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One loop back reaction on chaotic inflation
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We extend, for the case of a general scalar potential, the inflaton-graviton Feynman rules recently developed
by lliopouloset al. [Nucl. Phys.B534, 419(1998]. As an application we compute the leading term, for late
comoving times, of the one loop back reaction on the expansion rat(fey=3m?e2. This is expressed as
the logarithmic time derivative of the scale factor in the coordinate system for which the expectation value of
the metric has the forn{0|g,,,(t,x)|0)dx*dx"=—dt?+a?(t)dx-dx. This quantity should be a gauge-
independent observable. Our result for it agrees exactly with that inferred from the effect previously computed
by Mukhanov and co-workerfPhys. Rev. Lett.78, 1624 (1997); Phys. Rev. D56, 3248 (1997)] using
canonical quantization. It is significant that the two calculations were made with completely different schemes
for fixing the gauge, and that our computation was done using the standard formalism of covariant quantiza-
tion. This should settle some of the issues recently raised by Uastho-ph/9802323
[S0556-282(199)04814-9

PACS numbe(s): 04.60—m, 98.80.Cq

[. INTRODUCTION computed—depend upon the gauge chosen for expressing
the first order terms.

We wish to address a controversy which has arisen in the Without wishing to criticize good people who addressed
literature of scalar-driven inflation. The dispute concerns thean important issue at the extreme limit of their formalism’s
recent claim by Mukhanov and co-workéfs2] that infrared  applicability, we must admit to a certain sympathy for Un-
modes can generate a significant one loop back reactiomuh’s methodological objections. One of the present authors
which reduces the expansion rate over the course of inflatioralso had difficulty understanding the work of Mukhanov and
Unruh [3] has raised a number of serious questions abouto-workers on account of objectioi4)—(6).! However, we
their methodology and the plausibility of their conclusion. believe the physics of what they did is correct, and that is the

We begin by summarizing Unruh’s objections. point of this paper.

(1) It is difficult to understand how long wavelength  After fixing notation about the perturbative background in
modes can affect the local geometry since they should appe&ec. Il we comment in Sec. Il on the physics of the process
spatially constant to a local observer. and we partially address Unruh’s objectiqii$—(3). The re-

(2) To leading order in the long wavelength expansion themainder of the paper is devoted to checking the calculation
mode solutions are all equivalent, locally, to coordinateof Mukhanov and co-workers, in a completely different
transformations which can have no effect on local invariantsgauge, using the standard formalism of covariant quantum

(3) The quantization procedure employed by Mukhanovfield theory. The Feynman rules are given in Sec. IV. These
and co-workers is suspect because their dynamical variable wgere lifted from a recent paper by lliopoulos, Tomaras, Tsa-
nonzero for only one of the two leading long wavelengthmis, and Woodard4], which we have extended so that the
solutions. Since this dynamical variable possesses anothgopagators can be computéas mode sumsfor a general
independent solution, the corresponding degree of freedorscalar potential. Section V attaches the external limégch
must be unphysical. are retarded propagators in Schwinger's formalii)

(4 What Mukhanov and co-workers refer to as “gauge-needed to convert the amputated one-point functions into the
independent” quantities are really just the local dynamicalexpectation values of the metric and the scalar. We also ex-
variables in a particular gauge. plain how these expectation values are used to compute

(5) Mukhanov and co-workers employ an unconventionalPhysical observables which measure the cosmological ex-
variation of perturbation theory in which the effective stress-Pansion rate and the evolution of the scalar. In Sec. VI we
energy tensor of the first order equations renormalizes thgive the procedure used for isolating the leading contribution
zeroth order stress-energy tensor. to each propagator from superadiabatically amplified modes

(6) The contributions to the metric at second order—theat late comoving times. This is the chief physical approxima-
zero mode of which is what Mukhanov and co-workerstion of the paper. The amputated one-point functions are

*Present address: Theoretische Physik, Ludwig Maximilians Uni- 10ther confusing points were the characterization of what is ob-
versitd, Theresienstrasse 37, D-80333 hen, Germany. Email viously a one loop effect as “classical” and the attribution of this
address: abramo@theorie.physik.uni-muenchen.de effect to an instability in the classical energy functiofahich is

TEmail address: woodard@phys.ufl.edu actually stablg
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computed in Sec. VII and processed to give the two physical , 1,1,
observables. Section VIII summarizes the various results. H =5« 5901 V(eo) (8)
Il. THE PERTURBATIVE BACKGROUND . 1 .. 2
. o H=— 2 «%¢;. 9
The system under study is that of general relativity with a 4

eneral minimally coupled scalar . _ . .
9 y P Sometimes it is more convenient to write the scalar quan-

1 1 tities in terms of the Hubble constant and its derivative
e — 00— — MY oy — —
L 167G RV=9—57,¢d,09""V—0 V(e)V—g. y 4.
1) ¢o=— 2, (10)

This section concerns the homogeneous and isotropic back- 2

groundsg, and ¢, about which perturbation theory will be V(@)= _2(|'-| +3H?2). (11)
formulated. Three classes of identities turn out to be interest- K

ing for our purposes(l) those which are exact and valid for
any potentiaM(¢), (2) those which are valid in the slow roll
approximation but still for any potential, ari@) those which

At other times one wants to express the scalar quantities
using the conformal factaf)

are valid for the slow roll approximation with the potential ) 4 1 Q" 0’2
V(¢)=3im?¢2. We shall develop them in this order, identi- tp§=7 W( _ﬁ+2<ﬁ) ] (12)
fying the point at which each further specialization and ap-
proximation is made. 2 1 (Q" [Q'\2
Among the exact identities is the relation between comov- V(gg)=—3 51—~ +|—~ (13
. X %o 2 QZ Q Q
ing and conformal coordinates: K
o At2aA2(vA . e (2 A2t e A The conformal time derivative of the scalkag=Q ¢, is also
dsi=—dt?+a5(t)dx- dx=Q?(5){—d7?+dx-dx}. o useul
o ) 4 Q" Q' 2
This implies 12 - ——
p @0 ’7[ Q+2 Q)] (14)
dt=Qd7n, ag(t)=Q(7). ()

Successful models of inflation require the following two

The Hubble “constant” is the logarithmic comoving time conditions which define thelow roll approximation

derivative of the background scale factor ol <H @0, (15)
S 2 @ 23< V(o). 16
ag 0?2
It follows that there are two small parameters. Although
where a dot denotes differentiation with respect(lback- these are traditionally expressed as ratios of the potential and
ground comoving time and a prime stands for differentiation its derivatives the more useful quantities for our work are

with respect to conformal time. ratios of the Hubble constant and its derivatives
Two of Einstein’s equations are nontrivial in this back- i )
round: —H H
d iy, B (17
1 (1 H?2 —HH
2_" 272
3H 2 [Z(POJFV(%)) ' ®) For models of interest to us the rightmost of these parameters

is negligible with respect to the leftmost one. We shall also
assume that the derivative of the scalar is negative,

Cof-3H2=l,2 E'Z—V( ) (6)
2 ZQDO Po) ([

2 -
vo=——QV—H. (18
where k?=167G is the loop counting parameter of pertur- K
bative quantum gravity. One can use the two Einstein equa-

. . . . The slow roll approximation gives useful expansions for
tions to derive the scalar equation of motion P 9 P

simple calculus operations. For example, ratios of derivatives
. . of the field are
ot 3H@o+V (o) =0,

n
@
2=H0

whereV ,=3V/de. One can also invert the Einstein equa- , (29

tions to solve for the Hubble constant and its first derivative ®0
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ol K Owing to the rapid expansion of spacetime and the special
—? =2H202| 1+ — ) . (20) properties of the dynamical quanta involvethere is a vast
o 2H enhancement of the 0-point energy which the uncertainty

rinciple requires to be present in each dynamical degree of
reedom. This is the phenomenonsafperadiabatic amplifi-
cation, first studied by Grishchuf8]. A simple picture for it

} is that virtual pairs with wavelengths comparable to the ho-

Successive partial integration also defines useful slow rol
expansions

rizon can become trapped in the expansion of spacetime and
not be able to recombine.
(21 Superadiabatic amplification is not a large effect by itself.
wil . Although the total energy contained in infrared modes in-
f dt He= [ 1 ] 22) creases quite rapidly, the corresponding expansion of the
at+l H three-volume keeps the enerdgnsityconstant for pure de
Sitter expansion.For this background it is simple to show
In discussing the physical significance of their resultthat there is only about one extra infrared quantum per
Mukhanov, Abramo, and Brandenberger specialized to thélubble volume. The interesting, secular effect derives from
simplest potential for chaotic inflatioif] the gravitational interaction between these quanta. As each
virtual pair is pulled apart, its gravitational potentials fill the
intervening space. These remain to add with those of the next
pair. Even though the 0-point energy stays constant, the in-
duced gravitational potential increases. It is the interaction
In the slow roll approximation with this potential one can energy between this and the 0-point energy, and between the
solve explicitly for the scalar’s evolution gravitational potentials themselves, which gives the effect.
In the purely gravitational model of Tsamis and Woodard,
2 m linearized gravitons can only induce gravitational potentials
Po() =i~ ﬁ <L (24 4t second order in the weak field expansion. Since superadia-
batic amplification is a one loop effect this means that the
The interesting geometrical quantities have the following ex-Secular back reaction comes at two loop order. When infla-

1+

1
f dtH“QB=EH“’1QB

<“‘”(:ﬂ
B\ H?

