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One loop back reaction on chaotic inflation

L. R. Abramo* and R. P. Woodard†

Department of Physics, University of Florida, Gainesville, Florida 32611
~Received 18 December 1998; published 15 July 1999!

We extend, for the case of a general scalar potential, the inflaton-graviton Feynman rules recently developed
by Iliopouloset al. @Nucl. Phys.B534, 419 ~1998!#. As an application we compute the leading term, for late
comoving times, of the one loop back reaction on the expansion rate forV(w)5

1
2 m2w2. This is expressed as

the logarithmic time derivative of the scale factor in the coordinate system for which the expectation value of
the metric has the form̂0ugmn( t̄ ,xW )u0&dxmdxn52d t̄21a2( t̄ )dxW•dxW . This quantity should be a gauge-
independent observable. Our result for it agrees exactly with that inferred from the effect previously computed
by Mukhanov and co-workers@Phys. Rev. Lett.78, 1624 ~1997!; Phys. Rev. D56, 3248 ~1997!# using
canonical quantization. It is significant that the two calculations were made with completely different schemes
for fixing the gauge, and that our computation was done using the standard formalism of covariant quantiza-
tion. This should settle some of the issues recently raised by Unruh~astro-ph/9802323!.
@S0556-2821~99!04814-6#

PACS number~s!: 04.60.2m, 98.80.Cq
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I. INTRODUCTION

We wish to address a controversy which has arisen in
literature of scalar-driven inflation. The dispute concerns
recent claim by Mukhanov and co-workers@1,2# that infrared
modes can generate a significant one loop back reac
which reduces the expansion rate over the course of inflat
Unruh @3# has raised a number of serious questions ab
their methodology and the plausibility of their conclusion

We begin by summarizing Unruh’s objections.
~1! It is difficult to understand how long wavelengt

modes can affect the local geometry since they should ap
spatially constant to a local observer.

~2! To leading order in the long wavelength expansion
mode solutions are all equivalent, locally, to coordina
transformations which can have no effect on local invarian

~3! The quantization procedure employed by Mukhan
and co-workers is suspect because their dynamical variab
nonzero for only one of the two leading long waveleng
solutions. Since this dynamical variable possesses ano
independent solution, the corresponding degree of freed
must be unphysical.

~4! What Mukhanov and co-workers refer to as ‘‘gaug
independent’’ quantities are really just the local dynami
variables in a particular gauge.

~5! Mukhanov and co-workers employ an unconventio
variation of perturbation theory in which the effective stre
energy tensor of the first order equations renormalizes
zeroth order stress-energy tensor.

~6! The contributions to the metric at second order—
zero mode of which is what Mukhanov and co-worke
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computed—depend upon the gauge chosen for expres
the first order terms.

Without wishing to criticize good people who address
an important issue at the extreme limit of their formalism
applicability, we must admit to a certain sympathy for U
ruh’s methodological objections. One of the present auth
also had difficulty understanding the work of Mukhanov a
co-workers on account of objections~4!–~6!.1 However, we
believe the physics of what they did is correct, and that is
point of this paper.

After fixing notation about the perturbative background
Sec. II we comment in Sec. III on the physics of the proc
and we partially address Unruh’s objections~1!–~3!. The re-
mainder of the paper is devoted to checking the calcula
of Mukhanov and co-workers, in a completely differe
gauge, using the standard formalism of covariant quan
field theory. The Feynman rules are given in Sec. IV. The
were lifted from a recent paper by Iliopoulos, Tomaras, T
mis, and Woodard@4#, which we have extended so that th
propagators can be computed~as mode sums! for a general
scalar potential. Section V attaches the external lines~which
are retarded propagators in Schwinger’s formalism@5#!
needed to convert the amputated one-point functions into
expectation values of the metric and the scalar. We also
plain how these expectation values are used to comp
physical observables which measure the cosmological
pansion rate and the evolution of the scalar. In Sec. VI
give the procedure used for isolating the leading contribut
to each propagator from superadiabatically amplified mo
at late comoving times. This is the chief physical approxim
tion of the paper. The amputated one-point functions

i- 1Other confusing points were the characterization of what is
viously a one loop effect as ‘‘classical’’ and the attribution of th
effect to an instability in the classical energy functional~which is
actually stable!.
©1999 The American Physical Society10-1
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L. R. ABRAMO AND R. P. WOODARD PHYSICAL REVIEW D60 044010
computed in Sec. VII and processed to give the two phys
observables. Section VIII summarizes the various results

II. THE PERTURBATIVE BACKGROUND

The system under study is that of general relativity with
general minimally coupled scalar

L5
1

16pG
RA2g2

1

2
]mw]nwgmnA2g2V~w!A2g.

~1!

This section concerns the homogeneous and isotropic b
groundsg0 andw0 about which perturbation theory will b
formulated. Three classes of identities turn out to be inter
ing for our purposes:~1! those which are exact and valid fo
any potentialV(w), ~2! those which are valid in the slow ro
approximation but still for any potential, and~3! those which
are valid for the slow roll approximation with the potenti
V(w)5 1

2 m2w2. We shall develop them in this order, iden
fying the point at which each further specialization and a
proximation is made.

Among the exact identities is the relation between com
ing and conformal coordinates:

ds0
252dt21a0

2~ t !dxW•dxW5V2~h!$2dh21dxW•dxW%.
~2!

This implies

dt5Vdh, a0~ t !5V~h!. ~3!

The Hubble ‘‘constant’’ is the logarithmic comoving tim
derivative of the background scale factor

H[
ȧ0

a0
5

V8

V2
, ~4!

where a dot denotes differentiation with respect to~back-
ground! comoving time and a prime stands for differentiati
with respect to conformal time.

Two of Einstein’s equations are nontrivial in this bac
ground:

3H25
1

2
k2H 1

2
ẇ0

21V~w0!J , ~5!

22Ḣ23H25
1

2
k2H 1

2
ẇ0

22V~w0!J , ~6!

wherek2[16pG is the loop counting parameter of pertu
bative quantum gravity. One can use the two Einstein eq
tions to derive the scalar equation of motion

ẅ013Hẇ01V,w~w0!50, ~7!

whereV,w[]V/]w. One can also invert the Einstein equ
tions to solve for the Hubble constant and its first derivat
04401
al

k-

t-

-

-

a-

e

H25
1

6
k2H 1

2
ẇ0

21V~w0!J , ~8!

Ḣ52
1

4
k2ẇ0

2 . ~9!

Sometimes it is more convenient to write the scalar qu
tities in terms of the Hubble constant and its derivative

ẇ0
252

4

k2Ḣ, ~10!

V~w0!5
2

k2 ~Ḣ13H2!. ~11!

At other times one wants to express the scalar quant
using the conformal factorV

ẇ0
25

4

k2

1

V2 H 2
V9

V
12S V8

V D 2J , ~12!

V~w0!5
2

k2

1

V2 H V9

V
1S V8

V D 2J . ~13!

The conformal time derivative of the scalarw085Vẇ0 is also
useful,

w08
25

4

k2H 2
V9

V
12S V8

V D 2J . ~14!

Successful models of inflation require the following tw
conditions which define theslow roll approximation

uẅ0u!Huẇ0u, ~15!

ẇ0
2!V~w0!. ~16!

It follows that there are two small parameters. Althou
these are traditionally expressed as ratios of the potential
its derivatives the more useful quantities for our work a
ratios of the Hubble constant and its derivatives

2Ḣ

H2
!1,

uḦu

2HḢ
!1. ~17!

For models of interest to us the rightmost of these parame
is negligible with respect to the leftmost one. We shall a
assume that the derivative of the scalar is negative,

w0852
2

k
VA2Ḣ. ~18!

The slow roll approximation gives useful expansions
simple calculus operations. For example, ratios of derivati
of the field are

w09

w08
5HVS 11

1

2

Ḧ

HḢ
D , ~19!
0-2
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ONE LOOP BACK REACTION ON CHAOTIC INFLATION PHYSICAL REVIEW D60 044010
w0-

w08
52H2V2S 11

Ḣ

2H2
1••• D . ~20!

Successive partial integration also defines useful slow
expansions

E dt HaVb5
1

b
Ha21VbH 11

~a21!

b S 2Ḣ

H2 D 1•••J ,

~21!

E dt Ha5
1

a11

Ha11

Ḣ
H 11

1

a12

HḦ

Ḣ2
1•••J . ~22!

In discussing the physical significance of their res
Mukhanov, Abramo, and Brandenberger specialized to
simplest potential for chaotic inflation@6#

V~w!˜
1

2
m2w2. ~23!

In the slow roll approximation with this potential one ca
solve explicitly for the scalar’s evolution

w0~ t !5w i2
2

A3

m

k
t. ~24!

The interesting geometrical quantities have the following
pressions in terms ofw0(t):

Ḣ'2
1

3
m2, ~25!

H'
1

A12
kmw0~ t !. ~26!

Note thatḦ'0 for this potential, so only one of the slow ro
parameters is nonzero. The slow roll approximation impl
that the initial value of the scalar field is much larger than
Planck mass:

w i@
1

k
. ~27!

Inflation ends in this model whenw0(t);k21.

