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We describe a simple dynamical model characterized by the presere® abncommuting Hamiltonian
constraints. This feature mimics the constraint structure of general relativity, where there is one Hamiltonian
constraint associated with each space point. We solve the classical and quantum dynamics of the model, which
turns out to be governed by an SLR2, gauge symmetry, local in time. In classical theory, we solve the
equations of motion, find an SO(2,2) algebra of Dirac observables, find the gauge transformations for the
Lagrangian and canonical variables and for the Lagrange multipliers. In quantum theory, we find the physical
states, the quantum observables, and the physical inner product, which is determined by the reality conditions.
In addition, we construct the classical and quantum evolving constants of the system. The model illustrates
how to describe physical gauge-invariant relative evolution when coordinate time evolution is a gauge.
[S0556-282(199)02014-1

PACS numbd(s): 04.60.Ds

[. INTRODUCTION where H represents the Hamiltonian constraints dhdhe
diffeomorphism constraints. In this paper we present a model
General relativity(GR) has a characteristic gauge invari- that mimics this aspect of GR.

ance, which implies that its canonical Hamiltonian vanishes The model we present has three constraints, which we call
weakly. As a consequence, its dynamics is not governed by @, , H,, andD. Their algebra has the structure
genuine Hamiltonian, but rather by a “Hamiltonian con-
straint.” This peculiar feature of the theory has a crucial {H;,H,}~D, {H;,D}~H;, 2)
physical significance, connected to the relational nature of

th_e general-relativistic spatiotemporal notiofs-3], and ~ which mimics Eq.(1). (Models with severalcommuting
raises a number of important conceptual as well as technicglsmiitonian constraints were considered in R&|.) The

problems, particularly in relation to the quantization of theconstraintsH andH, are quadratic in the momenta, while
theory[4]. In the past, much clarity has been shed on thes% linear. as %heir cc>2rrespondents in GR '

problems by studying finite dimensional models mimicking The model has an interesting structure which exemplifies

the constraint structure of the theory, and in particular, havin a nontrivial manner various aspects of the quantization
ing a weakly vanishing Hamiltonia8]. P q

There is an aspect of the constraint structure of GR, hOWg;md interpretation of the fully constrained systems. We ana-

ever, which, as far as we are aware, has not been analyzf(gt?]'gedzg'légs géﬁsig?élangv%uggug d%r;améﬁz’r;‘llhs'gv 532
with the use of constrained models. In GR, there is not just v pietely. Ispiay 9 utl

single Hamiltonian constraint, but rathefamily of Hamil- of the equations of motion and the finite gauge transforma-

tonian constraints, one, so to say, for each coordinate—spa(t,'e?n of variables and Lagrange multipliers. T_he_ congtramt
point. Furthermore, the Hamiltonian constraints do not com? gebra turns out to be .SL(R) and the mpdgl IS Invariant
mute with each othethave nonvanishing Poisson bracketsunder an SL(XR) gauge invariance, I(_)cal n time. We find a
with each other Indeed, the constraint algebra of GR has thecomplete SO(2,2) algebra of gauge invariant observables, as
well known structure well as a(smalley complete set of independent observables.
The phase space turns out to have the topology of four cones
{H,H}~D, {H,D}~H, {D,D}~D, (1)  connected at their vertices. We then study the quantum dy-
namics, solve the Dirac constraints, exhibit the physical

states explicitly, and construct a complete family of gauge

*Email address: merced@fis.cinvestav.mx invariant operators. The reality properties of the gauge in-
"Email address: rovelli@cpt.univ-mrs.fr variant operators fix uniquely the physical scalar product. In
*Email address: thiemann@aei-postdam.mpg.de addition, we define the classical and quantum evolving con-
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stants[6] of the system, and we discuss the observability of S
evolution for the systemésuch as GRin which time is a b 2MH+2NH,. ©
gauge and the theory has no preferred physical time. These equations show that there are no secondary con-
straints, and that three constrai(#s are first class. The dy-
Il. CLASSICAL DYNAMICS namics of the system is given entirely by the constraints and

the Hamiltonian isH=NH;+MH,+\D. Since we have

four real dynamical variablesi(and \7) and three first class
constraints, the system has a single physical degree of free-

Definition of the modelThe model we consider is defined
by the action

- - 1 I . - dom.
S{u,v,N,M J\]=§f dt{N(Du?+v?) +M(Dv?+u?)], The Poisson algebra of the constraints can be read directly
3) from Eq. (9); it is given by[cf. Eq. (2)]
where {H1, Hx}=D,

- 1 - - - 1 - - {Hl! D}:_ZH]_,
Du=ﬁ(u—>\u), Dv=m(v+)\v); (4)
{H2, D}=2H,. (10

; ; ; o 1,2
tpe tvl/o 2Lagrang|an ijnamlcal variables=(u,u%) and This algebra is isomorphic to slRR), the Lie algebra of the
v=(v-,v°) are two-dimensional real vector$§y, M, and group SL(2R).

