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Generation of gravitational waves by generic sources in de Sitter space-time
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We study the generation of gravitational radiation by sources moving in the de Sitter background. Exploiting
the maximal symmetry and the conformal flatness of de Sitter space-time we prove that the derivation of this
gravitational radiation can be done along the same lines as in Minkowski space-time. A gauge is chosen in
which all the physical and unphysical modes of the graviton are those of a minimally coupled massless scalar
field in de Sitter space-time and a massless field in Minkowski space-time. The graviton retarded Green’s
function and the Schwinger commutator function are computed in this gauge using quantum field theory
techniques. We obtain closed formulas for the spectral decomposition in frequencies of the linearized gravi-
tational field produced by the source, in terms of a suitable spectral decomposition of the source energy-
momentum tensorTm

(1)n . This spectral decomposition is dictated by the free~sourceless! gravitational wave
modes in the de Sitter background.@S0556-2821~99!00314-8#

PACS number~s!: 04.30.Db, 04.62.1v
. T
fo
se
th

es
on
u
k
u

s,
e

or
m
s

r’s

h
a
ra

ur
u

at
ch
v
d
na

ace-
rce

. It
ce-
on-
on
ski
s for
n,

cit
ion
it-
sor
be

he
he
the
ssi-
s,
of

ric

ws:
ion
the
—
ers
f

first
ero
ced
I. INTRODUCTION

de Sitter space-time is interesting for several reasons
begin with, de Sitter space-time is the natural framework
inflationary models of the universe, in which the univer
experiences a period of exponential expansion driven by
energy density of the vacuum. In addition, it is the simpl
model of space-time with a nonvanishing cosmological c
stantL; i.e. it is the simplest model of empty space-time b
for the energy of the vacuum. It shares with Minkows
space-time the property of being maximally symmetric, b
on the other hand it has a nonvanishing curvature. Thu
provides a tractable example of space-time in which the
fects of curvature can be explicitly computed.

Gravitational radiation is a subject of fundamental imp
tance and current interest in both astrophysics and cos
ogy. Its direct detection is now a realistic challenging pos
bility within the current and expected level of detecto
sensitivity. In addition to the weak field sources~i.e. binary
star systems, fissioning stars, oscillating and rotating sp
roids, . . . !, neutron stars, collapsing supernovae, quasars
black hole collisions are sources of intense gravitational
diation. In cosmology, gravitational waves would arise d
ing the several phase transitions undergone by the early
verse, as well as from string sources, and at the end
inflation @1#. The linearization procedure around fl
Minkowski space-time is clearly not applicable in su
strong field problems. Perturbation techniques around cur
backgrounds, and in the presence of sources, are neede

In this paper we consider the generation of gravitatio
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waves by generic sources which move in the de Sitter sp
time. That is, we compute the waves produced by a sou
described by an energy-momentum tensorTm

(1)n , which is
covariantly conserved with respect to the de Sitter metric
turns out that the maximal symmetry of the de Sitter spa
time, and the use of conformal coordinates to exploit its c
formal flatness, allow a discussion of gravitational radiati
in this space following analogous steps as in Minkow
space-time. Of course, we consider weak enough source
the linear approximation to hold. Apart from this conditio
the sources are totally generic.

As one of the main results of our study, we obtain expli
closed formulas for the spectrum—amplitude as a funct
of the frequency—of gravitational waves in terms of a su
able spectral decomposition of the energy-momentum ten
which is producing these waves. These formulas should
interesting for primordial cosmology, since they relate t
spectrum of primordial gravity waves produced during t
inflationary period to the energy-momentum tensor of
possible sources existing during this period. This is a cla
cal mechanism of production of primordial gravity wave
and it is different to the quantum mechanical production
gravitons due to the time variation of the de Sitter met
which has been studied before@2,3#.

The paper is organized in a self-contained way as follo
In Sec. II we consider a linearized gravitational perturbat
around the 4D de Sitter background. Thus, we consider
perturbative expansion of the full Einstein equations
including the source and the metric perturbation—in ord
of the perturbationhm

n . Because of the maximal symmetry o
the de Sitter space-time, the Einstein equations up to
order, can be consistently split into two equations: a z
order equation describing the de Sitter space being produ
©1999 The American Physical Society07-1
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by the cosmological constant, and a first order equa
which describes the production of gravity waves from
source. Thanks to the maximal symmetry, the covariant c
servation of the source energy-momentum tensorTm

(1)n with
respect to the de Sitter metric coincides with the integrabi
condition for the first order part of the Einstein equation.

In Sec. III we discuss the gauge invariance of the fi
order equation. Again the maximal symmetry of the de Si
space-time implies the gauge invariance of the first order
of the Einstein tensorGm

(1)n under infinitesimal coordinate
transformations. Then, in order to give the first order part
the Einstein equation a definite form, we set a gauge fix
condition of the formDncm

n 5Bm , where cm
n is the trace

reversed graviton field. The fieldBm is chosen as to eliminat
the non-diagonal terms in first derivatives fromGm

(1)n . With
this choice, we arrive to the simple decoupled system
wave equations~3.23! governing the linearized gravitationa
field cm

n produced by the sourceTm
(1)n .

In Sec. IV we solve the homogeneous version of E
~3.23! which describes free~sourceless! gravitational waves.
The solutions turn out to be remarkably simple as a con
quence of our gauge choice~3.21!. They amount to de Sitte
minimally coupled massless scalar modes and Minkow
massless modes@4#. We also discuss the residual gauge
variance allowed by our gauge choice and use it to ext
the two transverse traceless physical polarizations of
graviton. We conclude this section setting the conditions
validity for the linear approximation.

Section V is devoted to the computation of the retard
Green’s function solving the graviton wave equation~3.23!.
The graviton retarded Green’s function and also the Fe
man propagator in the de Sitter space-time have been stu
in previous papers@5,6#, following a geometrical approac
developed in@7#. In this paper we compute the retarde
Green’s function most easily using quantum field theo
~QFT! techniques. By the way we also obtain a very sim
expression for the Schwinger commutator function of a m
mally coupled massless scalar field.

Finally in Sec. VI we compute the linearized gravitation
field produced by a generic source with energy-momen
tensorTm

(1)n . We show that the spectral decomposition
this gravitational field in frequencies, can be easily expres
in terms of a suitable spectral decomposition of the ene
momentum tensorTm

(1)n . This spectral decomposition is dic
tated by the form of the free gravitational wave modes. W
also show that the linearized gravitational field produced
localized sources takes the form of free gravitational wa
being radiated away from the source, and whose amplitu
are easily related toTm

(1)n .
We end up with the conclusions in Sec. VII, followed b

an Appendix with the formulas for covariant derivatives, cu
vature tensors and d’Alembertians for the de Sitter spa
time which are needed in the paper.