+ HH+
arz

1
V((,D)—)Emchz. (23

pressions in terms of(t): tion is driven by a scalar field its quanta can induce gravita-
tional potentials even at linearized order in the weak field
. 1, expansion. This is why Mukhanov, Abramo, and Branden-

H~—-5m?, (25

berger were able to follow what is essentially the same
physical process with a vastly simpler one loop calculation.
Either way, the effect is to slow inflation because gravity
H~ \/——Km%(t)- (26) s attractive. Since gravity is also a weak interaction, even for
12 grand unified theoryGUT) scale inflation, the process re-
. ) ) quires an enormous amount of time before it can become
Note thatH~0 for this potential, so only one of the slow roll gjgnificant. A direct consequence is that the equation of state
parameters is nonzero. The slow roll approximation implieS¢ the induced stress tensor must be approximately that of
that the initial value of the scalar field is much larger than thenegative vacuum energy. To see this consider the relation
Planck mass: implied by conservation between the induced energy density
1 p(t) and the induced pressupgt)

P> (27)

p==3H(p+p). (28)
Inflation ends in this model wheag(t)~« 1.

Since the accumulation of a significant effect requires many

Hubble timegp|<H|p| and it must be thap(t) nearly can-
The physical mechanism behind what Mukhanov,celsp(t).

Abramo, and Brandenberg¢f,2] have found for scalar-

driven inflation is roughly the same as that studied previ-

ously by Tsamis and Woodafd] in the context of inflation  2rpage properties arél) effective masslessness on the Hubble

caused by a bare cosmological constant. There is such @aje and?2) the absence of classical conformal invariance.

simple physical model for what is going on that we would be 3¢ certain models of scalar-driven inflation the infrared energy

derelict in our duty of explication not to present it. Formal- gensity can grow as the scalar rolls. This is what seems to distin-

ists should rest assured that this is merely a qualitative dejuish those scalar potentials for which there is a one loop effect

scription of phenomena whose reality has already been egom those for which there is not. The two loop effect of pure

tablished by computing what should be invariant observablegravity—and presumably also gravity with scalars—does not de-

in the standard formalism of covariant quantization. pend upon such growth.

lll. PHYSICAL COMMENTS

044010-3



L. R. ABRAMO AND R. P. WOODARD PHYSICAL REVIEW D60 044010

A sometimes confusing point is that one does not require Viewed from the perspective of obtaining a long period of
the complete theory of quantum gravity in order to study arinflation it is rather local, short wavelength phenomena that
infrared process such as this. As long as spurious time deught to be regarded with suspicion. Without severe fine-
pendence is not injected through the ultraviolet regularizatuning the natural duration of any process mediated by short
tion, the late time back-reaction is dominated by UItraViOIetwave|ength quanta must be the Hubb|e t|me or |ess_ It seems
finite, nonlocal terms whose form is entirely controlled by reasonable to conclude that a mechanism for screening the
the low energy limiting theory. This theory must be generalcosmological constant must also end inflation if nothing else
relauvny, with the_possnblg addition of some light scalars. It yoaog the job first. But inflation has to persist for many
is worth commenting that infrared phenomena can always bﬁubble times in order to explain the large scale smoothness

Eﬁ%ﬂ'ﬁdaﬁj'r&lgo;‘ggég‘l’{vgf C\z?g :gic;[gleret;];?/;y'ﬂ; h'i?]f'rzr\ggyof the observed universe. Note that infrared, long wavelength
phenomena can require much longer to produce a significant

problem of QED before the theory’s renormalizability was effect because they can act by coherently supe .
suspected. It is also why Weinberg0] was able to achieve . mey ca y 1ty Superposing an
inherently weak interaction over the past light cone. It is only

a similar resolution for quantum general relativity with zero . . i ; 4
cosmological constant. And it is why Feinberg and SuchefN €normous expansion of the invariant volume contained in
[11] were able to compute the long range force due to neuthe pasF light cone that can compensate for the weakness of
trino exchange using Fermi theory. More recently Donoghudravitational self-interactions. _
[12] has been working along the same lines for quantum Finally, one must distinguish a local observation of a truly
gravity with zero cosmological constant. homogeneous expansion from the sort of local expansion
We emphasize that the process is causal, in spite of ithat would be produced by spatial inhomogeneities in the
close association with modes whose wavelengths have regacuum energy. Many people believe that whatever is sup-
shifted beyond the horizon. This emerges most clearly in th@ressing the former must also suppress the latter. We do not
two loop computation of Tsamis and Woodard where theshare this view. Experiment is sadly unable to decide the
effect derives from integrating interaction vertices over thematter but it seems to us that a local fluctuation which cre-
past light cone of the point at which the expansion rate isated a large enough region of negatjve 3p should result
being measured. Because gravitons are massless these int@rthat region beginning to undergo inflation. We believe that
actions superpose coherently. Because gravitons are not coghown physical principles already suffice to explain why
formally invariant they reflect the enormous physical volumesych fluctuations are rare in the observed univgt8g Were
of the past light cone rather than its minuscule conformajt otherwise one would not be able to make conventional
volume. The growth in the back reaction is directly attribut- jyoqels of inflation agree with observation by the unaesthetic
able to the fact that the invariant volume of the past lightyeyice of fine-tuning the bare cosmological constant which
cone increases without bound as one observes at later aqgj, be it noted, spatially homogeneous.
later times. o Two points are relevant for the second objection. First,
Causality is also built into the work of Mukhanov, yhe «stress tensor” of gravitational perturbation theory is not
Abramo, and Brandenberger through their use of the Heisery, jnyariant, or even a scalar. So the fact that infrared mode
berg field operators. The equations of motion for these arEolutions, to leading order for small wave number, are coor-
simply operator realizations of the causal field equations Ofjinate transformations does not mean they necessarily have
classical general relativity. In a IOC%I gauge one can expresgg effect. Second, it is only for strictly zero wave number
an operator at the spacetime poihpx) entirely in terms of  that infrared modes are pure gauge. Superadiabatic amplifi-
the operators and their time derivatives on that part of theation allows these modes to carry nonzero energy and pres-
initial value surface which lies on or within the past light sure in spite of their extreme redshift. The proper way to
cone of ¢,x). There might be some dispute about what thisdetermine their effect is by computing the metric’s response
means nonperturbatively, where the quantum metric caat second order and then addressing the gauge issue of what
have a significant impact on the light cone, but it makesthis response means physically. We believe this is what
perfect sense in the perturbative regime under study. ThMukhanov, Abramo, and Brandenberger did, although per-
time dependence Mukhanov, Abramo, and Brandenbergdraps not as transparently as one might wish. To check their
obtain derives in part from the continual redshift of newresult we made what ought to be the same computation in a
modes from ultraviolet to infrared but mostly from the completely different gauge and using the standard formalism
growth of the infrared mode functions which can occur inof covariant quantization, and we got the same answer.
some(but not al) inflationary backgrounds. This is the right point to comment on the gauge issue,
We turn now to issueél)—(3) listed in our Introduction. which was also raised extensively by Unruh. What both we
Regarding the first objection, it is relevant to note that whileand Mukhanov and co-workers computed was the expecta-
long wavelength modes indeed appear spatially constant totion value of the metric in the presence of a particular state
local observer, so too does the cosmological expansion ratnd in a fixed gauge. There is no doubt that this quantity
of an inflating universe. Therefore the causative agent and itdepends upon the gauge in which the computation was done.
purported effect are commensurate: the homogeneous expadh-s important to realize that a quantity is not automatically
sion rate of the classical background is being screened by thdevoid of physical import by virtue of being gauge depen-
guantum dynamics of modes which would seem homogedent. It can still contain useful physical information which
neous to a local observer. can be separated from the unphysical, gauge-dependent part.
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Examples of this abound in quantum field theory. The most ol o2
straightforward is the way in which gauge dependent Green’s n"—van— 2—?n’ +| -5 —2—|n=0. (32)
functions can be processed, using Lehmann-Symanzik- %o Q Q

