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SL„2,R… model with two Hamiltonian constraints
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We describe a simple dynamical model characterized by the presence oftwo noncommuting Hamiltonian
constraints. This feature mimics the constraint structure of general relativity, where there is one Hamiltonian
constraint associated with each space point. We solve the classical and quantum dynamics of the model, which
turns out to be governed by an SL(2,R) gauge symmetry, local in time. In classical theory, we solve the
equations of motion, find an SO(2,2) algebra of Dirac observables, find the gauge transformations for the
Lagrangian and canonical variables and for the Lagrange multipliers. In quantum theory, we find the physical
states, the quantum observables, and the physical inner product, which is determined by the reality conditions.
In addition, we construct the classical and quantum evolving constants of the system. The model illustrates
how to describe physical gauge-invariant relative evolution when coordinate time evolution is a gauge.
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I. INTRODUCTION

General relativity~GR! has a characteristic gauge inva
ance, which implies that its canonical Hamiltonian vanish
weakly. As a consequence, its dynamics is not governed
genuine Hamiltonian, but rather by a ‘‘Hamiltonian co
straint.’’ This peculiar feature of the theory has a cruc
physical significance, connected to the relational nature
the general-relativistic spatiotemporal notions@1–3#, and
raises a number of important conceptual as well as techn
problems, particularly in relation to the quantization of t
theory @4#. In the past, much clarity has been shed on th
problems by studying finite dimensional models mimicki
the constraint structure of the theory, and in particular, h
ing a weakly vanishing Hamiltonian@3#.

There is an aspect of the constraint structure of GR, h
ever, which, as far as we are aware, has not been anal
with the use of constrained models. In GR, there is not ju
single Hamiltonian constraint, but rather afamily of Hamil-
tonian constraints, one, so to say, for each coordinate-s
point. Furthermore, the Hamiltonian constraints do not co
mute with each other~have nonvanishing Poisson bracke
with each other!. Indeed, the constraint algebra of GR has
well known structure

$H,H%;D, $H,D%;H, $D,D%;D, ~1!
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where H represents the Hamiltonian constraints andD the
diffeomorphism constraints. In this paper we present a mo
that mimics this aspect of GR.

The model we present has three constraints, which we
H1 , H2, andD. Their algebra has the structure

$H1 ,H2%;D, $Hi ,D%;Hi , ~2!

which mimics Eq. ~1!. ~Models with severalcommuting
Hamiltonian constraints were considered in Ref.@5#.! The
constraintsH1 andH2 are quadratic in the momenta, whileD
is linear, as their correspondents in GR.

The model has an interesting structure which exempli
in a nontrivial manner various aspects of the quantizat
and interpretation of the fully constrained systems. We a
lyze in detail its classical and quantum dynamics, which c
both be solved completely. We display the general solut
of the equations of motion and the finite gauge transform
tion of variables and Lagrange multipliers. The constra
algebra turns out to be SL(2,R) and the model is invarian
under an SL(2,R) gauge invariance, local in time. We find
complete SO(2,2) algebra of gauge invariant observables
well as a~smaller! complete set of independent observabl
The phase space turns out to have the topology of four co
connected at their vertices. We then study the quantum
namics, solve the Dirac constraints, exhibit the physi
states explicitly, and construct a complete family of gau
invariant operators. The reality properties of the gauge
variant operators fix uniquely the physical scalar product
addition, we define the classical and quantum evolving c
©1999 The American Physical Society09-1
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MONTESINOS, ROVELLI, AND THIEMANN PHYSICAL REVIEW D60 044009
stants@6# of the system, and we discuss the observability
evolution for the systems~such as GR! in which time is a
gauge and the theory has no preferred physical time.

II. CLASSICAL DYNAMICS

Definition of the model.The model we consider is define
by the action

S@uW ,vW ,N,M ,l#5
1

2E dt@N~DuW 21vW 2!1M ~DvW 21uW 2!#,

~3!

where

DuW 5
1

N
~uẆ 2luW !, DvW 5

1

M
~vẆ 1lvW !; ~4!

the two Lagrangian dynamical variablesuW 5(u1,u2) and

vW 5(v1,v2) are two-dimensional real vectors;N, M, and
l are Lagrange multipliers. The squares are taken inR2:
uW 25uW •uW 5(u1)21(u2)2.

Hamiltonian analysis.The Hamiltonian analysis is simpli
fied by first rewriting the action in the following form:

S5E dtFuẆ •DuW 1vẆ •DvW 2N
1

2
~DuW 22vW 2!

2M
1

2
~DvW 22uW 2!2l~uW •DuW 2vW •DvW !G . ~5!