III. PHYSICAL COMMENTS

The physical mechanism behind what Mukhano
Abramo, and Brandenberger@1,2# have found for scalar-
driven inflation is roughly the same as that studied pre
ously by Tsamis and Woodard@7# in the context of inflation
caused by a bare cosmological constant. There is suc
simple physical model for what is going on that we would
derelict in our duty of explication not to present it. Forma
ists should rest assured that this is merely a qualitative
scription of phenomena whose reality has already been
tablished by computing what should be invariant observab
in the standard formalism of covariant quantization.
04401
ll

t
e

-

s
e

,

i-

a

e-
s-
s

Owing to the rapid expansion of spacetime and the spe
properties of the dynamical quanta involved,2 there is a vast
enhancement of the 0-point energy which the uncerta
principle requires to be present in each dynamical degre
freedom. This is the phenomenon ofsuperadiabatic amplifi-
cation, first studied by Grishchuk@8#. A simple picture for it
is that virtual pairs with wavelengths comparable to the h
rizon can become trapped in the expansion of spacetime
not be able to recombine.

Superadiabatic amplification is not a large effect by itse
Although the total energy contained in infrared modes
creases quite rapidly, the corresponding expansion of
three-volume keeps the energydensityconstant for pure de
Sitter expansion.3 For this background it is simple to show
that there is only about one extra infrared quantum
Hubble volume. The interesting, secular effect derives fr
the gravitational interaction between these quanta. As e
virtual pair is pulled apart, its gravitational potentials fill th
intervening space. These remain to add with those of the n
pair. Even though the 0-point energy stays constant, the
duced gravitational potential increases. It is the interact
energy between this and the 0-point energy, and between
gravitational potentials themselves, which gives the effec

In the purely gravitational model of Tsamis and Wooda
linearized gravitons can only induce gravitational potenti
at second order in the weak field expansion. Since supera
batic amplification is a one loop effect this means that
secular back reaction comes at two loop order. When in
tion is driven by a scalar field its quanta can induce grav
tional potentials even at linearized order in the weak fi
expansion. This is why Mukhanov, Abramo, and Brande
berger were able to follow what is essentially the sa
physical process with a vastly simpler one loop calculatio

Either way, the effect is to slow inflation because grav
is attractive. Since gravity is also a weak interaction, even
grand unified theory~GUT! scale inflation, the process re
quires an enormous amount of time before it can beco
significant. A direct consequence is that the equation of s
of the induced stress tensor must be approximately tha
negative vacuum energy. To see this consider the rela
implied by conservation between the induced energy den
r(t) and the induced pressurep(t)

ṙ523H~r1p!. ~28!

Since the accumulation of a significant effect requires ma
Hubble timesuṙu!Huru and it must be thatp(t) nearly can-
celsr(t).

2These properties are~1! effective masslessness on the Hubb
scale and~2! the absence of classical conformal invariance.

3For certain models of scalar-driven inflation the infrared ene
density can grow as the scalar rolls. This is what seems to dis
guish those scalar potentials for which there is a one loop ef
from those for which there is not. The two loop effect of pu
gravity—and presumably also gravity with scalars—does not
pend upon such growth.
0-3
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L. R. ABRAMO AND R. P. WOODARD PHYSICAL REVIEW D60 044010
A sometimes confusing point is that one does not requ
the complete theory of quantum gravity in order to study
infrared process such as this. As long as spurious time
pendence is not injected through the ultraviolet regulari
tion, the late time back-reaction is dominated by ultravio
finite, nonlocal terms whose form is entirely controlled
the low energy limiting theory. This theory must be gene
relativity, with the possible addition of some light scalars.
is worth commenting that infrared phenomena can always
studied using the low energy effective theory. This is w
Bloch and Nordsieck@9# were able to resolve the infrare
problem of QED before the theory’s renormalizability w
suspected. It is also why Weinberg@10# was able to achieve
a similar resolution for quantum general relativity with ze
cosmological constant. And it is why Feinberg and Suc
@11# were able to compute the long range force due to n
trino exchange using Fermi theory. More recently Donogh
@12# has been working along the same lines for quant
gravity with zero cosmological constant.

We emphasize that the process is causal, in spite o
close association with modes whose wavelengths have
shifted beyond the horizon. This emerges most clearly in
two loop computation of Tsamis and Woodard where
effect derives from integrating interaction vertices over
past light cone of the point at which the expansion rate
being measured. Because gravitons are massless these
actions superpose coherently. Because gravitons are not
formally invariant they reflect the enormous physical volum
of the past light cone rather than its minuscule conform
volume. The growth in the back reaction is directly attribu
able to the fact that the invariant volume of the past lig
cone increases without bound as one observes at later
later times.

Causality is also built into the work of Mukhanov
Abramo, and Brandenberger through their use of the Heis
berg field operators. The equations of motion for these
simply operator realizations of the causal field equations
classical general relativity. In a local gauge one can exp
an operator at the spacetime point (t,xW ) entirely in terms of
the operators and their time derivatives on that part of
initial value surface which lies on or within the past lig
cone of (t,xW ). There might be some dispute about what t
means nonperturbatively, where the quantum metric
have a significant impact on the light cone, but it mak
perfect sense in the perturbative regime under study.
time dependence Mukhanov, Abramo, and Brandenbe
obtain derives in part from the continual redshift of ne
modes from ultraviolet to infrared but mostly from th
growth of the infrared mode functions which can occur
some~but not all! inflationary backgrounds.

We turn now to issues~1!–~3! listed in our Introduction.
Regarding the first objection, it is relevant to note that wh
long wavelength modes indeed appear spatially constant
local observer, so too does the cosmological expansion
of an inflating universe. Therefore the causative agent an
purported effect are commensurate: the homogeneous ex
sion rate of the classical background is being screened by
quantum dynamics of modes which would seem homo
neous to a local observer.
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Viewed from the perspective of obtaining a long period
inflation it is rather local, short wavelength phenomena t
ought to be regarded with suspicion. Without severe fi
tuning the natural duration of any process mediated by s
wavelength quanta must be the Hubble time or less. It se
reasonable to conclude that a mechanism for screening
cosmological constant must also end inflation if nothing e
does the job first. But inflation has to persist for ma
Hubble times in order to explain the large scale smoothn
of the observed universe. Note that infrared, long wavelen
phenomena can require much longer to produce a signifi
effect because they can act by coherently superposing
inherently weak interaction over the past light cone. It is on
an enormous expansion of the invariant volume containe
the past light cone that can compensate for the weaknes
gravitational self-interactions.

Finally, one must distinguish a local observation of a tru
homogeneous expansion from the sort of local expans
that would be produced by spatial inhomogeneities in
vacuum energy. Many people believe that whatever is s
pressing the former must also suppress the latter. We do
share this view. Experiment is sadly unable to decide
matter but it seems to us that a local fluctuation which c
ated a large enough region of negativer13p should result
in that region beginning to undergo inflation. We believe th
known physical principles already suffice to explain w
such fluctuations are rare in the observed universe@13#. Were
it otherwise one would not be able to make conventio
models of inflation agree with observation by the unaesth
device of fine-tuning the bare cosmological constant wh
is, be it noted, spatially homogeneous.

Two points are relevant for the second objection. Fir
the ‘‘stress tensor’’ of gravitational perturbation theory is n
an invariant, or even a scalar. So the fact that infrared m
solutions, to leading order for small wave number, are c
dinate transformations does not mean they necessarily h
no effect. Second, it is only for strictly zero wave numb
that infrared modes are pure gauge. Superadiabatic am
cation allows these modes to carry nonzero energy and p
sure in spite of their extreme redshift. The proper way
determine their effect is by computing the metric’s respon
at second order and then addressing the gauge issue of
this response means physically. We believe this is w
Mukhanov, Abramo, and Brandenberger did, although p
haps not as transparently as one might wish. To check t
result we made what ought to be the same computation
completely different gauge and using the standard formal
of covariant quantization, and we got the same answer.

This is the right point to comment on the gauge iss
which was also raised extensively by Unruh. What both
and Mukhanov and co-workers computed was the expe
tion value of the metric in the presence of a particular st
and in a fixed gauge. There is no doubt that this quan
depends upon the gauge in which the computation was d
It is important to realize that a quantity is not automatica
devoid of physical import by virtue of being gauge depe
dent. It can still contain useful physical information whic
can be separated from the unphysical, gauge-dependent
0-4
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ONE LOOP BACK REACTION ON CHAOTIC INFLATION PHYSICAL REVIEW D60 044010
Examples of this abound in quantum field theory. The m
straightforward is the way in which gauge dependent Gree
functions can be processed, using Lehmann-Syman
Zimmermann~LSZ! reduction, to give gauge independen
on-shell scattering amplitudes.~This is discussed in any stan
dard text on quantum field theory, for example that by Pes
and Schroeder@14#.! One does not even have to consid
products of field operators. There is an elegant formali
due to DeWitt@15#, in which theS matrix is obtained from
the in-out matrix element of the dynamical variable in t
presence of a general scattering state.

So the expectation value of the metric contains va
physical information; the question is how to extract it. O
technique exploits the special property of the initial state
being homogeneous and isotropic. This means that a com
ing coordinate system exists for which4

^0ugmn~ t̄ ,xW !dxmdxnu0&52d t̄21a2~ t̄ !dxW•dxW . ~29!

Our observable is the logarithmic time derivative of the sc
factor in this coordinate system

Heff~ t̄ ![
1

a~ t̄ !

da~ t̄ !

d t̄
. ~30!

One can investigate how this quantity changes under a va
tion of the gauge fixing functional and the result is that
does not change@7#. This would seem to be the analogue
DeWitt’s theorem about the gauge independence of the
shell S matrix. Of course the absence of gauge depende
does not automatically endow a quantity with physical i
port. We interpretHeff( t̄ ) as the expansion rate a local o
server would measure in the presence of stateu0&. It certainly
has this meaning in the classical limit but we are willing
entertain dissident views.

