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Some properties of the Schwarzschildde Sitter and Schwarzschild-anti-de Sitter spacetimes
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Properties of the Schwarzschild—de Sitter and Schwarzschild—anti-de Sitter spacetimes are characterized by
three phenomena, namely, by the “effective potential” of the motion of test particles and photons, the photon
escape cones, and the embedding diagrams=afnst sections of central planes of both the ordinary and
optical reference geometry of these spacetimes. The phenomena are related to the corresponding phenomena of
the Schwarzschild spacetime, and differences caused by the asymptotic structure of the spacetimes with a
nonzero cosmological constant are discussed. The properties of the embedding diagrams of the optical geom-
etry are related to the dynamical behavior of test particles. The limits of the embeddability of the optical
geometry are given and compared with the limits on the outer radius of the interior solutions of Einstein’s
equations with a nonzero cosmological constant for static, spherically symmetric configurations of uniform
density. It is shown that, contrary to the pure Schwarzschild case, these limits do not fully coincide for
repulsive cosmological constanf§0556-282199)05714-§

PACS numbd(s): 04.70.Bw, 04.25-g

I. INTRODUCTION In Sec. Il, an appropriate “effective potential” governing
the radial motion of test particles and a “generalized effec-
All recently available data from cosmological observa-tive potential” for the radial motion of photons are given.
tions, including measurements of the present value of thdNe effect of a nonzero cosmological constant is clearly re-
Hubble parameter and dynamical estimates of the presefiected by their asymptotic behavior. _
energy density of the Universe, measurements of the anisot- !N S€c. lll, impact of the asymptotic behavior of the
ropy of the microwave cosmic relic radiation, statistics of thesF]acenmesf v|\4|th r? nonzero cosmologlclal %onstﬁntf on_lthef
gravitational lensing of quasars and active galactic nUdeigt;ir?(i)tggeorvteri Fi)s ?Iltlcj)gtriggpe cones related to the family o
?:ézﬁlﬁ nsuurggrer:os;gm;ivsn;rcfzg szzzlgrt?giniia?finhl?r? In Sec. IV, embedding dlagrams bf const sections of
framework of inflatio’nary cosmology a nonzero repulsivegentral planes of both the ord|r_1ary geometry and _optlcal rgf-

. . . erence geometry associated with the Schwarzschild—de Sitter
cosmological constant\>0, has to be invoked in order 0 5.4 schwarzschild—anti-de Sitter spacetimes are constructed,
explain the properties of the presently observed Universgnq compared with the corresponding embedding diagrams
[1-3]. The presence of a repulsive cosmological constangs the Schwarzschild spacetime. The embedding diagrams
alters in a significant way asymptotic character of black-holejive in an illustrative way information on changes of the
spacetimes. We shall discuss modifications of the charactepacetime structure caused by the presence of a nonzero cos-
of the simplest, spherically symmetric spacetimes describeghological constant. The embeddings of the optical reference
by the Schwarzschild—de Sitter solutions of Einstein’s equageometry into the three-dimensional Euclidean space cannot
tions. (However, we shall not consider Schwarzschild—debe constructed for the whole static part of the spacetimes; the
Sitter spacetimes with supercritical values ofwhich are  limits of embeddability are established. In the case of the
dynamic everywherg. Schwarzschild—anti-de Sitter spacetimes even the em-

On the other hand, it has been shown recently that th@eddability of the ordinary geometry is limited.
anti-de Sitter spacetimes play an important role in the super- In Sec. V, relations between the limits of embeddability
string theory[4]. Therefore, it is useful to investigate also the Of the optical reference geometry of the vacuum spherically
influence of an attractive cosmological constArt 0 on the ~ Symmetric spacetimes with #0 and the limits on the outer
black-hole solutions. We restrict our attention again to the@dius of interior solutions of Einstein’s equations with

simplest case of the spherically symmetric, Schwarzschild-=0 for static and spherically symmetric configurations of
anti-de Sitter spacetimes. uniform density are discussed. Further, it is shown that the

We shall estimate at which regions properties of both thdimit of embeddability of the ordinary geometry is related to

Schwarzschild—de Sitter and Schwarzschild—anti-de Sitteft SPECial class of the interior solutions of Einstein’s equa-
spacetimes become significantly different than the correlions With A<0. . o
In Sec. VI, concluding remarks concerning differences of

sponding properties of the pure Schwarzschild spacetim ’ . .
(with A=0). The modifications will be tested by using three (N€  properties O_f the . Schwarzschlld—de Sitter - and
Schwarzschild—anti-de  Sitter spacetimes and the pure

henomena that can be both astrophysically relevant and i . )
P phy y Schwarzschild spacetime are presented.

lustrative.
Il. THE MOTION OF TEST PARTICLES AND PHOTONS
*Email address: Zdenek.Stuchlik@fpf.slu.cz In the standard Schwarzschild coordinatgs,@, ¢), and
"Email address: Stanislav.Hledik@fpf.slu.cz the geometric system of units c€G=1), the
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1 T &
re= \/?y cosT , (6)
where
é=cos 1(3v3y). (7)

The spacetime is dynamic ar, andr>r.. If y=y
=1/27, the horizons coincide gt=3. If y>1/27, the space-
time is dynamic at alfF>0. In the Schwarzschild—anti-de
Sitter spacetimes, a black-hole horizon always exist, and its
location is determined by the relation

FIG. 1. Characteristic functions of the Schwarzschild—de Sitter

_ | . ! 1) 12 1\ 1213
spacetimesy,(r) (dashed ling determines loci of the black-hole rh=|— _) 1+ 1— _) }

(the inner ongand cosmologicalthe outer onghorizons;y e opy(r) 27y

(dashed-dotted linedetermines limits of embeddability of the cen- 1211/3

tral planes of the optical reference geometry into three-dimensional +1— ( 1— _) ] ] (8
Euclidean space;=3 andyg(r) determine limits of unstable cir- 27y

cular orbits(dark shaded regiony,{r) determines limits of stable ) ] )
circular orbits(light shaded region Notice that limits on existence The motion of test particles and photons is governed by
of the static configurations of uniform density are determined bythe geodesic structure of the spacetime. The geodesic equa-

Ye(opy(r) atr<3, but byy(r) atr>3. tion reads

Schwarzschild—de Sitter A>>0), and Schwarzschild— Dp” —0 ©)
anti-de Sitter \ <0) spacetimes are determined by the line d\ '

element

wherep#=dx*/d\ is the four-momentum, ani is the af-

2M A ), fine parameter. The normalization condition reads
dSZZ - 1- T - §I’ dt
prp,=—m?, (10
2M A 2 o 2 2 2 H 2 H H
1- e §r dr?+r2(d6?+sir? 6d¢?), wherem is the rest mass of test particles=0 for photons.