From this form, we see that the momenta conjugate touW and

vW are

pW 5DuW and pW 5DvW , ~6!

respectively, and that we have a weakly vanishing Ham
tonian and three primary constraints

H15
1

2
~pW 22vW 2!,

H25
1

2
~pW 22uW 2!,

D5uW •pW 2vW •pW . ~7!

The Hamilton equations of motion are

uẆ 5NpW 1luW , vẆ 5MpW 2lvW ,

pẆ 5MuW 2lpW , pẆ 5NvW 1lpW . ~8!

Using Eqs.~7! and ~8! we find the evolution of the con
straints

Ḣ15MD22lH1 ,

Ḣ252ND12lH2 ,
04400
f

l-

Ḋ522MH212NH1 . ~9!

These equations show that there are no secondary
straints, and that three constraints~7! are first class. The dy-
namics of the system is given entirely by the constraints
the Hamiltonian isH5NH11MH21lD. Since we have
four real dynamical variables (uW andvW ) and three first class
constraints, the system has a single physical degree of f
dom.

The Poisson algebra of the constraints can be read dire
from Eq. ~9!; it is given by @cf. Eq. ~2!#

$H1 , H2%5D,

$H1 , D%522H1 ,

$H2 , D%52H2 . ~10!

This algebra is isomorphic to sl(2,R), the Lie algebra of the
group SL(2,R).

Analogy with GR. The model has a structure recalling G
The analogy is transparent in the Hamiltonian framewo
given the similar structure of the two constraint algebras.
the Lagrangian framework, compare the action~3! with the
Einstein-Hilbert action SGR. Written in terms of the
Arnowitt-Deser-Misner~ADM ! variables,SGR is

SGR@g,N,l#5E dtE Ag dxW N~Dg21R@g# !,

Dgab5
1

N
~ ġab22D (alb)! ~11!

whereg is the three-dimensional metric,N the lapse andl
the shift,R the three-dimensional Ricci scalar, we have in
cated the extrinsic curvature by2Dgab and written Dg2

[Dgc
cDgd

d2DgabDgab. Notice that the two components o

uW mimic the metric in a space point, the two components

vW mimic the metric in a second space point,N mimics the
lapse in the first point,M the lapse in a second point andl
the shift. The sum in Eq.~3! mimics the integration overx in
Eq. ~11!, and the definition ofDvW and DvW mimics the ex-
trinsic curvature.

Gauge invariance. Under an infinitesimal gauge transfo
mation generated by infinitesimal time dependent parame
n(t),m(t),l (t), the canonical variables transform as@7#

duW 5 l ~ t !uW 1n~ t !pW ,

dpW 5m~ t !uW 2 l ~ t !pW ,

dpW 5 l ~ t !pW 1n~ t !vW ,

dvW 5m~ t !pW 2 l ~ t !vW , ~12!

while the Lagrange multipliers transform as@8#

dN5ṅ~ t !22n~ t !l12l ~ t !N,
9-2
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SL~2,R! MODEL WITH TWO HAMILTONIAN CONSTRAINTS PHYSICAL REVIEW D 60 044009
dM5ṁ~ t !12m~ t !l22l ~ t !M ,

dl5 l̇ ~ t !1n~ t !M2m~ t !N. ~13!

We can check the transformation of the action~5! under this
infinitesimal variation of the canonical variables and t
Lagrange multipliers. We find thatdS50 provided that the
boundary termn(t)(p21v2)1m(t)(p21u2)u t5t i

t5t f vanishes.

The problem of finding thefinite gauge transformation
can be solved by using the fact that Eq.~12! is an infinitesi-
mal SL(2,R) transformation. More precisely, each one of t
four pairs (u1,p1), (u2,p2), (p1,v1), (p2,v2) ~notice that
the order is inverted in the second two!, transforms in the
fundamental representation of SL(2,R). It follows that the
finite gauge transformation of the canonical variables gen
ated by the first class constraints are given by finite SL(2R)
transformations as follows:

uW 85a~ t !uW 1b~ t !pW , pW 85a~ t !pW 1b~ t !vW ,

pW 85g~ t !uW 1d~ t !pW , vW 85g~ t !pW 1d~ t !vW , ~14!

where the matrix

G~ t !5S a~ t ! b~ t !

g~ t ! d~ t !
D ~15!

is in SL(2,R), that is, with the only restriction tha
a(t)d(t)2b(t)g(t)51. Thus, the system is invariant und
an SL(2,R) gauge invariance local in time.

The finite transformation law for the Lagrange multiplie
can be found from the definitions of the momenta. We o
tain, with some algebra,

N85a2N2b2M22abl1aḃ2ȧb,

M 852g2N1d2M12gdl1ġd2gḋ,

l852agN1bdM1~ad1bg!l1ȧd2ḃg.
~16!