Zimmermann(LSZ) reduction, to give gauge independent,
on-shell scattering amplitudehis is discussed in any stan- |n the limit that theV? term can be neglected Unruh obtains
dard text on quantum field theory, for example that by PeskiRhe following independent solutions:
and Schroedef14].) One does not even have to consider
products of field operators. There is an elegant formalism, Q' '(n
due to DeWitt[15], in which theS matrix is obtained from n=0-— —ZJ’ dnQ3(n), (33
the in-out matrix element of the dynamical variable in the (-
presence of a general scattering state. ,
So the expectation value of the metric contains valid n :Q_ (34)
physical information; the question is how to extract it. Our YA
technique exploits the special property of the initial state of

being homogeneous and isotropic. This means that a comov- Unruh’s problem concerns what happens wherandn,
ing coordinate system exists for whfch are substituted into the dynamical variable used by Mukha-

nov, Feldman, and Brandenberger

_ . . R 4 1 Q/I Q/
(0]g,.,(t,x)dx#dx"|0) = —dt*+a(t)dx-dx. (29) v=——{n'+| - —+2—|nt. (35)
K of Q' Q
Our observable is the logarithmic time derivative of the scaléo‘lthough n, produces a reasonable function,
factor in this coordinate system 4 1 00" 02
Vi=— —{ ———+20 | =— ' 36
B 172 (Pé Y Y %o (36)
— 1 da(t) . ) N .
He(t) = —= —. (300 the n, solution givesv=0. This is disturbing because the
a(t) dt formalism of Mukhanov, Feldman, and Brandenberger quan-

tizesv as a scalar field which obeys the following second

. . . : . order equation
One can investigate how this quantity changes under a varia- q

tion of the gauge fixing functional and the result is that it vl
does not changg?]. This would seem to be the analogue of v'—V2y— —v=0. (37)
DeWitt's theorem about the gauge independence of the on- Vi

shell S matrix. Of course the absence of gauge dependencg, he |imit that theV?2 term can be neglected one finds that
does not automatically endow a quantity with physical IM-y —v, is indeed a solution as is:

port. We interpretH »(t) as the expansion rate a local ob-

server would measure in the presence of J@jelt certainly o dy
has this meaning in the classical limit but we are willing to Va(n)=vi(n) | = (39)
entertain dissident views. 7vi(7)

We come finally to Unruh’s doubts about the formalism
of Mukhanov, Feldman, and Brandenberdj&6]. His argu-
ment is based on the long wavelength soluti@8hhe found
for the linearized Newtonian potential, which we shall call
n(x). In our notation this quantity corresponds to the follow-
ing invariant element:

Since this second solution does not correspond to any com-
bination of Unruh’s two long wavelength solutions he con-
cludes that it must be unphysical and that the formalism is
therefore suspect.

In fact neither thev, solution nor then, solution is un-
physical, they simply correspond to different orders in the
long wavelength expansiohAt fixed, nonzero wave number

gwdxf‘dx"=92{—(l+29’1n)d772 k one can express the two independent solutions for the
o Newtonian potential as power serieskfi The zeroth terms
+(1-2Q " n)dx-dx}. (3D in these two series are Unruh’s solutiomg ) andn,( 7).

However, one should really include some higher order terms
as well since the physical relevance of the solutions is for
When the linearized),; equations are used to eliminate the
scalar field the linearizedy, equation becomes

5Since the completion of this paper we have learned that the rela-
tion between thev's and then’s was previously clarified by
4Although homogeneity and isotropy follow trivially in the per- Kodama and Hamazaki7]. It should also be noted that Unruh has
turbative formalism we employ, the potential for nonperturbativeindependently withdrawn the claim of an error in the formalism of
symmetry breaking should be noted. Mukhanov, Feldman, and Brandenberger.
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modes with small but nonzero wave numBdihe first order 25-1 “
correction ton, can be expressed using an advanced Green'’s Vo — — —\/;[ [Von]' == \/;n]) (45)
function K \/5 n

ak? o _ _ and theV;’s descend from th&\;’s as follows:
Nao(7,K)=ny(7)+ 7] dn{ny(7)na(n)
n

2s-1
- Vil k)=~ ==z
— . Na(7n) K s
—Na(p)ny(}—=—
X N1(7,k) ] — —[V7N1( 7, ,
L O(KY). (39 [V7N1(7,k)] 77[ 7N1(7,K)]
When it is substituted fon(x) in Eq. (35) the result is (46)
4K2 s 2s-1
Vln=n,= 7v2(77)+0(k4). (40) Vz(ﬂ,k)—mX—;f\/;
So the solution sets of the two variables are in one-to-one , M
correspondence and there is no obvious problem with the X[[‘/;NZ(”'k)] _;[\/;NZ(”’I()]]'
formalism of Mukhanov, Feldman, and Brandenberger. 4
At the price of specializing to power law inflation one can (47)
even see how tha andv solution sets relate to all orders.
For Q= (79/75)¥¢" 1 the two mode solutions for the New- IV. FEYNMAN RULES

tonian potential are proportional to Bessel functions of order
pu=3+1/(s—1). Unruh's solutions are the zeroth order ¢
terms in the power series expansions of the following:

The purpose of this section is to give the Feynman rules
the general inflaton-graviton actidqd). We have mostly
borrowed these from a recent paper by lliopoulos, Tomaras,

T(1—p) (kno\* [7 Tsamis, and Woodarf4]. The one exception concerns the
Ny(7,k) = ——— _0) \/EJ (k7), (41) issue of mixing between the scalar and the 00 component of
s+1 2 : the graviton field. lliopoulost al. were only able to solve
the system for a class of backgrounds including those of
S kKmo| ™ 1 power law inflation, but not the power law backgrounds typi-
Na(77,K) =~ s__lr(lﬂ‘)(?) m‘]#(kﬂ)' cal of chaotic inflation. We have achieved a general solution.

(42) One should also note that all formulas given in this section

are exact. We have made neither the slow roll approximation
One can easily verify that the solutions to H§7) which  nor have we specialized to the case of a quadratic potential.
make contact withv; andv, are Of course, that will be necessary in order to convert the
formal mode sums into explicit results, but the task of mak-

2T (—p) [kpo\*™L [ ing these approximations has been postponed to the end of
Vi(.K)=— N T) —J_,-1(kp), (43  Sec. V.
0 Our quantum fields are the scalarand the conformally
« Koo\ 41 rescaled pseudogravitof,,
—__ G /
(44)
=02 —0Z
g,uv_Q (7],uv+K(//,uv)_Q g/uz' (49)

For power law inflation the relatio(85) betweenn andv is

recognizable as the recursion relation which produceg ghoyid be noted that cosmologists typically restrict the
—JurafromJ, (@nd+J_, 4 fromJ_,) word “graviton” to that part of the metric which interpolates
dynamical spin two quanta at linearized order. Adhering to
this convention would be terrifically cumbersome in the con-
5There are a lot more of these. The number of zero modes ifext of Becchi-Rouet-StoréBRS) quantization beyond lin-
constant in time whereas the igflationary redshift eventually makeg,arized order. Our “pseudograviton” also includes degrees
the physical wave nuﬁlbeﬂ_lk) of any mode small. Further, as  of freedom which are constrained or pure gauge. This is the
Unruh pointed out, th&=0 system is degenerate in that his two standard usage in particle theory, cf. the “photon” field,
solutions become unphysical on account of being exactly coordinatgropagator, and interactions of QED and the “gluon” field,
transformations. The one physical solution is paradoxically absef}bropagator, and interactions of QQR4]. We shall try to
from thek+0 system. It appears because the equation is auto-  avoid misunderstandings, without over-burdening the nota-
matically satisfied folk=0 and therefore fails to relate the zero tion, by following the convention of lliopoulost al. who
modes of the Newtonian potential and the scfBr parenthesized the word “general” before “pseudograviton.”
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As usual,(general pseudograviton indices are raised and QY
lowered with the Lorentz metric. After many tedious partial Dg=Q (92+—71 Q, (55
integrations the invariant Lagrangian can be written as a total Q

derivative plus the following: ) , L
whered“= »*"9,d, is the d’Alembertian in conformal coor-

— ~ (1 1 dinates. It is worth commenting thBt, is the kinetic opera-
Liny=\—99*gr g*" > Vap.ulvop=™ 5 Vapp¥ou tor for a massless, minimally coupled scalar. The kinetic op-
erator for the(general pseudograviton is

+ %‘//aﬂ,p’/’lwar_ %‘/’ap,,u‘/’BmV] Q DMVPGE[%EM(;DEJ)_ % Nuv P~ ;tﬂtvtpt Da

- %\/—_55”"5“”%0#1#?(92),&—Qz<p6¢,#§°"\/—_§ —t(,8,) Pt D+ t,t, 117D (56)