It follows from central symmetry of the geometfy) that
(1) the motion of test particles and photons is allowed in the
central planes only. Because of the existence of the time
whereM is the mass parameter of these spacetimes. Howijling vector &y= /ot and the axial one 4 =a/d¢, two
ever, it is useful to introduce a dimensionless parameter constants of motion, which are the projections of the four-
y=AMZ3, @ momentum onto the Killing vectors, must exist:

. . . . = H=—¢, = H=0, 11
and use dimensionless coordinatest/M, r—r/M. It is Pt= 0P Ps=0ouP (D
equivalent to puttingl = 1. The event horizons of the geom- | the spacetimes with a nonzero cosmological constant, the

etry (1) are then given by the condition constants of motiog and® cannot be interpreted as energy
and axial component of the angular momentum at infinity,

2 2 since their geometry is not asymptotically flat. It should be

gu=1——-—yr<=0. ©) 9 wy ot asymp |y hat. 1t 7

r therefore, interesting to discuss a possibility to find regions

] ] ) . of these spacetimes which have character that is “close” to
The loci of the event horizons are determined by the relatioRhe character of the Schwarzschild spacetime.

It is useful to introduce specific ener@y specific angular

y=y(r)= g; (4) momentumL and impact parametérby the relations
r
& (0] d
the functiony,(r) is illustrated in Figs. 1 and 4. In the E=0 L=y =% (12)

Schwarzschild—de Sitter spacetimes, two event horizons ex-
ist if 0<y<ycny=1/27. The black-hole horizon is located at |f we choose the plane of the motion to be the equatorial

plane @=m/2), we find that the motion of test particles

1 + : . 9 ; e
cosw 3 , () (m+#0) is determined by an “effective potential'5]

r:_
EREAE

the cosmological horizon at

2

L
1+ . (13)

2
Veff(r:L,y)E(l—;—yr2
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The motion is allowed in regions where voked by the mass of the source is just compensated by the
5 cosmological repulsion. The static radius is given by the con-
E“=Ver(r;L,y), (14 dition
and the turning points of the radial motion are determined by 1
the conditionE2=Vg(r;L,y). y=Ys(N= 131 (20

The radial motion of photonsnf=0) can be determined
by a “generalized effective potential,” related to the impacty (r) is illustrated in Fig. 1. At the static radius, particles

parametef. The motion is allowed in regions where with the specific energy
r3 _ (1 _aylB12
|2S|é(r;y)5r_2_yr3' (15) Es(y) (1 3y ) ’ (21)

(andL=0) are at an unstable equilibrium.
the conditionlzzlé(r;y) gives the turning points of the ra- The stable circular orbits exist at radii limited by the re-
dial motion. lation
The functionsVegx(r;L,y) andlﬁ(r;y) are defined between
the black-hole and cosmological horizons in the case of the
Schwarzschild—de Sitter spacetim®sy is zero at the hori-
zons, whilel2 diverges there. The functions are defined at all

4yr4—15yr3—r+6=<0. (22

The marginally stable orbits are given by

radii above the black-hole horizons in the case of the r—6
Schwarzschild—anti-de Sitter spacetim¥s; is zero at the Y=Ymdl)= 4r—15) (23
horizon, whiIeIE2 diverges there. Purely radial motidwith

L=0, orl=0) was discussed in Ref6]. The functiony,{r) is illustrated in Fig. 1. Its zero is at

Circular orbits of test particles correspond to local ex-=¢, corresponding to the marginally stable circular orbit in
trema (@Ver/or=0) of the effective potential. Maxima the Schwarzschild spacetime. The functipp(r) diverges
(9*Veis/or<0) determine unstable circular orbits, minima at r=0, and atr=15/4; y, <+ for r—0, and if r
(82Veﬁ/z9r2>0) determine stable circular orbits. The SpeCIfIC_,15/4 from below, and it has a minimum a& 3, where
energy and specific gngular momentum of particles on circuymsz 1/27. However, the functiog,{r) is physically irrel-
lar orbits are determined by the relatioifg evant at whole the range <Or<15/4, becausey,dr)

vy >1/27 there, i.e., it corresponds to spacetimes that are dy-
1— _) , (16) namical at allr>0. The physically relevant part gf,{(r) is
r located atr =6. Its maximum is located at;,g=15/2, and
the maximum value of the cosmological parameter allowing

2
Ec(r;y)=(1—;—yr2)

) — 3\71/2 3) 2 existence of stable circular orbits is
Le(fy)=[r(1-yr)1" 1= . 17
12
The circular orbits can exist at radii limited by Ye(ms)= 752 =0.000237. (24)
3<r=re=y % (18

The corresponding critical value of Schwarzschild mass
M c(msy= (3Ye(ms)/ A) Y% considering an upper limit on the

At r=3, bothE. and L. diverge; a photon circular orbit cosmological parametex 10~ 6 cm™2 [7], we find

exists there. It is given by a local minimum of the function
2/, CR s

Ir(r;y), which |s_located at =3 independently o_f the value M g(msy~8.43% 1075 cm~5.75< 1M, . (25)

of the cosmological parametgt Of course, the impact pa-

rameter of the photon circular orbit dependsyon The behavior of the effective potential is illustrated for three
typical situations Y>>y (ms)» Y<Ycms)» ¥ <Yc(ms) in Fig. 2.