We come finally to Unruh’s doubts about the formalis
of Mukhanov, Feldman, and Brandenberger@16#. His argu-
ment is based on the long wavelength solution@3# he found
for the linearized Newtonian potential, which we shall c
n(x). In our notation this quantity corresponds to the follo
ing invariant element:

gmndxmdxn5V2$2~112V21n!dh2

1~122V21n!dxW•dxW%. ~31!

When the linearizedg0i equations are used to eliminate th
scalar field the linearizedg00 equation becomes

4Although homogeneity and isotropy follow trivially in the pe
turbative formalism we employ, the potential for nonperturbat
symmetry breaking should be noted.
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n92¹2n22
w09

w08
n81S V9

V
22

V82

V2 D n50. ~32!

In the limit that the¹2 term can be neglected Unruh obtain
the following independent solutions:

n15V2
V8

V2E2`

h
dh̄V2~ h̄ !, ~33!

n25
V8

V2
. ~34!

Unruh’s problem concerns what happens whenn1 andn2
are substituted into the dynamical variable used by Muk
nov, Feldman, and Brandenberger

v5
4

k2

1

w08
H n81S 2

V9

V8
12

V8

V D nJ . ~35!

Although n1 produces a reasonable function,

v15
4

k2

1

w08
H 2

VV9

V8
12V8J 5

V2

V8
w08 , ~36!

the n2 solution givesv50. This is disturbing because th
formalism of Mukhanov, Feldman, and Brandenberger qu
tizes v as a scalar field which obeys the following seco
order equation

v92¹2v2
v19

v1
v50. ~37!

In the limit that the¹2 term can be neglected one finds th
v5v1 is indeed a solution as is:

v2~h!5v1~h!E
h

0 dh̄

v1
2~ h̄ !

. ~38!

Since this second solution does not correspond to any c
bination of Unruh’s two long wavelength solutions he co
cludes that it must be unphysical and that the formalism
therefore suspect.

In fact neither thev2 solution nor then2 solution is un-
physical, they simply correspond to different orders in t
long wavelength expansion.5 At fixed, nonzero wave numbe
kW one can express the two independent solutions for
Newtonian potential as power series ink2. The zeroth terms
in these two series are Unruh’s solutionsn1(h) andn2(h).
However, one should really include some higher order ter
as well since the physical relevance of the solutions is

5Since the completion of this paper we have learned that the r
tion between thev ’s and the n’s was previously clarified by
Kodama and Hamazaki@17#. It should also be noted that Unruh ha
independently withdrawn the claim of an error in the formalism
Mukhanov, Feldman, and Brandenberger.
0-5
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L. R. ABRAMO AND R. P. WOODARD PHYSICAL REVIEW D60 044010
modes with small but nonzero wave number.6 The first order
correction ton2 can be expressed using an advanced Gre
function

N2~h,k!5n2~h!1
4k2

k2 E
h

0

dh̄$n1~h!n2~ h̄ !

2n2~h!n1~ h̄ !%
n2~ h̄ !

~w08~ h̄ !!2

1O~k4!. ~39!

When it is substituted forn(x) in Eq. ~35! the result is

vun5N2
5

4k2

k2 v2~h!1O~k4!. ~40!

So the solution sets of the two variables are in one-to-
correspondence and there is no obvious problem with
formalism of Mukhanov, Feldman, and Brandenberger.

At the price of specializing to power law inflation one ca
even see how then and v solution sets relate to all orders
For V5(h0 /h)s/(s21) the two mode solutions for the New
tonian potential are proportional to Bessel functions of or
m5 1

2 11/(s21). Unruh’s solutions are the zeroth ord
terms in the power series expansions of the following:

N1~h,k!5
G~12m!

s11 S kh0

2 D mAh0

h
J2m~kh!, ~41!

N2~h,k!52
s

s21
G~11m!S kh0

2 D 2m 1

Ah0h
Jm~kh!.

~42!

One can easily verify that the solutions to Eq.~37! which
make contact withv1 andv2 are

V1~h,k!5
2

k

G~2m!

As
S kh0

2 D m11A h

h0
J2m21~kh!, ~43!

V2~h,k!52
k

4
AsG~11m!S kh0

2 D 2m21

Ah0hJm11~kh!.

~44!

For power law inflation the relation~35! betweenn andv is
recognizable as the recursion relation which produ
2Jm11 from Jm ~and1J2m21 from J2m)

6There are a lot more of these. The number of zero mode
constant in time whereas the inflationary redshift eventually ma

the physical wave number (V21kW ) of any mode small. Further, as

Unruh pointed out, thekW50 system is degenerate in that his tw
solutions become unphysical on account of being exactly coordi
transformations. The one physical solution is paradoxically abs

from thekWÞ0 system. It appears because theg0i equation is auto-

matically satisfied forkW50 and therefore fails to relate the ze
modes of the Newtonian potential and the scalar@3#.
04401
’s

e
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v˜2
2

k

s21

As
AhH @Ahn#82

m

h
@Ahn#J ~45!

and theVi ’s descend from theNi ’s as follows:

V1~h,k!52
2

k

s21

As
Ah

3H @AhN1~h,k!#82
m

h
@AhN1~h,k!#J ,

~46!

V2~h,k!5
k2

4k2 32
2

k

s21

As
Ah

3H @AhN2~h,k!#82
m

h
@AhN2~h,k!#J .

~47!

IV. FEYNMAN RULES

The purpose of this section is to give the Feynman ru
for the general inflaton-graviton action~1!. We have mostly
borrowed these from a recent paper by Iliopoulos, Toma
Tsamis, and Woodard@4#. The one exception concerns th
issue of mixing between the scalar and the 00 componen
the graviton field. Iliopouloset al. were only able to solve
the system for a class of backgrounds including those
power law inflation, but not the power law backgrounds ty
cal of chaotic inflation. We have achieved a general soluti
One should also note that all formulas given in this sect
are exact. We have made neither the slow roll approxima
nor have we specialized to the case of a quadratic poten
Of course, that will be necessary in order to convert
formal mode sums into explicit results, but the task of ma
ing these approximations has been postponed to the en
Sec. V.

Our quantum fields are the scalarf and the conformally
rescaled pseudogravitoncmn

w[w01f, ~48!

gmn[V2~hmn1kcmn![V2g̃mn . ~49!

It should be noted that cosmologists typically restrict t
word ‘‘graviton’’ to that part of the metric which interpolate
dynamical spin two quanta at linearized order. Adhering
this convention would be terrifically cumbersome in the co
text of Becchi-Rouet-Stora~BRS! quantization beyond lin-
earized order. Our ‘‘pseudograviton’’ also includes degre
of freedom which are constrained or pure gauge. This is
standard usage in particle theory, cf. the ‘‘photon’’ fiel
propagator, and interactions of QED and the ‘‘gluon’’ fiel
propagator, and interactions of QCD@14#. We shall try to
avoid misunderstandings, without over-burdening the no
tion, by following the convention of Iliopouloset al. who
parenthesized the word ‘‘general’’ before ‘‘pseudograviton

is
s

te
nt
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ONE LOOP BACK REACTION ON CHAOTIC INFLATION PHYSICAL REVIEW D60 044010
As usual,~general! pseudograviton indices are raised a
lowered with the Lorentz metric. After many tedious part
integrations the invariant Lagrangian can be written as a t
derivative plus the following:

Linv5A2g̃g̃abg̃rsg̃mnH 1

2
car,mcns,b2

1

2
cab,rcsm,n

1
1

4
cab,rcmn,s2

1

4
car,mcbs,nJ V2

2
1

2
A2g̃g̃rsg̃mncrs,mcn

a~V2! ,a2V2w08f ,mg̃0mA2g̃

2
1

2
V2f ,mf ,ng̃mnA2g̃

2 (
n51

`
1

n!

]nV~w0!

]wn V4fnA2g̃, ~50!

where a comma denotes differentiation. Gauge fixing is
complished by adding a gauge fixing functional and the c
responding ghost action to obtain the BRS Lagrangian

LBRS5Linv2
1

2
hmnFmFn2Vv̄mdFm . ~51!

The symboldFm represents the variation of the gauge fixi
functional under an infinitesimal diffeomorphism param
etrized by the ghost fieldvm . We will follow Iliopoulos
et al. in our choice of gauge fixing functional:

Fm5VS cm,n
n 2

1

2
c ,m22

V8

V
cm01hm0kw08f D . ~52!

A great advantage of this gauge is that it decouples the te
structure of the propagators from their dependence on sp
time. The propagator becomes a small number of cons
tensors multiplying only three different types of mode sum
Another advantage is that the limitV˜1 takes this gauge to
one of the standard gauges of flat space, which often
vides a useful correspondence check.

With a few more partial integrations the terms quadra
in the various quantum fields can be reduced to the follow
form:

LBRS
(2) 5

1

2
cmnDmn

rscrs1cmnV@2kw09tmtn#Vf

1
1

2
fVF ]21

1

4
k2w08

21
w0-

w08
GVf

1v̄m@ d̄m
n DA2tmtnDB#vn . ~53!

A number of pieces of notation require explanation. The d
ferential operatorsDA andDB are

DA[VF]21
V9

V GV, ~54!
04401
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DB[VF ]21
~V21!9

V21 GV, ~55!

where]2[hmn]m]n is the d’Alembertian in conformal coor
dinates. It is worth commenting thatDA is the kinetic opera-
tor for a massless, minimally coupled scalar. The kinetic
erator for the~general! pseudograviton is

Dmn
rs[F1

2
d̄m

(rd̄n
s)2

1

4
hmnhrs2

1

2
tmtntrtsGDA

2t (md̄n)
(rts)DB1tmtntrtsDB . ~56!