Below we give a clean geometric interpretation of the
ugly-looking transformations.

We can now check the invariance of the action. By plu
ging Eqs.~14! and~16! into the action~5! we get with some
algebra

S85E dt@uẆ •pW 1vẆ •pW 2~NH11MH21lD !#

1F ~bg!~uW •pW 1vW •pW !1
1

2
~ag!~u21p2!

1
1

2
~bd!~p21v2!G

t5t i

t5t f

. ~17!

The action is invariant provided that the boundary term v
ishes.
04400
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Solution to the equations of motion. The evolution of the
system can be viewed geometrically. Let us focus on
(uW ,pW ) sector—(pW ,vW ) behaves in the same manner. The eq
tions of motion~8! for this sector can be written in the form

d

dt S uW

pW D 2S l N

M 2l
D S uW

pW D 50. ~18!

The matrix composed by the Lagrange multipliers is valu
in the Lie algebra of the SL(2,R) group and can be viewed a
the Yang-Mills connection for the local~in time! gauge
group SL(2,R):

A~ t !5S l~ t ! N~ t !

M ~ t ! 2l~ t !
D . ~19!

This is not a vague analogy: using this notation, the u
transformation~16! becomes

A85GAG212G
d

dt
G21. ~20!

That is,A transforms precisely as a connection. Under a ti
dependent gauge transformationG(t), (uW ,pW ) transform as in
Eq. ~14!, A transforms as in Eq.~20!, and the form of the
equation of motion~18! is preserved.

Given the geometric analogy, it is easy to integrate
equations of motion. The Lagrange multipliers can be cho
as arbitrary functions of time, namely we can choose an
bitrary time dependent sl(2,R) matrix A(t). The solution of
the equations of motion~18! is then obtained from the initia
value (u0 ,p0) at time t50 by

S uW ~ t !

pW ~ t !D 5S a~ t ! b~ t !

c~ t ! d~ t !
D S uW 0

pW 0
D , ~21!

where the matrix

U~ t !5S a~ t ! b~ t !

c~ t ! d~ t !
D ~22!

satisfies the parallel transport equation

d

dt
U~ t !2A~ t !U~ t !50. ~23!

The solution is given by the time ordered exponential

U~ t !5Pe*0
t A(t8)dt8. ~24!

Alternatively, we can choseU(t) as an arbitrary one param
eter ~differentiable! family of SL(2,R) matrices, and com-
pute the Lagrange multipliers by derivation. The dynamics
the (pW ,vW ) sector is the same, with the sameU(t) @one has
9-3
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MONTESINOS, ROVELLI, AND THIEMANN PHYSICAL REVIEW D60 044009
only to remember thatvW appears second in the (pW ,vW ), un-
likely uW ]. This gives the complete solution of the classic
equations of motion.

In conclusion, the general solution of the Lagrange eq
tions is

uW ~ t !5a~ t !uW 01b~ t !pW 0 ,

vW ~ t !5c~ t !pW 01d~ t !vW 0 , ~25!

with

a~ t !d~ t !2b~ t !c~ t !51 ~26!

and (uW 0 ,vW 0 ,pW 0 ,pW 0) satisfying the constraints, that is,pW 0
2

5vW 0
2, pW 0

25uW 0
2 and uW 0•pW 05vW 0•pW 0. The corresponding

Lagrange multipliers are obtained from Eq.~23!:

N~ t !5ḃ~ t !a~ t !2ȧ~ t !b~ t !, ~27!

M ~ t !5 ċ~ t !d~ t !2ḋ~ t !c~ t !, ~28!

l~ t !5ȧ~ t !d~ t !2ḃ~ t !c~ t !. ~29!

As expected for a fully constrained system, a solution of
equations of motion is given by a one-parameter family
gauge transformations.

Let us construct the general solution in a given gauge.
consider the gaugeM521, N511, andl50. The matrix
A is then the unit antisymmetric matrix~and time indepen-
dent! and its holonomyU(t) is the rotation matrix by an
anglet. We still have three arbitrary gauge fixings to impo
at t50. We chooseuW 25vW 2, uW •pW 50, andu2(0)50. Using
the constraints and the general solution~25!, we obtain

uW ~ t !5„r cos~et !, r sin~et !…,

vW ~ t !5„r cos~e8t1f!, r sin~e8t1f!…,

pW ~ t !5„2r e sin~et !, r e cos~et !…,

pW ~ t !5„r e8sin~e8t1f!, 2r e8cos~e8t1f!…,
~30!