—%Qzeﬁ,#(ﬁy@”\/—_@ II?Kr;ltreesnthesized indices are symmetrized, the sympale-

_y 1 MVieo) TV agn 3, (50) e TR0 7
izinl " and a bar above a Lorentz metric or a Kronecker delta sym-

bol means that the zero component is projected out:
where a comma denotes differentiation. Gauge fixing is ac-

complished by adding a gauge fixing functional and the cor- 1, ="+t t¥ 58
responding ghost action to obtain the BRS Lagrangian 77’” v L 58)
1 The quadratic Lagrangian involves two sorts of mixing:

Lers= Liny— = 7"'F ,F,— Q" SF . (51)  that between the spatial trace aifgh and that betweenjy,
2 a . and the scalat. The first can be removed by the following

. . simple field redefinition:
The symbolsF , represents the variation of the gauge fixing

functional under an infinitesimal diffeomorphism param- =0+ 8iloos Yoi=loir  Yoo={oo: (59)
etrized by the ghost field,,. We will follow lliopoulos
et al. in our choice of gauge fixing functional: where small Latin letters denote spatial indices. In these vari-

ables the quadratic part of the Lagrangian becomes

1 !
F,u,:Q lp;,v_ Ew,,u_zﬁ ¢#O+ 77[J,OK€D6¢ . (52) @ 1 5
£BRs:§§ooDB§oo_ kQppLood
A great advantage of this gauge is that it decouples the tensor
structure of the propagators from their dependence on space-
time. The propagator becomes a small number of constant + §¢Q
tensors multiplying only three different types of mode sums.
Another advantage is that the linft— 1 takes this gauge to
one of the standard gauges of flat space, which often pro- + §§ij<§5i(k5|)j— 29 5k|) Dalui
vides a useful correspondence check.
With a few more partial integrations the terms quadratic _
in the various quantum fields can be reduced to the following ~5 %019 Daloj T @[ 9, Da—t,t"Dg]w,. (60)
form:

n

1
9P+ K2 cpéz—i-

4 Q4

0
’
0

For a generalg(t) there is no local change of variables
@) =— Y D PO+ " which removes the mixing betweefy, and ¢ off shell.
Lers™5 '/’ D oot L= ot 1,126 However, it is easy to diagonalize the linearidezld equa-
tions which determine the on shell mode solutions. Canoni-
0 cal quantization of the linearized theory can then be invoked
to expand the original quantum fields in terms of creation
L and annihilation operators. It is straightforward to use these
+o*[5,Da—t,t"Dg]w,. (53 expansions to express the propagators as mode sums. At the
cost of some mixed propagators we will eventually obtain a
A number of pieces of notation require explanation. The dif-complete express|0n of the Feynman rules in terms of the
ferential operator®, andDg are field variablesy,,, o*, ®,, and .
It is simplest to absorb a factor 61 into (o9 and ¢:

2, 1 2 ¢
9+ gp'z—i-

L1 Q
2¢ 2" o

4

— 24 T
DA=0[ 9+ |2, (54)

=00y, f=Q¢. (61)
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The linearized equations for ttef system are

1
9%+ ZKZcp(')Z)Z_ KQDSf:O, (62

1 ¢///
0
9%+ —K2(p62+ —

f=0. (63
4 Po

— KQoZ+

Differentiating Eq.(62) and adding it tc; x ¢ times Eq.(63)
gives the first of our diagonalized field equations

1
2+ 5 kepf | =0 (64)

1
(&2 ZKz%z

The second diagonalized field equation comes from differen-

tiating Eq.(63) and adding it to} k¢, times Eq.(62) minus
eol ¢ times Eq.(63):

n
®o
Skepzt+f — —,f =

02/ |2 %o

Po

1 QD” QD”2

2 2 42_70 0

I+ K Po —— +2—
0

(65

PHYSICAL REVIEW D60 044010

The mode equations for all the fields—includibby;; ,
Qi , Qo*, andQw,—can be given a simple, unified treat-
ment. There are three types of modes which we shallAall
B, andC. They are defined as the plane wave solutions an-
nihilated by the following differential operator:

o) d? (77)]
D=5+ — +k?— 72

SR {dn2 o) 7P
wherek=||k| and the various,(7)'s are

2 , H
fc=—— 0 .
C KQZ I__H

(73

HAEQ, aBEQ_l,

Briefly, the spatial polarization§l{j; , Qo', and Quw;j are
comprised ofA modes, the mixed polarizatiof¥ o, Qw®,
andQ wq are made oB modes, as is the diagonal variable

and the other diagonal variabjeconsists ofC modes. Be-
cause quantization was accomplished by adding a gauge fix-
ing term most of the linearized fields harbor unphysical
_quanta. Physical gravitons akemodes that reside it}; ; the

The preceding discussion implies that the diagonal variphysical scalar is € mode iny.

ables are
PR S .
X(7,X)=2"(17,%)+ 5 k@o( M f(7,%), (66)
®o(7) R

f(n,x).
@o(7) (7%)
(67)

.1 R R
y(7,x)= Empé( 7)z(n,x)+ ' (9,x)—

We will return in Sec. VI to the problem of obtaining
useful approximations for the mode functions but we pro-
ceed, for now, as though they are known. We defnén,k)
as descending by perturbative iterati@xplained in Sec. VI
from the pure negative frequency solution for wave number

k=|k|. We also assume it has been canonically normalized:

Q(7.KQF (7K - Q[ (7,KQF (nk)=i. (74

Since conformal time derivatives appear in the transforma- From canonically quantizing the quadratic acti60) one
tion its inverse cannot be local in time for the off shell fields. finds that the fieldsz(#,x) and z’(#,x) form a conjugate
However, by using the linearized field equations one carpair. The same is true fdi(7,x) andf’(7,x), so the only
obtain the following expressions for the conformal time de-nonzero equal-time commutators involving these fields are

rivatives ofx andy:

2 1 2 12 1 1
=V +4K @0 Z+§K(,Dof ~ 5K of, (68
1 1 @4 1 @42
y’=—K(p62’——K<pOZ——f +| V2+ = Zgo(',z-l——, f.
2 2 QDO 4 9002
(69)
Eliminating z' and f’ gives the following on shell inverse
transformation:
i, 1
2=z | X'~ 5 KoY |, (70
.
fzﬁ —EquOery +?y . (71
0

We stress that since the linearized field equations have been
used these relations apply only to the on shell mode solu-

tions, not to the off shell fields.

[2(7,X),2 (,y)]=18(x—y)=[f(7,%),f' (7,9)].
(79)

From their definitions(66),(67) and the on shell relations
(68),(69) one can easily check that the only nonzero equal-
time commutators in th&-y sector are
[X(7,%).%' (7,9)]= =1 V22 (X=y) =[y(2,X).y" (7.Y)].
(76)

We can realize these commutation relations with convention-
ally normalized creation and annihilation operato¥sX™)
and (Y,Y"):

[X(K),X"(p)]=(2m)38%(k—p)=[Y(K),Y'(P)]. (7D

SinceDBx(n,§)=0 we expandk usingB modes,
*—J LI kyelk
X(7,%X)= 27 {X(k)Qg(n,k)e

+XT(K)QE (7,k)e . (78)
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SinceDCy(n,i)zo we expandy using C modes, . R J

(0[T{z(n,x)z(n" x")}|0) = —— — 1 5p(X;X")
In gy

- d3k . .
)/(77.X)=Jﬁgk{Y(k)Qc(77,k)e""X i
) . +W54(X_X,)
+YT(K)QE(7, k). (79

1
The on shell transformation&0),(71) allow us finally to +ZK2(p6( 7 eo(n')idc(x;x"),

give operator expansions farandf:
(86)

. [ d%k et > ik-x
0= [ Gy 1| X0k L 0 1
(OIT{z( 7, ) f (7' X))} 0)=— —— 5 keg(n')i dg(X;X")

N 1 , Ik*; (97]2
+Y(k)§K¢o(n>Qc(n,k)e +c.cp, (80
1, ®0
: - —+—
L[ ket 1 . 2o 5 %0
f(ﬂ,X)—f(zT)sT X(k)§K<Po(7I)QB(77,k)e i 6e(X:xX"). @