Parenthesized indices are symmetrized, the symboltm de-
notes

tm[hm0 , tm5d0
m , ~57!

and a bar above a Lorentz metric or a Kronecker delta s
bol means that the zero component is projected out:

h̄mn[hmn1tmtn , d̄m
n [dm

n 1tmtn. ~58!

The quadratic Lagrangian involves two sorts of mixin
that between the spatial trace andc00 and that betweenc00
and the scalarf. The first can be removed by the followin
simple field redefinition:

c i j [z i j 1d i j z00, c0i[z0i , c00[z00, ~59!

where small Latin letters denote spatial indices. In these v
ables the quadratic part of the Lagrangian becomes

LBRS
(2) 5

1

2
z00DBz002kV2w09z00f

1
1

2
fVF ]21

1

4
k2w08

21
w0-

w08
GVf

1
1

2
z i j S 1

2
d i (kd l ) j2

1

4
d i j dklDDAzkl

2
1

2
z0id i j DBz0 j1v̄m@ d̄m

n DA2tmtnDB#vn . ~60!

For a generala0(t) there is no local change of variable
which removes the mixing betweenz00 and f off shell.
However, it is easy to diagonalize the linearizedfield equa-
tions which determine the on shell mode solutions. Cano
cal quantization of the linearized theory can then be invok
to expand the original quantum fields in terms of creat
and annihilation operators. It is straightforward to use th
expansions to express the propagators as mode sums. A
cost of some mixed propagators we will eventually obtain
complete expression of the Feynman rules in terms of
field variablescmn , v̄m, vn , andf.

It is simplest to absorb a factor ofV into z00 andf:

z[Vz00, f [Vf. ~61!
0-7
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L. R. ABRAMO AND R. P. WOODARD PHYSICAL REVIEW D60 044010
The linearized equations for thez-f system are

S ]21
1

4
k2w08

2D z2kw09 f 50, ~62!

2kw09z1S ]21
1

4
k2w08

21
w0-

w08
D f 50. ~63!

Differentiating Eq.~62! and adding it to1
2 kw08 times Eq.~63!

gives the first of our diagonalized field equations

S ]21
1

4
k2w08

2D Fz81
1

2
kw08 f G50. ~64!

The second diagonalized field equation comes from differ
tiating Eq.~63! and adding it to1

2 kw08 times Eq.~62! minus
w09/w08 times Eq.~63!:

S ]21
1

4
k2w08

22
w0-

w08
12

w09
2

w08
2D F1

2
kw08z1 f 82

w09

w08
f G50.

~65!

The preceding discussion implies that the diagonal v
ables are

x~h,xW ![z8~h,xW !1
1

2
kw08~h! f ~h,xW !, ~66!

y~h,xW ![
1

2
kw08~h!z~h,xW !1 f 8~h,xW !2

w09~h!

w08~h!
f ~h,xW !.

~67!

Since conformal time derivatives appear in the transform
tion its inverse cannot be local in time for the off shell field
However, by using the linearized field equations one c
obtain the following expressions for the conformal time d
rivatives ofx andy:

x85S ¹21
1

4
k2w08

2D z1
1

2
kw08 f 82

1

2
kw09 f , ~68!

y85
1

2
kw08z82

1

2
kw09z2

w09

w08
f 81S ¹21

1

4
k2w08

21
w09

2

w08
2D f .

~69!

Eliminating z8 and f 8 gives the following on shell inverse
transformation:

z5
1

¹2 Fx82
1

2
kw08yG , ~70!

f 5
1

¹2 F2
1

2
kw08x1y81

w09

w08
yG . ~71!

We stress that since the linearized field equations have b
used these relations apply only to the on shell mode s
tions, not to the off shell fields.
04401
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The mode equations for all the fields—includingVz i j ,
Vz0i , Vv̄m, andVvn—can be given a simple, unified trea
ment. There are three types of modes which we shall calA,
B, andC. They are defined as the plane wave solutions
nihilated by the following differential operator:

D I[]21
u I9

u I
˜2H d2

dh2 1k22
u I9~h!

u I~h! J , ~72!

wherek[ikW i and the variousu I(h)’s are

uA[V, uB[V21, uC[2
2

k

V8

V2w08
5a0

21
H

A2Ḣ
.

~73!

Briefly, the spatial polarizationsVz i j , Vv̄ i , and Vv j are
comprised ofA modes, the mixed polarizationsVz0i , Vv̄0,
andVv0 are made ofB modes, as is the diagonal variablex,
and the other diagonal variabley consists ofC modes. Be-
cause quantization was accomplished by adding a gauge
ing term most of the linearized fields harbor unphysic
quanta. Physical gravitons areA modes that reside inz i j ; the
physical scalar is aC mode iny.

We will return in Sec. VI to the problem of obtainin
useful approximations for the mode functions but we p
ceed, for now, as though they are known. We defineQI(h,k)
as descending by perturbative iteration~explained in Sec. VI!
from the pure negative frequency solution for wave num
k[ikW i . We also assume it has been canonically normaliz

QI~h,k!QI*
8~h,k!2QI8~h,k!QI* ~h,k!5 i . ~74!

From canonically quantizing the quadratic action~60! one
finds that the fieldsz(h,xW ) and z8(h,xW ) form a conjugate
pair. The same is true forf (h,xW ) and f 8(h,xW ), so the only
nonzero equal-time commutators involving these fields a

@z~h,xW !,z8~h,yW !#5 id3~xW2yW !5@ f ~h,xW !, f 8~h,yW !#.
~75!

From their definitions~66!,~67! and the on shell relations
~68!,~69! one can easily check that the only nonzero equ
time commutators in thex-y sector are

@x~h,xW !,x8~h,yW !#52 i¹2d3~xW2yW !5@y~h,xW !,y8~h,yW !#.
~76!

We can realize these commutation relations with conventi
ally normalized creation and annihilation operators (X,X†)
and (Y,Y†):

@X~kW !,X†~pW !#5~2p!3d3~kW2pW !5@Y~kW !,Y†~pW !#. ~77!

SinceDBx(h,xW )50 we expandx usingB modes,

x~h,xW !5E d3k

~2p!3 k$X~kW !QB~h,k!eikW•xW

1X†~kW !QB* ~h,k!eikW•xW%. ~78!
0-8
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SinceDCy(h,xW )50 we expandy usingC modes,

y~h,xW !5E d3k

~2p!3 k$Y~kW !QC~h,k!eikW•xW

1Y†~kW !QC* ~h,k!eikW•xW%. ~79!

The on shell transformations~70!,~71! allow us finally to
give operator expansions forz and f:

z~h,xW !5E d3k

~2p!3

e1•xW

k H 2X~kW !QB8 ~h,k!eikW•xW

1Y~kW !
1

2
kw08~h!QC~h,k!eikW•xW1c.c.J , ~80!

f ~h,xW !5E d3k

~2p!3

e1•xW

k H X~kW !
1

2
kw08~h!QB~h,k!eikW•xW

2Y~kW !F d

dh
1

w09~h!

w08~h!
GQC~h,k!eikW•xW1c.c.J .

~81!

The rest is a standard exercise in free field theory.
choose the stateu0& to obey

X~kW !u0&505Y~kW !u0&. ~82!

The various propagators can be most conveniently expre
in terms of the mode sum7 id I(x;x8)

id I~x;x8!52
1

¹2E d3k

~2p!3 eikW•DxW2ek

3$u~Dh!QI~h,k!QI* ~h8,k!

1u~2Dh!QI* ~h,k!QI~h8,k!%, ~83!

5
1

2p2E
0

`

dk
sin~kDx!

kDx

3e2ek$u~Dh!QI~h,k!QI* ~h8,k!

1u~2Dh!QI* ~h,k!QI~h8,k!%, ~84!

where we define the following conformal coordinate diffe
ences:

Dh[h2h8, DxW[xW2xW8, Dx[ixW2xW8i . ~85!

Expanding the various time-ordered products and exploi
Eq. ~82! leads to the following expressions for the propag
tors:

7Note that we have introduced a time-independent, ultravio
convergence factor ofe2ek. This corresponds to an exponenti
mode cutoff on the initial value surface.
04401
e

ed

g
-

^0uT$z~h,xW !z~h8,xW8!%u0&5
]

]h

]

]h8
idB~x;x8!

1
i

¹2 d 4~x2x8!

1
1

4
k2w08~h!w08~h8!idC~x;x8!,

~86!

^0uT$z~h,xW ! f ~h8,xW8!%u0&52
]

]h

1

2
kw08~h8!idB~x;x8!

2
1

2
kw08~h!F ]

]h8
1

w09

w08
G

3 idC~x;x8!, ~87!

^0uT$ f ~h,xW ! f ~h8,xW8!%u0&5
1

4
k2w08~h!w08~h8!idB~x;x8!

1F ]

]h
1

w09

w08
GF ]

]h8
1

w09

w08
G

3 idC~x;x8!1
i

¹2 d 4~x2x8! .

~88!

Now we restore the factors ofV21. These can be used t
convert the conformal time derivatives to comoving time

V21~h!
]

]h
5

]

]t
, V21w085ẇ0 . ~89!

The threez-f propagators become

iDa~x;x8![^0uT$c00~h,xW !c00~h8,xW8!%u0&

5
]

]t

]

]t8
idB~x;x8!1

1

4
k2ẇ0~ t !ẇ0~ t8!idC~x;x8!

1
iV21V821

¹2 d 4~x2x8! , ~90!

iDb~x;x8![^0uT$c00~h,xW !f~h8,xW8!%u0&

52
]

]t

1

2
kẇ0~ t8!idB~x;x8!2

1

2
kẇ0~ t !