A are Lagrange multipliers. The squares are takerRin Analogy with GRThe model has a structure recalling GR.
U2=U~L{=(l{1)2+(uz)z_- o ~ The analogy is transparent in the Hamiltonian framework,
~ Hamiltonian analysisThe Hamiltonian analysis is simpli- - given the similar structure of the two constraint algebras. In
fied by first rewriting the action in the following form: the Lagrangian framework, compare the act{@nhwith the

_ _ Einstein-Hilbert action Sgg. Written in terms of the

S:f dt J_DGJF\;_D\;_N%(DJZ_W) Arnowitt-Deser-MisneffADM) variables,Sgg is
Lo Seda.NA 1= [ at[ Vg ding+Rig),
—ME(DVZ—UZ)—)\(UDU—V-DV) : (5)
- 1.

From this form, we see that the momenta conjugate &md Dgap= 1 (9an—2D(arp) 11

v are
R R R . whereg is the three-dimensional metridl the lapse and
p=Du and w=Dv, (6)  the shift,R the three-dimensional Ricci scalar, we have indi-
cated the extrinsic curvature by Dg,, and written Dg?
"=DgDgj— Dg.,Dg?". Notice that the two components of

U mimic the metric in a space point, the two components of

v mimic the metric in a second space poiht,mimics the
lapse in the first pointM the lapse in a second point and
the shift. The sum in Eq.3) mimics the integration ovexin

Eqg. (11), and the definition oDv and Dv mimics the ex-
trinsic curvature.

Gauge invarianceUnder an infinitesimal gauge transfor-
D=u-p—v-. (7) ~ mation generated by infinitesimal time dependent parameters
n(t),m(t),I(t), the canonical variables transform [a§

respectively, and that we have a weakly vanishing Hamil
tonian and three primary constraints

1 . -
lez(pz_vz),

1 . -
H,= E(WZ_UZ),

The Hamilton equations of motion are ) R R
. . su=l(t)u+n(t)p,
U=Np+AU, v=M7—\v, ) . )
. . op=m(t)u—I(t)p,
p=Mu—\p, w=Nv+A7. (8) . . .
Sm=Il(t)m+n(t)v,

Using Egs.(7) and (8) we find the evolution of the con-

straints sv=m(t)m—I(t)v, (12)
Hy=MD—2\H;, while the Lagrange multipliers transform Egj
H,=—ND+2\H,, SN=n(t)—2n(t)A+2I(H)N,

044009-2



SL(2,R) MODEL WITH TWO HAMILTONIAN CONSTRAINTS PHYSICAL REVIEW D 60 044009

SM =m(t)+2m(tH)A — 21 (t)M Solution to the equations of motiomhe evolution of the
’ system can be viewed geometrically. Let us focus on the
S\ =1(H)+n(HM—m(N. (13 (u,p) sector—r,v) behaves in the same manner. The equa-

tions of motion(8) for this sector can be written in the form

We can check the transformation of the actihunder this N

infinitesimal variation of the canonical variables and the d [y A N

Lagrange multipliers. We find thaiS=0 provided that the ail 6 —( )

boundary terrm(t)(p?+v?)+m(t) (7% + u2)|:;f vanishes. P Mo =
The problem of finding thdinite gauge transformations . o .

can be solved by using the fact that Ej2) is an infinitesi- 1 "€ Matrix composed by the Lagrange multipliers is valued

mal SL(2R) transformation. More precisely, each one of the the Lie algebra of the SL(R) group and can be viewed as

four pairs (1%,pl), (U2,p?), (#LvY), (#2,v2) (notice that the Yang-Mills connection for the localin time) gauge

the order is inverted in the second twaransforms in the ~9roup SL(ZR):

fundamental representation of SLR, It follows that the

finite gauge transformation of the canonical variables gener- A(UZ( MO N(D ) (19)

ated by the first class constraints are given by finite SR) 2, M(t) —A(t))°

transformations as follows:

