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We study the generation of gravitational radiation by sources moving in the de Sitter background. Exploiting
the maximal symmetry and the conformal flatness of de Sitter space-time we prove that the derivation of this
gravitational radiation can be done along the same lines as in Minkowski space-time. A gauge is chosen in
which all the physical and unphysical modes of the graviton are those of a minimally coupled massless scalar
field in de Sitter space-time and a massless field in Minkowski space-time. The graviton retarded Green’s
function and the Schwinger commutator function are computed in this gauge using quantum field theory
techniques. We obtain closed formulas for the spectral decomposition in frequencies of the linearized gravi-
tational field produced by the source, in terms of a suitable spectral decomposition of the source energy-
momentum tensoﬂ})”. This spectral decomposition is dictated by the f(seurcelessgravitational wave
modes in the de Sitter backgrouri&0556-282(199)00314-9

PACS numbsd(s): 04.30.Db, 04.62v

[. INTRODUCTION waves by generic sources which move in the de Sitter space-
time. That is, we compute the waves produced by a source
de Sitter space-time is interesting for several reasons. Tdescribed by an energy-momentum teniéfr)”, which is
begin with, de Sitter space-time is the natural framework forcovariantly conserved with respect to the de Sitter metric. It
inflationary models of the universe, in which the universeturns out that the maximal symmetry of the de Sitter space-
experiences a period of exponential expansion driven by théme, and the use of conformal coordinates to exploit its con-
energy density of the vacuum. In addition, it is the simplestformal flatness, allow a discussion of gravitational radiation
model of space-time with a nonvanishing cosmological conin this space following analogous steps as in Minkowski
stantA; i.e. it is the simplest model of empty space-time butspace-time. Of course, we consider weak enough sources for
for the energy of the vacuum. It shares with Minkowski the linear approximation to hold. Apart from this condition,
space-time the property of being maximally symmetric, butthe sources are totally generic.
on the other hand it has a nonvanishing curvature. Thus, it As one of the main results of our study, we obtain explicit
provides a tractable example of space-time in which the efelosed formulas for the spectrum—amplitude as a function
fects of curvature can be explicitly computed. of the frequency—of gravitational waves in terms of a suit-
Gravitational radiation is a subject of fundamental impor-able spectral decomposition of the energy-momentum tensor
tance and current interest in both astrophysics and cosmalvhich is producing these waves. These formulas should be
ogy. lts direct detection is now a realistic challenging possiinteresting for primordial cosmology, since they relate the
bility within the current and expected level of detector’s spectrum of primordial gravity waves produced during the
sensitivity. In addition to the weak field sourcé®. binary inflationary period to the energy-momentum tensor of the
star systems, fissioning stars, oscillating and rotating sphesossible sources existing during this period. This is a classi-
roids . . .), neutron stars, collapsing supernovae, quasars anthl mechanism of production of primordial gravity waves,
black hole collisions are sources of intense gravitational raand it is different to the quantum mechanical production of
diation. In cosmology, gravitational waves would arise dur-gravitons due to the time variation of the de Sitter metric
ing the several phase transitions undergone by the early univhich has been studied befdr2,3].
verse, as well as from string sources, and at the end of The paper is organized in a self-contained way as follows:
inflation [1]. The linearization procedure around flat In Sec. Il we consider a linearized gravitational perturbation
Minkowski space-time is clearly not applicable in sucharound the 4D de Sitter background. Thus, we consider the
strong field problems. Perturbation techniques around curveperturbative expansion of the full Einstein equations—
backgrounds, and in the presence of sources, are needed.including the source and the metric perturbation—in orders
In this paper we consider the generation of gravitationabf the perturbatior;, . Because of the maximal symmetry of
the de Sitter space-time, the Einstein equations up to first
order, can be consistently split into two equations: a zero
*Email address: mittel@fis.ucm.es order equation describing the de Sitter space being produced
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by the cosmological constant, and a first order equation 1
which describes the production of gravity waves from a 9v=YurtNp=—== (0t b)) 2.1
source. Thanks to the maximal symmetry, the covariant con- Hn
servation of the source energy-momentum teri§pF with _ , _ _ ,
respect to the de Sitter metric coincides with the integrabilityVNere7,,=diag(—, +,+, +) is the I;/I|r21k9\l/vsk| metricyy,.,
condition for the first order part of the Einstein equation. 1S the de Sitter metric, and,,,=(H"7%) "¢, is a small

In Sec. Ill we discuss the gauge invariance of the firstoerturbation, in the sense that the components of the tensor
order equation. Again the maximal symmetry of the de Sitteidensity ¢, are much smaller than 1.
space-time implies the gauge invariance of the first order part As itis less involved to work with tensors rather than with
of the Einstein tensofs‘Y” under infinitesimal coordinate tensor densities, it is convenient to introduce the tensor field
transformations. Then, Iin order to give the first order part of .
the Einstein equation a definite form, we set a gauge fixing h=7""Nyp 2.2
condition of the formD ¢, =B, , where ¢ is the trace

o . . .
reversed graviton field. The fiell, is chosen as to eliminate wherey* is the inverse de Sitter metric, and so

i . . . . 1) . . . .

thg non @agonal terms in first dgrlvatlves frcﬁi . With h8= — boo, hi0= —hi=—¢o, hi= h} =y

this choice, we arrive to the simple decoupled system of 2.3
wave equation$3.23 governing the linearized gravitational

field ¢, produced by the sourcﬁf)y. It is also convenient to introduce the trace reversed gravi-