3F ]

]t8
1H1

ẅ0

ẇ0
G idC~x;x8!, ~91!

t

0-9
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L. R. ABRAMO AND R. P. WOODARD PHYSICAL REVIEW D60 044010
iDg~x;x8![^0uT$f~h,xW !f~h8,xW8!%u0&

5
1

4
k2ẇ0~ t !ẇ0~ t8!idB~x;x8!1F ]

]t
1H1

ẅ0

ẇ0
G

3F ]

]t8
1H1

ẅ0

ẇ0
G idC~x;x8!

1
iV21V821

¹2 d 4~x2x8! . ~92!

The unmixed propagators can also be represented as m
sums

iD I~x;x![V21~h!V21~h8!~2¹2!id I~x;x!. ~93!

The ~general! pseudograviton propagator is

^0uT$cmn~x!crs~x8!%u0&

5 iDA~x;x8!2@h̄m(rh̄s)n2h̄mnh̄rs#

24iDB~x;x8!t (mh̄n)(rts)

1 iDa~x;x8!@h̄mn1tmtn#@h̄rs1trts#. ~94!

The other propagators are

^0uT$cmn~x!f~x8!%u0&5 iDb~x;x8!@h̄mn1tmtn#, ~95!

^0uT$f~x!f~x8!%u0&5 iDg~x;x8!, ~96!

^0uT$vm~x!v̄n~x8!%u0&5 iDA~x;x8!h̄mn2 iDB~x;x8!tmtn .

~97!

All interactions between~general! pseudogravitons and sca
lars can be obtained by expanding the invariant Lagrang
~50! using the following identities:

g̃mn5hmn2kcmn1k2cmrcr
n2•••, ~98!

A2g̃511
1

2
kc1k2S 1

8
c22

1

4
crscrsD1•••. ~99!

Interactions involvingv̄m andvn can be read from the ghos
Lagrangian, which we have simplified by neglecting so
total derivatives

Lghost52Vv̄mdFm , ~100!

5v̄m@ d̄m
n DA2tmtnDB#vn1k~V2v̄m! ,m

3H cnrvn,r1
1

2
c ,nvn2

V8

V
cv0J 2kV2v̄m,n

3H cmrv ,n
r 1cnrv ,m

r 1cmn,rvr22
V8

V
cmnv0J

1k2V2w08v̄0f ,nvn. ~101!
04401
de

n

e

V. ATTACHING EXTERNAL LINES

The purpose of this section is to explain how we pa
from the amputated one-point functions which are actua
computed to physical observables. We begin by expres
the effective Hubble constant in terms of the~nonamputated!
one-point function. The rest of the section is devoted to
procedure for attaching the retarded propagators, neede
the Schwinger formalism@5#, to convert amputated one-poin
functions into their nonamputated cognates. Although an
act solution is obtained we specialize it, at the very end
the section, to leading order in the slow roll approximatio

Both the initial state and the evolution equations are
mogeneous and isotropic. It follows that the expectation v
ues of the~general! pseudograviton field and the scalar c
be expressed in terms of three functions ofh. It will simplify
some of the later formulas if we choose to think of the
quantities as functions of the comoving timet of the pertur-
bative background, even though we still are expressing th
in conformal coordinates8

^0ukcmn~h,xW !u0&5A~ t !h̄mn1C~ t !tmtn , ~102!

^0ukf~h,xW !u0&5D~ t !. ~103!

Note that we cannot assumeC52A since the expectation
value may not be conformal in the perturbative coordin
system. None of these quantities is itself physical but th
can be combined to produce observables. We first const
the invariant element to infer the true scale factor and
moving time t̄ of the expectation value of the metric

2d t̄21a2~ t̄ !dxW•dxW5V2$2~12C!dh21~11A!dxW•dxW%,

~104!

52@12C~ t !#dt21a0
2~ t !

3@11A~ t !#dxW•dxW . ~105!

One physical observable is the effective Hubble constant
pressed as a function of the comoving timet̄ :

Heff~ t̄ ![
d

d t̄
ln@a~ t̄ !#5

1

A12C~ t !
H H~ t !1

1

2

Ȧ~ t !

11A~ t !J .

~106!

If the scalar can be measured then its expectation valu
also an observable when expressed as a function of the
moving time t̄ . We shall call this variableF( t̄ ):

F~ t̄ ![w0~ t !1
1

k
D~ t !. ~107!

8Recall that the relation betweent andh is

dt5V~h!dh⇔ dt

a0~t!
5dh.
0-10
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ONE LOOP BACK REACTION ON CHAOTIC INFLATION PHYSICAL REVIEW D60 044010
What we actually compute are not the expectation val
of kcmn andkf but rather theamputatedexpectation values
with the external propagators removed. We will use Gre
letters to denote the three functions oft which describe these
amputated quantities

a~ t !h̄mn1g~ t !tmtn[Dmn
rs^0ukcrs~h,xW !u0&

2kV2w09tmtn^0ukf~h,xW !u0&,

~108!

d~ t ![2kV2w09t
rts^0ukcrs~h,xW !u0&

1VS ]21
1

4
k2w08

21
w0-

w08
D V^0ukf~h,xW !u0&.

~109!

Contracting with the kinetic operator~56! and isolating dis-
tinct tensor components gives three relations

a52
1

4
DA~A2C!, ~110!

g5
3

4
DA~A2C!1DBC2kV2w09D, ~111!

d52kV2w09C1VF2
d2

dh2 1
1

4
k2w09

21
w0-

w08
GVD.

~112!

Since it is fromA and C that Heff is constructed, we mus
invert these relations.

We employ the Schwinger formalism@5# in order to get
true expectation values rather than in-out matrix eleme
An important feature of this formalism is that external le
are retarded propagators. This means that the coupled d
ential equations in Eqs.~110!–~112! must be inverted using
retarded boundary conditions

05A~0!5C~0!5D~0!, ~113!

05Ȧ~0!5Ċ~0!5Ḋ~0!. ~114!

Now it happens that every differential equation we have
solve can be cast in the form

Df ~ t ![S 2
d2

dh2 1
u9

u D f ~ t !5g~ t !. ~115!

This is fortunate because the retarded solution can be sim
expressed as a double integral

f ~ t !5D21~g![2u~h!E
0

t

dt1a0
21~ t1!u22~h1!

3E
0

t1
dt2a0

21~ t2!u~h2!g~ t2!. ~116!

It simplifies the algebra somewhat to multiply the amp
tated quantities byV21 and their unamputated descenda
by V. We denote the rescaled variables by a tilde:
04401
s

k

s.

er-
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s

Ã[VA, C̃[VC, D̃[VD, ~117!

ã[V21a, g̃[V21g, d̃[V21d. ~118!

In this notation the equations we must invert are

ã52
1

4
DA~Ã2C̃!, ~119!

g̃5
3

4
DA~Ã2C̃!1DBC̃2kw09D̃, ~120!

d̃52kw09C̃1F2
d2

dh2 1
1

4
k2w09

21
w0-

w08
G D̃, ~121!

whereDA andDB have the form~115! with uA5V anduB
5V21. Equation~119! implies

Ã5C̃1D A
21~24ã !. ~122!

Substituting this into Eq.~120! gives

3ã1g̃5DBC̃2kw09D̃, ~123!

which, with Eq.~121!, is similar to the coupledz-f system of
Sec. IV. Paralleling the analysis of that section we differe
tiate Eq.~123! and add it to1

2 kw08 times Eq.~121! to obtain

DBS C̃81
1

2
kw08D̃ D53ã81g̃81

1

2
kw08d̃. ~124!

Differentiating Eq.~121! and adding it to1
2 kw08 times Eq.

~123! minusw09/w08 times Eq.~121! gives

DCS 1

2
kw08C̃1D̃82

w09

w08
D̃ D 5

1

2
kw08~3ã1g̃ !1 d̃82

w09

w08
d̃,

~125!
where DC has the form ~115! with uC5
22k21V22V8/w08 .

Of course we can invert the differential operators in t
last two equations

C̃81
1

2
kw08D̃5D B

21S 3ã81g̃81
1

2
kw08d̃ D , ~126!

1

2
kw08C̃1D̃82

w09

w08
D̃5DC

21S 1

2
kw08~3ã1g̃ !1 d̃82

w09

w08
d̃ D ,

~127!

but this still leaves derivatives onC̃ and D̃. These deriva-
tives cannot be removed as we did in Sec. IV because
Laplacian vanishes for spatially homogeneous functio
What we must do instead is to divide Eq.~123! by w08 and
add it to 2w09/w08

2 times Eq.~126!:

DCS C̃

w08
D 5

3ã1 g̃

w08
12

w09

w08
2
D B

21S 3ã81g̃81
1

2
kw08d̃ D .

~128!

Dividing Eq. ~121! by w08 and adding it to 2w09/w08
2 times Eq.

~127! gives a similar relation forD̃:
0-11



n

-
on

e
u

of
er

les

ri-

ec.
us
tial,

m

ns

e-
d

ul-
gth

L. R. ABRAMO AND R. P. WOODARD PHYSICAL REVIEW D60 044010
DBS D̃

w08
D 5

d̃

w08
12

w09

w08
2
DC

21S 1

2
kw08~3ã1g̃ !1 d̃82

w09

w08
d̃ D .

~129!

Putting everything together gives the following solutio
for the unamputated coefficient functions:

A5V21D A
21~24ã !1

w08

V
DC

21

3H 3ã1g̃

w08
12

w09

w08
2
D B

21S 3ã81g̃81
1

2
kw08d̃ D J ,

~130!

C5
w08

V
DC

21H 3ã1 g̃

w08
12

w09

w08
2
D B

21

3S 3ã81g̃81
1

2
kw08d̃ D J , ~131!