=0. (18

T S

_ R o R _ This is not a vague analogy: using this notation, the ugly
u'=a(t)u+B(t)p, = =a(t)m+pB(t)v, transformation(16) becomes

"/: - g "/: - - d
p'=y(u+8tp, V'=yT+stV, (14 A'=GAG -GG 20
where the matrix

That is,A transforms precisely as a connection. Under a time

(15) dependent gauge transformatiit), (u,p) transform as in
y(t)  8(1) Eq. (14), A transforms as in Eq(20), and the form of the
L . . . equation of motion18) is preserved.
is in SL(2ZR), th‘it is, with the only restriction that —“&iyan the geometric analogy, it is easy to integrate the
a(t) o(t) — B(t) (1) =1. Thus, the system is invariant under ¢ ations of motion. The Lagrange multipliers can be chosen
an SL(2R) gauge invariance local in time. _as arbitrary functions of time, namely we can choose an ar-
The finite transformation law for the Lagrange multipliers bitrary time dependent sI(R) matrix A(t). The solution of
can be found from the definitions of the momenta. We 0byng equations of motiofL8) is then obtained from the initial
tain, with some algebra, value (Up,po) at timet=0 by

a(t t
G(t):( (® B())

N'=a?N—B°M—2apB\+aB—ap,

u ) rac) b(t)) Uo .
M’ =—9°N+ M +2yS\+ y6— ¥, p(t) | ety dt)/| po)’ 1)
N =—ayN+BSM+ (ad+By)\+ad—By. . where the matrix
Below we give a clean geometric interpretation of these U(t)= a(t) b(t) 22)
ugly-looking transformations. c(t) d(t)
We can now check the invariance of the action. By plug-
ging Egs.(14) and(16) into the action(5) we get with some  satisfies the parallel transport equation
algebra
d
So.oL . —U(t)—A(t)U(t)=0. 23
S’=fdt[u-p+v-w—(NH1+MH2+)\D)] dt (H)=AMDUM 23

The solution is given by the time ordered exponential

I |
+ (Bv)(U-p+V~w)+§(ay)(u2+w2)

U(t) =PelAtdt” (24)

t:tf

7

1
+ 5 (BO)(p*+V? , :
2(’8 )P~V Alternatively, we can chose(t) as an arbitrary one param-

eter (differentiablg family of SL(2R) matrices, and com-
The action is invariant provided that the boundary term vanPute the Lagrange multipliers by derivation. The dynamics of
ishes. the (m,v) sector is the same, with the sarbét) [one has

t=t;
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only to remember that appears second in ther(v), un- IIl. OBSERVABLES
likely .u]. This giyes the complete solution of the classical Dirac observables An observable is a function on the
equations of _mot|on. _ constraint surface that is invariant under the gauge transfor-
~ In conclusion, the general solution of the Lagrange equamations generated sl first class constraints. Equivalently,
tions Is an observable is a function on the phase space which has
weakly vanishing Poisson brackets with the first class con-
u(t)=a(t)uy+b(t)po, straints. To find gauge invariant observables, we can proceed
as follows. As already noticed, E@l4) indicates that the
V(t)=c(t) mo+d(t)Vo, (25) four two-dimensional vectors;= (x*,x?), i=1,2,3,4
with L N N
X1= , Xo= , Xgq= , Xa=
=p 27| p2 I 47| 2

a(hd(®)=b(te(t)=1 (26) transform under gauge transformation in the fundamental

I Lo . 2o representation of SL(R). But SL(2R) preserves areas in
and (Uo,Vo,Po,mo) satisfying the constraints, that iBg  R2 thatis, it preserves the vector product of any two vectors.
=v3, ma=uj and Uy-po=Vo- 7. The corresponding It follows immediately that the six observables

Lagrange multipliers are obtained from Eg23):

Oij=>2i><>2j=xilxj2—xi2le (31
N(B=b(t)a(t)~a(t)b(t), @7 are all gauge invariant. Explicitly,
M(t)=c(t)d(t)—d(t)c(t), (28 Op,=ulp?—plu?, Oy=u?vi-p?7t,
. . 1,1 A1_1 —_112,2__ 2_2
(1) =a(t)d(t)—b(t)c(t). (29) Op=uvi=pm,  Og=uivi—pia’,

. . Op=ulvi—pln?,  Og=nlv?i-vin? 32
As expected for a fully constrained system, a solution of the 14 b U= m (32

equations of motion is given by a one-parameter family ofT
gauge transformations.