27
)= 157 (19 o _
y B. The Schwarzschild-anti-de Sitter spacetimes

Thus, similarly to the “pure” Schwarzschild case, the In this case, the asymptotical behavior of the functions
radii of circular orbits are limited from below by the photon determining motion of test particles and photons has radi-
circular orbit atr=3. In the case of the Schwarzschild— cally different character, and it is given by
anti-de Sitter spacetimey{0), this is the only restriction. _ P 1
Further, we shall discuss the properties of the effective po- Ver(r—oy)~=yre,  Ir(r—ey)~—y = (26)
tentials separately in the casgs 0 andy<O0.

The effective potential is illustrated again for three typical
situations (with the same magnitude off as in the
Schwarzschild—de Sitter cgse Fig. 3. Now, the stable cir-
The radii of circular orbits are limited from above at so cular orbits can exist for all values of the attractive cosmo-
called static radius, where the gravitational attraction indogical parameter. The marginally stable orbits are again de-

A. The Schwarzschild-de Sitter spacetimes
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FIG. 2. Effective potential of the test-particle motion in the
Schwarzschild—de Sitter spacetimes. The potential is given for vari- FIG. 3. Effective potential of the test-particle motion in the
ous specific axial momenta for the spacetimes wihy =103 Schwarzschild—anti-de Sitter spacetimes. The potential is given for
>Y¢(msy=0.000237, when stable circular orbits cannot exist,y various specific angular momenta for the spacetimes (eitly =
=10 %and(c) y=10"1% when stable circular orbit, corresponding —1073, (b) y=—10", (c) y=—10"*2 For ally<0 the effective
to minima of the effective potential, are possible. For comparisonpotential has the same character; stable circular orbits are possible
in (d), the effective potential is given for various valuesygfwith in all the cases witly<<0. For comparison, irid), the potential is
L=4 fixed. given for variousy<<0 with L=5 fixed.
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1 reflect global properties of the spacetimes under consider-
ol ation.
The tetrad of vectors carried by the static observers is
-1t 112 4
> — — —_yr2 —
T e(t)—(l Cyr ) e (27)
o
'9| _3» 2 *1/2(9
en=|1-—-yr*| —, (28)
_al r ar
—5-O 190 29
e((9)—r 70" (29
FIG. 4. Characteristic functions of the Schwarzschild—anti-de 1 J

Sitter spacetimesyy(r) (dashed ling determines loci the black- &= -
hole event horizony o (r) (dashed-dotted linedetermines limits rsind d¢
of embeddability of the optical geometry onto Euclidean space;

=3 gives limit on existence of unstable circular orhitark shaded ~ 1ne components of the four-momentum of a photon as mea-
region; yn.{r) determines limit of stable circular orbitdight ~ Sured by a static observer are

shaded region Yeeorq)(r) (solid line) determines limit of em- B

beddability of the ordinary geometrfof the central planes of p(a)_pﬂefa)' (31
=const sectionsinto the Euclidean geometry. Limits on existence
of the static configurations of uniform density are given by the
function ye(opy - Above the intersection of (ora)(r) andye(opy(r)

(at the pointr=3/2, y=—16/27) the static configurations of uni-
form density, characterized by the functiggqq(r), cannot exist.

(30

Using relationgp®= —py, p'?=p4, p=p(), we can
find the directional angle) of the photon(i.e., the angle
measured by the observer relative to its outward radial direc-
tion) to be given by the relations

() 2 1/2
termined by the relatiori23); their radii shift fromr,c—6 sing= —y = ( 1- F—yrz) o (32
(for y—0) to r < 15/4 (for y— — o). p
For the Schwarzschild—anti-de Sitter spacetimes, the loci (r) 2

of the black-hole horizon, the circular photon orbit, and the
marginally stable circular orbit are illustrated in Fig. 4. The
“generalized effective potential” for the photon motion

I2(r;y) is illustrated in Fig. 5, for the spacetimes with both
y>0 andy<O0.

2 1/2
1—(1— F—yr2>r—2} . (33

Ccosy= W: *

The photon escape cones can be determined by using the
function Iﬁ(r;y) governing the photon motion. In establish-
ing the directional angle/. of an marginally escaping pho-
ton, the impact parametéy of the unstable circular photon

. PHOTON ESCAPE CONES orbit plays the crucial role for static observers located both

We shall demonstrate the influence of both repulsive anémd.er and ab0\_/e the cwcular_ photon orbitrat3; for sim-
attractive cosmological constant on the behavior of photor‘?“c'ty.We con5|d¢r only positive .Va'“‘?s d’.& because the
escape cones related to the family of static observers. Algone Is symmetric about the radial direction. i3, the
though measured by local observers, the photon escape corfey-apre angle is

o
120 1073 lﬂc(f:3:Y)=§, (34)
101 independently ofy. Directional escaping angles ¥ 3 can
sl be determined by inserting the formula fgrinto Egs.(32)
o and(33). We arrive at the expressions
> 6
. o (27r—2-yrd)| 2 .
ar i sing(r;y)= Ha-zm) | (35
2, =1U
r3—27r + 5412
0 2 4 6 8 10 cosyr(r;y)== 1-27) ] (36)

log r

FIG. 5. The generalized “effective potential” of the photon Which reduce to the “Schwarzschildy(=0) formulas
motion in both the Schwarzschild—de Sitter and Schwarzschild— 5 2| 12
anti-de Sitter spacetimes. The generalized effective potential is re- siny (r):< ar ))
lated to the impact parameter. ¢ rs '

(37
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FIG. 6. Photon escape cones in the Schwarzschild—de Sitter spacetimes. The cones given at typical radii in the spacgtime with
=102 are compared with the corresponding cones in the pure Schwarzschild spacetig. (Close to the black-hole horizde.g., at
r=2.01), the escape cone of the Schwarzschild—de Sitter spacgtariegray is significantly narrower than the Schwarzschild ghght
gray). Asr tends tor =3, corresponding to the radius of photon circular orbits, the cones become closer, and they coinei@ewahere
the opening angley= /2. At r>3, the Schwarzschild escape cone becomes narrower than the Schwarzschild—de Sit{aithoge
>1/2). The complementary photon capture cone is narrower in the Schwarzschild—de Sitter spacetime; the differences can be significant
close to the cosmological horizon.