with e561 ande8561. In this gauge, the two vectorsuW

andvW have the same length and rotate with the same ang
speed, equal to 1. Notice that the solution depends on
~continuous! parameters.r PR1 is the length of the vectors
andfPS1 is their relative angle att50. Since the space o
solutions is two dimensional, there is a single degree of fr
dom, as anticipated. In addition, there are the two disc
parameterse ande8. These distinguish four branches of th
space of solutions, in which each of the two vectors rot
either clockwise or anticlockwise.
04400
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III. OBSERVABLES

Dirac observables. An observable is a function on th
constraint surface that is invariant under the gauge trans
mations generated byall first class constraints. Equivalently
an observable is a function on the phase space which
weakly vanishing Poisson brackets with the first class c
straints. To find gauge invariant observables, we can proc
as follows. As already noticed, Eq.~14! indicates that the
four two-dimensional vectorsxW i5(xi

1 ,xi
2), i 51,2,3,4

xW15S u1

p1D , xW25S u2

p2D , xW35S p1

v1 D , xW45S p2

v2 D
transform under gauge transformation in the fundame
representation of SL(2,R). But SL(2,R) preserves areas in
R2, that is, it preserves the vector product of any two vecto
It follows immediately that the six observables

Oi j 5xW i3xW j5xi
1xj

22xi
2xj

1 ~31!

are all gauge invariant. Explicitly,

O125u1p22p1u2, O235u2v12p2p1,

O135u1v12p1p1, O245u2v22p2p2,

O145u1v22p1p2, O345p1v22v1p2. ~32!

The Poisson brackets between the components of thexW i are

$xi
1 ,xj

1%50, $xi
2 ,xj

2%50, $xi
1 ,xj

2%5gi j , ~33!

where gi j is the diagonal matrix@1,1,21,21#. From this
observation, it easy to compute the Poisson algebra of
Oi j observables

$Oi j ,Okl%5gikOjl 2gil Ojk1gjl Oik2gjkOil . ~34!

Therefore the Poisson algebra of the six gauge invariant
servablesOi j is isomorphic to the Lie algebra of SO(2,2).

Since the physical space is two-dimensional~one degree
of freedom!, there are at most two independent continuo
observables. Therefore there must be four relations betw
the six observablesOi j , when the constraints are impose
These relations can be easily obtained by computing the
servablesOi j in the gauge~30! at t50. In fact, a relation
between gauge invariant quantities which is true in a parti
lar gauge is also true in general. From Eq.~30! we have

O125eJ, O345e8J,

O135J cosf, O245ee8J cosf,

O145J sinf, O2352ee8J sinf, ~35!

where we have introduced

J5r 2. ~36!

Clearly
9-4
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SL~2,R! MODEL WITH TWO HAMILTONIAN CONSTRAINTS PHYSICAL REVIEW D 60 044009
e O345e8O12, ~37!

e O245e8O13, ~38!

e O2352e8O14, ~39!

Oi j O
i j 50. ~40!

In the last equation, indices are raised withgi j . Since theOi j
are gauge invariant, these relations hold in general on
constraint surface.

Thus, the two continuous quantitiesJPR1,fPS1 and
two discrete quantitiese,e8561, defined in general by Eq
~35!, namely, by

e5
u1p22p1u2

uu1p22p1u2u
,

e85
p1v22v1p2

up1v22v1p2u
,

J5uu1p22p1u2u,

f5arctan
u1v22p1p2

u1v12p1p1
~41!

are gauge invariant observables. They can be taken as c
dinates of the physical gauge-invariant phase space. U
Eqs.~34!,~35!,~40!, straightforward algebra yields the phys
cal Poisson brackets

$J,f%5ee8. ~42!

(e and e8 commute with everything.! Notice thatJ50 is a
single point~whateverf, e, and e8). Therefore the phase
space has the topology of four cones connected at their
tices (J50), see Fig. 1.

Notice that

O125eJ5uW 3pW ,

2O3452e8J5vW 3pW ~43!

are the ‘‘angular momenta’’ of the two two-dimension
‘‘particles’’ uW and vW . Since, from Eq. ~37!, (O12)

2

FIG. 1. The topology of the phase space.
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5(2O34)
2, the two particles have the same ‘‘total angul

momentum.’’ In the gauge~30!, uW and vW rotate at equal
angular speed: each one of the four cones represents an
entation of the two rotations,J is their angular momentum
andf determines relative angle betweenuW andvW .

The other fourOi j arrange naturally in a 232 matrix

Mab[S O13 O14

O23 O24
D 5uavb2papb, ~44!

wherea,b51,2. If we solve Eq.~25! for a(t), b(t), c(t),
and d(t) and we insert the solution in Eq.~26!, we obtain
with some straightforward algebra

ua~ t !vb~ t ! eacebd Mcd5O12O34. ~45!