D5
w08

V
D B

21H d̃

w08
12

w09

w08
2
DC

21

3S 1

2
kw08~3ã1g̃ !1 d̃82

w09

w08
d̃ D J . ~132!

Recall thatã[V21a, g̃[V21g andd̃[V21d. The various
inverse differential operators are defined by Eq.~116! with
the following assignments foru(h):

uA5V, uB5V21, uC52
2

k

V8

V2w08
. ~133!

For the potentialV(w)5 1
2 m2w2 it happens that the lead

ing order results for the amputated one-point functions c
sist of sums of terms with the general form

a~ t !5aNHN~ t !a0
4~ t !1•••, ~134!

g~ t !5gNHN~ t !a0
4~ t !1•••, ~135!

d~ t !5dNHN~ t !SA2Ḣ

H
D a0

4~ t !1•••. ~136!

The coefficientsaN , gN , and dN are constants. When th
slow roll expansions of Sec. II are applied to the vario
integrations and differentiations in our formulas forA, C, and
D, the following leading order results emerge:

AN~ t !5
4aN

3N S HI
N2HN~ t !

H2~ t ! D S H2

2Ḣ
D 1•••, ~137!
04401
-

s

CN~ t !5F S 3aN1gN

2 D
2S 3aN1gN1dN

3N D G S HI
N2HN~ t !

H2~ t ! D 1•••,

~138!

DN~ t !52S 3aN1gN1dN

3N
D S HI

N2HN~ t !

H2~ t !
D S H

A2Ḣ
D 1•••.

~139!

Here HI[H(0) is the Hubble constant at the beginning
inflation. These results imply the following leading ord
shift in comoving time:

~ t̄ 2t !N52
1

2
F3

2
aN2S 3aN1gN1dN

3N
D G

3S HI
N

H22
N

N21

HI
N21

H
1

HN22

N21
D S H

A2Ḣ
D 1•••.

~140!

To leading order the proportional shift in the two observab
is

S Heff2H

H D
N

5
2

3
aNHN221F S 3aN1gN

4 D S N

N21D
2S 3aN1gN1dN

6~N21! D G S HI
N212HN21

H D 1•••,

~141!

S F2w0

w0
D

N

52S 3aN1gN

4 D FHI
N

H2 2
N

N21

HI
N21

H
1

HN22

N21 G
2S 3aN1gN1dN

6~N21! D @H21HI
N212HN22#1•••.

~142!

To obtain the full shift one sums the contributions for va
ous different values ofN.

VI. INFRARED PARTS OF PROPAGATORS

This section deals with a very important omission in S
IV. Although we were able there to express the vario
propagators as mode sums for an arbitrary scalar poten
we do not possess the corresponding modefunctions
QI(h,k) for a general potential. This is a standard proble
in the theory of cosmological perturbations@16,18# and we
solve it in the standard way: by developing series solutio
for the ultraviolet ~early time! and infrared~late time! re-
gimes. The normalization for the ultraviolet expansion d
rives from the flat space limit. We normalize the infrare
expansion by matching its leading term with that of the
traviolet expansion at the time when the physical wavelen
0-12



iu

e

p-

ne

es
d

fr

s
ra
ng

ei
th
e
e

s
ca

ns

ke

one

o

full
r,

s—

ONE LOOP BACK REACTION ON CHAOTIC INFLATION PHYSICAL REVIEW D60 044010
of each mode is just redshifting beyond the Hubble rad
~This is the chief approximation of the paper.! One then de-
fines the ‘‘infrared part’’ of each propagator as that obtain
from the leading order term of the infrared expansion. W
report explicit results to leading order in the slow roll a
proximation.

Recall from Sec. IV that we have three kinds of pla
wave mode solutionsQI(h,k). They obey the equation

DIQI~h,k![2H d

dh2 1k22
u I9~h!

u I~h! J QI~h,k!50,

~143!

where theu I(h)’s are

uA[V, uB[V21, uC[2
2

k

V8

V2w08
5a0

21
H

A2Ḣ
.

~144!

Of course Eq.~143! does not completely define the mod
because there are two linearly independent solutions. We
fine QI(h,k) as the solution of Eq.~143! which is canoni-
cally normalized

Q~h,k!Q* 8~h,k!2Q8~h,k!Q* ~h,k!5 i ~145!

and descends by perturbative iteration from the negative
quency solution of the far ultraviolet.

The far ultraviolet is defined byk2@u9/u. At fixed k this
condition will also be realized, in all models of inflation, a
the conformal time approaches negative infinity. In the ult
violet regime we build up normalized solutions by iterati
the following equation:

QI~h,k!5
1

A2k
e2 ikh

1E
2`

h
dh̄

1

k
sin@k~h2h̄ !#

u I9~ h̄ !

u I~ h̄ !
QI~ h̄,k!.

~146!

The result is a series in inverse powers ofk. These solutions
are obviously negative frequency in the far ultraviolet. Th
Wronskian~145! is constant as a simple consequence of
mode equation~143! while its actual value derives from th
fact that u9/u vanishes as the conformal time approach
negative infinity.

The far infrared is defined byk2!u9/u. At fixed k this
condition will also be realized, in all models of inflation, a
the conformal time approaches zero from below. One
find explicit solutions in the limit that thek2 term is ne-
glected. The first one has the same form forI 5A,B,C:

Q10,I~h![u I~h!. ~147!

The second is an integral whose convergence~for models of
inflation! requires different limits forI 5A,
04401
s.

d
e

e-

e-

-

r
e

s

n

Q20,A~h![2u I~h!E
h

0 dh̄

uA
2~ h̄ !

~148!

and I 5B,C,

Q20,I~h![u I~h!E
2`

h dh̄

u I
2~ h̄ !

~ I 5B,C!. ~149!

When k2 is small but not zero one can build up solutio
which descend fromQi0,I(h) by iterating with the appropri-
ate Green’s function

Qi ,I~h,k!5Qi0,I~h!2k2E
2`

0

dh̄

3Gapp~h,h̄ !Qi ,I~h,k! ~ i 51,2!. ~150!

This obviously gives a series of increasing powers ofk2.
Here the ‘‘appropriate’’ Green’s function is chosen to ma
the integral converge. The four possibilities are

Gadv~h,h̄ !51u~h̄2h!Q10~h!Q20~ h̄ !

2u~h̄2h!Q20~h!Q10~ h̄ !, ~151!

G12~h,h̄ !52u~h2h̄ !Q10~h!Q20~ h̄ !

2u~h̄2h!Q20~h!Q10~ h̄ !, ~152!

G21~h,h̄ !51u~h2h̄ !Q20~h!Q10~ h̄ !

1u~h̄2h!Q10~h!Q20~ h̄ !, ~153!

Gret~h,h̄ !51u~h2h̄ !Q20~h!Q10~ h̄ !

2u~h2h̄ !Q10~h!Q20~ h̄ !, ~154!

and it should be noted that one may have to switch from
to another midway through the iteration process.

Since the full infrared solutionsQ1,I(h,k) andQ2,I(h,k)
span the space of solutions toDI50, it must be possible to
express the ultraviolet solutions as linear combinations:

QI~h,k!5q1Q1,I~h,k!1q2Q2,I~h,k!. ~155!

If we had the full solutions it would be straightforward t
determine the combination coefficients

q15
Q2,I8 ~h,k!QI~h,k!2Q2,I~h,k!QI8~h,k!

Q1,I~h,k!Q2,I8 ~h,k!2Q2,I~h,k!Q1,I8 ~h,k!
, ~156!

q25
2Q1,I8 ~h,k!QI~h,k!1Q1,I~h,k!QI8~h,k!

Q1,I~h,k!Q2,I8 ~h,k!2Q2,I~h,k!Q1,I8 ~h,k!
, ~157!

where any conformal timeh could be chosen.
For most backgrounds we do not possess the

solutions—either in the ultraviolet or the infrared. Howeve
it happens that one of the zeroth order infrared solution
0-13
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eitherQ10,I(h) or Q20,I(h)—dominates the other and all co
rections as the conformal time approaches zero from be
The standard approximation@16,18# is to match this solution
with the zeroth order ultraviolet solution at the horizon cro
ing time h* , whose defining condition is

k5H* V~h* !. ~158!

Then the behavior of the modes in the far infrared can
approximated as follows:

QI~h,k!˜
Qi0,I~h!

Qi0,I~h* !

e2 ikh
*

A2k
, ~159!

wherei is either 1 or 2, depending upon which of the zero
order infrared solutions dominates for theI mode.

For I 5A it is Q10,A(h)5V(h) that dominates at late
times. We can therefore write

QA~h,k!˜V~h!
H*
k

e2 ikh
*

A2k
. ~160!

For I 5B Q20,B5V21 becomes irrelevant at late times. Th
dominant solution is

Q20,B~h!5V21E
2`

h
dh̄V2~ h̄ !

5
1

a0~ t !E2`

t

dt8a0~ t8!'
1

H~ t !
. ~161!

We can therefore approximate theB modes as follows:

QB~h,k!˜
1

H~ t !
H*

e2 ikh
*

A2k
. ~162!

The case ofI 5C requires a more extensive analysis. T
first solution is down by an inverse scale factor but enhan
by the inverse of a slow roll parameter

Q10,C5a0
21

H

A2Ḣ
. ~163!

The second solution has to be reexpressed several time
fore it can be recognized as the dominant one:

Q20,C5a0
21

H

A2Ḣ
E

2`

t

dt8a0~ t8!
d

dt8
S 1

H~ t8!
D , ~164!