27 54\12 times withy<<0. Asymptotically(for r—o), the Schwarzs-
cosy(r)= i(l— 7zt (38  child capture cone degenerates into the inward radial
direction, while the Schwarzschild—anti-de Sitter cone con-
verges to an opening angle which is nonzero. One can find
that

Forr <3, the marginally escaping photon is radially outward
directed (V>0 and cos}; is taken with the plus signfor

r>3, it is inwards directed("" <0 and cos is taken with _ 3y |12
the minus sigh Singe(r—o0;y<0)~3 -1 (39
A. The Schwarzschild-de Sitter spacetimes This behavior of the escape cones clearly illustrates modified

The behavior of the escape cones is presented in Fig. @symptotic character of the Schwarzschild—anti-de Sitter
At a fixed (and allowed r<3, the escape cone of the SPacetimes.
Schwarzschild spacetime is the widest one, and it gets
smaller withy growing. On the other hand, at a fixédnd IV. EMBEDDING DIAGRAMS
allowed r >3, the Schwarzschild escape cone is the smallest . .
one. Of course, the complementary Schwarzschild photon Cl_Jrvature of static parts of th_e vacuum, spherically sym-
capture cone is,the widest onerat 3. Close to the cosmo- Metrc black-hole spacetimes with a nonzero cosmological

logical horizon, the Schwarzschild—de Sitter capture con&onstant can be conveniently illustrated by embedding dia-
' grams. Comparison of these embedding diagrams with those

gets to be strongly narrower Fhan the Schwarzschild Capturconstructe d for the pure Schwarzschild spacetif@s]
cone, as one can expect intuitively. ) Coo L R

gives an intuitive insight into the change of the character of
the spacetime caused by the cosmological constant. It is use-
ful for both ordinary and optical geometry.

The behavior of the escape cones is presented in Fig. 7. The existence of the field of the time Killing vectérat

At a fixed (and allowedl r<3, the escape cone of the enables us to define a privileged notion of space using the
Schwarzschild spacetime is the narrowest one; it gets widerypersurfaces of=const. First, we shall use the induced
with y descending. At a fixed >3, the Schwarzschild es- metric on these hypersurfacés., the space components of
cape cone becomes greater than the cones witl. The the metric tensog;,)—we call it ordinary space. Then, we
complementary photon capture cone of the pure Schwarzshall consider so called optical reference geometry referred
child spacetime lies inside the capture cones of the spacée the t=const hypersurfaces by an appropriate conformal

B. The Schwarzschild-anti-de Sitter spacetimes
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FIG. 7. Photon escape cones in the Schwarzschild—anti-de Sitter spacetimes. The cones are given at typical radii for the spacetime with

y=—103 (dark gray, and compared with the corresponding Schwarzschild ctiugg gray). Contrary to the situation in the spacetimes
with y>0, in the Schwarzschild—anti-de Sitter spacetimes the escape cone is wider than the Schwarzschild escape<@riEhay
coincide atr =3, again. Atr >3, the Schwarzschild capture cone is narrower than the Schwarzschild—anti-de Sitter capture cdeadas

to infinity, the difference between both cones becomes more evident, while the Schwarzschild capture cone degenerates into a radial inward

directed line, the Schwarzschild—anti-de Sitter capture cone converges to a constant-angle cone.

scaling[9]. Geometry of all the central planes of these hy-r andp can be identified. The embedding diagram can then
persurfaces is the same as those of the equatorial pl&ne pe given by the formula=z(r), which can be obtained by
=m/2) as a consequence of the central symmetry of théntegrating the relation
spherically symmetric spacetimes. Therefore, the embedding

diagrams will be constructed for the equatorial plane in all dz

the considered cases. g

ar (43

2 +yr3 12
r—2— yrs)
A. Embedding of the ordinary geometry

We shall embed the surface described by the line elemerfthe choice of the positive or negative sign in E4g) leads
to isometric surfaces, and is therefore irrelevant.

1
dri+r2dg?, (40

2
A% ges=| 1— = —yr?
(S-des) ( rY 1. The Schwarzschildde Sitter spacetimes
corresponding to the equatorial planetefconst hypersur- In .the case of a repulsive cosmological constant, ;he em-
face, into a flat Euclidean three-dimensional space whosBeddlng can be constructed for complete static regions be-

line element is in the standard cylindrical coordinates givent\m'}en the black-holgr(,) a_nd cqsmological ) horizons.
by Recall that the static region exists fgi<1/27 only. The

embeddings are given for several typical valuey q0D<y
do?=dp?+ p2dp2+d 2. (41) <1/27) in Fig. 8; the pure Schwarzschild case=Q0) is
included for comparison. The presence of a repulsive cosmo-
The embedding is given by the surface z(p), which have logical constant alters the character of the embedding dia-
to isometric with the equatorial plane of the const hyper-  gram substantially in comparison with the case/ef0. Due
surface of the spacetime. Thus we have to identify the lindo the asymptotical behavior of the Schwarzschild—de Sitter
element given by spacetimes, the embedding diagrams have a shape corre-
sponding to a funnel—a throat corresponds to both the black-

dz\? hole and cosmological horizons. With growing, distance
2 _ s 2, 2442 . '
dlfg)= 1+(dp) }dp +pidé (42) between the horizons decreases, and the height of the dia-
gram decreases too. The shape of the embedding diagram
with the line element40). becomes closer and closer to a cylindrical surface with more

We can identify the azimuthal coordinatés moreover, and more limited height. Withy—1/27 the diagram is
in the case of the ordinary space, also the radial coordinateshrinking to the circle of radius= 3.
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FIG. 9. Embedding diagrams of the ordinary geometryt of
=const section of the Schwarzschild—anti-de Sitter spacetimes. The
diagrams are given fofa) y=—10°, (b) y=-0.002, (c) y=
—0.03. Now, the embeddability into the Euclidean space is limited
by the functiony.(r). Note that bothr andz scales are adjusted so
that all the plots occupy approximately the same area. For real
proportions, see Fig. 10.