~The Oi j andMcd observables are time independent.! Using
Eq. ~35!, this relation becomes

@u1~ t !v1~ t !1ee8u2~ t !v2~ t !#cosf

1@u1~ t !v2~ t !2ee8u2~ t !v1~ t !#sinf5J. ~46!

This is a key equation, which entirely captures the physi
content of the model. It expresses the relation between
Lagrangian variables (uW ,vW ) in each (J,f,e,e8) state. The
state of the system (J,f,e,e8) cannot be computed from th
knowledge of the positionuW ,vW at a single time: two times, o
a time derivative, are needed, as for any dynamical syst
Once the state is determined, Eq.~46! provides us with the
entire gauge invariant information: the relation between
Lagrangian variables at any other time.

We also define the two complex conjugate observable

RªeJeif5e~O131 iO14!5e8~O242 iO23!, ~47!

SªeJe2 if5e~O132 iO14!5e8~O241 iO23!, ~48!

which will be convenient in the quantum theory. A comple
set of observables is given byJ,R,S,e,e8 with the reality
conditions

J̄5J, R̄5S. ~49!

Clearly

cosf5
1

2e
~R1S!J21, sinf5

1

2i e
~R2S! J21.

~50!

Evolving constants.The physical phase space is the tw
dimensional space of the gauge orbits on the constraint
face. A point in the physical phase space is determined
(J,f,e,e8). This description of the system resolves gau
invariance, but loses reference to time evolution. Time e
lution is, as in any fully constrained theory, a gauge tra
formation.

In certain fully constrained physical models such as
free relativistic particle or the Nambu string, there is a glob
implementation of the kinematical Poincare´ group. The gen-
9-5
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MONTESINOS, ROVELLI, AND THIEMANN PHYSICAL REVIEW D60 044009
erator of this group that corresponds to the energy, can
taken as the physical Hamiltonian for time evolution.
other words, for these systems the natural time evolution
be introduced in the frozen reduced phase space by usin
energy as Hamiltonian. This provides a preferred varia
that plays the role of time, namely, of the independent e
lution parameter. Instead, the kinematical group is absen
GR ~unless additional structure, such as flat asymptotic
finity is added!, or in the model studied in this paper. In the
cases, there is no preferred time variable. The theory
describes—very democratically—the relative evolution
the variables, as functions of each other, without privileg
any variable as the independent one. For a detailed dis
sion of the physical meaning of this very important feature
GR, see Ref.@2#.

One way to express evolution in these cases, is to br
gauge invariance. For instance, one can impose a time
pendent gauge fixing~the analogue ofx05t for a relativistic
particle!, or choose a gauge at time zero and then evolve w
arbitrarily fixed Lagrange multipliers. This amounts to arb
trarily choosing one of the variables as the time variable

Is there, in alternative, agauge invariantdescription of
time evolution? Are there gauge invariant observables

capture the dynamics of the Lagrangian variablesuW (t),vW (t)?
Can we talk about a gauge-invariant dynamics, if the ti

dependence ofuW (t) andvW (t) is a gauge transformation? Th
answer is yes@6#.

In fact, the gauge invariant~or physical! content of the
model is not the description of the evolution of the four re
variablesu1(t),u2(t),v1(t),v2(t) in the coordinate timet,
but rather the description of their evolution as functions
each other. More precisely, since there are four variables
the gauge orbits are three-dimensional, the system desc
the motion of anyoneof these four variables as function o
the other three. In other words, once the state of the syste
known, the dynamical model allows us to predict the va
of any one of the four Lagrangian variables from the value
the other three. This prediction is univocal and gau
invariant.1

Each solution of the classical system, namely, each p
of the phase space determines one functional relation
tween the four variablesu1(t),u2(t),v1(t),v2(t). This func-
tional relation allows us to compute one of these variab
from the value of the other three. This functional relation
given by Eq.~46!.

The form of a gauge invariant observable describing e
lution is therefore the following. Let us ask what is the val
U1 of the observableu1, whenu2 andvW have assigned val
uesu25x, v15y, andv25z. In other words, we search a

1The situation is exactly the same as in GR, where the theory d
not allow us to predict the value of the fields at given coordin
values or the coordinate positions of particles, but rather allows
to predict the value of general covariant quantities, such as
value of the fields when~and where! certain other dynamical vari
ables have given values@1#.
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observable of the formU15U1(x,y,z;J,f,e,e8). Solving
Eq. ~46! for u1, and replacingu2, v1, andv2 with x, y, andz,
we obtain

U1~x,y,z;J,f,e,e8!5
2e8x~z cosf2y sinf!1eJ

e~y cosf1z sinf!
.