Let us construct the general solution in a given gauge. We X x=0, {Ex32=0, {x*x%=g;, (33
consider the gaugkl =—1, N=+1, and\ =0. The matrix b b b J
A is then the unit antisymmetric matrijand time indepen- where gi; is the diagonal matrif1,1,—1,—1]. From this
deny and its holonomyU(t) is the rotation matrix by an observation, it easy to compute the Poisson algebra of the
anglet. We still have three arbitrary gauge fixings to imposeoij observables

att=0. We choosai?=v?, U-p=0, andu?(0)=0. Using

he Poisson brackets between the components ofitlaee

the constraints and the general soluti@), we obtain {04} .0k} =0ikOji — 91 Oj + 9jiOik— 9Oy .~ (34)
- ) Therefore the Poisson algebra of the six gauge invariant ob-
u(t)=(r coget), rsin(et)), servable<D;; is isomorphic to the Lie algebra of SO(2,2).

Since the physical space is two-dimensiofw@ie degree
V(t)=(r cog€e't+ ), rsine't+ae)), of freedon), there are at most two independent continuous

observables. Therefore there must be four relations between

the six observable®;;, when the constraints are imposed.

These relations can be easily obtained by computing the ob-

. servablesO;; in the gauge(30) att=0. In fact, a relation

m(t)=(re'sin(e't+¢), —re'coge’'t+¢)), between gauge invariant quantities which is true in a particu-
(30) lar gauge is also true in general. From E80) we have

5(t) =(—resin(et), recoqet)),

with e=+1 ande’=*1. In this gauge, the two vectors Opp=€J, Og=¢'J,
andv have the same length and rotate with the same angular
speed, equal to 1. Notice that the solution depends on two
(continuou$ parameterst e R™ is the length of the vectors, o _ S
and ¢ e S, is their relative angle at=0. Since the space of Ou=Jsing,  Ozp=—ecJIsing, (35
solutions is two dimensional, there is a single degree of free here we have introduced

dom, as anticipated. In addition, there are the two discrete

parameters ande’. These distinguish four branches of the J=r2 (36)
space of solutions, in which each of the two vectors rotate

either clockwise or anticlockwise. Clearly

Oq3=Jcos¢p, Oyy=€e'Jcosg,
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=(—03,)?, the two particles have the same “total angular
momentum.” In the gauge30), U and v rotate at equal
angular speed: each one of the four cones represents an ori-
entation of the two rotations] is their angular momentum,
and ¢ determines relative angle betweerandv.

The other fourQ;; arrange naturally in a’22 matrix

O13 O14)
ab_ —a,b a_b
= =udvP—por®, (44
(Om O24
wherea,b=1,2. If we solve Eq.25) for a(t), b(t), c(t),
FIG. 1. The topology of the phase space. andd(t) and we insert the solution in E§26), we obtain
with some straightforward algebra

€ Oz=¢€'0yy, (37)
e UAOVO() €qceba MI=0,,04,. (45)
€ 024: 6,013, (38) d . . .
(The O;; andM°® observables are time independghising
€ Op=—€'0yy, (39)  Ed.(39), this relation becomes
0,,0=0. (40) [ul(t)vi(t) + e€"u?(t)vZ(t)]cose

1 204 1142 1 I
In the last equation, indices are raised vgth. Since theO;; UV —ee'u (Ovi(D)]sing=1J. (46)

are gauge |n\;ar|ant, these relations hold in general on thﬁi'his is a key equation, which entirely captures the physical
Cor':'Sr:Lzmttﬁgrt\?v((:)e.continuous uantitige= R*, < S, and content of the model. It expresses the relation between the
two discrete quantities, e’ = = 1q defined in gén:rallby Eq. L@grangian variables(v) in each 0,¢,¢,¢') state. The