II. GRAVITATIONAL PERTURBATIONS
IN de SITTER SPACE-TIME

In this section we study the linearized gravitational p
turbations around the 4D de Sitter background. Thus,
start from the metric
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gmn[gmn1hmn5
1

H2h2
~hmn1fmn! ~2.1!

wherehmn5diag(2,1,1,1) is the Minkowski metric,gmn

is the de Sitter metric, andhmn5(H2h2)21fmn is a small
perturbation, in the sense that the components of the te
densityfmn are much smaller than 1.

As it is less involved to work with tensors rather than wi
tensor densities, it is convenient to introduce the tensor fi

hm
n 5gnrhmr ~2.2!

wheregnr is the inverse de Sitter metric, and so

h0
052f00, hi

052h0
i 52f0i , hi

j5hj
i 5f i j .

~2.3!

It is also convenient to introduce the trace reversed gra
ton field

cm
n 5hm

n 2
1

2
dm

n h ~2.4!

whereh[hl
l .

A remark about the conventions for the raising and lo
ering of tensor indices is here in order. The indices ofhm

n ~or
cm

n ) are raised and lowered with the de Sitter metric,gmn

denotes the inverse ofgmn , Dm denotes the covariant deriva
tive with respect to the de Sitter metric, andDn5gnrDr .
For the rest of the tensors, their indices are raised and l
ered with the full metric and its inversegmn, which up to first
order readsgmn5gmn2hmn10(h2). Notice however, that
when a tensor has a perturbative expansion, the former
applies to the full tensor, and not to each of the terms in
expansion. Thus if we consider, for example, the expansi
for the full Ricci tensor up to first order inhm

n : Rm
n 5Rm

(0)n

1Rm
(1)n1••• and Rmk5Rmk

(0)1Rmk
(1)1•••, we have Rm

n

5gnrRmr , which implies for the first order termRm
(1)n

5gnrRmr
(1)2hnrRmr

(0) .
Now we consider the Einstein equations

Gm
n [Rm

n 2
1

2
dm

n R528pGTm
n ~2.5!

and deal with them in the following way: we develop th
Einstein tensorGm

n up to first order inhm
n ,

Gm
n 5Gm

(0)n1Gm
(1)n1••• ~2.6!

and for the second member we set

Tm
n 5Tm

(0)n1Tm
(1)n1••• ~2.7!

where

Tm
(0) n52L dm

n ~2.8!

is the energy-momentum tensor producing the de Sitter ba
ground with cosmological constantL53H2/8pG, andTm

(1)n

is the energy-momentum tensor of a source. This sourc
7-2
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GENERATION OF GRAVITATIONAL WAVES BY . . . PHYSICAL REVIEW D60 044007
moving in the de Sitter background. So,Tm
(1)n is covariantly

conserved with respect to the de Sitter metric, i.e.

DnTm
(1)n50. ~2.9!

Thus, up to first order inhm
n , the Einstein equations~2.5!

give the two equations

Gm
(0)n528pGTm

(0)n ~2.10!

and

Gm
(1)n528pGTm

(1)n . ~2.11!

Then, Eq.~2.10! describes how the background is pr
duced by the energy-momentum tensorTm

(0)n , and Eq.~2.11!
describes the production of a gravitational perturbation
the energy-momentum tensorTm

(1)n , which is to be consid-
ered small, i.e. of first order. This is exactly the point of vie
adopted when computing gravitational radiation by ast
physical sources in Minkowski space-time@8,9#, with the
only difference that, for Minkowski space-time,Tm

(0)n van-
ishes. There is however a catch: we should make sure
Eq. ~2.11! is consistent, i.e. integrable. Now, the integrabil
condition for the full Einstein equation~2.5! takes the form

DnTm
n 5DnTm

(0)n1DnTm
(1)n1Gnr

(1)n Tm
(0)r

2Gnm
(1)r Tr

(0)n1•••

50 ~2.12!

whereDm is the covariant derivative with respect to the fu
metric gmn . In Eq. ~2.12!, we have developed the metr
connection up to first order as

Gml
n 5Gml

(0)n1Gml
(1)n1••• ~2.13!

with Gml
(0)n being the metric connection for the de Sitter m

ric given in Eq.~A3!, andGml
(1)n its first order correction

Gml
(1)n5

1

2
~Dmhl

n1Dlhm
n 2Dnhml!. ~2.14!

Now the zero order part of Eq.~2.12!, DnTm
(0)n50, is

obviously satisfied, and the first order part yields the integ
bility condition

DnTm
(1)n1Gnr

(1)n Tm
(0)r2Gnm

(1)r Tr
(0)n50. ~2.15!

However, due to the maximally symmetric form~2.8! of
Tm

(0)n , the terms proportional toG (1) identically cancel each
other, and we are left with Eq.~2.9! as integrability condition
for Eq. ~2.11!. Thus, Eq.~2.11! can be consistently solve
for any de Sitter covariantly conserved sourceTm

(1)n , and it
describes, as we shall explain in this paper, the productio
gravitational radiation by this source. In particular, f
Tm

(1)n50, we have the equation

Gm
(1)n50 ~2.16!
04400
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describing the propagation of free gravitational waves in
de Sitter space-time.

III. GRAVITATIONAL WAVE EQUATION
AND CHOICE OF THE GAUGE

Once we have set Eq.~2.11!, our next step in order to
solve it, will be to give it a definite form. This entails
combination of two things: to obtain the expression ofGm

(1)n

in terms ofhm
n and to fix the gauge. For the first, we sta

with the expression of the Ricci tensor in terms of the me
connection

Rmk5]kGml
l 2]lGmk

l 1Gml
r Gkr

l 2Gmk
r Grl

l ~3.1!

and expand it up to first order

Rmk5Rmk
(0)1Rmk

(1)1••• ~3.2!

whereRmk
(0) is given in Eq.~A9! and

Rmk
(1)5

1

2
@DlDlhmk1DkDmh2DlDmhk

l2DlDkhm
l #.

~3.3!

Then the left-hand side~LHS! of Eq. ~2.11! is given by

Gm
(1)n5Rm

(1)n2
1

2
dm

n R(1)5gnkRmk
(1)2hnkRmk

(0)2
1

2
dm

n R(1)

~3.4!

with R(1)5Rl
(1)l .