~51!

This is an ‘‘evolving constant’’ in the sense of Ref.@6#. For
any fixed state (J,f,e,e8), the quantity
U1(x,y,z;J,f,e,e8), viewed as a function ofx, y, and z
gives the evolution ofu1 as a function of the other variables
Vice versa, for any fixed x,y,z, the quantity
U1(x,y,z;J,f,e,e8), viewed as a function ofJ, f, e, ande8,
defines agauge invariantfunction on the physical phas
space. Similar expressions can be derived from Eq.~46! for
u2, v1, andv2:

U2~s,y,z;J,f,e,e8!5
2es~y cosf1z sinf!1eJ

e8~z cosf2y sinf!
,

V1~s,x,z;J,f,e,e8!5
2z~e8x cosf1es sinf!1eJ

es cosf2e8x sinf
,

V2~s,x,y;J,f,e,e8!5
2y~es cosf2e8x sinf!1eJ

e8x cosf1es sinf
,

~52!

wheres is the value ofu1. These observables describe t
evolution of the systemand are gauge invariant.

Time reparametrization invariance. The system is invari-
ant under time reparametrization. If@uW (t),vW (t)# is a solution
of the equations of motion, then

S uW 8~ t !

vW 8~ t !
D 5S uW „f ~ t !…

vW „f ~ t !…
D ~53!

is also a solution. This is immediately seen from Eqs.~25!
and ~26!, becausea„f (t)…d„f (t)…2b„f (t)…c„f (t)…51 fol-
lows from a(t)d(t)2b(t)c(t)51.

Notice that there exist gauges in whichuW (t) evolves int

while vW (t) remains constant. For instance, we can cho
M5l50. In this gauge,

A5S 0 N~ t !

0 0 D ~54!

and therefore

U~ t !5S 1 b~ t !

0 1 D ~55!

so that

uW 5uW 01b~ t !pW 0 ,

vW 5vW 0 ~56!

es
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with N5ḃ. A different example is the following. The solu
tion ~30! can be gauge transformed to the solution

uW 5~u cost, u sint !, vW 5~u, 0!,

pW 5S u
~cost21!

sint
, uD , pW 5~u sint, 0!, ~57!

where the Lagrange multipliers arel5(cost21)/sint, M5
2(cost21)/(sint)2, andN51. Similarly, there is a gauge in
which vW (t) evolves int while uW (t) remains constant.

Notice, however, that there is not really a ‘‘two fing
time reparametrization invariance’’ in the system@5#, in the
sense that it is not true that if„uW (t),vW (t)… is a solution of the
equations of motion, then

S uW 8~ t !

vW 8~ t !
D 5S uW „f 1~ t !…

vW „f 2~ t !…
D ~58!

is also a solution. In fact, in any given timeuW 8(t) andvW 8(t)
must be connected to the same point in phase space
gauge transformation, but in general it is not true th
a„f 1(t)…d„f 2(t)…2b„f 1(t)…c„f 2(t)…51 when a(t)d(t)
2b(t)c(t)51.

IV. QUANTUM DYNAMICS

We work in the coordinate representation. Elements of
Hilbert space are functionsC(uW ,vW ) of the coordinates, and
the momentum operators are

pŴ 52 i\¹W u , pŴ 52 i\¹W v . ~59!

By inserting these operators in the constraints we obtain
Dirac quantum constraints

Ĥ152
1

2
~\2Du1vW 2!,

Ĥ252
1

2
~\2Dv1uW 2!,

D̂52 i\~uW •¹W u2vW •¹W v!, ~60!

where Du5¹W u
25]2/](u1)21]2/](u2)2. In the Hamiltonian

constraint operatorsĤ1 andĤ2 there is a natural ordering. In
the ‘‘diffeomorphism’’ operatorD̂, we have chosen the or
dering that leads to the closure of the constraint algebra
thus the absence of anomalies. We have in fact

@Ĥ1 , Ĥ2#5 i\D̂,

@Ĥ1 , D̂#522i\Ĥ1 ,

@Ĥ2 , D̂#52i\Ĥ2 . ~61!
04400
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The physical states, in the sense of Dirac, are in the ke
of all the quantum constraints. Namely, they are defined

~\2Du1vW 2!C~uW ,vW !50,

~\2Dv1uW 2!C~uW ,vW !50,

2 i\~uW •¹W u2vW •¹W v!C~uW ,vW !50. ~62!

We now solve this system of coupled partial different
equations.