R L9 o(7) 2
-Y(k) T Qe k)e'k‘x+c.c.]. ) ) 1
7 eolm) (OIT{f(nx)f (7' X)}|0)= 7 >5(m) 9 ')i Sp(x:X)
(81)
. o . J ol ¢ @0
The rest is a standard exercise in free field theory. We =t — || —+—
choose the stat) to obey I @olldn’  ¢q
X(k)|0)=0=Y(k)|0). (82) X i 8c(X;X )+ 584 (x—x").
The various propagators can be most conveniently expressed (89)
in terms of the mode sufri &,(x;x")
o d*k s Now we restore the factors 61 ~*. These can be used to
16(XX") =~ 72 (2m)3 © convert the conformal time derivatives to comoving time
x{0(An)Qi(7,k)Q (" k) P
= -1 _r_
+0(—AQ} (7.K)Qi(7' K}, (83) Qg =5 QT e=eo. (89)
1 focdksin(kAx)
“272)0 " TkAx The threez-f propagators become
Xe koA KQF (7' ,k . , - ;o
1AM (71 14, (X) = (0] T{tsod 7.) ool ' X)}]0)
+0(=An)QF (7,K)Qi(7',K)}, (84) P 1
where we define the following conformal coordinate differ- Tt (;TI Ip(XiX")+ g “eo(1) go(t)i Sc(xiX')
ences:
iQflﬂ’*lé4 ) -
Ap=n—n', AR=%-%', Ax=|X-%|. (89 Ty o), (%0
Expanding the various time-ordered products and exploiting
Eq. (82) leads to the following expressions for the propaga- iA 506X )= (0| T{ ool 7. X) b( 7' ,X')}|0)
tors:
— J 1. Nid oy 1.
- —_EEKQDO('( )i 8g(X;X )—EKQDo(t)
"Note that we have introduced a time-independent, ultraviolet P -
convergence factor oé™ k. This corresponds to an exponential X| —+H+ ﬁ i 8c(x;x"), (92)
mode cutoff on the initial value surface. at’ ®o
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iAy(X;X')E<0|T{d)( 7],)2)(#(77’,)-()’)}|0> V. ATTACHING EXTERNAL LINES

The purpose of this section is to explain how we pass

1. ey ! J $o from the amputated one-point functions which are actually
" @o(t)o(t))1 9 (x;X") + ot +H+¢O computed to physical observables. We begin by expressing
) the effective Hubble constant in terms of fmonamputated
d ®o|. , one-point function. The rest of the section is devoted to the
X JWLH”L — [16c(%X") procedure for attaching the retarded propagators, needed in
%o the Schwinger formalisib], to convert amputated one-point
i g1 4 functions into their nonamputated cognates. Although an ex-
t—gz 6 (x=x"). (92)  act solution is obtained we specialize it, at the very end of

the section, to leading order in the slow roll approximation.
The unmixed propagators can a|so be represented as mode Both the initial state and the evolution equations are ho-
sums mogeneous and isotropic. It follows that the expectation val-
ues of the(general pseudograviton field and the scalar can

iA(X)=Q P 7 )(—VDis(x;x). (93  be expressed in terms of three functionsyolt will simplify
some of the later formulas if we choose to think of these

The (general pseudograviton propagator is guantities as functions of the comoving tirmef the pertur-
, bative background, even though we still are expressing them
(O T{thun(X) 0 (")} O) in conformal coordinatds

1A 2L 7t Ty Ty (Olkth (7.0 0) = A1) 7+ C(OLL,, (102

_4iAB(X;XI)t(,u,7]V)(pt0') | _))| ) ( )
_ _ 0|k ,X)[0)=D(t). 103
FIA 00X T T 2y b1, (99 (Olatnx/0)=bX
Note that we cannot assunie= — A since the expectation

The other propagators are value may not be conformal in the perturbative coordinate
, ) — system. None of these quantities is itself physical but they
(OIT{ . (¥) (X" )HO) =14 s(X; X ) 7, +tut, ], (95 can be combined to produce observables. We first construct

the invariant element to infer the true scale factor and co-

(O] T{(x) p(x")}|0)=iA (x;x"), (96) moving timet of the expectation value of the metric
(OIT{@, (0@, (X NO)=TAp0GX ) 7y =T8O Mty 24 02T d. di= Q% — (1- C)d P+ (1 + A)di- dR},
©7 (104
All interactions betweerigeneral pseudogravitons and sca- . s
lars can be obtained by expanding the invariant Lagrangian =—[1-C(t)]dt*+ag(t)
(50) using the following identities: .-
X[1+A(t)]dx-dx. (105
aMV: 7 — Kkt + K2¢MP¢Z_ - (99

One physical observable is the effective Hubble constant ex-
pressed as a function of the comoving time

= 1
V-g=1+ §K¢/+K2

1 5 1 po 99
gl//_zl/, wp(r teee ( ) .

L 1 1 At)
Interactions involvinge* andw, can be read from the ghost Her(1)= a nfa(t)]= J1-C(1) RO+ 2 1+A(t)
Lagrangian, which we have simplified by neglecting some (106)
total derivatives

_ If the scalar can be measured then its expectation value is
Lghos= —Qw*6F (100 also an observable when expressed as a function of the co-
o . moving timet. We shall call this variable(t):
=w*[5,Dp—t,t"Dglw,+ k(Qw*) ,

— 1
1 Q' — D(t)=¢o(t)+ —D(t). 10
X[Wwwiw%_ﬁ WOJ_K%M,V (D=go(t)+ -D(V) (107
XY Bup @yt Pup@ Y 0 = 20 ‘ﬂw“’o} 8Recall that the relation betweerand 7 is
_ dt
+ kK2Q%phwgd " (101 dt=Q(77)d774:>m:d77,
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What we actually compute are not the expec_tation values A=0A, C=0C, D=0D, (117
of ki, andk ¢ but rather themputatedexpectation values

with the external propagators removed. We will use Greek a=0"la, =01y, B=0ls. (1189
letters to denote the three functionstafhich describe these

amputated quantities In this notation the equations we must invert are
_ _ ~ 1 -~ -
(1) 7,0+ YD1, =D ,,P7(0] k¥, 7,X)|O) == 2DPAA=0), (119
_ 2 v -~ 3 _ o~ ~ ~
KQ (POt;LtV<O|K¢( 771X)|0>1 y= ZDA(A_C)+DBC_K(P6D, (120)
(108
2 <P'6/
" - S " o — 2 n2 TV IR
8(t) =~ kQ2 @Gt t7(0] k1f,( 7,X)|0) =T reCH mgptget D (12D

1 (p/”
P+ — Z Kz(p(’)z—l— —
‘PO

whereD, and Dg have the form(115 with 6,=() and 65

0 =01 Equation(119 implies

Q(0| k (7,%)|0).

(109 A=C+D, Y~ 4a). (122

Contracting with the kinetic operat@56) and isolating dis- ~ Substituting this into Eq(120 gives
tinct tensor components gives three relations -~ o~ ~ ~
P ¢ 3o+ 5=DpC— relD, (123

1
*="7 Da(A=C), (110 which, with Eq.(121), is similar to the coupled-f system of
Sec. IV. Paralleling the analysis of that section we differen-

y= 3D (A—C)+DgC— k020D (111) tiate EQ.(123 and add it to; k ¢y times Eq.(121) to obtain
_Z AV BY~ " o+

2 "

d 1 ©
_—KQZ(,D C+Q —d— 2(,082-1— 0

-~ ~ 1 _
=3a'+7y'+ EKgoéé. (124

1
’DB( C'+= K(pOD
QOD.

Differentiating Eq.(121) and adding it to3 kg times Eq.
(112 (123 minus ¢gl ¢ times Eq.(121) gives
Since it is fromA and C that Hg is constructed, we must
invert these relations.

We employ the Schwinger formalisfib] in order to get
true expectation values rather than in-out matrix elements.
An important feature of this formalism is that external legs (129
are retarded propagators. This means that the coupled diffewhere  Dc  has the form (115 with 6=
ential equations in Eq$110—(112 must be inverted using —2x *Q72Q"/¢}.

1 - - o
DC(§K¢6C+ D' - ﬁD
0

1 o _ (PH
- §K¢6(3a+ v)+ &' ——?3,
Po

retarded boundary conditions Of course we can invert the differential operators in the
O:A(O):C(O): D(O), (113) last two equations
AV = C(0) =T ~ 1 ~ -~ ~ 1
0=A(0)=C(0)=D(0). (114 C'+ §K¢6D=DBI(3a’+‘y'+ Ewéﬁ), (126
Now it happens that every differential equation we have to
solve can be cast in the form " "
1 o Y $o~ -1 1 reaT L ~r Po~
@2 g EK(,DOC+D ——D=D¢ §K¢O(3a+ y+é' ——3d],
Df(t)z( 2t 7/ fh=a. (115 fo ¥o
dy (127
This is fortunate because the retarded solution can be simpljit this still leaves derivatives o8 andD. These deriva-
expressed as a double integral tives cannot be removed as we did in Sec. IV because the

Laplacian vanishes for spatially homogeneous functions.