' ' state of the systeml(¢,€,€’) cannot be computed from the

(35), namely, by RN ) . .
knowledge of the position,v at a single time: two times, or

ulp2—plu? a time derivative, are needed, as for any dynamical system.
=5 1 Once the state is determined, E46) provides us with the
lutp—pu? entire gauge invariant information: the relation between the
Lo 10 Lagrangian variables at any other time.
o= TNV We also define the two complex conjugate observables
|7T:LV2_V17T2| , i . ’ .
Ri=€J€'?=€(013+1014) = €' (024=i053), (47)
J=|ulp?-plu?, . .
up™—pru] Si=eJe ' ?=€(013-101) = €' (0411059, (48
u'v?—pta® which will be convenient in the quantum theory. A complete
¢$=arctan——m———— (41 S q cory P
ulvi—plst set of observables is given h)R,S,e,e’ with the reality
conditions
are gauge invariant observables. They can be taken as coor- o o
dinates of the physical gauge-invariant phase space. Using J=J, R=S (49
Egs.(34),(35),(40), straightforward algebra yields the physi-
cal Poisson brackets Clearly
{J,d}=€€". (42

1 . 1
cos¢=Z(R+S)J*1, S|n¢>=m(R—S) JL
(e and ¢’ commute with everything.Notice thatJ=0 is a (50)

single point(whatever¢, €, and €’). Therefore the phase
space has the topology of four cones connected at their ver- Evolving constantsThe physical phase space is the two-

tices J=0), see Fig. 1. dimensional space of the gauge orbits on the constraint sur-
Notice that face. A point in the physical phase space is determined by
.. (J,¢,€,€"). This description of the system resolves gauge
Opp=eJ=uXp, invariance, but loses reference to time evolution. Time evo-
o lution is, as in any fully constrained theory, a gauge trans-
—Ogy=—€'J=vXm (43)  formation.

_ _ In certain fully constrained physical models such as the
are the “angular momenta” of the two two-dimensional free relativistic particle or the Nambu string, there is a global
“particles” u and v. Since, from Eg.(37), (0;)? implementation of the kinematical Poincageoup. The gen-
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erator of this group that corresponds to the energy, can bebservable of the fornul=U%(x,y,z;J,¢,€,€’). Solving
taken as the physical Hamiltonian for time evolution. InEq.(46) for ul, and replacingi?, v!, andv? with x, y, andz,
other words, for these systems the natural time evolution cawe obtain

be introduced in the frozen reduced phase space by using the

energy as Hamiltonian. This provides a preferred variable ULy, zd, b€ €)= :
that plays the role of time, namely, of the independent evo- e €(y cos¢+zsing)

lution parameter. Instead, the kinematical group is absent in (52)
GR (unless additional structure, such as flat asymptotic inis is an “evolving constant” in the sense of REE]. For
finity is added, or in the model studied in this paper. In these any fixed state [ be€'), the quantity
cases, there is no preferred time variable. The theory j”s(‘Jl(x,y,z;J,¢,e,e’), viewed as a function ok, y, and z

describes—very democratically—the relative evolution ofgiyes the evolution ofi* as a function of the other variables.
the variables, as functions of each other, without privilegindyice versa, for any fixed x,y,z, the quantity

any variable as the independent one. For a detailed discugsl(x,y z;J, ¢,€,€'), viewed as a function of, ¢, €, ande’,
sion of the physical meaning of this very important feature ofgefines agauge invariantfunction on the physical phase
GR, see Ref[2]. space. Similar expressions can be derived from (E6). for

One way to express evolution in these cases, is to breal?, y1, andv?:
gauge invariance. For instance, one can impose a time de-
pendent gauge fixingthe analogue ok°=t for a relativistic
particle), or choose a gauge at time zero and then evolve with
arbitrarily fixed Lagrange multipliers. This amounts to arbi-
trarily choosing one of the variables as the time variable.

Is there, in alternative, gauge invariantdescription of Vi(s,x,2;d,,€,€' )= _
time evolution? Are there gauge invariant observables that €scos¢—e'xsing
capture the dynamics of the Lagrangian variahiég,v(t)?

Can we talk about a gauge-invariant dynamics, if the time V2(s,x,y;d, b€ €')=
dependence ai(t) andv(t) is a gauge transformation? The €'xcos¢+essing
answer is ye$6]. (52)

In fact, the gauge invarianior physical content of the | neres s the value oful. These observables describe the
model is not the description of the evolution of the four realg, o |ution of the systenand are gauge invariant.

variablesu’(t),u*(t),v'(t),v*(t) in the coordinate timd, Time reparametrization invarianc&he system is invari-

but rather the descrlp.tlon of _thelr evolution as fun_ctlons of t under time reparametrization.[ﬁ(t),\7(t)] is a solution

each other. More precisely, since there are four variables a the equations of motion, then

the gauge orbits are three-dimensional, the system describes '

the motion of anyone of these four variables as function of (Jr(t)) (J(f(t)))

the other three. In other words, once the state of the system is =| . (53

known, the dynamical model allows us to predict the value v(f(t))

of any one of the four Lagrangian variables from the value of. . . .