In Sec. IV we solve the homogeneous version of Eq.ton field
(3.23 which describes freésourcelessgravitational waves.
The solutions turn out to be remarkably simple as a conse-
quence of our gauge choi€®.21). They amount to de Sitter
minimally coupled massless scalar modes and Minkowski
massless moddg]. We also discuss the residual gauge in-whereh=h)}.
variance allowed by our gauge choice and use it to extract A remark about the conventions for the raising and low-
the two transverse traceless physical polarizations of thering of tensor indices is here in order. The indices bflor
graviton. We conclude this section setting the conditions ofz/;;) are raised and lowered with the de Sitter metni¢)
validity for the linear approximation. denotes the inverse of,,, D, denotes the covariant deriva-
Section V is devoted to the computation of the retardedive with respect to the de Sitter metric, aft= y""D,,.
Green’s function solving the graviton wave equati@®3.  For the rest of the tensors, their indices are raised and low-
The graviton retarded Green’s function and also the Feynered with the full metric and its inversg*”, which up to first
man propagator in the de Sitter space-time have been studigfider readsg”’= y**—h*"+0(h?). Notice however, that
in previous paper$s,6], following a geometrical approach when a tensor has a perturbative expansion, the former rule
developed in[7]. In this paper we compute the retarded applies to the full tensor, and not to each of the terms in the
Green's function most easily using quantum field theoryexpansion. Thus if we consider, for example, the expansions
(QFT) techniques. By the way we also obtain a very simpléfor the full Ricci tensor up to first order ih!,: R? =R(?”

1
wy=h;—5ah (2.4

expression for the Schwinger commutator function of a mini-_ RELl)vJr - and Ry, = RELO,EJF RELI,EJF .-+, we have R
mally coupled massless scalar field. =g"R which implies for the first order ternRE})”

Finally in Sec. VI we compute the linearized gravitational _
field produced by a generic source with energy-momentum
tensor TV” . We show that the spectral decomposition of
this gravitational field in frequencies, can be easily expressed
in terms of a suitable spectral decomposition of the energy G,=R,— 59, R=-87GT, (2.5
momentum tensoTLl)”. This spectral decomposition is dic-
tated by the form of the free graVitational wave modes. W%nd dea' with them in the fo”owing Way: we deve'op the
also show that the linearized gravitational field produced bytinstein tensoG* up to first order inh”,
localized sources takes the form of free gravitational waves a
being radiated away from the source, and whose amplitudes G’ =GOy g®ry . .. (2.6)
are easily related t3¢"". e a

We end up with the conclusions in Sec. VII, followed by and for the second member we set
an Appendix with the formulas for covariant derivatives, cur- b (O L T(1)p
vature tensors and d’Alembertians for the de Sitter space- T =T, T+ 2.7)
time which are needed in the paper.

“p"
PR woR.

Now we consider the Einstein equations

where

Il. GRAVITATIONAL PERTURBATIONS 1O v_ _ & 2.8
IN de SITTER SPACE-TIME Iz M :

In this section we study the linearized gravitational per-is the energy-momentum tensor producing the de Sitter back-
turbations around the 4D de Sitter background. Thus, wground with cosmological constant=3H?/8G, ande})”
start from the metric is the energy-momentum tensor of a source. This source is
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moving in the de Sitter background. Sb(ﬂl)” is covariantly  describing the propagation of free gravitational waves in the
conserved with respect to the de Sitter metric, i.e. de Sitter space-time.

D, T =0. (2.9 Ill. GRAVITATIONAL WAVE EQUATION

. . . _ . AND CHOICE OF THE GAUGE
Thus, up to first order it , the Einstein equation&.5)

give the two equations Once we have set qu.ll), our next step in orde_r to
solve it, will be to give it a definite form. This entails a
Gr=—8mgT" (2.10  combination of two things: to obtain the expressiorGy”
in terms ofh and to fix the gauge. For the first, we start
and with the expression of the Ricci tensor in terms of the metric
W = _gmg T (2.12 connection
w = TG T, .

R, =dI% —a, % +TF T —T* T (3.1
Then, Eq.(2.10 describes how the background is pro- . e
duced by the energy-momentum ten§Q‘P”, and Eq.(2.1) and expand it up to first order
describes the production of a gravitational perturbation by

S - — RO M4 ...
the energy-momentum tensiﬁﬁ}’”, which is to be consid- Ryue= Ryt Ryt 3.2

ered small, i.e. of first order. This is exactly the point of view (0) i i .

adopted when computing gravitational radiation by astro—WhereRW‘ Is given in Eq.(A9) and

physical sources in Minkowski space-tini8,9], with the 1

only difference that, for Minkowski space-tim&”" van- R511,2=§[D"thw+ D.D,h—D,D,h—D,D,h} 1.

ishes. There is however a catch: we should make sure that 3.3
Eqg.(2.1)) is consistent, i.e. integrable. Now, the integrability ’
condition for the full Einstein equatiof®.5) takes the form Then the left-hand sidéLHS) of Eq. (2.11) is given by
v_p 7OV p T Wy 700
DVT”“ DVT'“ DVT"“ FV” T“ cLr—RrMv_ E 5' RM = ,yVKR(l)_ h*«R(0) — E 5' RW
—T@Wp 1Oy . Iz I 2K MK uk 9 %u
Ve (3.9
-0 (212 it RO=ROM .
whereD,, is the covariant derivative with respect to the full  Next, we come to the gauge fixing. As a consequence of
metric g,,,. In Eq. (2.12, we have developed the metric the covariance of the Einstein equatid2s5), and the maxi-

connection up to first order as mal symmetry of the de Sitter space-time, the equation for
the gravitational perturbatiof2.11) is gauge invariant under
FZFFLOA)VJF Fitlx)”‘ e (2.13  the transformations
with T'(9” being the metric connection for the de Sitter met- hue—h, =h,+D,&+D,E&, (3.9

ric given in Eq.(A3), andT"‘Y)"” its first order correction . o . .
9 a.(A3) KA where&* is an infinitesimal vector field to be considered of

1 the same order ds, , i.e. first order. Let us explain how this
FSA)VIE(DJ‘%JF Dyh;,—=D"h,,). (2.19  gauge invariance arises. Under an infinitesimal coordinate
transformation

Now the zero order part of Eq2.12, D,T{)"=0, is

obviously satisfied, and the first order part yields the integra-
bility condition

