha1(a2hb2)b1]2

(a3]3
b3) 42 1

2 kV2]3
(a2]1

b2)ha3(a1hb1)b3
s
rs
.
n

to

ad

thm
itial
x-

alu-
cta-

ins
terms. Since integration by theC-type propagator gives only
subdominant contributions, we ignore them in what follow

It can be verified by inspection that no terms with facto
that grow faster thanV422/s arise in the Einstein Lagrangian
Those are the types of contributions we are looking for, a
only the terms with the right structure to contribute a fac
of at leastH i

2V422/s will be collected in the following ex-
pressions.

Our results for the amputated one-point functions to le
ing order are as follows:

a~h!52
1

2

1

s11 S 32
1

sDk2H i
2V422/siDA

(IR) , ~71!

g~h!52a~h!, ~72!

d~h!52
2

As
a~h!, ~73!

where iDA
(IR) is given in expression~68!. The expectation

values can be found with the help of expressions~47!–~49!
and ~52!:
04401
.

d
r

-

A~h!52
k2H i

2

8p2

s22s

~s11!2

3F2G@3/211/~s21!#

Ap
S s21

s D s/(s21)G 2

3F ln V2
s

3s21
1

s

3s21
V2(3s21)/sG , ~74!

C~h!52
1

s
A~h!, ~75!

D~h!

As
5

1

s
A~h!, ~76!

where we keep the subdominant terms after the logari
only to stress that expectation values vanish at the in
value surfaceV51. The prefactor in square brackets of e
pression~74!, which we calls(s), is approximately 1 for
larges.

The effective Hubble expansion parameter can be ev
ated by substituting the expressions above for the expe
tion value of the metric into Eq.~42!. It can be easily seen
that the logarithmic contributions cancel, and all that rema
1-8
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ONE LOOP BACK REACTION ON POWER LAW INFLATION PHYSICAL REVIEW D60 044011
are subdominant terms. The effective expansion rate is
changed up to terms which are either constant and deca
as functions of time,

Heff~ t̃ !5H~ t !@11~subdominant!#. ~77!

We conclude therefore that there is no one loop back
action of quantum fluctuations on power-law inflation
leading order. Presumably there is a two loop effect, an
gous to the one found by Tsamis and Woodard@6#, that
grows and would become dominant, but we did not attem
to calculate those diagrams. In the next section we will ch
the results above with a vastly simpler canonical version
this calculation, and provide a physical justification for t
differences among the power-law and chaotic inflation ca

VII. THE CANONICAL RESULT

As a check on our previous results, and in its own right
is interesting to study the same problem of back reaction
power-law inflation using canonical quantization. This w
the method used by Mukhanov and co-workers to der
their results.

In order to simplify the full Lagrangian~1!, we perform
the following approximations: first, ignore the spin-2~grav-
ity waves! and spin-1~‘‘vector’’ fluctuations! projections of
the graviton degrees of freedom, and concentrate on the
lar fluctuations of the metric that couple to the fluctuations
the scalar fieldw. Second, use the constraints of the Einst
field equations explicitly in Eq.~1! to eliminate the fluctua-
tions of the scalar field and reduce the number of degree
freedom to one: the so-called Newtonian potentialF. Third,
the expectation values are given in terms of the ‘‘spectru
of the canonically quantized fieldF in power-law inflation,
which can be read right off the standard formulas in
literature on quantum fluctuations in inflationary univer
models@7,13,14#.

The motivation for the first assumption lies in the obs
vation that the infrared limits of coincident propagators
the spin-1 and spin-2 degrees of freedom are dominated
the ultraviolet and fall off as a function of time. Since cro
correlations are irrelevant at one loop, we can ignore th
degrees of freedom altogether and concentrate on the d
nant, scalar degrees of freedom of the graviton.

This truncated version of canonical quantization has
vious shortcomings, such as its inadequacy to study pe
bative corrections above lowest order and the exclusion
many of the degrees of freedom from the calculation. Th

TABLE II. Vertex factors contracted intoca1b1
v̄a2

va3
.

No. Vertex factor No. Vertex factor

1 2kV2ha2(a1hb1)a3]2•]3 6 1
2 kV2ha1b1]2

a2]1
a3

2 2kV2ha3(a1]2
b1)

]3
a2 7 2kH iV

3ha1b1]2
a2ta3

3 2kV2ha2(a1]2
b1)

]1
a3 8 22kH iV

3ha3(a1]3
b1)ta2

4 2kH iV
3ha2(a1]2

b1)ta3 9 2kH iV
3ha1b1]1

a3ta2

5 kV2ha3(a1]3
b1)

]2
a2 10 2kH i

2V4ha1b1ta2ta3
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difficulties would be unsurmountable if we wanted to calc
late quantum corrections beyond one loop, for examp
Nevertheless, within the scope of this one loop calculat
the truncated canonical method is perfectly suited to st
the leading contributions to back reaction.