the other three. This prediction is univocal and gaugdS /SO @ solution. This is immediately seen from E@5)

invariant? and (26), becausea(f(t))d(f(t))—b(f(t))c(f(t))=1 fol-
Each solution of the classical system, namely, each poifPWs froma(t)d(t) —b(t)c(t)=1. )

of the phase space determines one functional relation be- Notice that there exist gauges in whialit) evolves int

tween the four variables(t),u?(t),v(t),v(t). This func-  while v(t) remains constant. For instance, we can choose

tional relation allows us to compute one of these variables =\=0. In this gauge,

from the value of the other three. This functional relation is

given by Eq.(46). 0 N(t)
The form of a gauge invariant observable describing evo- “lo o

lution is therefore the following. Let us ask what is the value

U? of the observableir, whenu? andv have assigned val- and therefore
uesu?=x, vi=y, andv2=z. In other words, we search an

—€'X(zcosp—ysing)+ el

—€eS(y cos¢p+zsing)+ el

U?(s,y,z;J,¢,€,€' )=
(8y.2.J.6.€.€) €'(zcosgp—ysing)

—Zz(e'xcosp+essing)+ el

—Yy(escosgp—e'xsing)+ el

v'(t)

(54)

1 b(t)
U(t)=< ) (55)

The situation is exactly the same as in GR, where the theory doeg
) ) ; . o that
not allow us to predict the value of the fields at given coordinate
values or the coordinate positions of particles, but rather allows us
to predict the value of general covariant quantities, such as the
value of the fields wheifand wherg certain other dynamical vari- N
ables have given valud4]. V=Vq (56)
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with N=b. A different example is the following. The solu- The physical states, in the sense of Dirac, are in the kernel

tion (30) can be gauge transformed to the solution of all the quantum constraints. Namely, they are defined by
- - 2 -2 D) —
u=(ucost, usint), v=(u, 0), (h*A +v9)¥(u,v)=0,
R (cost—1) R (h2A,+0?)¥(u,v)=0,
p= UW, u|, w=(usint, 0), (57

—i#(u-Vy—v-V,)¥(u,v)=0. (62)
where the Lagrange multipliers ake=(cost—1)/sint, M=

h > © . W I hi f I ial diff ial
—(cost—1)/(sint)?, andN=1. Similarly, there is a gauge in e now solve this system of coupled partial differentia

equations.

which v(t) evolves int while U(t) remains constant. We transform to polar coordinates
Notice, however, that there is not really a “two finger
time reparametrization invariance” in the syst¢hj, in the G=(u cosa, usina), \7:(\, cosB, vsinB) (63
sense that it is not true that(i(t),v(t)) is a solution of the . _ . ,
equations of motion, then and we multiply the first equation of the system o7
and the second by?/#2. Equation(62) becomes
u'®)|  [u(fy(t) 2 22
(*, ):(» (58 uiui+‘9—+u—v ¥(u,v,a,B)=0
v'(t) v(fa(t)) Ju - ou 2 2 Vi &y ’
da h
is also a solution. In fact, in any given timg(t) andv’(t) > 22
oo Jd d 1% usv
must be connected to the same point in phase space by a (v—v—+ S _)\p(ulv,a,ﬂ)zoy
gauge transformation, but in general it is not true that vV 9Bz h?

a(fy(t))d(fo(t))—b(fy(t))c(fo(t)=1  when a(t)d(t) 5 ;
~b(t)e(t)=1. (u£—vw>‘lf(u,v,a,,8)=0.

IV. QUANTUM DYNAMICS (64)

We work in the coordinate representation. Elements of thdVe search a solution by separation of variables, by writing
Hilbert space are functiorn® (u,v) of the coordinates, and
p (u.v) W (uv,a,B)=Ala)B(B)i(u.v). (65)

the momentum operators are
. . The first two equations in Eq64) give immediately
h=—ihV,, 7=—ihV,. 59 . .
p u \ ( ) A(a):elmaa' B(B):elmB'B, (66)
By i ing th in th i in th . .
D?/r:(l,sgat;?ft]utme;()an(;?rzriﬁt:rs in the constraints we obtain t \(/evhere m, andm; must be integer fol to be continuous.
The third equation in Eq64) implies that