XH— X = XM — EH(X) (3.6

the metricg,,, transforms as

1)v 1)y (0 1 O)v_

D, T+ L) T =T T)"=0. (219 9090 =0un T ££9,,=0,, 7D €, 7D, (3.7)

However, due to the maximally symmetric fori®.8) of  whereL, is the Lie derivative for the vector fielg, and we
T, the terms proportional t5*) identically cancel each have omitted second order terms. Thus, we can take the point
other, and we are left with E¢2.9) as integrability condition  of view in which the background metrig, , remains invari-
for Eq. (2.11). Thus, Eq.(2.11) can be consistently solved ant under the infinitesimal coordinate transformati¢®§),
for any de Sitter covariantly conserved soufé@’”, and it while the perturbatiorh v transforms as stated in EB.5).
describes, as we shall explain in this paper, the production ofhen, for the tensor6” andT”,, the zero order parts remain

gravitational radiation by this source. In particular, for jnvariant under Eq(3.6), while the first order parts transform
TE})V=O, we have the equation as

v_ v r(v_ ~Q)v 0)v
G(M"=0 (2.16 G —a, Wr=cP"+£,6Y (3.8

044007-3



H. J. de VEGA, J. RAMIREZ, AND N. SANCHEZ PHYSICAL REVIEW B0 044007

and a similar expression erﬁLl)”. But now, the maximally  This allows us to rewrite the two terms in the second line of
symmetric formsG (Y« and T 6", imply £,G(?”  the tensor d’AlembertiaA13) as

=0 andZ; TE?)”=O. Thus,GE})" is invariant under the in- 4 2

finitesimal coordinate transformatiorn8.6), as can also be va B_ sv B_ _ v, v 0y, < v
directly checked by substitution of the gauge transformationaz 7" gt %o Ipll 77(6?‘ Vot oy Ui 52 % ¥

(3.5 in the expressiort3.4). Hence, Eq(2.1]) is a second
order partial differential equation for the unknown function
h”, with a gauge invariant sourcg(”, which is gauge
invariant under the transformatiaB.5). Therefore, in order
to solve it, we need to set a gauge fixing conditionhgn(or
). Of course, if we were to solve only the homogeneous 2

equation(2.16), the simplest procedure would be to impose > DD, =0 ¢+ —[ 0,4, + o= 7" &Klﬂg]
the gauge conditiofi2,3] Hy 7

+8% 7"*B,~8;B,,. (3.149

So, for a tensor fieldy, that satisfies the gauge fixing
condition (3.13), the tensor d’Alembertian can be recast as

D.4.=0, 39 + %[ Wit 85 86 w—2 85 =2 8 uf)
and then use the residual gauge invariance allowed by Eq. 9
lne addiional concionst 0. However, {his camnot be A AL LA
done in the presence of a non-vanishing source féfrﬁ’. (3.19

The situation here is similar to the Maxwell equations with a
source term{]A,—d,(d,A")=J,. Once we have chosen In addition, from Eqs(A8), (A9) and(2.4), we have
the Lorentz gauge,A”=0, we cannot impose in addition

Ap=0, unless]y=0. It is true that we could set indeed the )y irer 1

gauge conditiori3.9), and then proceed to solve the resulting H2 2 R, 7=~ -
gauge fixed form of Eq2.11). However, as we shall explain 7 K
below, this introduces spurioygauge complications in the

1
Wit 50, 1//) (3.1

and
mode solutions to Eq(2.11). Thus, we shall impose the
more general gauge fixing condition 3
RO prr=— y. (3.17
D,y.=B, (3.10 HZp2 7

and let the equations choose their favorite gauge fixing field\IS0, using the expressiorié4) and(A5), the second line in
B, instead.[Notice that Eq.(3.10 implies that the gauge E-(3.12 takes the form
fixing field B, is to be considered of first order in the per-
turbation expansiof.
Imposing the gauge conditid.10), the first order part of H272

the Ricci tensol3.3) can be written as

[-D'B,—D,B"+6),D,B"]

=—7""9,B,~ 7" 9,B,+ 6, nd.,Bg

1
RO=Z1 DD, h,, +2 RO 2
ue=5L DDy hy TuRN +;(558M—5ﬁ 7" B). (3.18

+hoRO+hR®-D,B,-D,B,]. (3.1
Finally, adding up the expressiof3.15), (3.16), (3.17 and
Then from Egs.(3.11) and (3.4), the first order part of the (3.18, we obtain

Einstein tensor is

1 1 Wim 2 G=0 U 2t (5,05 7 0,0
M 2 2 M ® 77 iz K7

Gi"=5D"D, ¢, + R, W7+ 5 6, RO W H%y U 7
2
1 , + —[(8,+ 8, 80) = 8, do—2 8, g —2 Sg 4y ]
+§[—DVBM—DMBV+5MDAB%], (3.12 o Iz w W

- 7" 9,B—7n"9,B,+ 3, 7 9,B,. (3.19
Now according to Eq(A7), the gauge fixing conditiofB8.10
reads This expression suggests a suitable choice By,
namely
d 2 °+35° =B (3.13
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where u”=H 7% &g is a unit time-like vector in the back- Xuv= H2»? Yop lpzz Nup % 4.2

ground. With this choice, the non-diagonal terms in first de-

rivatives in the first line of Eq(3.19, cancel against the first whose components are related to thosqufby

two terms of the third line. Moreover, with the choi(®20),

the gauge fixing conditio3.10 takes the form Xoo=— 13, xoi=—¢’=uh, Xij= Y= ,/,} . (4.3

2 1 In t fy,, the metric perturbati i

D)\'r//;\;,_ZH UMJIZE&M/IZ— ;‘ﬂ?ﬁ;éz ¥=0. n terms ofy,,, the metric perturbatiowp,,, is