Next, we come to the gauge fixing. As a consequence
the covariance of the Einstein equations~2.5!, and the maxi-
mal symmetry of the de Sitter space-time, the equation
the gravitational perturbation~2.11! is gauge invariant unde
the transformations

hmk→hmk8 5hmk1Dmjk1Dkjm ~3.5!

wherejm is an infinitesimal vector field to be considered
the same order ashm

n , i.e. first order. Let us explain how thi
gauge invariance arises. Under an infinitesimal coordin
transformation

xm→x8m5xm2jm~x! ~3.6!

the metricgmn transforms as

gmn→gmn8 5gmn1Lj gmn5gmn1Dmjn1Dnjm ~3.7!

whereLj is the Lie derivative for the vector fieldjm, and we
have omitted second order terms. Thus, we can take the p
of view in which the background metricgmn remains invari-
ant under the infinitesimal coordinate transformations~3.6!,
while the perturbationhmn transforms as stated in Eq.~3.5!.
Then, for the tensorsGm

n andTm
n , the zero order parts remai

invariant under Eq.~3.6!, while the first order parts transform
as

Gm
(1)n→Gm8

(1)n5Gm
(1)n1Lj Gm

(0)n ~3.8!
7-3
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and a similar expression forTm
(1)n . But now, the maximally

symmetric formsGm
(0)n}dm

n and Tm
(0)n}dm

n , imply Lj Gm
(0)n

50 andLj Tm
(0)n50. Thus,Gm

(1)n is invariant under the in-
finitesimal coordinate transformations~3.6!, as can also be
directly checked by substitution of the gauge transformat
~3.5! in the expression~3.4!. Hence, Eq.~2.11! is a second
order partial differential equation for the unknown functio
hm

n , with a gauge invariant sourceTm
(1)n , which is gauge

invariant under the transformation~3.5!. Therefore, in order
to solve it, we need to set a gauge fixing condition onhm

n ~or
cm

n ). Of course, if we were to solve only the homogeneo
equation~2.16!, the simplest procedure would be to impo
the gauge condition@2,3#

Dncm
n 50, ~3.9!

and then use the residual gauge invariance allowed by
~3.9!, for going to the so called TT gauge@9#, by means of
the additional conditioncm

0 50. However, this cannot be
done in the presence of a non-vanishing source termTm

(1)n .
The situation here is similar to the Maxwell equations with
source term:hAm2]m(]nAn)5Jm . Once we have chose
the Lorentz gauge]nAn50, we cannot impose in additio
A050, unlessJ050. It is true that we could set indeed th
gauge condition~3.9!, and then proceed to solve the resulti
gauge fixed form of Eq.~2.11!. However, as we shall explai
below, this introduces spurious~gauge! complications in the
mode solutions to Eq.~2.11!. Thus, we shall impose th
more general gauge fixing condition

Dncm
n 5Bm ~3.10!

and let the equations choose their favorite gauge fixing fi
Bm instead.@Notice that Eq.~3.10! implies that the gauge
fixing field Bm is to be considered of first order in the pe
turbation expansion.#

Imposing the gauge condition~3.10!, the first order part of
the Ricci tensor~3.3! can be written as

Rmk
(1)5

1

2
@ DlDl hmk12 hlsRsmkl

(0)

1hm
sRsk

(0)1hk
sRsm

(0)2DkBm2DmBk #. ~3.11!

Then from Eqs.~3.11! and ~3.4!, the first order part of the
Einstein tensor is

Gm
(1)n5

1

2
DlDl cm

n 1Rlsm
(0)n hls1

1

2
dm

n Rls
(0) hls

1
1

2
@2DnBm2DmBn1dm

n DlBl#. ~3.12!

Now according to Eq.~A7!, the gauge fixing condition~3.10!
reads

]lcm
l 2

4

h
cm

0 1
1

h
dm

0 c5Bm . ~3.13!
04400
n
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This allows us to rewrite the two terms in the second line
the tensor d’Alembertian~A13! as

dm
0 hna ]bca

b2d0
n ]bcm

b52
4

h
~dm

0 c0
n1d0

n cm
0 !1

2

h
dm

0 d0
n c

1dm
0 hna Ba2d0

n Bm . ~3.14!

So, for a tensor fieldcm
n that satisfies the gauge fixin

condition ~3.13!, the tensor d’Alembertian can be recast a

1

H2h2
DlDl cm

n 5h cm
n 1

2

h
@ ]hcm

n 1]mc0
n2hnk ]kcm

0 #

1
2

h2
@ cm

n 1dm
0 d0

n c22 dm
0 c0

n22 d0
n cm

0

2dm
n c0

0 #1
2

h
@ dm

0 hna Ba2d0
n Bm #.

~3.15!

In addition, from Eqs.~A8!, ~A9! and ~2.4!, we have

1

H2h2
Rlsm

(0)n hls52
1

h2 S cm
n 1

1

2
dm

n c D ~3.16!

and

1

H2h2
Rls

(0) hls5
3

h2
c. ~3.17!

Also, using the expressions~A4! and~A5!, the second line in
Eq. ~3.12! takes the form

1

H2h2
@2DnBm2DmBn1dm

n DlBl#

52hna ]mBa2hna ]aBm1dm
n hab ]aBb

1
2

h
~d0

n Bm2dm
0 hna Ba!. ~3.18!

Finally, adding up the expressions~3.15!, ~3.16!, ~3.17! and
~3.18!, we obtain

Wm
n [

2

H2h2
Gm

(1)n5h cm
n 1

2

h
]hcm

n 1
2

h
~]mc0

n2hnk ]kcm
0 !

1
2

h2
@~dm

n 1dm
0 d0

n!c2dm
n c0

022 dm
0 c0

n22 d0
n cm

0 #

2hnk ]mBk2hnk]kBm1dm
n hlk ]lBk . ~3.19!

This expression suggests a suitable choice forBm ,
namely

Bm52H uncm
n ~3.20!
7-4
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GENERATION OF GRAVITATIONAL WAVES BY . . . PHYSICAL REVIEW D60 044007
where un5Hh d0
n is a unit time-like vector in the back

ground. With this choice, the non-diagonal terms in first d
rivatives in the first line of Eq.~3.19!, cancel against the firs
two terms of the third line. Moreover, with the choice~3.20!,
the gauge fixing condition~3.10! takes the form

Dlcm
l 22H ulcm

l []lcm
l 2

2

h
cm

0 1
1

h
dm

0 c50.

~3.21!