The back reaction on the homogeneous and isotro
background is determined by the expectation values of E
stein’s field equations

^0uGn
mu0&5

k2

2
^0uTn

mu0& ~78!

and the equation of motion for the scalar field

^0uhw1V,wu0&50, ~79!

where the inflaton potential is

V~w!56S 12
1

3sDH i
2

k2
expF2

k

As
wG . ~80!

The terms in Einstein’s equations which are quadratic in
quantum fluctuations can be collected in aneffectivestress-
energy tensortmn , which is a source term in addition to th
stress-energy tensor of the background matter@1,2#. The
equation of motion forw is similarly corrected by source
terms quadratic in the quantum fields. In this section we s
regard back reaction as the response of the background t
source terms induced by quantum fluctuations, found
solving for the expectation values of Einstein’s equatio
and the equation of motion for the scalar field.

We write the metric in longitudinal gauge,

ds252@112F~ t,xW !#dt21a0
2~ t !@122F~ t,xW !

12w~ t !#dxW•dxW ~81!

and the scalar field is

w5w0~ t !1f~ t,xW !1v~ t !, ~82!

whereF andf are, as before, quantum fields which ought
be canonically quantized, andw(t) and v(t) are, respec-
tively, corrections to the scale factor and to the scalar fi
from back reaction.3 We have taken advantage of the fre
dom of gauge at the second order to fix any correction to
time slicing ~the N of earlier sections! to zero. Therefore, in
this gaugeẇ is the correction to the Hubble expansion ra
Heff5H1ẇ that will eventually be compared with the effec
tive expansion rate~77! of the last section.

The spectrumudF(k,t)u is defined by the expectatio
value of the square of the canonically quantized Newton
potential

3We have adopted a notation different from earlier sections
avoid confusion, since in the section we work in a different gau
1-9
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TABLE III. Cubic interactions involvingf.

No. Interaction No. Interaction

1 1

4As
kHiV

32 1/sf8c2
6 1

2 kV2f ,rf ,scrs

2
2

1

2As
kHiV

321/sf8crscrs

7 1

4As
S 32

1

sDkHi
2V422/sfc2

3
2

1

As
kHiV

321/strf ,scrsc
8

2
1

2As
S 32

1

sDkHi
2V422/sfcrscrs

4 2

As
kHiV

321/strf ,scrmcm
s

9
2

1

2s S 32
1

sDkHi
2V422/sf2c

5 2
1
4 kV2f ,rf ,rc 10 1

2s3/2 S 32
1

sDkHi
2V422/sf3

11 2

As
kHiV

321/strf ,sv̄rvs
at
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^0uF~ t,xW !F~ t,xW !u0&5E dk

k
udF~k,t !u2. ~83!

The spectrum is proportional tok when k˜`, and conse-
quently the expectation value above diverges ask2 in the far
ultraviolet. Just as was done in Sec. V, we assume th
proper renormalization of these infinities has been perform
and that the appropriate counterterms have no bearing on
long-range interactions described by the effective theory

The expectation value~83! is also divergent in the infra
red since the spectrum is approximately constant for v
small momenta. Again the solution is to work in a compa
spatial manifold, wherek is cut off at the valueH i corre-
sponding to the radius of the manifold at the initial timet
50.

The infrared limit of the spectrum of the Newtonian p
tential during power-law inflation is@13#

udF
(IR)~k,t !u25

k2H i
2

32p2

s~s!

s S k

H i
D 22/(s21)

, ~84!

where

s~s!5F2G@3/211/~s21!#

Ap
S s21

s D s/(s21)G 2

, ~85!

is the same factor defined below Eq.~74!, and approaches 1
ass@1.

The physical information contained in this spectrum
that the amplitudes of long-wavelength fluctuations are
ymptotically constant in power-law inflation. The amplitud
of infrared fluctuations in chaotic inflation with a quadra
potential, by comparison, grow slowly with time. Whe
back reaction is concerned, quantum corrections to pow
law inflation from a fluctuation with a fixed comoving wave
length can be at most constant, while corrections to the ba
04401
a
d

the

y
t

s-

r-

k-

ground in chaotic models can grow as a function of tim
during the inflation of the universe.

The distinguishing facts about power-law inflation are~1!
the equation of statew[r/p52112/3s is constant
throughout inflation and~2! the kinetic and potential energ
densities of the background scalar field, as well as
Hubble parameter, are at fixed ratios with respect to e
other at any given time. Consequently, the amplitude of fl
tuations on large scales, which couple to these ratios, fre
to a constant value.

We often find claims in the literature to the effect th
quantum fluctuations during inflation freeze after they b
come larger than the Hubble radius. While this is exact
power-law inflation, it is only approximate for most mode
of inflation.

With the spectra above, the expectation value of the Ne
tonian potential in the infrared limit is, by Eq.~83!,

^0uF~ t,xW !F~ t,xW !u0&5s~s!
s21

s

k2H i
2

32p2
5const. ~86!

Notice that this is in accord with expressions~36! and ~68!
for larges ~remember thatc0052F). The expectation value
of the scalar field can be deduced from this expression
using the following useful constraint in momentum spa
valid in longitudinal gauge:

f~ t,k!522
V

V,w
F~ t,k!52

As

k
F~ t,k!. ~87!