(3.21 1

d),uv:X,uv_En,uv naBonB' (44)
Then, using Eqs(3.20 and(3.21), we also have

We shall also use the notation

2
Ak _ 0
7 \B=— (o~ ) (3.22 - - R
7 X=X11t X221t X33, X= Xoot X- (4.9

which produces a further cancellation of two terms in Eq. Then, splitting Eq.(4.1) into its time-time, time-space,
(3.19. Therefore, we arrive at the following final gauge and space-space components, we obtain
fixed form for the gravitational wave equations with a ge-

neric source term 2 2.
U oot ;(977X00——2X:0 (4.9
v 2 v 2 v v v 0 7
O lp,u,—'_ _&nwlu,—i_ _2[ 6/01 50 w_ 52, wo_ 50 ‘ﬂ,u]
7 7 2 2
0 xoi+ — dyx0i—— X0i =0 4.7
_ 1677g 1Q)v n Y
=— |_|2772TM . (3.23
2
Notice that this wave equation—which we have obtained Uj

by imposing the gauge conditiof8.21)—is much simpler
than the one we would have obtained imposing B), i.e. From Egs.(A10) and(4.8), we see that the space compo-
setting B, =0 in Eq. (3.19. The reader can also directly nentsy;; behave as minimally coupled massless scalar fields
check that the solutions to E¢8.23), satisfy the gauge con- in de Sitter space-time. As it is know8], the two physical
dition (3.9) providedT{"" is de Sitter covariantly conserved. TT components of a free gravitational wave in de Sitter
Once we have obtained the graviton wave equafop3,  SPace-time—which count among the—behave as mini-
our next task will be to solve it for a generfg!)”. For this ~ Mally coupled massless scalar fields. As we mentioned
purpose, we need the retarded Green’s function for the dif2POVe, this result can be easily obtained in the absence of
ferential operator in the left hand side of E@.23. This  Sources by se%uenually imposing the two gauge conditions
Green’s function will be computed in Sec. V as an appropri-0 %, =0 andy;,=0. Then, one good property of the gauge
ate superposition of solutions to the homogeneous version @ondition (3.2)—which can be applied in the presence of
Eq. (3.23. Thus, we discuss first the solutions of the homo-Sources—is that it alone is sufficient to capture the minimally
geneous equation, which are interesting in their own rightcoupled massless scalar field behavi@®). In addition, the
since they represent the free gravitational waves in de Sittv0 other equation$4.7) and(4.6) are very easy to solve. In

space-time. fact, Eq.(4.7) can be rewritten as

IV. FREE GRAVITATIONAL WAVES IN de SITTER O (EXOi) =0. 4.9

SPACE-TIME Ui

In this section we set the sourdé"”=0, and solve the Moreover, adding Eq4.6) and the trace of eq4.8) we also

homogeneous version of E(.23: have
v 2 v 2 v v v 0 O 1 =0 4.1
D¢M+;a”¢ﬂ+?[6250¢—52¢0—50¢M]=0. 7X=0 (4.10
4.2

Thus, the time-space components and the combinatioty
We shall see that in the gaud8.21) we have a very behave as free massless Minkowski fields rescaled by a fac-
simple basis of mode solutions to the free gravitational waveor 7.
equations(4.1). To describe the solutions of E¢4.1) it is Now it is very easy to write down the general solution for
convenient to introduce the tensor density X..» @S @ superposition of plane waves
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R - R . in expression$4.12), (4.13, and(4.14). Due to the linearity,
Xﬂv(”’x):f d°k [ f ., k) explikx) it is enough to consider just one mode with wave vedtor
. . To begin with, the gauge fixing conditidi3.21) reduces the
+1%,(mK)exp(—ikx)]. (41D ten polarizations that we have ip,, down to six. More
_ precisely: for the fieldy,, , the gauge fixing conditio(8.21)
For xo; and y we obviously have reads
> 3" g . g 1~
XOi(ﬂ-X):f d-k[ eoi(K) 7 exp( —iwn+ikx) _37;Xoo+<9iX0i+7]X:0 (4.16
+ek(K)yexplion—ikx)] (4.12 2
—dyXoi T IxjiT —X0i=0 (4.1
and K
o o N which translated to the modes,,(7;k) exp(kx) gives the
X(’%X):f d3k[e(k) 7 exp(—i w7+ ikx) following constraints among polarizations:
+e* (k) pexplion—ikx)] (4.13 niggi+e—e=0 (4.18
wherew=K|. and
In addition, the ordinary differential equation for the €oi+n;ej;=0 (4.19
modesfij(n;IZ) can be solved in terms of Hankel functions
of index 3/2[10]. So, we have wheren;=k;/w is the unit wave vector.

Next, the residual gauge invariance in the gauge fixing

- - - i ) . (3.21) allows to reduce the six independent polarizatieps
Xij(v-X)=J d°k| & (k)| 7— —|exp(—iwn+ikx) to the two physical polarizations. Under the gauge transfor-
. mation(3.5), the trace reversed graviton fiefd, transforms
. i -
+et (K) 7+ 5)exp(iwn—ikx) . (414 ®®
Y— =y, —D,E'—D",+ 8, D& (4.20
And from Eqgs.(4.5 and (4.1
9549 (413 Then, the invariance of the gauge conditi@?21) under the
. RIER L i transformation(4.20 requiresé, to be a solution of the
Xoo(ﬂ:x):f dsk{ e(k)n—e(k)(n— ;” equation

o DD, £,— 'R+ 2H(u, D, & —u, D& —u, D*¢,)=0.
e* (k) p—e* (k) (4.21

From Egs.(A4)—(A6), (A9), and(A12) it reduces to

X exp(—iwn+ikx)+

X| g+ —
7](,0

exqiwn—iI&)] (4.15 , ,
o ) Oé,—— i t—(6,=8,6)=0  (4.22
where we have defineg(K) = 5,;e;; (K). 7 7