However, we can see directly from E@3) that the embed-

ding diagrams of the ordinary space can be constructed in a

limited part of the static region, located between the black-

hole horizorr , andr (o= (— 2/y) *®. We shall characterize
FIG. 8. Embedding diagrams of the ordinary induced geometrithe limit of embeddability of the ordinary space by the con-

of t=const sections of the Schwarzschild—de Sitter spacetimes. Thgition

pure Schwarzschild casg€0) is taken for comparison i@). The

diagrams are given fotb) y=107%, (c) y=0.002, and(d) y 2

=0.03. Fory=0 the diagram is asymptotically flasee(a)]. For Y=Ye(ora)(M =~ 3,

0<y<1/27, the diagram resembles a funnel having a throat at both

the black-hole and cosmological horizons. Note that botind z

scales are adjusted so that all the plots occupy approximately thif1€ fUNCtioNYe(ora)(r) is illustrated in Fig. 4.
same area. For real proportions, see Fig. 10. The embedding diagrams of the ordinary induced geom-

etry are given for several values &0 in Fig. 9. Now, in
) ) _ ) the region of embeddability, the embedding diagrams have a
2. The Schwarzschildanti-de Sitter spacetimes similar character as in the Schwarzschild case. But, contrary

In the case of an attractive cosmological constant, théo the Schwarzschild[8] and Kerr [10] case, or the
static region extends from the black-hole horizon to infinity. Schwarzschild—de Sitter case discussed above, where the

(d)

r (44
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straight,” because test particles moving along geodesics of
the optical geometry are kept on these trajectories by a force
independent of their velocitjl4]; they are also “inertially
straight,” because a gyroscope carried along these geodesics
does not precess along the direction of the mofit#i. It is
well known that a vector representing the gyroscope’s spin is
parallelly transported on the surfaze=z(p) in the Euclid-
ean spacg15]. Therefore, the embedding diagrams of the
optical geometry give a direct illustration of the precession
of gyroscopegsee Ref[11] for details.

For the equatorial section of the optical geometry related
to the Schwarzschild—de Sitter and Schwarzschild—anti-de
Sitter spacetimes, we have to identify the line element

1
d¢?
(46)

2
dr2+r?

~ 2 ) 2 )
dl(s ges= 1_F_yr 1_?_)”

0 0.5 1 1.5 2 2.5 3
log r with the line element42), in order to construct the embed-

FIG. 10. Qualitative features of the embedding diagrams of thedlng d'agram Of_ the op_tlcal _g_eometry. The apmuthal _angles
ordinary geometry of the Schwarzschild—de Sitter andC@n again be directly identified. For the radial coordinates,
Schwarzschild—anti-de Sitter spacetimes in a log-log diagram. OnBOWever, we have to put
can immediately see how the diagrams wjt# 0 “peel off” the
pure Schwarzschild diagrany€ 0, bold curve. All sections with
y#0 are completdi.e., the maximum that can be embedded into

Euclidean space is showrexcept uninteresting lower parts of the ) ) )
throats. The diagrams clearly indicate modifications of the spacel he embedding diagrams can be conveniently expressed us-

time structure caused by the presence of a cosmological constaning @ parametric form of the embedding formuidp)
=27[p(r)], with r being the parameter. Since

static part of the ordinary geometry can be embedded into

the flat space completely, the embeddability of the ordinary Ez d_zﬂ

geometry of the Schwarzschild—anti-de Sitter spacetime is dp drdp’

limited by the condition44). If the embeddability condition )

is satisfied, the rate of change of the circumferential lengttyve arrive at the formula

per unit increase of proper radial distance can be “fit” into 2 5 9

the Euclidean space. In the opposite case, the space is still (d_z :(1_ E_yrz) _(d_p) (49)

well defined, but the size of the circumferences grows faster dr r dr)’

than it does on a Euclidean plane, and no embedding in the =

Euclidean space is then possibld]. Qualitative features of and finally

the modifications of the embedding diagrams of the ordinary dz

geometry are illustrated by Fig. 1@or both y>0 andy =+ 3
<0). dr r—2—yr

2 —1/2
p=r 1—F—yr2) : (47)

(48)

1/2

r 4r —9—yr*
[ J (50

r(r—2—yrd

The embedding formula=z(p) can then be constructed by
a numerical procedure. Further, it is immediately clear from

It is useful to consider the optical reference geometry deEq. (48) that “turning radii” of the embedding diagrams are
fined on the hypersurfaces-const by conformal rescaling. given by the conditiordp/dr=0. Since
The metric coefficients of the optical geometry are given by