Then, using Eqs.~3.20! and ~3.21!, we also have

hlk]lBk5
2

h2
~c0

02c! ~3.22!

which produces a further cancellation of two terms in E
~3.19!. Therefore, we arrive at the following final gaug
fixed form for the gravitational wave equations with a g
neric source term

h cm
n 1

2

h
]hcm

n 1
2

h2
@ dm

0 d0
n c2dm

0 c0
n2d0

n cm
0 #

52
16pG
H2h2

Tm
(1)n . ~3.23!

Notice that this wave equation—which we have obtain
by imposing the gauge condition~3.21!—is much simpler
than the one we would have obtained imposing Eq.~3.9!, i.e.
setting Bm50 in Eq. ~3.19!. The reader can also directl
check that the solutions to Eq.~3.23!, satisfy the gauge con
dition ~3.9! providedTm

(1)n is de Sitter covariantly conserved
Once we have obtained the graviton wave equation~3.23!,

our next task will be to solve it for a genericTm
(1)n . For this

purpose, we need the retarded Green’s function for the
ferential operator in the left hand side of Eq.~3.23!. This
Green’s function will be computed in Sec. V as an approp
ate superposition of solutions to the homogeneous versio
Eq. ~3.23!. Thus, we discuss first the solutions of the hom
geneous equation, which are interesting in their own rig
since they represent the free gravitational waves in de S
space-time.

IV. FREE GRAVITATIONAL WAVES IN de SITTER
SPACE-TIME

In this section we set the sourceTm
(1)n50, and solve the

homogeneous version of Eq.~3.23!:

h cm
n 1

2

h
]hcm

n 1
2

h2
@ dm

0 d0
n c2dm

0 c0
n2d0

n cm
0 #50.

~4.1!

We shall see that in the gauge~3.21! we have a very
simple basis of mode solutions to the free gravitational w
equations~4.1!. To describe the solutions of Eq.~4.1! it is
convenient to introduce the tensor density
04400
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xmn5H2h2 gnr cm
r 5hnr cm

r ~4.2!

whose components are related to those ofcm
n by

x0052c0
0 , x0i52c i

05c0
i , x i j 5c i

j5c j
i . ~4.3!

In terms ofxmn the metric perturbationfmn is

fmn5xmn2
1

2
hmn hab xab . ~4.4!

We shall also use the notation

x̂5x111x221x33, x̃5x001x̂. ~4.5!

Then, splitting Eq.~4.1! into its time-time, time-space
and space-space components, we obtain

h x001
2

h
]hx002

2

h2
x̃50 ~4.6!

h x0i1
2

h
]hx0i2

2

h2
x0i50 ~4.7!

S h 1
2

h
]hDx i j 50. ~4.8!

From Eqs.~A10! and~4.8!, we see that the space comp
nentsx i j behave as minimally coupled massless scalar fie
in de Sitter space-time. As it is known@3#, the two physical
TT components of a free gravitational wave in de Sit
space-time—which count among thex i j —behave as mini-
mally coupled massless scalar fields. As we mention
above, this result can be easily obtained in the absenc
sources by sequentially imposing the two gauge conditi
Dncm

n 50 andcm
0 50. Then, one good property of the gaug

condition ~3.21!—which can be applied in the presence
sources—is that it alone is sufficient to capture the minima
coupled massless scalar field behavior~4.8!. In addition, the
two other equations~4.7! and~4.6! are very easy to solve. In
fact, Eq.~4.7! can be rewritten as

h S 1

h
x0i D50. ~4.9!

Moreover, adding Eq.~4.6! and the trace of eq.~4.8! we also
have

h S 1

h
x̃ D50. ~4.10!

Thus, the time-space componentsx0i and the combinationx̃
behave as free massless Minkowski fields rescaled by a
tor h.

Now it is very easy to write down the general solution f
xmn as a superposition of plane waves
7-5
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xmn~h,xW !5E d3kW @ f mn~h;kW !exp~ ikWxW !

1 f mn* ~h;kW !exp~2 ikWxW !#. ~4.11!

For x0i and x̃ we obviously have

x0i~h,xW !5E d3kW @e0i~kW !h exp~2 ivh1 ikWxW !

1e0i* ~kW !h exp~ ivh2 ikWxW !# ~4.12!

and

x̃~h,xW !5E d3kW @ ẽ~kW !h exp~2 ivh1 ikWxW !

1ẽ* ~kW !h exp~ ivh2 ikWxW !# ~4.13!

wherev5ukW u.
In addition, the ordinary differential equation for th

modesf i j (h;kW ) can be solved in terms of Hankel function
of index 3/2@10#. So, we have

x i j ~h,xW !5E d3kW Fei j ~kW !S h2
i

v Dexp~2 ivh1 ikWxW !

1ei j* ~kW !S h1
i

v Dexp~ ivh2 ikWxW !G . ~4.14!

And from Eqs.~4.5! and ~4.13!

x00~h,xW !5E d3kW H F ẽ~kW !h2ê~kW !S h2
i

v D G
3exp~2 ivh1 ikWxW !1F ẽ* ~kW !h2ê* ~kW !

3S h1
i

v D Gexp~ ivh2 ikWxW !J ~4.15!

where we have definedê(kW )5d i j ei j (kW ).
Equations~4.12!–~4.14! provide the general solution for

free gravity wave in de Sitter space-time in the gauge~3.21!.
This solution identically coincides with the one presented
@4#, and we have derived it here~in a different way! to make
the paper self-contained. In fact, general scalar mode s
tions in de Sitter space-time have been known since the
ties @11#. As we shall see in the next section, the simplic
of solutions~4.12!–~4.14! will allow us a direct derivation of
the graviton retarded Green’s function. In this respect, i
enlightening to point out, that if we had imposedDncm

n 50
as our gauge fixing condition, we would have obtained
much more difficult coupled system of partial differenti
equations forxmn than Eqs.~4.6!–~4.8!. In particular, the
solutions to those equations involve Bessel functions of
dex n5A33/2.

In the rest of this section, we show how the physic
degrees of freedom for the gravitational waves are conta
04400
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in expressions~4.12!, ~4.13!, and~4.14!. Due to the linearity,
it is enough to consider just one mode with wave vectorkW .
To begin with, the gauge fixing condition~3.21! reduces the
ten polarizations that we have inxmn down to six. More
precisely: for the fieldxmn , the gauge fixing condition~3.21!
reads

2]hx001] ix0i1
1

h
x̃50 ~4.16!