ﬂlz_%(ﬁZAuﬂ?Z) P(u,v)=(uv) (67)

(a function of the produativ). Plugging this last result back
. 1, - into the first two equations in E64), we find that the first
Ho=— E(h A,+uf), and last terms of one equation are equal to the first and last
terms of the second. Therefore the two middle terms must be
B —in(T,v-F.), 60 Wg:;lu?s well. Therefore the two equations impi§=m3.

where A= V2=5%/9(u*)?+ 6?/3(u?)?. In the Hamiltonian m,=em, mg=-€'m, €€ =x1, (69)

o
constraint operatord; andH,, there is a natural ordering. In o ) o
with m any nonnegative integer. The minus is inserted for

the “diffeomorphism” operatoD, we have chosen the or- ter convenience. Using this, the first two equations of the

. X |
dering that leads to the closgre of the constraint algebra ar@stem become equal to each other and reduce to
thus the absence of anomalies. We have in fact

e d?f(x) 1 df(x) m? B
e txoax |-, (69)

[Hy, D]=-2ifHy, where we have writtex=uv/# and f(x) = y(%x). This is
the Bessel equation. Thus, we have solved the system en-

[A,, D]=2i%H,. (61) tirely. We conclude that the physical Hilbert space is
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spanned by the basis statgs,e,e’), wherem is a non-

i i r— i Im—1(X)= = Im(X) + 52 Im(X),
negative integer and,e’=*x1. In the coordinate represen- X dx
tation these states are given by

m d
<ulvlalﬂ|m!656,>:\I,m'5'5’(ulvla!ﬁ) ‘]m‘Fl(X):;‘]m(X)_&‘]m(X) (75)
:eim(eaf’ﬂ)3m<u_v), (70 of the Bessel functions, a straightforward but long calcula-
h tion yields
whereJ,, is the Bessel function of orden. Notice that for Ot iO. NP = ehmW o
eachm>0 there are four statess€ +=1,e’ =*1), but for (01571019 W =€ mteeleet
m=0 there is only one state, sinden,+,+)=|m,+,—) A A ,
O _|O \P ce — € ﬁm \I’ ee’ €€+

:|m,_’+>:|m’_’_>.2 (O24 23) m,e, m+ee’ €, 76)

Quantum observables and scalar produ€onsider the
observable®;; defined in Eq.(32). They are gauge invari- Thus, the quantum operator corresponding to the observable
ant, and thus have vanishing Poisson brackets with the corR defined in Eq.(47) is
straints. We chose the natural ordering for the corresponding

quantum operator®;; Rlm,e,e’)y=fimm+e€’,e,€'). (77)

Op= 012 L2, Ope= 0201— p2at In the same manner, from E(8) we obtain
12— ’ 23— ’
A mga A e e aa Sim,e,€'y=hm|m—ee’,e,€'). (78
013:U1V1_p1771, 024: U2V2_p2772,

To complete the construction of the Hilbert space of the
71) physical quantum states, we have to determine the scalar

product on the space spanned by the states,e’). This is

It is easy to see that the commutators of these operators Wify\etermineq py the requirement that real classical observables
the quantum constraint§0) vanish. Therefore these opera- b€ self-adjoint. The observablds €, and e’ are real, and
tors are well defined on the space of the solutions of thahus we requirel, €, ande’ to be self-adjoint. It follows that
quantum constraints, namely on the stg#&®. We compute the statesm, e,e’) which are their eigenstates must form an
their action on these states. Going to polar coordinates werthogonal basis. This fixes the scalar product up to the norm
see immediately that of the basis states. Define

014:U1V2_p17T2, 034: 771V2_V1’7T2.

R 9 (m,e,e'm,e,€')=Cp e - (79
Olzq,m,e,e’ = |h _\Pm,e,e’ = Emhwmyeyer y
da Next, Sis the complex conjugate &. Thus we require that

RT=S. It follows that

J
_\Pm,e,e’zfrmﬁwm,e,e’ . (72)

034 \I,m,e,e’zlﬁ (9[8

(m,e,e'| R |n,e,e’)=(m,e,€'|Sn,e,€’), (80
Thus in the physical state space we haV®,,= eO,: the  from which, we have easily
relation between the two is precisely the same as in the clas-
sical theory, Eq.(37). We can thus identify the and €’

appeared in the quantum theory with th@nd e’ appeared Herec is a positive overall normalization constant that has
in solving the classical theory, and we conclude, from Eqno effect on the physics, and we chose it to be equal to 1.
(39), that the quantum operator corresponding to the gaug®his fixes the normalization of the orthogonal basis states,