B. Embedding of the optical geometry

1 d 3 2 -3/2
the relation[9] -P =( - —) ( 1———yr? : (51)
. dr r r
= _ g =1_2_yr2 .
Gik=(Gw) "Oik= ( 1 YT ) Yik» 49 we can see that the turning radius determining a throat of the

embedding diagram of the optical geometry is located just at
whereg;, are the metric coefficients of the ordinary geom-r =3, corresponding to the radius of the photon circular orbit;
etry. The optical geometry differs significantly from the or- it is exactly the same result as that obtained in the pure
dinary geometry and it reflects in a proper way some hidderschwarzschild case. The radius of the photon circular orbit is
properties of the spacetimes under consideration. The geodenportant from the dynamical point of view, because the
sics of the optical space are representing these propertiesentrifugal force related to the optical geometry reverses its
They coincide with trajectories of light, i.e., they are “opti- sign there[12,16]. Above the photon circular orbit, the dy-
cally straight” [12,13; they are also ‘“dynamically namics is qualitatively Newtonian with the centrifugal force
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-1
trifugal force vanishes, and at<3M it is directed towards dr. (55)
decreasingr. The photon circular orbit, the throat of the
embedding diagram of the optical geometyp(dr=0), By integration(for 0<y<1/27) we arrive at
and vanishing centrifugal force, all appear at the radius

directed towards increasing However, atr =3, the cen- f ( 2 )
r*=| |1—-——yr
r

=3. It is simply given by the fact that the “effective poten- . [r=rpl re—r| re 1
tial” of the photon motion, the Euclidean coordinat®f the r*=Aln F+rp+r, +B nr+rh+ re I 2]
embedding, and the centrifugal force, all of them are deter- (56)
mined by the azimuthal metric coefficient of the optical ge-
Ometry Where
2 -1 __ g e
§¢¢=f2( 1- F—yfz) : (52) A= 1—-3yrf’ B= 1-3yrZ’ ®7

This gives direct meaning of the “tortoise” coordinate in the

optical space. Clearly, the horizons are infinitely far away at
the optical geometry; at~r,, r*——ow (r~r., r*—

+ ) logarithmically. On the other hand, in the ordinary ge-

It follows from Eq. (50) that embedding into the Euclid-
ean space is possible, if the condition of embeddability

Ar—9-yri=0 (53 ometry, the horizons are located at a finite proper radial dis-
is satisfied. We shall express the limit of embeddability Oftance
the optical geometry by the relation 2 -1z
'FzJ (1—F—yr2> dr; (58)
4r—9
Y=Ye(opy(N)= "7 (54 atr=r,, F~\Jr—ry,, while atr~r_, T~\r.—r.

The optical space continues infinitely beyond the limit of
Fory=0 we obtain the well known limit of embeddability of embeddability, approaching asymptotically the geometry
the optical geometry of the Schwarzschild spacetiyg,

- i o : rdexp—r*/A)
9/4 (see Ref[9]). The functionypy(r) is illustrated in do2~dr*2+ h
Fig. 1 fory>0, and in Fig. 4 fory<O0. Y(re=rn)(rp=rg)(2rp+re)
X (d@?+sir? 0 d¢?) (59)

1. The Schwarzschildde Sitter spacetimes

The functionyeoy(r) has its maximum at=3, where for r—ry,, r*——c and
Ye(opy= 1/27=Y it Therefore, for all the Schwarzschild—de

3
Sitter spacetimes containing a static region, the embeddabil- reexp(—r*/B)

d52~dr*?+

ity of the optical geometry is restricted both from below, and Y(re=rp)(re=rg)(2re+ry)
from above. Using a numerical procedure, the embedding 5 )
diagrams are constructed for the same valueg a$ in the X(d6?+sir’ 9 dg¢?) (60)

case of the ordinary geometry; they are given in Fig. 11. Fo *

y<<1/27, the embeddings of the optical geometry are ver;?Or F=lc, M —+ee. Here
close to the embedding diagram of the optical geometry of 1 1

the Schwarzschild spacetime. It is caused by the fact that the Fq=— 3, €083 §. (61)
regions of the Schwarzschild—de Sitter spacetimes near the y

cosmological horizon, which have character significantly dif-
ferent from that corresponding to the Schwarzschild geom-
etry, are “cut off” by the limit of embeddability given by Now the limiting condition(53) restricts embeddability of
Eq. (54). With y growing up to the critical valuey.;  the optical geometry only from beloWsee Fig. 4 with y
=1/27, the embedding diagrams become restricted to a re—— the limit shifts tor —0, along with the radius of the
gion symmetric around the turning radius 3. Fory  black-hole horizon. The embedding diagrams are constructed

2. The Schwarzschildanti-de Sitter spacetimes

=1/27, the diagram degenerates into the circle=a8, simi- by the numerical procedure for the same valuey @fs for
larly to the case of the embedding diagrams of the ordinarghe ordinary space. They are given in Fig. 12. These dia-
geometry. grams have a special property, not present for the embedding

Of course, the optical space is still well defined outsidediagrams in the other cases. Namely, they cover whole the
the regions of the embeddability into the Euclidean space. lasymptotic part of the Schwarzschild—anti-de Sitter space-
is useful to demonstrate its properties near the black-hole ariime, but in a restricted part of the Euclidean space. This is
cosmological horizons by the behavior of the proper lengthslear from the asymptotic behavior @f(r). For r— +oo,
along the radial direction. In the optical geometry, the propethere is p~(—y) *2 Clearly, with decreasing attractive
radial length coincides with the well known Regge-Wheelercosmological constant the embedding diagram is deformed
“tortoise” coordinate: with increasing intensity. The circles of const are concen-
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trated with an increasing density aroupe-(—y) 2 asr
—o0. Qualitative features of the modifications of the embed-
ding diagrams of the optical geometry causedyby0 are
illustrated by Fig. 13.

The optical geometry is well defined under the limit of
embeddability again. Now, the “tortoise” coordinate is
given by

2
r2+rrh——)

1
* _ _ -
r D[In|r Il 2In v

(@
6—rp
+
[(6+rn)(2—T)]Y

270 L 2 e 62
X { arcta 671, ™ , (62
where
po_ 2 E=—V—y[1+In(—4
- 2yrh(3+rh) ’ - y[ n( y)]
(63

We can see again that the black-hole horizon is infinitely far
away at the optical geometry. Again, the optical space con-
tinues infinitely beyond the limit of embeddability as
—Ty,, andr* — — o, approaching asymptotically a geometry
similar to Eq.(59).