5
1

A2Ḣ

d

dt
H 1

a0~ t !
E

2`

t

dt8a0~ t8!J , ~165!

'
A2Ḣ

H2
. ~166!
04401
w.

-

e

d

be-

After any significant amount of inflation the inverse sca
factor is much smaller than2Ḣ/H2, so we can approximate
the C modes as

QC~h,k!˜
A2Ḣ~ t !

H2~ t !

H
*
2

A2Ḣ*

e2 ikh
*

A2k
. ~167!

Although the approximations~160!,~162!,~167! we have
just made may seem grotesque they are intimately relate
the physics of superadiabatic amplification@8#. It is this phe-
nomenon’s vast enhancement of the usual 0-point ene
which causes one of the zeroth order infrared solutions
dominate at late times. These approximations therefore
late precisely the leading late time infrared effect we wish
study. In fact this is all thatcan be reliably studied using
quantum general relativity. The ultraviolet regime, whi
these approximations fail to capture, cannot in any case
described perturbatively by quantum general relativity.

What remains is to implement the infrared approxim
tions ~160!,~162!,~167! in the various propagator mode sum
derived in Sec. IV. Since we are only computing the amp
tated one-point function to one loop order, these propaga
are all coincident. They may, however, bear derivativ
Since space derivatives add factors ofk, which are small in
the infrared, we need only consider time derivatives. W
shall therefore setDx50 but keep the two times nonzero
With these conventions all the propagators can be descr
in the standard form

iD~x;x8!˜ f ~ t !g~ t8!E dk
H

*
2

2k
h~k!, ~168!

where it should be noted thatH* andḢ* are functions of the
co-moving wave numberk, determined by the horizon cross
ing condition~158!.

From Eq.~160! and the mode sums~93!,~84! which define
it we see that the infrared part ofiDA(x:x8) approaches a
constant

iDA~x;x8!˜1~1!
1

2p2E dk
H

*
2

2k
~1!. ~169!

The behavior of theB mode ~162! and the mode sums
~93!,~84! which defineiDB(x;x8) show that its infrared par
actually falls off:

iDB~x;x8!˜
1

a0~ t !H~ t !

1

a0~ t8!H~ t8!

1

2p2E dk
H

*
2

2k
k2.

~170!

Since the momentum integral is dominated by the ultravio
rather than the infrared, we conclude that the infrared par
this propagator is zero. Thec00 propagator involvesB modes
~162! and C modes~167!. From its defining relations~90!,
~84! we determine its infrared part to be
0-14
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iDa~x;x8!˜
2Ḣ~ t !

H2~ t !

2Ḣ~ t8!

H2~ t8!

1

2p2E dk
H

*
2

2k

H
*
2

2Ḣ*
.

~171!

The mixed propagator is defined by relations~91!,~84!.
Again applying the infrared mode approximatio
~162!,~167! gives

iDb~x;x8!˜
2Ḣ~ t !

H2~ t !

A2Ḣ~ t8!

H~ t8!

1

2p2E dk
H

*
2

2k

H
*
2

2Ḣ*
.

~172!

The same infrared limits, applied to its defining relatio
~92!,~84!, reduce the scalar propagator to

iDg~x;x8!˜
A2Ḣ~ t !

H~ t !

A2Ḣ~ t8!

H~ t8!

1

2p2E dk
H

*
2

2k

H
*
2

2Ḣ*
.

~173!

By itself it is the strongest but one must allow for the effe
of factors and derivatives from the interaction vertex.

Since modes only become infrared after horizon cross
the momentum integrations are cut off atk5H(t)a0(t). The
integral can be evaluated by first changing variables fromk
to the horizon crossing timet*

2
dk'H ~ t* !a0~ t* !dt* ~174!

and then employing the slow roll expansions of Sec. II

04401
t

g,

1

2p2E dk
H

*
2

2k S H
*
2

2Ḣ*
D '

1

4p2E
0

t

dt*
H5~ t* !

2Ḣ
, ~175!

'
1

24p2 S HI
62H6~ t !

Ḣ2 D . ~176!

Note thatḢ is approximately constant for the quadratic p
tential considered by Mukhanov, Abramo, and Brande
berger@1#.

VII. AMPUTATED ONE-POINT FUNCTIONS

The purpose of this section is first to obtain one lo
results for the three amputated one-point functio
~108!,~109! defined in Sec. V. We then exploit the techno
ogy of Sec. V to compute the two observablesHeff( t̄ ) ~106!
andF( t̄ ) ~107!. We begin by explaining how cubic interac
tions are used to compute the amputated one-point functi
Throughout this section we are making both the slow r
approximation and specializing to a quadratic potential.

At one loop order the amputated one-point functions c
sist basically of coincident propagators contracted into cu
interaction vertices. In addition to the usual factori there is
an i from the kinetic operator acting on the external prop
gator. There is also an extra factor ofk from the fact that we
define the one-point functions~102!,~103! as ^0ukcmnu0&
and 0ukfu0 .
^ &

As an example let us consider the interaction
TABLE I. Vertex factors contracted intoca1b1
ca2b2

ca3b3
with ca1b1

external.

No. Vertex factor No. Vertex factor

1 1
2 kHV3ha1b1ha2b2]2

(a3tb3) 22 1
2 kV2ha2(a3hb3)b2]3

(a1]1
b1)

2 1
2 kHV3ha2b2ha3b3]3

(a1tb1) 23 1
2 kV2ha3(a1hb1)b3]1

(a2]2
b2)

3 1
2 kHV3ha3b3ha1b1]1

(a2tb2) 24 1
2 kV2]2

(a1hb1)(a3]3
b3)ha2b2

4 2kHV3ha1(a2hb2)b1]2
(a3tb3) 25 1

2 kV2]3
(a2hb2)(a1]1

b1)ha3b3

5 2kHV3ha2(a3hb3)b2]3
(a1tb1) 26 1

2 kV2]1
(a3hb3)(a2]2

b2)ha1b1

6 2kHV3ha3(a1hb1)b3]1
(a2tb2) 27 1

2 kV2]2
(a1hb1)(a2]3

b2)ha3b3

7 2kHV3t (a3hb3)(a1]2
b1)ha2b2 28 1

2 kV2]3
(a2hb2)(a3]1

b3)ha1b1

8 2kHV3t (a1hb1)(a2]3
b2)ha3b3 29 1

2 kV2]1
(a3hb3)(a1]2

b1)ha2b2

9 2kHV3t (a2hb2)(a3]1
b3)ha1b1 30 1

8 kV2ha1b1ha2b2ha3b3]2•]3

10 1
4 kV2ha1b1]3

(a2hb2)(a3]2
b3) 31 1

4 kV2ha1b1ha2b2ha3b3]3•]1

11 1
4 kV2ha2b2]1

(a3hb3)(a1]3
b1) 32 2

1
2 kV2ha1(a2hb2)b1ha3b3]2•]3

12 1
4 kV2ha3b3]2

(a1hb1)(a2]1
b2) 33 2

1
2 kV2ha2(a3hb3)b2ha1b1]3•]1

13 2kV2]3
(a1hb1)(a2hb2)(a3]2

b3) 34 2
1
2 kV2ha3(a1hb1)b3ha2b2]1•]2

14 2kV2]1
(a2hb2)(a3hb3)(a1]3

b1) 35 2
1
4 kV2]2

(a1]3
b1)ha2b2ha3b3

15 2kV2]2
(a3hb3)(a1hb1)(a2]1

b2) 36 2
1
2 kV2]3

(a2]1
b2)ha3b3ha1b1

16 2
1
2 kV2]3

(a2hb2)(a1hb1)(a3]2
b3) 37 2

1
8 kV2ha1b1ha2(a3hb3)b2]2•]3

17 2kV2]1
(a3hb3)(a2hb2)(a1]3

b1) 38 2
1
4 kV2ha2b2ha3(a1hb1)b3]3•]1

18 2
1
4 kV2ha1b1ha2b2]2

(a3]3
b3) 39 1

2 kV2ha1)(a2hb2)(a3hb3)(b1]2•]3

19 2
1
4 kV2ha2b2ha3b3]3

(a1]1
b1) 40 kV2ha1)(a2hb2)(a3hb3)(b1]3•]1

20 2
1
4 kV2ha3b3ha1b1]1

(a2]2
b2) 41 1

4 kV2]2
(a1]3

b1)ha2(a3hb3)b2

21 1
2 kV2ha1(a2hb2)b1]2

(a3]3
b3) 42 1

2 kV2]3
(a2]1

b2)ha3(a1hb1)b3
0-15
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2 1
4 km2V4f2c, which is one of the many cubic terms d

scending from the scalar mass. The external line can at
to any of the three quantum fields:f2cmnhmn. When it at-
taches to one of the two scalar fieldsd(t) receives the fol-
lowing contribution:

H ikS 2
i

4
km2V4D2^0uT@f~x!c~x8!#u0&J

x85x

5H 1

2
k2m2V4iDb~x;x8!~ h̄mn1tmtn!hmnJ

x85x

,

~177!

5$k2m2V4iDb~x;x8!%x85x . ~178!

Most of the coincidence limit is ultraviolet nonsense whi
quantum general relativity cannot be trusted to treat corre
and which must in any case have been subtracted off in o
for inflation to begin in the first place. The time-depende
physically significant part comes from the superadiabatic
amplified infrared modes. From Eq.~172! we see that the
leading effect from these is

k2m2V4iDb~x;x!˜
IR

23k2Ḣa0
4~ t !

3
~2Ḣ !3/2

H3~ t !

1

24p2 S HI
62H6~ t !

Ḣ2 D ,

5
k2

8p2 S HI
62H6~ t !