Cm,e.er=CM. (81

invariant observabld is and therefore determines the scalar product completely. No-
R tice that the staté0,e,e’) has zero norm(This was first
Jlm,e,e’y=7m|m,e,€’). (73)  realized by Jorma LoukpWe can therefore discard it, be-

cause its presence has no physical consequences. More pre-
Thus in the quantum theoryis discrete, quantized in mul- cisely, we identify then=0 state with the state zero.

tiples of 2 The peculiar behavior of the=0 sector of the quantum
theory reflects the pathological properties of the correspond-
J=mh. (74) ing classical state. The quantum state=0 has vanishing
. . . angular momentund; the classical state with vanishing an-
Using the Bessel equation and the properties gular momentum is thécommon vertex of the four cones

that form the reduced phase spésee Fig. 1. This is a point
at which the reduced phase space fails to be a manifold.
2We missed this point in the first version of this paper. We thankPhysically, this corresponds to the fact that small perturba-
Jorma Louko for pointing out the mistake. tions of theJ=0 solution form disjoint spaces.
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Thus, the quantum theory is completely defined by theNotice that since the sum in E(B7) is restricted tom>0,

states the Hilbert space is formed by “right moving” functions
Ui () and y_ _(¢), and “left moving” functions
_ ) / Yo —(¢) andy_ () only. On these functions, the scalar
) e 1,oc;ze,e'=¢ Cm.e.e’|M.€r€”), ®2 product(88) is positive definite. In particular, the zero modes
Ve (@) =const. do not belong to the Hilbert space. We de-
the scalar product note the projector that projects out the zero modeB.akhe
o observables are then
(M, e,e'|M, e, €' )=MSy, 10 e0er 71 s (83
and the operators A ) , d
J¢e,e’(¢): —ihee @lpe,e’(d))v
j|m,e,e'>=hm|m,e,e’),
Rim,e,e')=fimm+ee’ e,€’), COSd i o(h)=P COSPif (&),
AS|m,e,e’)=ﬁm|m—ee’,s,e’), -
Sind"/’e,e’(d’)zpSinqslrlfe,e’(qs)- (89)

€lm,e,e’)=€lm,e,€’),

In this representation it is easy to write the quantum operator
corresponding to the evolving constant of motion, which
quantizes the observah(Bl). This is given by

€'|m,ee')=€'|m,ee€'), (84)

where it is understood thdD,e,e’)=0. (That is, for in-
stanceR|1,+,-)=0.)

Quantum evolving constantdn order to quantize the ~1 — €€’
evolving constant of motiof61),(52), we must construct the Us(xy,2)= Pm
operators corresponding to the classical observableg) cos
and sing. We denote these operators gband sing, with a

slight abuse in notation(The operaton}s is ill defined be-
causeg is an angle —see, for instance, RE®]—and we
must deal with periodic functions @ in order to have con-
tinuity all around the circlg.Choosing the natural ordering
given in Eq.(50), we have immediately

. . d
XP x(zcos¢—ysm¢>)+|ﬁ@,

where we have arbitrarily picked an orderih@he expecta-
tion value of this operator on a stade, .. (¢)—taken with
the scalar produdB8)—gives the physical mean value of the
variableu! at the moment in which the three variable%

— 1
cos¢ |m,e,e')=—(|m+ee€' e,€')+|m—e€' €€')), v!, andv? have valuex, y, and z (see Ref[6]). Similar
2e . .
operators can be defined for the three other evolving con-
1 stants(52).
sing |m,e,e')= §(|m+ €€’ €,€')—|m—e€€’ €,€'))
(85) ACKNOWLEDGMENTS
(where, again, it is understood tH&e,e')=0). We are very indebted to Jorma Louko for pointing out a
A convenient representation of the theory can be obtainegroblem in the first version of the papéregarding them
by representing a generic state =0 state and for the discussion of the physical scalar prod-

uct. We thank Sameer Gupta, Laurent Freidel, John Baker,
Raymond Puzio, and the other postdocs and students at the
Center for Gravitational Physics at Penn State University for
comments and help, and in particular for first realizing that
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<¢e,e’|lpe,e’>=_i66,j d¢ Lpe,e’(d’) @lpe,e’(¢)-

3General procedures for systematically ordering observables exist
(89 [10], and should presumably be used here.
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