V. LIMITS ON STATIC SPHERICALLY SYMMETRIC
CONFIGURATIONS OF UNIFORM DENSITY

We shall focus our attention on an interesting connection
between the limits of embeddability into the three-
dimensional Euclidean space, and restrictions on the exis-
tence of static, spherically symmetric configurations of uni-
form density that are nonvacuum solutions of Einstein’s
equations with a nonzero cosmological constant. Our study is
motivated by a conjecture of Kristiansson, Sonego, and
Abramowicz[11] that the minimum radius of embeddability
of the optical geometry coincides with the minimum radius
of a static configuration of uniform density having the same
spacetime parameters. This conjecture was verified for the
Schwarzschild case[8,9], and the extreme Reissner-
Nordstran casd11,17]. Here, it will be tested in the case of
the spherically symmetric spacetimes with a nonzero cosmo-
logical constant.

In the standard Schwarzschild coordinates, the line ele-
ment of spherically symmetric static spacetimes can be given

in the form
FIG. 11. Embedding diagrams of the optical reference geometry

of the Schwarzschild—de Sitter spacetimes. The pure Schwarzschild
case is taken for comparison (a). The diagrams are given fdb)
y=10"%, (c) y=0.002, and(d) y=0.03. They are similar to the . o .
pure Schwarzschild case, because the region near the cosmologiddhere® =®(r), ¥=w¥(r). Solving the Einstein equations
horizon being of highly different character is “cut off” by the limit With A # 0 for a static configuration of constant densityhe
of embeddabilityye,pm(r). Note that bothp andz scales are ad- interior spacetime of the configuration of an outer radius
justed so that all the plots occupy approximately the same area. F@an be determingld.8]. The radial metric coefficient is given
real proportions, see Fig. 13. by

ds?= —e?®dt?+e?¥dri+r(d6?+sir? 6 dp?), (64)
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FIG. 13. Qualitative features of the embedding diagrams of the
optical geometry of the Schwarzschild-de Sitter and
Schwarzschild—anti-de Sitter spacetimes in a log-log diagram. The
diagrams fory#0 “peel off” the pure Schwarzschild diagrany (
=0, bold curve. All sections withy>0 are completgi.e., the
maximum that can be embedded into Euclidean space is shown
except uninteresting lower parts of the diagrams. The diagrams are
indicative for modifications of the spacetime structure caused by the
= presence of a cosmological constant.

2

-1/2
e‘y(R): ( 1— —
o

2M 1 —1/2
1- & - §AR2> , (689

and we see immediately that the radial metric coefficient of
& the interior spacetime is smoothly matched to the corre-
© ' sponding metric coefficient of the exteriofvacuun)
Schwarzschild—de Sitter or Schwarzschild—anti-de Sitter
spacetime of the mass paramatér The time component of

FIG. 12. Embedding diagrams of the optical geometry of the ; . L .
the internal metric tensor is given by the relation

Schwarzschild—anti-de Sitter spacetimes. They are giveriajoy

=-10°%, (b) y=-0.002, and(c) y=—0.03. Contrary to the 9M oM A 2
spacetimes witly>0, the diagrams cover whole asymptotic region e®() = 3( - _RZ)
of the optical geometry; however, it is stretched into finite region of 6M+AR R 3
the radial coordinate of the embedding Euclidean space. Note that 3M — AR® oMr2 A \12
bothp andz scales are adjusted so that all the plots occupy approxi- _ 3( - _r2> : (69)
mately the same area. For real proportions, see Fig. 13. 6M+ AR R 3
(2| -2 again, atr =R we arrive at
e\l,(r): ( 1- ;2) ’ (65) 2M A 1/2
e?(®= ( 1- 5 - §R2) : (70)

wherer <R, and
and the internal metric component is smoothly matched to
i _ £(8 the time metric coefficient of the external vacuum spacetime.
5 = me+A). (66) ; .
a® 3 In the degenerated case, when the attractive cosmological
constant and the parameters of the configuration are related

Denoting by
M_4_7T R3 67) 1 2M A
= 3 ERT, ;2' = Eg + == 0, (71)
we find the internal spacetime is determined by the functions

044006-12



SOME PROPERTIES OF THE SCHWARZSCHILDed. . PHYSICAL REVIEW D 60 044006

3M /[ r? coincides with the limit of embeddability of the optical ge-
e'W=1, e*M=1+ SriIRe 1 (72 ometry of the Schwarzschild—de Sitter spacetimes. The up-
per limit is different(see Fig. 1
notice that in this case the spacelike sectienconst have _ _
purely three-dimensional Euclidean geometry. Of course, B. Attractive cosmological constant(y<0)
also these spacetimes are smoothly matched to the exterior |t js yseful to introduce a family of critical values of the
Schwarzschild—anti-de Sitter spacetimes. parametey by the relation(given by 1k%=0)

The limits on the allowed values of the outer radius of the
static configurations follow from the reality conditions on the

metric coefficients, i.e.e?(V=0 and e*¥=0 (see Ref. Ye(ord)(X) =~ 13- (78)
[18]). The results can be conveniently given in terms of the
dimensionless cosmological parameterAM? and di- Notice that the functionyeorq(X) is not related to em-
mensionless outer radius beddability of the optical geometry, but, quite surprisingly,
to embeddability function of the ordinary geometry
— R ye(ord)(r) given by Eq (44)
AERVE 73 If Y>VYe(org)(X), the relations(74) and (75 are valid; at

X/ 2 (X) ye(ord)(x) while atX\Zv y+(x) ye(ord)(x)
The conditione” (V=0 leads to a simple and natural restric- Forx— 2y (XN)=y,(X)=—1%
tion that the outer radius of the static configuration must be  If y<y,(orqg(X), the relat|on(74) has to be replaced by the
located in the static part of the external spacetimes. Theraelation
fore, the relevant restrictions are given &Y(")=0.