H2~ t ! D SA2Ḣ

H~ t !
D a0

4~ t !.

~179!

In the notation used at the end of Sec. V there are contr
tions for N522 andN514 with coefficients ofk2/(8p2)
times1HI

6 and21, respectively.
th

04401
ch

ly
er
,
y

u-

When the external leg attaches to the pseudo-grav
field the interaction makes contributions toa(t) and g(t).
Becausec52c001c i i these have opposite signs. The co
tribution for a(t) is

H ikS 2
i

4
km2V4D ^0uT@f~x!f~x8!#u0&J

x85x

5
1

4
k2m2V4iDg~x;x!, ~180!

˜

IR
2

3
4 k2Ḣa0

4~ t !
2Ḣ

H2~ t !

1

24p2S HI
62H6~ t !

Ḣ2 D , ~181!

5
k2

32p2 S HI
62H6~ t !

H2~ t ! Da0
4~ t !. ~182!

In the notation used at the end of Sec. V there are contr
tions forN522 andN514 with coefficients ofk2/(32p2)
times1HI

6 and21, respectively.
Tables I–III give the various cubic interaction vertice

Note that those of Table I have been partially symmetriz
by making the external leg attach to pseudograviton No. 1
should also be noted that derivatives with respect to the
tached field are interpreted through integration by parts~IBP!
as acting on the entire result. Further, spatial translation
variance~STI! allows the result to depend only upon th
conformal time after the expectation value is taken. For
ample, in vertex No. 3 of Table I, the derivative with respe
to line No. 1 is interpreted as follows:

]1
a2
˜

IBP
2

]
]xa2

˜

STI
ta2

d
dh . ~183!

Because of theha1b1 vertex No. 3 contributes toa(t) and
g(t) with opposite signs. The contribution toa(t) is
d

dh H ik
i

2
kHV3^0uT@ca2b2

~x!ca3b3
~x8!#u0&ta2tb2ha3b3J

x85x

5
d

dh H 2
1

2
k2HV32iDa~x;x8!J

x85x

, ~184!

˜

IR

23k2H2~ t !a0
4~ t !

Ḣ2

H4~ t !

1

24p2 S HI
62H6~ t !

Ḣ2 D ,

~185!

52
k2

8p2 S HI
62H6~ t !

H2~ t ! Da0
4~ t !. ~186!
When the contributions from all vertices are summed
amputated one-point functions are

a~ t !˜
IR

2
3k2

32p2S HI
62H6~ t !

H2~ t ! Da0
4~ t !, ~187!
e
g~ t !˜

IR
1

3k2

32p2S HI
62H6~ t !

H2~ t ! Da0
4~ t !, ~188!

d~ t !˜
IR

2
k2

8p2S HI
62H6~ t !

H2~ t ! D SA2Ḣ
H~ t ! Da0

4~ t !. ~189!
0-16
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In the notation at the end of Sec. V this corresponds to
following coefficients:

a2252g225
3

4
d2252

3k2

32p2 HI
6 , ~190!

a1452g145
3

4
d145

3k2

32p2 . ~191!

From Eqs.~141!,~142! we see that the cosmological expa
sion rate and the quantum-corrected scalar are

Heff~ t̄ !5H~ t̄ !

3H 12
k2

72p2 S HI
623HI

3H3~ t̄ !12H6~ t̄ !

H4~ t̄ !
D 1•••J ,

~192!

F~ t̄ !5w0~ t̄ !

3H 11
k2

576p2 S HI
622HI

3H3~ t̄ !1H6~ t̄ !

H4~ t̄ !
D 1•••J .

~193!

It should be noted that without independent knowledge of
scalar potential there is no way of distinguishing classi
and quantum contributions inHeff( t̄ ). Thus it is possible for
a huge quantum back reaction to masquerade as a mod
tion of the classical scalar potential. It should also be no
that quantum correctionsincreaseF( t̄ ). Thus it is not pos-
sible to interpret the slowing ofHeff( t̄ ) as the result of quan
tum corrections having pushed the scalar slightly down
classical potential.

VIII. SUMMARY AND DISCUSSION

This paper is first of all a check on the calculation
Mukhanov, Abramo, and Brandenberger. We certainly ag
with the sign and the leading time dependence that can
inferred for Heff( t̄ ) and F( t̄ ) from their published results
@1,2#. From unpublished work we see that even the numer
factors agree. It is worth emphasizing that we employed
standard formalism of covariant quantization while they us
a truncated version of the canonical formalism. The two c
culations were also done in completely different gauges:
added a covariant gauge fixing term whereas they use

TABLE II. Vertex factors contracted intoca1b1
v̄a2

va3
.

No. Vertex factor No. Vertex factor

1 2kV2ha2(a1hb1)a3]2•]3 6 1
2 kV2ha1b1]2

a2]1
a3

2 2kV2ha3(a1]2
b1)

]3
a2 7 2kHV3ha1b1]2

a2ta3

3 2kV2ha2(a1]2
b1)

]1
a3 8 22kHV3ha3(a1]3

b1)ta2

4 2kHV3ha2(a1]2
b1)ta3 9 2kHV3ha1b1]1

a3ta2

5 kV2ha3(a1]3
b1)

]2
a2 10 2kH2V4ha1b1ta2ta3
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physical gauge. It would be difficult to imagine two mo
completely different calculational schemes. Yet we got
same results in the end, for bothHeff( t̄ ) andF( t̄ ). This is an
enormously powerful check on the validity of their work an
on the physical reality of the effect. If this back-reaction is
gauge chimera it is a remarkably consistent one.

Our motivation for this work was the excellent questio
posed earlier this year by Unruh@3#. Although our calcula-
tion is itself a sort of answer we have analyzed some of
arguments more generally in Sec. III. In particular, it tur
out that the seeming disagreement between Unruh’s l
wavelength solutions and those of Mukhanov and
workers derives from different definitions for what is ‘‘ze
roth order’’ when expanding in powers of the wave numbe9

If one keeps higher terms ink2 it turns out that Unruh’s
second solution implies an orderk2 result for the variable
used by Mukhanov and co-workers, and this result is j
4k2/k2 times their second solution. So neither of the lo
wavelength solutions of Mukhanov and co-workers is u
physical.

It is important to understand that a compelling physic
mechanism underlies the back-reaction of Mukhanov and
workers. It is the self-gravitation between superadiabatica
amplified long wavelength modes. A simple physical mod
is that virtual particles whose wavelengths are comparabl
the Hubble radius become trapped in the expansion of sp
time and are not able to recombine. As the particles
pulled apart their long range gravitational potentials fill t
intervening space, adding with the potentials of earlier pa
Because gravitation is attractive these potentials resist
further expansion of spacetime, thereby slowing inflatio
There is absolutely no question that this process should o
for quanta, such as gravitons and minimally coupled scal
which lack conformal invariance but are still massless on
Hubble scale. The only issues concern the strength of
back-reaction, its time dependence, and whether or not it
eventually stop inflation.

The analogous back-reaction has already been dem
strated for gravitons when inflation is driven by a positi
bare cosmological constant@7#. In this case it comes at two
loops because the pair creation event is already one loop

9After the completion of this work it was brought to our attentio
that Kodama and Hamazaki have already clarified the relation
tween Unruh’s solutions and those of Mukhanov@17#. It should also
be noted that Unruh has independently withdrawn the claim o
disagreement.

TABLE III. Cubic interactions involvingf.

No. Interaction No. Interaction

1 1
8 k2w08V

2f8c2 6 1
2 kV2f ,rf ,scrs

2 2
1
4 k2w08V

2f8crscrs 7 2
1
8 k2m2w0V4fc2

3 2
1
2 k2w08V

2f ,rc0
rc 8 1

4 k2m2w0V4fcrscrs

4 k2w08V
2f ,rcrscs0 9 2

1
4 km2V4f2c

5 2
1
4 kV2f ,rf ,rc 10 k2w08V

2f ,rv̄0vr
0-17
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the absence of linearized mixing between the dynam
spin-2 gravitons and the spin-0 gravitational potentials po
pones self-gravitation to next order. When the superadiab
cally amplified quanta are themselves scalar their mix
with the spin-0 gravitational potentials allows se
gravitation to occur at one loop order. However, there d
not have to be such a one loop effect@19#. The feature which
seems to distinguish those scalar-driven models which s
slowing at one loop from those which slow at two loops
the rate at which superadiabatic amplification injects 0-po
energy. If this is less than or equal to the physical thr
volume’s inflation then there is no one loop effect; if supe
diabatic amplification injects 0-point energy faster than
three-volume inflates to absorb it then there is a one l
effect.

Of course gravitons presumably drive a two loop effect
this model as well. There may also be significant scalar
fects at higher loops. Higher loop processes are interestin
that they derive from the coherent superposition of inter
tions over the invariant volume of the past light cone, wh
can grow arbitrarily large. There is no barrier to consider
such questions in the covariant formalism we have de
oped. The formalism of Mukhanov and co-workers wou
have to be extended to make this possible.
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It may be of general interest that we were able to exte
the Feynman rules of Iliopouloset al. @4# so that they apply
to an arbitrary scalar potential. This was the work of Sec.
Of course we can only express the propagators as m
sums, where even the mode functions remain to be de
mined. But we have shown in Sec. VI how these mode fu
tions can be usefully expanded, both in the ultraviolet and
the infrared. And the calculation is an explicit example
how interesting effects can be obtained. It should now
possible to redo the two loop computation of Tsamis a
Woodard@7# for an arbitrary background. This should com
pletely determine the effective field equations needed
evolve past the end of inflation to arbitrarily late times@20#.
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