2]hx0i1] jx j i 1
2

h
x0i50 ~4.17!

which translated to the modesf mn(h;kW ) exp(ikWxW) gives the
following constraints among polarizations:

nie0i1ẽ2ê50 ~4.18!

and

e0i1njeji 50 ~4.19!

whereni5ki /v is the unit wave vector.
Next, the residual gauge invariance in the gauge fix

~3.21! allows to reduce the six independent polarizationsei j
to the two physical polarizations. Under the gauge trans
mation~3.5!, the trace reversed graviton fieldcm

n transforms
as

cm
n→cm8

n5cm
n 2Dmjn2Dnjm1dm

n Dljl. ~4.20!

Then, the invariance of the gauge condition~3.21! under the
transformation~4.20! requiresjm to be a solution of the
equation

DlDl jm2jlRlm
(0)12H~um Dljl2ul Dmjl2ul Dljm!50.

~4.21!

From Eqs.~A4!–~A6!, ~A9!, and~A12! it reduces to

h jm2
2

h
]hjm1

2

h2
~jm2dm

0 j0!50 ~4.22!

which yields the simple decoupled equations

hS 1

h
j0D50 ~4.23!

and

S h1
2

h
]hD S 1

h
j i D50. ~4.24!

The solutions to Eqs.~4.23! and ~4.24! decompose in
modes in the form

j0~h,xW !5E d3kW @ i «0~kW !h exp~2 ivh1 ikWxW !

2 i «0* ~kW !h exp~ ivh2 ikWxW !# ~4.25!
7-6
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and

j i~h,xW !5E d3kW F i « i~kW !S h2
i

v Dexp~2 ivh1 ikWxW !

2 i « i* ~kW !S h1
i

v Dexp~ ivh2 ikWxW !G . ~4.26!

On the other hand, from the transformation law~4.20! we
find

dj x0i5] ij
02]hj i ~4.27!

dj x i j 52] ij
j2] jj

i1d i j S ]hj01] lj
l2

2

h
j0D ~4.28!

dj x̃54 ]hj02
4

h
j0. ~4.29!

Then, from Eqs.~4.27!–~4.29!, the residual gauge transfo
mations given by Eqs.~4.25!,~4.26!, amount to the following
transformation laws for polarizations

ẽ→ẽ85ẽ14v«0

e0i→e0i8 5e0i2ki«02v« i

ei j→ei j8 5ei j 1ki« j1kj« i1d i j ~v«02kW«W !.
~4.30!

Thus, it is possible to eliminate the polarizationse0i andẽ
by suitably choosing the parameters«m . Therefore, we can
set the supplementary gauge conditions

x0i5x̃50. ~4.31!

Of course, the gauge transformations~4.30! are compatible
with the constraints~4.18! and ~4.19!, and by replacing the
supplementary conditionse0i5ẽ50 in Eqs. ~4.18! and
~4.19! we find

ê5njeji 50. ~4.32!

This leaves us with the traceless transverse~TT! graviton
physical polarizations. Notice that sinceê50, Eq.~4.15! im-
pliesx0050. Therefore,fmn coincides withxmn , and the TT
conditions are satisfied in this gauge by the metric pertur
tion itself.

We conclude this section with a comment about the
lidity of the linear approximation we apply. Let us consid
just one physical mode forfmn , with amplitudeA and wave
vectorkW ,

AS h2
i

v Dexp~2 ivh1 ikWxW !1A* S h1
i

v Dexp~ ivh2 ikWxW !.

~4.33!
04400
a-
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As stated at the beginning of Sec. II, the validity of the line
approximation requiresufmnu!1. Thus, according to the
functional form of the mode~4.33!, the amplitudeA must
satisfy the conditions

uAu!
1

uhu
, uAu!v ~4.34!

that is, the linear approximation holds for high frequenc
and small conformal time. Let us remind that the cosm
region for the de Sitter space-time which describes an ex
nentially expanding space-time, corresponds to21/H,h
,0. Thus, the linear approximation holds throughout t
region provided that

A!min$H, v%. ~4.35!

V. RETARDED GREEN’S FUNCTION FOR THE
MINIMALLY COUPLED MASSLESS SCALAR FIELD

AND THE GRAVITON

We come back now to the inhomogeneous equat
~3.23!. Splitting Eq.~3.23! we have

h x001
2

h
]hx002

2

h2
x̃5216p GT00

(1) ~5.1!

h x0i1
2

h
]hx0i2

2

h2
x0i5216p GT0i

(1)

~5.2!

S h 1
2

h
]hDx i j 5216p GTi j

(1).

~5.3!

As in the previous section, Eq.~5.2! can be rewritten as

h S 1

h
x0i D52

16p G
h

T0i
(1) ~5.4!

and adding up Eq.~5.1! with the trace of Eq.~5.3! we also
have

h S 1

h
x̃ D52

16p G
h

T̃(1). ~5.5!

Here

T̂(1)5T11
(1)1T22

(1)1T33
(1) , T̃5T00

(1)1T̂(1). ~5.6!

Thus, the retarded solution to Eqs.~5.4! and ~5.5! can be
obtained using the well known Minkowski massless retard
Green’s function

GR
(M )~x,x8!5

1

4 p uxW2xW8u
d~h2h82uxW2xW8u ! ~5.7!

which has support on the past light cone and satisfies
7-7
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h GR
(M )~x,x8!52d (4)~x2x8!. ~5.8!

On the other hand, in order to solve Eq.~5.3! we need the
retarded Green’s function for the scalar d’Alembertian in
Sitter space-time, i.e. we need the retarded solution to

DlDl GR~x,x8!52H4h4 d (4)~x2x8!. ~5.9!

Here DlDl is the scalar d’Alembertian in de Sitter spac
time given in Eq.~A10!. Thus, Eq.~5.9! takes the form

S h1
2

h
]hDGR~x,x8!52H2h2 d (4)~x2x8!. ~5.10!

The retarded Green’s functionGR(x,x8) solving Eq.
~5.10! is given in Eq.~5.30! as can be checked by dire
substitution of Eq.~5.30! in Eq. ~5.10!. This retarded Green’s
function was obtained for the first time in@6#, using the
geometric techniques developed in@7#. However, although
the retarded Green’s function is a purely classical objec
can be most easily obtained using QFT techniques. Thus
consider a scalar field

f~h,xW !5E d3kW @ukW~h,xW ! a~kW !1ukW
* ~h,xW ! a†~kW !#

~5.11!

obeying the homogeneous equation

S h1
2

h
]hDf50 ~5.12!

i.e. f(h,xW ) is a minimally coupled scalar field in de Sitte
space-time. Then, from the previous section, the mo
ukW (h,xW ) take the form

ukW~h,xW !5
H

~2p!3/2A2v
S h2

i

v Dexp~2 ivh1 ikWxW !.