We transform to polar coordinates

uW 5~u cosa, u sina!, vW 5~v cosb, v sinb! ~63!

and we multiply the first equation of the system byu2/\2

and the second byv2/\2. Equation~62! becomes

S u
]

]u
u

]

]u
1

]2

]a2
1

u2v2

\2 D C~u,v,a,b!50,

S v
]

]v
v

]

]v
1

]2

]b2
1

u2v2

\2 D C~u,v,a,b!50,

S u
]

]u
2v

]

]v DC~u,v,a,b!50.

~64!

We search a solution by separation of variables, by writi

C~u,v,a,b!5A~a!B~b!c~u,v !. ~65!

The first two equations in Eq.~64! give immediately

A~a!5eimaa, B~b!5eimbb, ~66!

wherema and mb must be integer forC to be continuous.
The third equation in Eq.~64! implies that

c~u,v !5c~uv ! ~67!

~a function of the productuv). Plugging this last result back
into the first two equations in Eq.~64!, we find that the first
and last terms of one equation are equal to the first and
terms of the second. Therefore the two middle terms mus
equal as well. Therefore the two equations implyma

25mb
2 .

We put

ma5em, mb52e8m, e,e8561, ~68!

with m any nonnegative integer. The minus is inserted
later convenience. Using this, the first two equations of
system become equal to each other and reduce to

d2f ~x!

dx2
1

1

x

d f~x!

dx
1S 12

m2

x2 D f ~x!50, ~69!

where we have writtenx5uv/\ and f (x)5c(\x). This is
the Bessel equation. Thus, we have solved the system
tirely. We conclude that the physical Hilbert space
9-7
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MONTESINOS, ROVELLI, AND THIEMANN PHYSICAL REVIEW D60 044009
spanned by the basis statesum,e,e8&, where m is a non-
negative integer ande,e8561. In the coordinate represen
tation these states are given by

^u,v,a,bum,e,e8&5Cm,e,e8~u,v,a,b!

5eim(ea2e8b)JmS uv
\ D , ~70!

whereJm is the Bessel function of orderm. Notice that for
eachm.0 there are four states (e561,e8561), but for
m50 there is only one state, sinceum,1,1&5um,1,2&
5um,2,1&5um,2,2&.2

Quantum observables and scalar product. Consider the
observablesOi j defined in Eq.~32!. They are gauge invari
ant, and thus have vanishing Poisson brackets with the
straints. We chose the natural ordering for the correspond
quantum operatorsÔi j

Ô125û1p̂22 p̂1û2, Ô235û2v̂12 p̂2p̂1,

Ô135û1v̂12 p̂1p̂1, Ô245û2v̂22 p̂2p̂2,

Ô145û1v̂22 p̂1p2, Ô345p̂1v̂22 v̂1p̂2. ~71!

It is easy to see that the commutators of these operators
the quantum constraints~60! vanish. Therefore these oper
tors are well defined on the space of the solutions of
quantum constraints, namely on the states~70!. We compute
their action on these states. Going to polar coordinates
see immediately that

Ô12Cm,e,e852 i\
]

]a
Cm,e,e85em\Cm,e,e8 ,

Ô34 Cm,e,e85 i\
]

]b
Cm,e,e85e8m\Cm,e,e8 . ~72!

Thus in the physical state space we havee8Ô125eÔ34: the
relation between the two is precisely the same as in the c
sical theory, Eq.~37!. We can thus identify thee and e8
appeared in the quantum theory with thee ande8 appeared
in solving the classical theory, and we conclude, from E
~35!, that the quantum operator corresponding to the ga
invariant observableJ is

Ĵum,e,e8&5\mum,e,e8&. ~73!

Thus in the quantum theoryJ is discrete, quantized in mul
tiples of \

J5m\. ~74!

Using the Bessel equation and the properties

2We missed this point in the first version of this paper. We tha
Jorma Louko for pointing out the mistake.
04400
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Jm21~x!5
m

x
Jm~x!1

d

dx
Jm~x!,

Jm11~x!5
m

x
Jm~x!2

d

dx
Jm~x! ~75!

of the Bessel functions, a straightforward but long calcu
tion yields

~Ô131 iÔ14!Cm,e,e85e\mCm1ee8,e,e8 ,

~Ô242 iÔ23!Cm,e,e85e8\m Cm1ee8,e,e8 .
~76!

Thus, the quantum operator corresponding to the observ
R defined in Eq.~47! is

R̂um,e,e8&5\mum1ee8,e,e8&. ~77!

In the same manner, from Eq.~48! we obtain

Ŝum,e,e8&5\mum2ee8,e,e8&. ~78!