_ t _ _ What we must do instead is to divide Ed.23 by ¢; and
— 1 — _ 1 2 0
f(t)_D (g)_ 0( 77) fodtlao (tl)a (771) add it to 2¢ /(POZ tlmeS Eq (126)
ty 1 c 3a+ y ~ o~ 1 ~
Xf dtzao (t2)0(7]2)g(t2) (116) DC - = Z_DB 3a +’y +§K§005 .
0 %o %0 ¢0°

(128
It simplifies the algebra somewhat to multiply the ampu-

tated quantities by ~* and their unamputated descendantsPividing Eq.(121) by ¢, and adding it to 2/ ¢, times Eq.
by (. We denote the rescaled variables by a tilde: (127) gives a similar relation fob:
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Dg

1 o 5 (P"
S Kep(3aty)+ - —"?s) .
®o
(129

®o) ® @0

Putting everything together gives the following solution

for the unamputated coefficient functions:

’
Yo

A=Q" D, Y(—4a)+ q

Dt

3aty of - o~ 1
X( ,y+2%Dgl(3a’+y'+§K¢65)},

Po Po
(130

: (131

1 o 5 QD”

X(§K¢6(3a+ )+ 5'——‘,}75)}. (132
®o

Recall thatx=0Q "1a, y=Q 'y and5=Q~15. The various

inverse differential operators are defined by ELL6) with
the following assignments fof( 7):

2 QO
K 0%y

0 =0Q, 6=071 6= (133

For the potentiaV(¢) = 2m?¢? it happens that the lead-
ing order results for the amputated one-point functions con-

sist of sums of terms with the general form

a(t)=ayHN(Daj(t) + - -, (139

y(t) = yHNDagt) + - - -, (135
—H

6(t)=5NHN(t)< m )ag(t)+.--. (136)

PHYSICAL REVIEW D60 044010

cuv=|[ 225
(BaN-I—yN-I—&N (H[\'—HN(t))
B 3N HZ(t) :
(138)
- (SaN+7N+5N (H[\'—HN(t))< H )
t)y=— +.o..
N 3N HA O g
(139

Here H,=H(0) is the Hubble constant at the beginning of
inflation. These results imply the following leading order
shift in comoving time:

J— 1 3 3aN+yN+5N
t—t)y=—=|—ay—| ————
( IN 2 2a'N 3N
5 HY N H,N_1+HN‘2 H .
H? N-1 H N—1 /—H

(140

To leading order the proportional shift in the two observables
is

Heff_H 2 N—2 3a'N+)/N N
( H )N_§“NH 4 N—1
3C¥N+’yN+5N H:\l—l_HN_l
(N1 TR B
(141)
D — g Bay+yn|[HI N HNP HNT2
o | 4 J|RZ N-1 H ' N-1
Sant YNt ON| g N-1 N2
—(W [H H| —H ]+

(142

To obtain the full shift one sums the contributions for vari-
ous different values oN.

VI. INFRARED PARTS OF PROPAGATORS

This section deals with a very important omission in Sec.
IV. Although we were able there to express the various
propagators as mode sums for an arbitrary scalar potential,
we do not possess the corresponding mddections

The coefficientsay, yy, and 8y are constants. When the Qi(7.k) for a general potential. This is a standard problem
slow roll expansions of Sec. Il are applied to the variousin the theory of cosmological perturbatiofs6,18 and we

integrations and differentiations in our formulas fgrC, and
D, the following leading order results emerge:

4aN(H,N—HN(t))<H_2

AnD= 30 T

+oe,

(137

solve it in the standard way: by developing series solutions
for the ultraviolet(early time and infrared(late time re-
gimes. The normalization for the ultraviolet expansion de-
rives from the flat space limit. We normalize the infrared
expansion by matching its leading term with that of the ul-
traviolet expansion at the time when the physical wavelength
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of each mode is just redshifting beyond the Hubble radius. 0
(This is the chief approximation of the pape@ne then de- Qaoa(m)=~ 0,(77)f
fines the “infrared part” of each propagator as that obtained n
from the leading order term of the infrared expansion. We
report explicit results to leading order in the slow roll ap- and!=B,C,
proximation. . dm

Recall from Sec. IV that we have three kinds of plane - 7
wave mode solution§,(7,k). They obey the equation Qz0y(7)=61(7) f—m S U=B0) (149

dy
i 148
0a(7) (

d
62( )

4/ (n) When k? is small but not zero one can build up solutions
“o(n) Qi(7,k)=0, which descend fron®;o,(7) by iterating with the appropri-

d
DQi(n,k)=— d_1;2+k2
(143 ate Green’s function

where thed()'s are Qunk1=Qai(m K[ dn

2 QO H _
fo=—— ——=ag’ . XGapd 7. 7Qii(7,K)  (i=1,2). (150
C K Qz(pé 0 \/: PF(
(144 This obviously gives a series of increasing powerskéf
Here the “appropriate” Green’s function is chosen to make
Of course Eq(143 does not completely define the modes the integral converge. The four possibilities are
because there are two linearly independent solutions. We de- _ _ _
fine Q,(#,k) as the solution of Eq(143 which is canoni- Gaad 7, 1) = + 0(1—17)Q10( 7) Q20( 7)

cally normalized — —
—60(7—17)Q20(7)Q1o(7), (151

GAEQ, 0359_1,

Q(7,KQ* (7,k)=Q'(7,K)Q*(nk)=i (145

and descends by perturbative iteration from the negative fre-
guency solution of the far ultraviolet.

The far ultraviolet is defined blg>> 6"/ 6. At fixed k this — — _
condition will also be realized, in all models of inflation, as Goi(n,7)=+ 6(n—1)Qa0( 7)Q10(7)
the conformal time approaches negative infinity. In the ultra- — —
violet regime we build up normalized solutions by iterating +0(7= 1) Qo 7) Qo ), (153
the following equation:

G 7. 7)=—6(n—17)Q10( 7) Qo 7)

—0(n— Q7 Qum), (152

Gre 7,1 =+ 0(7— 1) Qao( 7) Qo 7)
L ik 0 7)Qu Q7). (154

QI( ﬂvk) \/ﬂ
. and it should be noted that one may have to switch from one
7 1 — O(n)  — to another midway through the iteration process.
+f d o sinlk(7— ﬂ)]a——Ql(ﬂvk)- Since the full infrared solution®;,(7,k) and Q,,(7,k)
o 1(7) span the space of solutions =0, it must be possible to
(146 express the ultraviolet solutions as linear combinations:
The result is a series in inverse powerskofhese solutions Qi(7,k)=01Q1,(7,K) +02Q2,(7,k). (155

are obviously negative frequency in the far ultraviolet. Their

Wronskian(145) is constant as a simple consequence of thdf we had the full solutions it would be straightforward to
mode equatiori143 while its actual value derives from the determine the combination coefficients

fact that 6”/6 vanishes as the conformal time approaches

negative infinity. gim Q2 (7,K)Q(7,k) = Q2 (7,K) Q[ (7,k) (156
H H H 22 gy : H 1— B , ,

Th_e_ far |_nfrared is def|_ned bk <0"10. At f|x<_ed k _thls Qui(7,K)Q5,(7.K) — Qay(7.K)Q%, (17,K)
condition will also be realized, in all models of inflation, as
the conformal time approaches zero from below. One can A ,
find explicit solutions in the limit that th&? term is ne- Qo= Qly'(”’k)Q'(”’kHQl"(”’k)Q'(”'k), (157)
glected. The first one has the same formIferA,B,C: Q1 (7,K) Q32 (7,K) = Q2 (7,K)Q1,(7,k)

Quoi(m)=6/(7n). (147  where any conformal timey could be chosen.

For most backgrounds we do not possess the full
The second is an integral whose convergeficemodels of  solutions—either in the ultraviolet or the infrared. However,
inflation) requires different limits fot = A, it happens that one of the zeroth order infrared solutions—
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eitherQy,(7) or Q0 (7)—dominates the other and all cor- After any significant amount of inflation the inverse scale
rections as the conformal time approaches zero from belowactor is much smaller than H/H2, so we can approximate
The standard approximatidi6,18 is to match this solution the C modes as

with the zeroth order ultraviolet solution at the horizon cross-

ing time #»,. , whose defining condition is — _
g N g _H(t) Hi e*lk?]*
k=H, Q(7,). (158 Qc(7,k)— 0 Jon. VoK : (167
*
Then the behavior of the modes in the far infrared can be
approximated as follows: Although the approximation§l60),(162),(167) we have
' just made may seem grotesque they are intimately related to
Qio)(7) e k7 the physics of superadiabatic amplificati@]. It is this phe-
Q|(ﬂ,k)—’m V2K (159 nomenon’s vast enhancement of the usual O-point energy

which causes one of the zeroth order infrared solutions to
dominate at late times. These approximations therefore iso-
late precisely the leading late time infrared effect we wish to
study. In fact this is all thatan be reliably studied using
quantum general relativity. The ultraviolet regime, which
these approximations fail to capture, cannot in any case be

wherei is either 1 or 2, depending upon which of the zeroth
order infrared solutions dominates for thenode.