~5.13!

These modes satisfy the normalization

~ukW8 , ukW !5d~kW2kW8! ~5.14!

with respect to the scalar product

~f2 , f1!5
i

H2h2E d3xW f2* ~h,xW ! ]Jhf1~h,xW !. ~5.15!

Now, if we canonically quantize the scalar fieldf accord-
ing to

@a~kW !, a†~kW8!#5d~kW2kW8! ~5.16!

its retarded Green’s function is given by

GR~x,x8!52 u~h2h8! G~x,x8!. ~5.17!

Hereu(h) is the Heaviside step function, andG(x,x8) is the
Schwinger function for the fieldf(h,xW )
04400
e

it
e

s

G~x,x8!52 i ^0u@f~x!, f~x8!#u0&. ~5.18!

Then, by inserting the mode expansion~5.11! in Eq.
~5.18!, a straightforward computation yields

G~x,x8!52
H2

8p2 uxW2xW8u
„hh8 I 12 i ~h2h8!I 21I 3…

~5.19!

where

I n5E
2`

` du

un21
„exp~ iuy2!2exp~ iuy1!…; n51,2,3

~5.20!

and

y65h2h86uxW2xW8u. ~5.21!

The integralI 1 gives

I 152p„d~y2!2d~y1!…. ~5.22!

The integralI 2 is clearly convergent, and its evaluation usin
residues theorem yields

I 252p i „u~y2!2u~y1!…. ~5.23!

Notice that the integralI 3 is apparently logarithmically
divergent in the infrared—the integration variable beingu

5ukW u—since the integrand behaves for smallu as

1

u2
„exp~ iuy2!2exp~ iuy1!…52

i

u
2 uxW2x8W u1•••.

~5.24!

However, this divergence does not really exist becausI 3
can be rewritten as

I 35I 381 Î 3 ~5.25!

where

I 385E
2`

` du

u2
„exp~ iuy2!2exp~ iuy1!12i uxW2xW8usinu…

~5.26!

and

Î 3522i uxW2xW8u E
2`

` du

u2
sinu. ~5.27!

Then I 38 is convergent, andÎ 3 vanishes—in the sense o
Cauchy principal value—because the integrand is an
function. Therefore,I 35I 38 , and its evaluation using residue
theorem, yields

I 35p~ uy1u2uy2u!. ~5.28!
7-8



e

on

:

t
a
is

e
s,
s

-
tte

ve
up
s

in
gy

Eqs.

-

GENERATION OF GRAVITATIONAL WAVES BY . . . PHYSICAL REVIEW D60 044007
Thus, the Schwinger functionG(x,x8) is perfectly finite
in the infrared limit, and replacing expressions~5.22!, ~5.23!,
and ~5.28! in Eq. ~5.19!, it takes the form

G~x,x8!52
H2

4puxW2xW8u
1Fhh8„d~y2!2d~y1!…1~h

2h8!„u~y2!2u~y1!…1
1

2
~ uy1u2uy2u!G .

~5.29!

Finally, from Eqs.~5.17! and~5.29! we obtain the follow-
ing simple expression for the de Sitter scalar retard
Green’s function:

GR~x,x8!5
H2 hh8

4puxW2xW8u
d~h2h82uxW2xW8u!1

H2

4p
u~h2h8

2uxW2xW8u!. ~5.30!

Notice that to obtain this expression, some cancellati
have been produced in multiplying Eq.~5.29! by u(h2h8).
This is due to the following identities among distributions

u~h2h8!d~y1!50

u~h2h8!d~y2!5d~y2!

u~h2h8!u~y1!5u~h2h8!

u~h2h8!u~y2!5u~y2!

u~h2h8!~ uy1u2uy2u!52 ~h2h8!u~h2h8!22 y2u~y2!.
~5.31!

In particular, the advanced variabley1 has disappeared
from the arguments of the distributions entering Eq.~5.30!.
Thus, the retarded Green’s function~5.30! has support on the
past light cone and its interior, as it should be according
the causality of the classical theory. Notice also that the m
difference with the Minkowski retarded Green’s function
the term proportional tou(y2). This term tells us that—
although the free gravitational waves propagate at the sp
of light—in the production of gravity waves from source
there is information about these sources, which propagate
a lower speed.

Expressions~5.7! and ~5.30! completely solve the prob
lem of the retarded graviton propagator in the de Si
space-time. With this propagator at hand, we are going
discuss in the next section the production of gravity wa
by a generic source. Notice that from now on we shall s
press the upper label (1) from the energy-momentum ten
Tmn of the source, in order to alleviate the notation.

VI. GRAVITATIONAL WAVES PRODUCED BY SOURCES
IN de SITTER SPACE-TIME

We proceed to obtain the gravitational field produced—
the linear approximation—by a generic source with ener
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momentum tensorTmn . From Eqs.~5.7!, ~5.8! and ~5.4! the
time-space components for this field are

x0i~h,xW !5h 16p GE d3xW8 dh8

h8
GR

(M )~x,x8!T0i~x8!

54 GhE d3xW8

uxW2xW8u

1

h2uxW2xW8u
T0i~h2uxW2xW8u, xW8!.

~6.1!

Similarly, for the tilde component we have

x̃~h,xW !54 GhE d3xW8

uxW2xW8u

1

h2uxW2xW8u
T̃~h2uxW2xW8u, xW8!.

~6.2!

On the other hand, for the space-space components,
~5.3!, ~5.10!, and~5.30! give

x i j ~h,xW !516p GE d3xW8 dh8

H2h82
GR~x,x8! Ti j ~x8!

54 GE d3xW8

uxW2xW8u

h

h8
d~h2h82uxW2xW8u!

3Ti j ~h8,xW8!14 GE d3xW8 dh8

3
1

h82
u~h2h82uxW2xW8u!Ti j ~h8,xW8!. ~6.3!

Then, using the identity

h

h8

1

uxW2xW8u
d~h2h82uxW2xW8u!1

1
h82 u~h2h82uxW2xW8u!

5
1

uxW2xW8u
d~h2h82uxW2xW8u!

2]h8S 1

h8
u~h2h82uxW2xW8u!D ~6.4!

and doing a partial integration, Eq.~6.3! can be recast as

x i j ~h,xW !54 G E d3xW8

uxW2xW8u
Ti j ~h2uxW2xW8u, xW8!