[y=y+()1ly—y-(x)]>0. (79
A. Repulsive cosmological constanfy>0) At x>2, Y- (0 =Ye(orgf(X), ¥+ (X)=(4x— 9)/x*, while at
Since e?M>e?(N>¢e?©)>0, the reality condition can X<3, ¥ (X)=VYewom)(X) andy_(x)=(4x—9)/x*. By put-
be put into the form ting all the conditions togethdsee Ref[18] for detaily we
arrive at a relatively simple conclusion that for bogh
[y=y+(Ily—y-(x)]<0, (74 >yeoa(X) andy<yeor)(X) the limit on the outer radius of
the static configurations is given by
where
4x—9
2x—9+3|2x— 3] y<—a - (80)
y+(X)= o (75
Now, it is related to the limit of embeddability of the optical
and geometry of the Schwarzschild—anti-de Sitter spacetimes
(see Fig. 4.
1 In the special class of the static configurations with their
y=<ys(x)= 3 (76) constant density related to the attractive cosmological con-
stant by
It follows from the relation(75) that
n( ) Ae(ord): - 8’7T6, (81)
y_(X)=— E<y<y+(x)_ 4X_9_ (77 the outer radii of these configurations are determined by the
X! condition

Fory>0 onlyy. (x) is relevant. Clearly, the function, (x) 2

corresponds just to the function (1) giving the limit of Y=VYe(ora)X) =~ 13- (82
embeddability of the optical geometry. However, (X) is

relevant only up to its maximum at,.—=3, wherey.., In this degenerated case, the metric coefficients are given by
=1/27. Atx=Xma=3, the functionyy(x) is relevant. In this  Eq. (72). The restrictione®®>0 then implies

case, the outer radius of the static configuration is located

just at the static radiusg of the corresponding external 3

Schwarzschild—de Sitter spacetime. The gravitational attrac- X>§' (83

tion acting on a test particle on the surface of the configura-

tion is just compensated by the cosmological repulsiBor  Clearly the special class of static configurations wijth
X>Xs the repulsion prevails, and a static configuration is=yq)(X), corresponding to the limit of embeddability of
possible only with a surface stress acting inwards. We shathe ordinary geometry induced on the const sections of
not consider such a situationTherefore, for 6<y<<1/27,  the Schwarzschild—anti-de Sitter spacetimes, are allowed at
static configurations can exist, and their outer radius is limR>3M/2 only, and for the cosmological parameter satisfy-
ited both from below and from above. Only the lower limit ing the conditions
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16 above the static radius, i.e., atrs=y~ 3. Notice that for
—57<y=<0. (84 y<1, the outer boundary of stable circular orbits can be es-
timated asr ygou~ (4y) " *3~r143. These estimates can

be, moreover, supported by the character of the embedding
VI. CONCLUDING REMARKS diagrams.

Both a repulsive or an attractive cosmological constan; Firs_t, one can seéFig..lj) t_hat strong differenc;es in the
lead to significant changes of the structure of the Schwarz2ehavior of the embedding diagrams of the ordinary geom-

child spacetimes containing black holes. In fact, for any re€ry ©of the Schwarzschild—de Sitter and Schwarzschild

pulsive cosmological constagt>y;=1/27, the spacetime spacetimes occur at-r. This is confir_med by the behavior
contains no black-hole horizon, and the mettiz governs a of the embedding diagrams of the optical reference geometry

naked singularity in a dynamic universe. For <y, the (_Fig. 12; we even obtgin an exact criterion—namely, the
spacetime is dynamic under the black-hole horizon, andMit of embeddability given by Eq(54). Fory<1, the outer
above the cosmological horizon. Fpi0, a black-hole ho- |m|t1/§>rf embeddability can be estimated Byouy~ (4/Y)
rizon always exists; the spacetime is static everywhere above 4 Ts. Therefore, we can propose a criterion for the
the horizon, but its asymptotic structure differs significantlyoundary of the region of strong deviations between the
from the limiting Schwarzschild case. structure of the Schwarzsch.lld.—de Sitter and _Schwarzschlld
It has been shown that the influence of a nonzero cosmgePacetimes to be the outer limit of embeddability of the op-
logical constant reflects itself in properties of the motion oftic@l geometry. In the case of the Schwarzschild—-anti-de Sit-
test particles and photons, the photon escape cones, and ti§ SPacetimes one can propose an analogous criterion for the
embedding diagrams. Surprisingly, all the properties keeﬁeglon_of strong deviations frqm_ the pure Sch\_/\(arzschnd
the same character as in the Schwarzschild case-8M spacetime, namely, the outer limit of embeddability of the

i - 113

and its vicinity; the photon circular orbits exists there inde-°rdinary geometry g(orq)=(—2/y)™". o _

pendently of values\ and M, if y<y.. Moreover, atr Note that the inner limit of embeddability of the optical
’ crit: ’

=3, the turning point of the throat of embedding diagrams Oigecr)]metry h(')lfd bOthd the, Schwarzs_child—d{-z _gitter_ hanhd
the optical geometry exists for all values yf and the cen- >cnwarzschild—anti-de Sitter spacetimes coincide with the

trifugal force related to the optical geometry reverses its sigﬁnner lm,"t on .the existence of the static, §pherlcglly symmet-
there. ric configurations of uniform density; this fact is in agree-

The differences appear and grow with distance growind""t With the conjecture_of Kristiansson, _Sonego_ and
from r=3M. It is int?}i)tively clegr that the regions gf the d:bram_owmz[l_l]. H_ow_ever, in the Schwarzs_chlld—de Sitter
Schwarzschild—de Sitter and Schwarzschild—anti-de Sitte?pacet.'m.es this comud_er_lce does not ho_lq in the case.of the
spacetimes similar to the corresponding regions of th&uter limit. The outer limit of em_beddablhty of thg optical
Schwarzschild spacetime can exist for the parametanall geo'metry can b.e compargble .W'th. the outer rad|u§ of the
enough. Such regions can be easily estimated for th tatic configurations _only In situations w_here an inwara-
Schwarzschild—de Sitter spacetimes. We can consider the rected sgrface tension of the static conﬂgurz_mon compen-
similar to the Schwarzschild spacetime in some regions, jpates the influence of the cosmological repulsion.

they allow existence of stable circular orbits, i.e., if their ACKNOWLEDGMENTS
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