For I=A it is Qioa(7)=Q(7n) that dominates at late
times. We can therefore write

H. e ikn described perturbatively by quantum general relativity.
Qa(7,K)—=Q(7) — —. (160 What remains is to implement the infrared approxima-
k 2k tions (160),(162),(167) in the various propagator mode sums

. . . derived in Sec. IV. Since we are only computing the ampu-
Forl=B Q,g={)" " becomes irrelevant at late times. The tated one-point function to one loop order, these propagators

dominant solution is are all coincident. They may, however, bear derivatives.
Since space derivatives add factorskpfvhich are small in
7 a2 he infrared, we need only consider time derivatives. We
U f d70? ‘ ’ _
Qz08(7) _An¥(m) shall therefore sehx=0 but keep the two times nonzero.

With these conventions all the propagators can be described

1 [t 1 in the standard form
=—— | dt'ay(t')~—. 16
ao(t)f—oo o)~y 16D

HZ
We can therefore approximate tBemodes as follows: iA(X:X')ﬁf(t)g(t')f dk2—|: h(k), (168
1 e K7 .
Qs(7,k)— H_t)H* o (162 where it should be noted thelt, andH, are functions of the
( V2k co-moving wave numbéy, determined by the horizon cross-

. ) ) ing condition(158).
The case offl =C requires a more extensive analysis. The “ro, Eq.(160 and the mode sum(93),(84) which define
first solution is down by an inverse scale factor but enhanceﬂ we see that the infrared part oA ,(x:x') approaches a
by the inverse of a slow roll parameter constant AV

Quoc=ag " (163 iAA(x;x’)—>1(l)2iTr2J dk; (). (169

1=

The second solution has to be reexpressed several times bEne behavior of theB mode (162 and the mode sums
fore it can be recognized as the dominant one: (93),(84) which definei Ag(x;x") show that its infrared part
actually falls off:
H t d 1
on,C:ac;l\/——_ dt'ao(t')g(m), (164 1 1 1 H2
_ - ; ! * 1,2
'Aa(xx)= aog(HH (1) ay(t")H(t") 2774 dkZi K

1 df 1 (170
[ f_ dt’ao(t’)}, (165

~h dtlag

Since the momentum integral is dominated by the ultraviolet,
rather than the infrared, we conclude that the infrared part of

\/: this propagator is zero. Thi,, propagator involve8 modes
~ . (166) (162 and C modes(167). From its defining relation$90),
H? (84) we determine its infrared part to be
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—H(t) —H(") 1J

iAa(X;X,)—) Hz(t) W ﬁ

The mixed propagator is defined by relatiofl),(84).

Again applying the infrared mode
(162),(167) gives

—H(®) V-H() 1
HX(t) H(t') 2m°

1A g(X;x")—

The same infrared limits, applied to its
(92),(84), reduce the scalar propagator to

V=HM® V=Rt 1
H(t) H(t') 2m°

1A L(XX")—

HL H, ij dkﬁ i>~ijtdt Mo (175
2k _fy, 2+7) 2| Ty, | T a2 )0 T T
(173
1 [HP—HE1)
approximations " 2477 H2 ) (178

) ) Note thatH is approximately constant for the quadratic po-
Hy Hi tential considered by Mukhanov, Abramo, and Branden-

2k —f, berger[1].
(172

VII. AMPUTATED ONE-POINT FUNCTIONS
defining relations . o )
The purpose of this section is first to obtain one loop

results for the three amputated one-point functions
Hi Hi (108),(109 defined in Sec. V. We then exploit th_e technol-
2K I ogy of§ec. V to compute the two observablég(t) (106
3‘173) andd(t) (107). We begin by explaining how cubic interac-
tions are used to compute the amputated one-point functions.

By itself it is the strongest but one must allow for the effect Throughout this section we are making both the slow roll
of factors and derivatives from the interaction vertex. approximation and specializing to a quadratic potential.
Since modes only become infrared after horizon crossing, At one loop order the amputated one-point functions con-
the momentum integrations are cut offkat H(t)ay(t). The  Sist basically of coincident propagators contracted into cubic
integral can be evaluated by first changing variables fkom interaction vertices. In addition to the usual factdhere is

to the horizon crossing timg,

dk~=H?(t,)ag(t, )dt,

ani from the kinetic operator acting on the external propa-
gator. There is also an extra factorofrom the fact that we

(174  define the one-point function§l02),(103 as (0|« ,,|0)
and(0|k¢|0).

and then employing the slow roll expansions of Sec. Il As an example let us consider the interaction

TABLE |. Vertex factors contracted int¢a131¢azﬁz¢a3ﬁ3 with Vayp, external.

No. Vertex factor No. Vertex factor
1 %KH 03 77“131 nazﬁza(za3tﬁs) 22 %KQZnaz(asnﬁs)Bza(salafl)
2 %KH O3 p2he 7]‘1353,92"1t51) 23 %KQZ 7]513(011 7]51)133,9(1"‘2(952)
3 %KHQ3,703ﬁ3,701B1,9§_“2tB2) 24 %KQZ(9(2a17]B1)(a3L9§3) 7’01252
4 — kHQ3 (a2 nﬁz)/ﬁg%ﬂstﬁa) 25 %Kﬂza%% nﬁz)(alf;gl; 73Ps
as(a o a @ a
5 _KHQS77 2 37733)15’2(9(3 1tB1) 26 gKQZ&(l 37]33)( 2(9%2)7] 181
6 —xH Q37,013(017]/31)ﬁ3,91 2tB2) 27 EKQZ(;Z 17]ﬁ1)(ﬂ2(932 VR
7 — kHQ3t(@a o)1 gD peabs 28 1232 aglle) s
8 — kHQB3t(1 7Dz gD pasbs 29 123\ 2P s ghn) pack
9 — KHQSt(aznﬁz)(Gagf3) n1P1 30 kO iPryeabe paabag,. g,
10 %Kﬂznalﬁlaé‘lz 77132)(013(953) 31 %Kﬂznalﬁl pPepabsg,. o,
11 L 1eQ 22253 a1 3V 32 — 3O 2 pealeeyPBiyasbsg,. g,
1
12 F1eQ 2B o 272 33 - fKQz y A agfbayibryy. g,
13 _ Kﬂza(sal7;31)(”277/32)(“3353) 34 _ EKQZna3(a17]31)ﬁ377a232191' y
[2 @ @ 1 a a a
14 — KQZ,y(l Znﬁz)( 37]53)( 1,951) 35 — ZKQZ(;(Z 1(951)7] 2P2 ptsPs
15 — Q2P e B2 36 — 31025725 peabapeabs
16 — %KQZ(Q(B"‘Z7732)(“17731)(0136:53) 37 — %KQZnalﬁlnaz(aanﬂs)ﬁzgz. 3
17 — kQ25 "3 P a2 e gfn) 38 — 2k Q2 2Py yfbsg,. g,
18 _ %Kﬂzr]ﬂlﬁlnazﬁzﬂéa3(9§3) 39 %KQZ,,]%)(HZ7752)(“3,;1*3)(%*1,92. d3
19 _ %Kﬂzﬂazﬁzﬂa3ﬁ33(3alﬁfl) 40 KQ277“1)(“277132)(“37]53)(51(93. 91
1 1 @
20 — ZKQZna3ﬁ3 7701131(9(1“2(9252) 41 ZKﬂzg(z"‘lggl) ” 2(a3 7733)32
21 %Kﬂznal(aznﬁz)ﬁl(y(2“3,9§3) 42 %KQZ(;(;‘Z,;[;Z) 77Q3(‘117151)B3
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— 2 km?Q%¢p?y, which is one of the many cubic terms de-
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When the external leg attaches to the pseudo-graviton

scending from the scalar mass. The external line can attadield the interaction makes contributions &dt) and y(t).

to any of the three quantum field$.2¢wn‘”. When it at-
taches to one of the two scalar fieldét) receives the fol-
lowing contribution:

{iK( — ‘i—leZQ‘l) 2(0|T[ p(x) l//(X’)]|0>]

X' =X

1 2 2 4: AN v
= EK m-) |AB(X1X )(nlu,v—'—tﬂtv)n !
X' =x

77

={Kk®m2Q%N A g(X; X ) e —x. (178

Most of the coincidence limit is ultraviolet nonsense which
guantum general relativity cannot be trusted to treat correctly

[ix( - ‘i—lxmzﬂ“)<0|T[¢(X)¢(X’)]|O>]

Becausey= — ypot ;i these have opposite signs. The con-
tribution for a(t) is

x'=x

=%K2m294iA,/(x;x), (180

R 3 ., —H 1 [H=H%

—— 7 Kx°Hag(t) H2(0) 24772\ B , (181
k2 [HP=He(D)) ,

:3277_2( H2(t) )ao(t)- (182)

and which must in any case have been subtracted off in ordgf, the notation used at the end of Sec. V there are contribu-
for inflation to begin in the first place. The time-dependent,; < forN= —2 andN= + 4 with coefficients ofic?/ (3272)

physically significant part comes from the superadiabaticall

amplified infrared modes. From E@l72 we see that the
leading effect from these is

IR .
K2mPQH A 4(x;x)— — 3k?Hag(t)
(_H)3/2 1 (

X
H3(t) 2442

H?—Hﬁ(t))(
H2(1)

HP—H®(t)
HZ2 )

JH

H(t)

)ag(t).
(179

2
:W(

Mimes +HE and — 1, respectively.