Equationg4.12—(4.14) provide the general solution for a
free gravity wave in de Sitter space-time in the ga(®21).
This solution identically coincides with the one presented in 1
[4], and we have derived it hefan a different way to make D(—§°) =0 (4.23
the paper self-contained. In fact, general scalar mode solu- 7
tions in de Sitter space-time have been known since the sixjnq
ties[11]. As we shall see in the next section, the simplicity
of solutions(4.12—(4.14) will allow us a direct derivation of 2 1
the graviton retarded Green’s function. In this respect, it is (D+ —(?,,) (;5') =0. (4.249
enlightening to point out, that if we had imposBd, =0
as our gauge fixing condition, we would have obtained a The solutions to Eqs(4.23 and (4.24 decompose in
much more difficult coupled system of partial differential modes in the form
equations fory,, than Egs.(4.6—(4.8). In particular, the

which yields the simple decoupled equations

solutions to those equations involve Bessel functions of in- 0, = _J' 30 - . oo
dex v=33/2. E(n,x)= | d°K[i eg(k) pexp —iwn+ikx)
In the rest of this section, we show how the physical e _ .
degrees of freedom for the gravitational waves are contained —ieg (k) nexplion—ikx)] (4.29
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and As stated at the beginning of Sec. Il, the validity of the linear
approximation requireg¢,,|<1. Thus, according to the
functional form of the mod€4.33, the amplitudeA must
satisfy the conditions

. [ .-
i gi{(kK)| n— —|exp—iwn+ikx)

éin )= [ %

w

1
. (426 A< JAl<o (4.34

On the other hand, from the transformation l&20 we  that is, the linear approximation holds for high frequencies
find and small conformal time. Let us remind that the cosmic

region for the de Sitter space-time which describes an expo-
5g)(0i:(9i§0—¢97,§i (4.27  nentially expand.ing space—time, porresponds—ta/H<n .
<0. Thus, the linear approximation holds throughout this
region provided that

—ief (k)

i ] e
n+ Z)exp(lanyﬂkx)

S xij=— & — 9,6+ 5ij((97,§0+ Hé'— 350) (4.28
7 A<min{H, w}. (4.39

- 4
S x=40,80—¢&. (4.29 V. RETARDED GREEN’'S FUNCTION FOR THE
7 MINIMALLY COUPLED MASSLESS SCALAR FIELD

. AND THE GRAVITON
Then, from Eqs(4.27—(4.29, the residual gauge transfor-

mations given by Eqg4.25,(4.26), amount to the following We come back now to the inhomogeneous equation
transformation laws for polarizations (3.23. Splitting Eq.(3.23 we have

2.

e—e' =etdweg 2)(=—1677ng%) (5.1)

2
U xoot —d,X00—
Y 7
€0i — €0 = €oi ~Kigo— we;

2 2 1
U xoi + ;%XOi_?XOi: —167 G Ty

eijﬂei/j :eij +ki8j+kj8i+ 5”(&)80_'25).
(4.30 (5.2

Thus, it is possible to eliminate the polarizatiags ande
by suitably choosing the parameters. Therefore, we can

2 (1)

set the supplementary gauge conditions (5.3

Xm:;(zo- (4.31) As in the previous section, E@5.2) can be rewritten as
Of course, the gauge transformatio@s30 are compatible 0 (EXOi) =_ 167Tg-|-§)}) (5.4)
with the constraint$4.18 and (4.19, and by replacing the n Uj

supplementary conditiongy=e=0 in Egs. (4.1 and and adding up Eq5.1) with the trace of Eq(5.3) we also

(4.19 we find have
e=njeji=O. (432 D<£}>:— 167Tg,:.l_(1) (55)
This leaves us with the traceless transve(E€) graviton K 7
physical polarizations. Notice that sinee-0, Eq.(4.15 im-  Here
plies xoo="0. Thereforeg,,, coincides withy,,, and the TT
conditions are satisfied in this gauge by the metric perturba- TO=TH+TE+TE, T=TE+TW, (5.6)

tion itself.

We conclude this section with a comment about the vaThus, the retarded solution to Eq&.4) and (5.5 can be
lidity of the linear approximation we apply. Let us consider obtained using the well known Minkowski massless retarded
just one physical mode fap,,,, with amplitudeA and wave  Green’s function

vectork,
(M) Y 1 ’ o
» GR(xX")=—=—==8(np—n'—[x=x'|) (5.7)
expli o n—ikX). 4 [x=x'|

(4.33  which has support on the past light cone and satisfies

exp(—i wn+ikx) +A*

i
+ —
nw

i
A("/]—;
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OGM(x,x")=— M (x—x"). (5.8 G(x,x")=—i(0|[ ¢(x), ¢(x")]|0). (5.18

On the other hand, in order to solve Ef.3) we need the Then, by inserting the mode expansi@¢b.11) in Eq.
retarded Green’s function for the scalar d’Alembertian in de(5.18), a straightforward computation yields
Sitter space-time, i.e. we need the retarded solution to ,
DD, Gr(x,x")=—H*»p* 5 (x—x"). (5.9 G(x,x’)=—%(7m' L —i(p—5")l,+13)
872 |x—x'|
Here DD, is the scalar d’Alembertian in de Sitter space- (5.19

time given in Eq.(A10). Thus, Eq.(5.9) takes the form
where

D+Ea) r(X,X")=—H?%7% ¥ (x—x"). (5.10 = du

7 Inzf —— (exp(iuy_)—expiuy,)); n=123
The retarded Green’'s functioGg(x,x') solving Eg. ! (5.20

(5.10 is given in Eqg.(5.30 as can be checked by direct

substitution of Eq(5.30 in Eq.(5.10. This retarded Green’s and

function was obtained for the first time if6], using the

geometric techniques developed [in]. However, although yo=7n—7"*|x—x'|. (5.21

the retarded Green’s function is a purely classical object, it

can be most easily obtained using QFT techniques. Thus, we The integrall; gives

consider a scalar field
l1=2m(8(y-)—6(y1)). (5.22

B(7,X)= j d3k[ ug( 7,x) a(k) +ug (7,x) a'(k)] The integrall, is clearly convergent, and its evaluation using
(5.11)  residues theorem yields

obeying the homogeneous equation [,=2m(6(y_)—6(y,)). (5.23

Notice that the integral; is apparently logarithmically
O+ — ‘9 ¢=0 (5.12 divergent in the infrared—the integration variable being