To complete the construction of the Hilbert space of t
physical quantum states, we have to determine the sc
product on the space spanned by the statesum,e,e8&. This is
determined by the requirement that real classical observa
be self-adjoint. The observablesJ, e, and e8 are real, and
thus we requireĴ, ê, andê8 to be self-adjoint. It follows that
the statesum,e,e8& which are their eigenstates must form a
orthogonal basis. This fixes the scalar product up to the n
of the basis states. Define

^m,e,e8um,e,e8&5cm,e,e8 . ~79!

Next, S is the complex conjugate ofR. Thus we require that
R†5Ŝ. It follows that

^m,e,e8u R† un,e,e8&5^m,e,e8uŜun,e,e8&, ~80!

from which, we have easily

cm,e,e85cm. ~81!

Here c is a positive overall normalization constant that h
no effect on the physics, and we chose it to be equal to
This fixes the normalization of the orthogonal basis sta
and therefore determines the scalar product completely.
tice that the stateu0,e,e8& has zero norm.~This was first
realized by Jorma Louko.! We can therefore discard it, be
cause its presence has no physical consequences. More
cisely, we identify them50 state with the state zero.

The peculiar behavior of them50 sector of the quantum
theory reflects the pathological properties of the correspo
ing classical state. The quantum statem50 has vanishing
angular momentumJ; the classical state with vanishing an
gular momentum is the~common! vertex of the four cones
that form the reduced phase space~see Fig. 1!. This is a point
at which the reduced phase space fails to be a manif
Physically, this corresponds to the fact that small pertur
tions of theJ50 solution form disjoint spaces.

k
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Thus, the quantum theory is completely defined by
states

uc&5 (
m51,̀ ;e,e856

cm,e,e8um,e,e8&, ~82!

the scalar product

^m,e,e8um̃,ẽ,ẽ8&5mdm,m̃de,ẽde8,ẽ8 , ~83!

and the operators

Ĵum,e,e8&5\mum,e,e8&,

R̂um,e,e8&5\mum1ee8,e,e8&,

Ŝum,e,e8&5\mum2ee8,e,e8&,

êum,e,e8&5eum,e,e8&,

ê8um,e,e8&5e8um,e,e8&, ~84!

where it is understood thatu0,e,e8&50. ~That is, for in-
stance,R̂u1,1,2&50.!

Quantum evolving constants. In order to quantize the
evolving constant of motion~51!,~52!, we must construct the
operators corresponding to the classical observables cf

and sinf. We denote these operators cosf̂ and sinf̂, with a
slight abuse in notation.~The operatorf̂ is ill defined be-
causef is an angle —see, for instance, Ref.@9#—and we
must deal with periodic functions off in order to have con-
tinuity all around the circle.! Choosing the natural orderin
given in Eq.~50!, we have immediately

cosf̂ um,e,e8&5
1

2e
~ um1ee8,e,e8&1um2ee8,e,e8&),

sinf̂ um,e,e8&5
1

2e i
~ um1ee8,e,e8&2um2ee8,e,e8&)

~85!

~where, again, it is understood thatu0,e,e8&50).
A convenient representation of the theory can be obtai

by representing a generic state

uc&5 (
m,e,e8

cm,e,e8um,e,e8& ~86!

by the four functions onS1

ce,e8~f!5 (
m51

`

cm,e,e8e
i ee8m[f1(p/2)(31e)] . ~87!

The scalar product turns out to be

^ce,e8uc̃e,e8&52 i ee8E df c̄e,e8~f!
d

df
c̃e,e8~f!.

~88!
04400
e

d

Notice that since the sum in Eq.~87! is restricted tom.0,
the Hilbert space is formed by ‘‘right moving’’ function
c1,1(f) and c2,2(f), and ‘‘left moving’’ functions
c1,2(f) andc2,1(f) only. On these functions, the scala
product~88! is positive definite. In particular, the zero mod
ce,e8(f)5const. do not belong to the Hilbert space. We d
note the projector that projects out the zero modes asP. The
observables are then

Ĵce,e8~f!52 i\ee8
d

df
ce,e8~f!,

cosf̂ce,e8~f!5P cosfce,e8~f!,

sinf̂ce,e8~f!5P sinfce,e8~f!. ~89!

In this representation it is easy to write the quantum opera
corresponding to the evolving constant of motion, whi
quantizes the observable~51!. This is given by

Û1~x,y,z!5P
2ee8

y cosf1z sinf

3PFx~z cosf2y sinf!1 i\
d

dfG ,
where we have arbitrarily picked an ordering.3 The expecta-
tion value of this operator on a stateCe,e8(f)—taken with
the scalar product~88!—gives the physical mean value of th
variableu1 at the moment in which the three variablesu2,
v1, and v2 have valuex, y, and z ~see Ref.@6#!. Similar
operators can be defined for the three other evolving c
stants~52!.
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@10#, and should presumably be used here.
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