The Einstein equations with quantum corrections are fou
by using the metric~81! and scalar field~82! into Eqs.~78!.
The generalresult ~the spatial gradient terms have been
nored since we consider only infrared modes! is
1-10
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3H213^Ḟ2&112H2^F2&16Hẇ

5
k2

2 F1

2
ẇ0

21V1
1

2
~^ḟ2&24ẇ0^ḟF&14ẇ0

2^F2&

12ẇ0v̇ !1
1

2
V,ww^f2&1V,wvG , ~88!

3H212Ḣ14~H212Ḣ !^F2&18H^ḞF&1^Ḟ2&16Hẇ

12ẅ5
k2

2 F2
1

2
ẇ0

21V2
1

2
~^ḟ2&24ẇ0^ḟF&

14ẇ0
2^F2&12ẇ0v̇)1

1

2
V,ww^f2&1V,wvG ,

~89!

where angular brackets denote vacuum expectation valu
As we have argued in the discussion of the spectru

terms containing time derivatives ofF andf should vanish.
Using the identity~87!, we can finally write the Einstein
equations with quantum corrections above in terms of o
^F2&, w(t), andv(t):

6Hẇ5
k2

2 F ẇ0v̇2VS kv

As
12^F2& D G , ~90!

6Hẇ12ẅ5
k2

2 F ẇ0v̇2VS kv

As
12^F2& D G . ~91!

It is also instructive to write down the equation of motio
for the scalar field to second order,

v̈13H v̇13ẇẇ01V,wwv24^Ḟḟ&24ẇ0^ḞF&

12V,ww^Ff&1
1

2
V,www^f2&50, ~92!

which, after use of Eq.~87!, the background identities an
the Einstein field equation~90! read

t2ẍ1
3s11

s
tẋ13s~x12^F2&!50, ~93!

wherex5kv/As. Since this equation is second order in tim
we can always find solutions such thatv(t0)5 v̇(t0)50. No-
tice that^F2& is a constant by Eq.~86!. It is straightforward
to solve this equation, and the result is

x5
kv

As
522F12

3s21

3s22

t0

t
1

1

3s22 S t0

t D 3s21G^F2&,

~94!

where we have chosen the integration constants such th
the initial value surfacex(0)5 ẋ(0)50.

The dominant contribution tox5kv/As is therefore a
constant, corresponding to the homogeneous solution to
~93!. However, as happened in the covariant calculation,
04401
s.
,

y

,

t at

q.
e

have neglected subdominant terms which decay as a func
of time in the present calculation, by discarding several
the degrees of freedom of the fundamental Lagrang
Therefore, the inhomogeneous solutions are unrelia
within our approximation scheme and will be discarded.

Substituting the homogeneous part of Eq.~94! into Eq.
~91! we get the following equation for the correction to th
scale factor:

t2ẅ13stẇ50. ~95!

The solution is also straightforward, and we get

ẇ50 ~96!

exactly since the decaying solutionẇ}t23s has to be zero to
satisfy the retarded boundary conditions. The effective
pansion rate is therefore given by

Heff5H~ t !. ~97!

We have thus obtained the back reaction on the me
and scalar field by finding the solutions to the expectat
values of the Einstein field equations~78! and the equation
of motion for the scalar field~79!. Expectation values were
evaluated using the canonically quantized Newtonian po
tial F.

The result of the canonical calculation is that the ba
reaction of quantum fluctuations during power-law inflati
does not affect the expansion rate of the universe, at lea
leading order. This is in agreement with the results of
covariant calculation of last section.

As pointed out earlier in this section, infrared fluctuatio
of a fixed comoving wavelength in power-law inflation ha
constant amplitudes. Those fluctuations exiting the Hub
radius at a later time in the inflation epoch have a sma
amplitude than the ones that exited earlier, since the sca
inflation is decreasing as}t22. The cumulative effect of
superimposing modes of different comoving momenta is
sufficient to make the expectation values of the quant
fields grow in time, and the momentum mode sum is dom
nated by modes that exited the horizon early in the inflat
epoch.

VIII. DISCUSSION

We have calculated the back reaction of quantum fluct
tions on the expansion rate of homogeneous background
power-law inflation models. Two methods were employe
covariant quantization of the full scalar-graviton system, a
canonical quantization of a reduced system where the sp
and spin-2 degrees of freedom of the graviton were purg

The results of the two calculations are identical: to lea
ing order, there is no effect of the quantum fluctuations
the effective Hubble parameter in power-law inflation. T
physical reason is that long wavelength modes have cons
1-11
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amplitudes, and therefore both the amputated one-point fu
tions and the source terms in the expectation values of
stein’s equations are constant.

The main result is that the shape of the inflaton poten
can have an enormous impact on back reaction. While c
otic inflation can have a significant back reaction, power-l
inflation does not. We also hope that the results prese
here~see also Ref.@9#! will help settle some of the criticism
raised with respect to the canonical method as applied to
study of back reaction in quantum general relativity.
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