=|k|—since the integrand behaves for smaks

ie. ¢(7;,>Z) is a minimally coupled scalar field in de Sitter
space-time. Then, from the previous section, the modes

1 _ i
ug (7,x) take the form E(exp(|uy,)—exp(|uy+))——62|x—x REEN

(5.249
. i
Ug(7,X)= 2 )3/2\/—< )exp(—|w7;+|kx) However, this divergence does not really exist becayse
can be rewritten as
(5.13
These modes satisfy the normalization |3=|§+13 (5.29
(U, up)=8(K—K") (5.14  where
with respect to the scalar product » du .
|g_f — (exp(iuy ) —expliuy ) +2i [x—x'[sinu)
. —o U
i - .o -
($2. b1)= H%;J 0% 6% (7.0) 7, a0, %). (5.19 (5.26
and
Now, if we canonically quantize the scalar figldaccord-
ing to - - - (= du
l3=—2i |x—x’|f —sinu. (5.27
- - - - - U
[a(k), a(k")]=8(k—k') (5.16
its retarded Green’s function is given by Thenl} is convergent, ancﬁg vanishes—in the sense of
Cauchy principal value—because the integrand is an odd
Gr(X,x")== 0(n—7") G(x,x"). (5.17  function. Thereforel;=14, and its evaluation using residues

. - _ . theorem, yields
Here 6( n) is the Heaviside step function, a@{x,x’) is the

Schwinger function for the field(7,X) =7y, |—]y_|). (5.28
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Thus, the Schwinger functio®(x,x") is perfectly finite momentum tensof ,,. From Eqs.(5.7), (5.8) and(5.4) the
in the infrared limit, and replacing expressiais22), (5.23), time-space components for this field are
and(5.28 in Eq. (5.19, it takes the form

3 /d77 "
H? Xoi(7,X)= nlawgf—e‘ J(x,x) Toi(x')
G(X,X")= = —=——=—+| 77" (8(y-) = o(y+))+(n
4ar|x—x'| R
1 sgn[ 21 i)
= —— ——Toi(7—[x—=x"],x").
=)0y ) =0y D+ Sy [=ly-D . 7 Ix—x'| 7—|x—x'| ° 7
(5.29 (6.9)

Finally, from Eqs.(5.17 and(5.29 we obtain the follow-  Similarly, for the tilde component we have
ing simple expression for the de Sitter scalar retarded

Green'’s function: -~ - X 1 ~ . e
X(n,X)=4Q77f ==, ———T(n—[x=x'[,x").
o 2 X=X'] 7= [x-x]
GR(XX') = ——= = 5(n— ' —|X—X')+ 7= O(n— 7' ©32
Az|x—x'| 4
On the other hand, for the space-space components, Egs.
—[x=x']). (5.30 (5.3, (5.10, and(5.30 give
Notice that to obtain this expression, some cancellations 7'
have been produced in multiplying EG.29 by 6(7— 7'). Xij(7,X) =16 gj —/ Gr(X,X") Tij(x")
This is due to the following identities among distributions: H2y 2
0(n—n')8(y.)=0 a7
' —4Qf| —(77 7' =x=x'|)
6(n—mn')o(y-)=6(y-)
0(n—7")0(y.)=0(n—7') ><Tu(v’,>?’>+49f d*' do’

0(n—n")6(y-)=6(y-) 1 e - -
X—0(n=n'=|x=xX"DTj(7".x"). (6.3
0(n—n")y+l=ly-D=2(n—7n")0(n—75")—2y_6(y_). n?

(5.31
Then, using the identity
In particular, the advanced variabje. has disappeared

from the arguments of the distributions entering Ef30. 7 o 1 o
Thus, the retarded Green's functi®30 has supportonthe  — ———8(n— 7' —|x=x'|)+ =z 0(n— 7' —|x=x'])
past light cone and its interior, as it should be according to 7’ [x=x'| Y
the causality of the classical theory. Notice also that the main
difference with the Minkowski retarded Green’s function is _ 1 S(n—7n'—|x=x'|)
the term proportional to9(y_). This term tells us that— Ix—x'|
although the free gravitational waves propagate at the speed
of light—in the production of gravity waves from sources, L s =
there is information about these sources, which propagates at _av’(_, 0(n—n'—=[x=X |)) (6.4
a lower speed. K

Expressiong5.7) and (5.30 completely solve the prob-
lem of the retarded graviton propagator in the de S|tter
space-time. With this propagator at hand, we are going to
discuss in the next section the production of gravity waves

. - X”(?] X) 4 gf

by a generic source. Notice that from now on we shall sup- |
press the upper label (1) from the energy-momentum tensor
T,, of the source, in order to alleviate the notation. +4gf d%?’f” Ix-x'| d7n Ty )

and doing a partial integration, E¢6.3) can be recast as

Tu(?] |X X| X)

VI. GRAVITATIONAL WAVES PRODUCED BY SOURCES
IN de SITTER SPACE-TIME (6.9

We proceed to obtain the gravitational field produced—in  Equations(6.1), (6.2), and(6.5) give the linearized gravi-
the linear approximation—by a generic source with energy1ational field y,, produced by a source with energy-
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momentum tensoil ,, in de Sitter space-time. With these

y2%

PHYSICAL REVIEW B0 044007

Now, let us decompose the gravitational figld, in modes

formulas at hand, we undertake now a double task: to do thef frequencyw

spectral decomposition of the gravitational figfd, in fre-

guencies, relating it to the spectral decomposition of the

sourceT and to show that this field takes the form of

v

radiated free gravitational waves in de Sitter space-time
when we go to the “wave zone” far away from the sources.