14 G E d3xW8E
2`

h2uxW2xW8u dh8

h8
]h8Ti j ~h8xW8!.

~6.5!

Equations~6.1!, ~6.2!, and~6.5! give the linearized gravi-
tational field xmn produced by a source with energy
7-9
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momentum tensorTmn in de Sitter space-time. With thes
formulas at hand, we undertake now a double task: to do
spectral decomposition of the gravitational fieldxmn in fre-
quencies, relating it to the spectral decomposition of
sourceTmn , and to show that this field takes the form
radiated free gravitational waves in de Sitter space-tim
when we go to the ‘‘wave zone’’ far away from the source
For the first, we need an appropriate decomposition of
energy momentum tensor in modes of frequencyv. For the
space-space components, it is suitable to decompose
energy-momentum tensor in the form

Ti j ~h,xW !5E
0

`

dvFexp~2 ivh!S h2
i

v DTi j ~v,xW !

1exp~ ivh!S h1
i

v DTi j* ~v,xW !G
5E

2`

`

dv exp~2 ivh!S h2
i

v DTi j ~v,xW !

~6.6!

i.e. we decomposeTi j according to the modes entering th
componentsx i j of a free gravitational wave. Notice that w
have definedTmn(2v,xW )[Tmn* (v,xW ) as usual. Now, since
the modes exp(2ivh)(h2i/v) satisfy

i ]h exp~2 ivh!S h2
i

v D5vh exp~2 ivh! ~6.7!

the integral transform~6.6! can be easily inverted in the form

Ti j ~v,xW !5
1

2p vE2`

`

dh exp~ ivh!
i

h
]h Ti j ~h,xW !.

~6.8!

For the other components ofTmn , since the correspondin
modes of a free gravitational wave take the formh exp(ivh),
we do the spectral decompositions

T0i~h,xW !5hE
2`

`

dv exp~2 ivh!Ti j ~v,xW ! ~6.9!

and

T̃~h,xW !5hE
2`

`

dv exp~2 ivh!T̃~v,xW ! ~6.10!

whose inverses are

T0i~v,xW !5
1

2pE2`

` dh

h
exp~ ivh!T0i~v,xW ! ~6.11!

and

T̃~v,xW !5
1

2pE2`

` dh

h
exp~ ivh!T̃~v,xW !. ~6.12!
04400
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Now, let us decompose the gravitational fieldxmn in modes
of frequencyv

xmn~h,xW !5E
0

`

dvxmn
(v)~h,xW !. ~6.13!

Then, for the space-space components ofx i j , replacing the
spectral decomposition~6.6! for Ti j in the expression~6.5!,
we have

x i j
(v)~h,xW !54 G E d3xW8

uxW2xW8u

3Fexp~2 ivh! exp~ ivuxW2xW8u!

3S h2UxW2xW8U2 i

v DTi j ~v,xW8!1c.c.G
14 GE d3xW8F2 i v Ti j ~v,xW8!

3E
2`

h2uxW2xW8u
dh8exp~2 ivh8!1c.c.G

~6.14!

and doing the usual shiftv→v1 i e, to handle the lower
limit of the integral overh8 in the second line of Eq.~6.14!,
we find

x i j
(v)~h,xW !54 GS h2

i

v Dexp~2 ivh!E d3xW8

uxW2xW8u

3exp~ ivuxW2xW8u!Ti j ~v,xW8!1c.c. ~6.15!

Similarly, replacing the spectral decompositions~6.9! and
~6.10! for T0i andT̃ in the expressions~6.1! and~6.2! for x0i

and x̃ we have

x0i
(v)~h,xW !54 Gh exp~2 ivh!E d3xW8

uxW2xW8u

3exp~ ivuxW2xW8u!T0i~v,xW8!1c.c.

~6.16!

and

x̃~h,xW !54 Gh exp~2 ivh!E d3xW8

uxW2xW8u

3exp~ ivuxW2xW8u!T̃~v,xW8!1c.c. ~6.17!

The expressions~6.15!–~6.17! are one of the main result
of this paper. Just as in Minkowski space-time, these form
las relate thev frequency component of the gravitation
field produced by the sourceTmn , with the v frequency
component ofTmn itself. On the other hand, theh-time de-
pendent factors in front of the integrals in these formul
exactly coincide with theh-time dependent factors for a fre
7-10
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gravitational wave of frequencyv. This is due to the appro
priate decomposition of the energy momentum tensor wh
has been done in Eqs.~6.6!, ~6.9!, and ~6.10!. This decom-
position is of course different of the plain Fourier transfo
mation which is done in Minkowski space-time, since t
form of the spectral transform is dictated by the form of t
free gravitational waves themselves. Moreover, we
choose a source localized in a finite spatial region, and c
sider the gravitational fieldxmn produced by this source in
the ‘‘wave zone.’’ To do it, we go far away from the sourc
and take the region of pointsxW that satisfy

uxW u@max$a, v2a% ~6.18!

wherea is the size of the source. In this limit we have
usual

1

uxW2xW8u
;

1

r
, exp~ ivuxW2xW8u!;exp~ ikWxW2 ikWxW8!

~6.19!

with r 5uxW u, and kW5v xW /uxW u. Thus, the expressions~6.15!,
~6.16!, and~6.17! give in this limit

x i j
(v)~h,xW !;

4 G
r S h2

i

v Dexp~2 ivh1 ikWxW ! Ai j ~kW !

~6.20!

x0i
(v)~h,xW !;

4 G
r

h exp~2 ivh1 ikWxW ! A0i~kW ! ~6.21!

x̃ (v)~h,xW !;
4 G
r

h exp~2 ivh1 ikWxW ! Ã~kW ! ~6.22!

which correspond to free gravitational spherical waves in
Sitter space-time, being radiated away from the source,
whose amplitudes are given in terms of the ener
momentum tensor of the source by

Amn~kW !5E d3xW8 exp~2 ikWxW8!Tmn~v,xW8!. ~6.23!

As a final remark, it is interesting to write down the spe
tral decomposition in frequencies of the covariant conser
tion law for the source energy momentum tensorTmn . Using
the expression~A4! for the de Sitter covariant derivative, th
conservation equationDnTmn50 splits into the two equa
tions

2]hT001] jT0 j1
1

h
T̃50 ~6.24!

2]hT0i1] jTji 1
2

h
T0i50. ~6.25!