Tables I-Ill give the various cubic interaction vertices.
Note that those of Table | have been partially symmetrized
by making the external leg attach to pseudograviton No. 1. It
should also be noted that derivatives with respect to the at-
tached field are interpreted through integration by p@dBp)
as acting on the entire result. Further, spatial translation in-
variance (STI) allows the result to depend only upon the
conformal time after the expectation value is taken. For ex-
ample, in vertex No. 3 of Table I, the derivative with respect
to line No. 1 is interpreted as follows:

IBP
a

2 _,_
(91—>

d STI d

IX —te2 dan (183
a

In the notation used at the end of Sec. V there are contribu-

tions forN=—2 andN= +4 with coefficients ofx?/(872)
times + H,6 and — 1, respectively.

d H I 3 ’ ast B a3
a1z RH (OT[ a,5,(X) P yp,(X")1[0)t 42t F2 793P

When the contributions from all vertices are summed the

amputated one-point functions are

o 2[R

22 hAn )P (187

X' =X

Because of they*11 vertex No. 3 contributes te(t) and
v(t) with opposite signs. The contribution te(t) is

— d 1 2 Q3 H iy !
_ﬁ oK HQ°2iA ,(x;x") X,=X, (184
IR H? 1 [HP—H1)
4raN |
—>—3K2H2(t)ao(t;H4(t) 2477_2< 02 ),
(189
2 [HP=Ho(D) ,
[
R 3k [HP=HO(D) ,
y(t)_)_'— 32772\ H2(t) aO(t)1 (188)
R k% [HE—HS1)\[J-H
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In the notation at the end of Sec. V this corresponds to the TABLE llI. Cubic interactions involvinge.
following coefficients:
No. Interaction No. Interaction
3 3% 1.2 10y240 2 102 o
a—2:_7—2:Z5—2:_E2H| , (1990 1 EX O 6 2k}, PP
S R S — 5 KMoy
3 352 3 — 3k%060° Uk 8 PP by,
Apg=— 7+4:Z 5+4:W- (191 4 KZ‘PI(’)de’,p‘ﬂp"lﬂao 9 - %szﬂd'le/f
5 —3kQ%} P 10 K2pp0 2 h ,wow”

From Eqgs.(141),(142) we see that the cosmological expan-

sion rate and the quantum-corrected scalar are ) o ) )
physical gauge. It would be difficult to imagine two more

Her(1) =H(1) completely different calculational schemes. Yet we got the
. a8 — _ same results in the end, for bdth«(t) and®(t). This is an
» [ 1 K? ( HP—3HPH3(t) + 2HG('E)) N ] enormously powerful check on the validity of their work and

7242 HA4(t) on the ph_ysical _re_ality of the effect. If this back-reaction is a
gauge chimera it is a remarkably consistent one.
(192 Our motivation for this work was the excellent questions
o - posed earlier this year by UnrdyB]. Although our calcula-

D(t)= (1) tion is itself a sort of answer we have analyzed some of his
arguments more generally in Sec. Ill. In particular, it turns
out that the seeming disagreement between Unruh’s long

T wavelength solutions and those of Mukhanov and co-

workers derives from different definitions for what is “ze-

(193 roth order” when expanding in powers of the wave nuniber.

. . If one keeps higher terms ik? it turns out that Unruh’s
It should be noted that without independent knowledge of th<=Eecond solution implies an ordé? result for the variable

scalar potential thgre '|s no Way_of d|st|r.1g'u|sh|ng' classica sed by Mukhanov and co-workers, and this result is just
and quantum contributions if¢x(t). Thus it is possible for 412/,2 times their second solution. So neither of the long

a huge quantum back reaction to masquerade as a modificiayelength solutions of Mukhanov and co-workers is un-
tion of the classical scalar potential. It should also be noteghnysical.

that quantum correctioriscrease(l)it—). Thus it is not pos- It is important to understand that a compelling physical
sible to interpret the slowing dfl «(t) as the result of quan- mechanism_ underlies the pac_k—reaction of Mukhanpv and co-
tum corrections having pushed the scalar slightly down itgvorkers. It is the self-gravitation between superadiabatically

K2

5762

HP—2HPH3(t) +HE(t)
H4(t)

e

classical potential. amplified long wavelength modes. A simple physical model
is that virtual particles whose wavelengths are comparable to
VIIl. SUMMARY AND DISCUSSION the Hubble radius become trapped in the expansion of space-

time and are not able to recombine. As the particles are

This paper is first of all a check on the calculation of pulled apart their long range gravitational potentials fill the
Mukhanov, Abramo, and Brandenberger. We certainly agre@tervening space, adding with the potentials of earlier pairs.
with the sign and the leading time dependence that can bBecause gravitation is attractive these potentials resist the
inferred for Heg(t) and ®(t) from their published results further expansion of spacetime, thereby slowing inflation.
[1,2]. From unpublished work we see that even the numerical here is absolutely no question that this process should occur
factors agree. It is worth emphasizing that we employed théor quanta, such as gravitons and minimally coupled scalars,
standard formalism of covariant quantization while they usedvhich lack conformal invariance but are still massless on the
a truncated version of the canonical formalism. The two calHubble scale. The only issues concern the strength of the
culations were also done in completely different gauges: wéack-reaction, its time dependence, and whether or not it can

added a covariant gauge fixing term whereas they used @ventually stop inflation. _
The analogous back-reaction has already been demon-

TABLE II. Vertex factors contracted intgh, s @, ... strated for gravitons when inflation is driven by a positive
2 bare cosmological constafif]. In this case it comes at two
No. Vertex factor No. Vertex factor loops because the pair creation event is already one loop and
1 - Kﬂzn“Z(”‘lnﬁl)ﬁ“jég- d3 6 %Kﬂznalﬁlagzﬁf’
2 — Q2 paslaghu) y*2 7 - 3 paaBirgPetas . . : ;
3 Kﬂzﬂa (a {?%1)03‘3 8 KHQSWQ (a(?ZBI) N 9After the completion of this work it was brought to our attention
— Q"2 l‘72/3 ;91 —2kHQ p g e that Kodama and Hamazaki have already clarified the relation be-
4 2kHQ3p2("g Vs 9 — kHQ3p*PrLg 3t tween Unruh’s solutions and those of Mukharav]. It should also
5 KQZW%(al(;gl)agZ 10 2kH20 4 1Pt et as be noted that Unruh has independently withdrawn the claim of a

disagreement.
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the absence of linearized mixing between the dynamical It may be of general interest that we were able to extend
spin-2 gravitons and the spin-0 gravitational potentials postthe Feynman rules of lliopoulcst al. [4] so that they apply
pones self-gravitation to next order. When the superadiabatio an arbitrary scalar potential. This was the work of Sec. IV.
cally amplified quanta are themselves scalar their mixingOf course we can only express the propagators as mode
with the spin-0 gravitational potentials allows self- sums, where even the mode functions remain to be deter-
gravitation to occur at one loop order. However, there doesnined. But we have shown in Sec. VI how these mode func-
not have to be such a one loop effgt®]. The feature which tions can be usefully expanded, both in the ultraviolet and in
seems to distinguish those scalar-driven models which showhe infrared. And the calculation is an explicit example of
slowing at one loop from those which slow at two loops ishow interesting effects can be obtained. It should now be
the rate at which superadiabatic amplification injects 0-poinpossible to redo the two loop computation of Tsamis and
energy. If this is less than or equal to the physical threeWoodard[7] for an arbitrary background. This should com-
volume’s inflation then there is no one loop effect; if supera-pletely determine the effective field equations needed to
diabatic amplification injects 0-point energy faster than theevolve past the end of inflation to arbitrarily late tin{@g)].
three-volume inflates to absorb it then there is a one loop
effect. . . . ACKNOWLEDGMENTS
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