X 7,X) = J dox(2)(7,x). (6.13
0

Then, for the space-space componentypf replacing the

For the first, we need an appropriate decomposition of théPectral decompositio(6.6) for Tj; in the expressior6.5),

energy momentum tensor in modes of frequencyFor the

space-space components, it is suitable to decompose the

energy-momentum tensor in the form

Tij(7.X) = f:dw eXp(—iwn)< n— IZ)TU(‘"*)Z)

T (@,%)

) i
+exp(|w17)( 77+Z

fw dweX[i—iany)( n— IE)TU((U,)Z)

(6.6

i.e. we decompos#;; according to the modes entering the
componentsy;; of a free gravitational wave. Notice that we
have define%v(—m,i)zﬁv(w,i) as usual. Now, since
the modes expfiwn)(n—ilw) satisfy

=wpexp—iwn) (6.7

: : i
i &,,exp(—lwn)< -
the integral transforn(6.6) can be easily inverted in the form
- 1 (= i [ -
Tij(w,x) = mﬁxdﬂexmwﬂ);%'ﬂj(77,X)-
(6.9
For the other components @f,, , since the corresponding

modes of a free gravitational wave take the fopsraxpiwn),
we do the spectral decompositions

T0i<n,i>=nf:dwexp(—iwnm,-(w,i) (6.9
and

"T'(77,)Z)=nJ_Zdwexr(—iwn)”j(w,)Z) (6.10
whose inverses are

- 1 (=»dy . -

TOi(w,X)ZEJx7exp(lw77)T0i(w,X) (6.10)
and

-~ - 1 (=dy . -~ -

T(w’x):EﬁmYexmme(m’x)' (6.12

we have

(@) % o’
Xij (n,xX)=4G ==
|x—x']

X | exp( —iw7n) explio|x—X'|)
- o i -
X p—|x=x" —Z)ﬁj(w,x’)vtc.c.
+4gf d3x'| —i 0 Tjj(w,x")
7= |x=x'

ldn’exp(—iwn’)+c.c.

x|
(6.19

and doing the usual shiflb—w+ie, to handle the lower
limit of the integral overy’ in the second line of Eq6.14),
we find

d3x’

x=x']

X (,x) =4 Q( U I;) eXp(—iwn)f

X exp(iw|x—x'|)Tj(w,x") +c.c. (6.19

Similarly, replacing the spectral decompositig6s9) and
(6.10 for To; andT in the expressions.1) and(6.2) for yoi
andy we have

X exp(i o|X—X'|)Toi(w,X') +c.c.

d3x’
() v\ — :
Xoi (77,X)—4g773XF(—|w77)f e

(6.16
and
- R ) d3)27
X(ﬂax):“rgﬂexﬁ—lw?])f.,—_),
[x=x'|
xexplio|X—X'|)w,x")+c.c. (6.17)

The expression&.15—(6.17) are one of the main results
of this paper. Just as in Minkowski space-time, these formu-
las relate thew frequency component of the gravitational
field produced by the sourcg,,, with the o frequency
component ofT ,, itself. On the other hand, thg-time de-
pendent factors in front of the integrals in these formulas,
exactly coincide with they-time dependent factors for a free
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gravitational wave of frequency. This is due to the appro- tral decompositions in frequencié.6), (6.9) and(6.10, the
priate decomposition of the energy momentum tensor whicltonservation laws for thes frequency component of the
has been done in Eq&5.6), (6.9), and(6.10. This decom- energy-momentum tensor takes the form

position is of course different of the plain Fourier transfor-

mation which is done in Minkowski space-time, since the i (T 0,X)— Ti(0,X)+ 8, Toj(0,X)=0 (6.2
form of the spectral transform is dictated by the form of the
free gravitational waves themselves. Moreover, we can i w%i(w,x)JraJT,,(w X)=0. (6.27)

choose a source localized in a finite spatial region, and con-
sider the gravitational fielg,,, produced by this source in Notice that Eq.(6.27) has exactly the same form as in
the “wave zone.” To do it, we go far away from the source Minkowski space-time, while Eq6.26) is different because
and take the region of pointsthat satisfy Tw,X) = T;i (w,X) # Too(@,X) [in fact there is no suitable
way to definé][—_,o(w,i)]. Finally, using the conservation laws
(6.26) and (6.27), one can check that the frequency com-
wherea is the size of the source. In this limit we have asPonentx(;, of the gravitational fieldy,,, given by Egs.
usual (6.19, (6.16 and (6.17), satisfy the gauge fixing conditions
(4.16 and (4.17.

|X|>maxXa, w?a} (6.18

1 - o e as
x| T expliw|x—x'])~exp(ikx—ikx") VII. CONCLUSIONS
(6.19 We have shown that the production of gravitational radia-
tion from sources moving in the 4D de Sitter background can
be studied along the same lines as for Minkowski space-
time. The maximal symmetry and the conformal flatness of
. the de Sitter space-time are found to be two key ingredients
@, 5y 39 ! i ikx < i der t hi thi [. In additi h h
X (”’X)NT 7= exp —i wn+ikx) Ajj(K) in order to achieve this goal. In addition, we have shown
that—although the general equations for linear gravitational
(6.20 perturbations are rather cumbersome—choosing the gauge
(3.21), the equations for allphysical and unphysicapolar-
X5 (9,%) ~ 47g nexp—iwn+ikx) Ay (k) (6.21  izations of the graviton decouple, and amount to the equa-
tions for a de Sitter minimally coupled massless scalar field
and a Minkowski massless field. In this respect, it is worth
remarking that the minimally coupled massless scalar field
behavior can be easily obtained, in the case of the physical
polarizations, by imposing the traditional synchronous trans-
which correspond to free gravitational spherical waves in deerse traceless gauge conditiddisyy), = u, ", =0. However,
Sitter space-time, being radiated away from the source, anghese two conditions cannot be simultaneously imposed in
whose amplitudes are given in terms of the energythe presence of a source, and if one imposes only the condi-
momentum tensor of the source by tion D,y" =0 instead of Eq(3.21), one is led to a much
more difficult coupled graviton wave equation than Eq.
AMV(E):J d3x’ exp(—il&’)?;w(w,i’). 6.23 (3.23, whose solutions contain sp_urious compl_icatio_ns. The
same thing happens for the residual gauge invariance al-
As a final remark, it is interesting to write down the spec- lowed by the gauge conditidn, ¢, =0. While the infinitesi-
tral decomposition in frequencies of the covariant conserval@! coordinate transformations preserving the gauge condi-
tion law for the source energy momentum teriggy . Using tion (3.21) are given by vector fields whose equations for the
the expressiofA4) for the de Sitter covariant derivative, the time and space components decouple, and give very simple