Notice that these equations formally coincide with the gau
fixing conditions forxmn ~4.16! and~4.17!. Nevertheless, the
geometrical meaning is not the same for both, becauseTmn is
a tensor whilexmn is a tensor density. Now, using the spe
04400
h

n
n-

e
nd
-

-
-

e

tral decompositions in frequencies~6.6!, ~6.9! and~6.10!, the
conservation laws for thev frequency component of the
energy-momentum tensor takes the form

i v„T̃~v,xW !2Ti i ~v,xW !…1] jT0 j~v,xW !50 ~6.26!

i vT0i~v,xW !1] jTj i ~v,xW !50. ~6.27!

Notice that Eq.~6.27! has exactly the same form as
Minkowski space-time, while Eq.~6.26! is different because
T̃(v,xW )2Ti i (v,xW )ÞT00(v,xW ) @in fact there is no suitable
way to defineT00(v,xW )#. Finally, using the conservation law
~6.26! and ~6.27!, one can check that thev frequency com-
ponentxmn

(v) of the gravitational fieldxmn , given by Eqs.
~6.15!, ~6.16! and ~6.17!, satisfy the gauge fixing condition
~4.16! and ~4.17!.

VII. CONCLUSIONS

We have shown that the production of gravitational rad
tion from sources moving in the 4D de Sitter background c
be studied along the same lines as for Minkowski spa
time. The maximal symmetry and the conformal flatness
the de Sitter space-time are found to be two key ingredie
in order to achieve this goal. In addition, we have sho
that—although the general equations for linear gravitatio
perturbations are rather cumbersome—choosing the ga
~3.21!, the equations for all~physical and unphysical! polar-
izations of the graviton decouple, and amount to the eq
tions for a de Sitter minimally coupled massless scalar fi
and a Minkowski massless field. In this respect, it is wo
remarking that the minimally coupled massless scalar fi
behavior can be easily obtained, in the case of the phys
polarizations, by imposing the traditional synchronous tra
verse traceless gauge conditionsDncm

n 5uncm
n 50. However,

these two conditions cannot be simultaneously imposed
the presence of a source, and if one imposes only the co
tion Dncm

n 50 instead of Eq.~3.21!, one is led to a much
more difficult coupled graviton wave equation than E
~3.23!, whose solutions contain spurious complications. T
same thing happens for the residual gauge invariance
lowed by the gauge conditionDncm

n 50. While the infinitesi-
mal coordinate transformations preserving the gauge co
tion ~3.21! are given by vector fields whose equations for t
time and space components decouple, and give very sim
mode solutions; the vector fields corresponding to the
sidual gauge invariance allowed byDncm

n 50, satisfy a much
more difficult coupled system of partial differential equ
tions.

The main new results of this paper are given in Sec. VI.
that section we have shown that decomposing the ene
momentum tensor of a given generic sourceTm

n (h,xW ) in fre-
quencies, by using a spectral transform dictated by
modes of the free gravitational waves in the curved ba
ground, we have very simple closed formulas relating thev
frequency component of the linearized gravitational fie
produced by the source with the transformTmn(v,xW ) of the
energy-momentum tensor. We also show that for localiz
7-11
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sources, the produced gravitational field takes the form
free gravitational waves in de Sitter space-time being ra
ated away from the source. Thus, the generation of grav
tional radiation by sources in de Sitter space-time resem
very closely to the same process in Minkowski space-tim
the main difference being in the form of the energ
momentum frequency transform, which enter the formu
for the amplitudes of the radiated waves.

As a previous step we have also shown in Sec. V, how
graviton retarded Green’s function in the Sitter space-tim
needed to solve the graviton wave equation—can be ea
obtained using QFT techniques. The most prominent fea
of this retarded Green’s function is that in addition to a de
function term in the retarded time, it also contains a te
proportional to the Heaviside step function of the retard
time. This second term shows that the information about
sources in de Sitter space-time propagates not only at
speed of light but also at a lower speed.

In our opinion, it would be very interesting to apply th
general formulas~6.15!–~6.17! that we have derived in this
paper, to sources that could exist during the inflationary
riod of the universe. As a first example we have work
progress@12# concerning string sources, whose equations
motion in de Sitter space-time have been solved in the c
of a ring ansatz@13#.
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APPENDIX

In this appendix we collect a number of formulas for c
variant derivatives, curvature tensors and d’Alembertians
de Sitter space-time, which are used in this paper. The
dimensional de Sitter metric in conformal coordinatesxm

5(h,xW ) reads

ds25gmn dxmdxn5
1

H2h2
~2dh21dxW2! ~A1!

i.e.

gmn5
1

H2h2
hmn ~A2!

wherehmn5diag(2,1,1,1) is the Minkowski metric, and
H is the Hubble constant.

Then the metric connection, can be written in these co
dinates as

Gml
(0)n52

1

h
~dm

0 dl
n1dl

0 dm
n 1d0

n hml!. ~A3!
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Thus, the covariant derivatives for covariant and contrav
ant vectors read

DmVk5]mVk1
1

h
~dm

0 Vk1dk
0 Vm1hmk V0! ~A4!

DmVn5]mVn2
1

h
~dm

n V01dm
0 Vn1d0

n hml Vl!. ~A5!

In particular we have

DlVl5]lVl2
4

h
V0 ~A6!

and

Dlcm
l 5]lcm

l 2
4

h
cm

0 1
1

h
dm

0 c. ~A7!

Since the de Sitter space-time is maximally symmet
the Riemann and Ricci tensors take the form

Rmklr
(0) 5H2~gmr gkl2gml gkr! ~A8!

and

Rmk
(0)523H2 gmk . ~A9!

In addition to these tensors, we need the scalar, vector
tensor d’Alembertians, which can be computed using the
pression~A3! for the metric connection. For a scalar fieldf,
we have the scalar d’Alembertian

1

H2h2
DlDl f5S h1

2

h
]hDf ~A10!

whereh is the Minkowski d’Alembertian

h[2]h
21¹W 2. ~A11!

For a vector fieldjm , the vector d’Alembertian is

1

H2h2
DlDl jm5h jm1

2

h
@]mj01dm

0 hab ]ajb#

1
1

h2
@3 jm12 dm

0 j0#. ~A12!

Finally, for a tensor fieldcm
n , a long but straightforward

computation yields

1

H2h2
DlDl cm

n 5h cm
n 1

2

h
@]hcm

n 1]mc0
n2hnk ]kcm

0 #

1
2

h
@dm

0 hna ]bca
b2d0

n ]bcm
b#1

2

h2
@cm

n

12 dm
0 c0

n12 d0
n cm

0 2dm
0 d0

n c2dm
n c0

0#.

~A13!
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