conservation equatiod"T,,=0 splits into the two equa- mode solquns; the vector fields covrrespono_llng o the re-
tions sidual gauge invariance allowed By, ¢, =0, satisfy a much

more difficult coupled system of partial differential equa-
1. tions.
=3, Toot djToj+ -T=0 (6.24 The main new results of this paper are given in Sec. VI. In
g that section we have shown that decomposing the energy-
2 momentum tensor of a given generic souTgg 77,)?) in fre-
—d,Toit T+ — To| 0. (6.29  quencies, by using a spectral transform dictated by the
modes of the free gravitational waves in the curved back-
Notice that these equations formally coincide with the gaug@round, we have very simple closed formulas relatingahe
f|x|ng conditions fOI’)(/“, (4.16) and(4.17). Nevertheless, the frequency component of the linearized graV|tat|0naI field
geometrical meaning is not the same for both, becdyses  produced by the source with the transfofip, (o, x) of the
a tensor whiley,,, is a tensor density. Now, using the spec- energy-momentum tensor. We also show that for localized

with r=|x|, andk=w x/|x|. Thus, the expressions.15),
(6.16, and(6.17) give in this limit

- . 4¢ , e~
X(“’)(n,x)~Tnexp(—lwm—lkx)A(k) (6.22
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sources, the produced gravitational field takes the form ofhus, the covariant derivatives for covariant and contravari-
free gravitational waves in de Sitter space-time being radiant vectors read
ated away from the source. Thus, the generation of gravita- 1
tional radiation by sources in de Sitter space-time resembles DV, =d,V,+ —(52VK+ 52VM+ Nux Vo) (Ad)
very closely to the same process in Minkowski space-time, n
the main difference being in the form of the energy-
momentum frequency transform, which enter the formulas
for the amplitudes of the radiated waves.

As a previous step we have also shown in Sec. V, how thén particular we have
graviton retarded Green'’s function in the Sitter space-time— 4
needed to solve the graviton wave equation—can be easily D,V*=g,V}— —=\0 (AB)
obtained using QFT techniques. The most prominent feature 7
of this retarded Green'’s function is that in addition to a delta,

. . ! . . and

function term in the retarded time, it also contains a term
proportional to the Heaviside step function of the retarded 4 1
time. This second term shows that the information about the Dxl//i‘F N ’//Z__ 1,112+— 52 . (A7)
sources in de Sitter space-time propagates not only at the Y n
speed of light but also at a lower speed.

In our opinion, it would be very interesting to apply the
general formulag6.15-(6.17) that we have derived in this

v_ v 1 v \/0 50 v v N
DL V=3, V"= (S, VO+ V7 8 7 V). (AS)

Since the de Sitter space-time is maximally symmetric,
the Riemann and Ricci tensors take the form

paper, to sources that could exist during the inflationary pe-

riod of the universe. As a first example we have work in Rl = H2(Yip Yir ™ Vin Yop) (A8)
progresq 12] concerning string sources, whose equations o

motion in de Sitter space-time have been solved in the case

of a ring ansat13]. RO=—-3H2y,,. (A9)

In addition to these tensors, we need the scalar, vector and
ACKNOWLEDGMENTS tensor d’Alembertians, which can be computed using the ex-
One of the authorgJ.R) would like to acknowledge the Pression(A3) for the metric connection. For a scalar fied

warm hospitality at DEMIRMObservatoire de Pajiswhere ~ We have the scalar d’Alembertian
this work was carried to completion, and the financial sup-
port of DIRECCION GENERAL DE ENSEWNZA SUPE-
RIOR E INVESTIGACION CIENTIFICA of spanish MEC,
which made this research remain possible.

DD, ¢=

2
12 O+ ;a,,) b (A10)
whered is the Minkowski d’Alembertian

APPENDIX

: : O=-¢2+V2. A1l
In this appendix we collect a number of formulas for co- K (A1)

variant derivatives, curvature tensors and d’Alembertians fogq g vector fields,, the vector d’Alembertian is
de Sitter space-time, which are used in this paper. The four a
dimensional de Sitter metric in conformal coordinates

=(7,X) reads

DD, £,= ¢, + > +8°% pof
N g,u. g,u. 77[(9,11,50 w Y (?agﬂ]

H27]2
ds?=1y,, dx“dx"=—— (—dp*+dx?) (A1) 1
H"7 +[8&,+2 5 &l. (A12)
i
e Finally, for a tensor fieldy, , a long but straightforward
1 computation yields

VW=H2—7’2 U (A2)

2
. . . . . H2 ;DD ¢, =00 ¢Z+;[‘9n'/’;+‘9u'/’g_ ’7VK‘9K¢?L]
wheren,,,=diag(—,+,+,+) is the Minkowski metric, and 7
H is the Hubble constant.

: , L 2 2
Then the metric connection, can be written in these coor- +2718° P2 g B — 8”0 lP 1+ —T o
dinates as 71[ w7 IpYa= 20 9pU] 772[1’/}”
1 2.8, 52 8 1, = 8, 8 Y= 8y, ¥l
()L — v v v
= 7](52 85+ 83 814 58 1) (A3) (AL3)
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