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Some properties of the Schwarzschild–de Sitter and Schwarzschild–anti-de Sitter spacetimes

Z. Stuchlı́k* and S. Hledı´k†

Department of Physics, Faculty of Philosophy and Science, Silesian University, Bezrucˇovo nám. 13, 746 01 Opava, Czech Republic
~Received 12 March 1999; published 8 July 1999!

Properties of the Schwarzschild–de Sitter and Schwarzschild–anti-de Sitter spacetimes are characterized by
three phenomena, namely, by the ‘‘effective potential’’ of the motion of test particles and photons, the photon
escape cones, and the embedding diagrams oft5const sections of central planes of both the ordinary and
optical reference geometry of these spacetimes. The phenomena are related to the corresponding phenomena of
the Schwarzschild spacetime, and differences caused by the asymptotic structure of the spacetimes with a
nonzero cosmological constant are discussed. The properties of the embedding diagrams of the optical geom-
etry are related to the dynamical behavior of test particles. The limits of the embeddability of the optical
geometry are given and compared with the limits on the outer radius of the interior solutions of Einstein’s
equations with a nonzero cosmological constant for static, spherically symmetric configurations of uniform
density. It is shown that, contrary to the pure Schwarzschild case, these limits do not fully coincide for
repulsive cosmological constants.@S0556-2821~99!05714-8#

PACS number~s!: 04.70.Bw, 04.25.2g
a
th
se
is
he
le
ig
th
ve
o
rs
a
ol
c
be
ua
d

th
pe
e

th
ild

th
itt
rre
im
e

d

g
c-

n.
re-

e
the

ly of

ref-
itter

cted,
ams
ms
e
cos-

nce
nnot
the

the
em-

ity
ally
r

of
the
to
ua-

of
nd
ure
I. INTRODUCTION

All recently available data from cosmological observ
tions, including measurements of the present value of
Hubble parameter and dynamical estimates of the pre
energy density of the Universe, measurements of the an
ropy of the microwave cosmic relic radiation, statistics of t
gravitational lensing of quasars and active galactic nuc
galaxy number counts, and the measurements of h
redshift supernovae, give strong suggestions that in
framework of inflationary cosmology a nonzero repulsi
cosmological constant,L.0, has to be invoked in order t
explain the properties of the presently observed Unive
@1–3#. The presence of a repulsive cosmological const
alters in a significant way asymptotic character of black-h
spacetimes. We shall discuss modifications of the chara
of the simplest, spherically symmetric spacetimes descri
by the Schwarzschild–de Sitter solutions of Einstein’s eq
tions. ~However, we shall not consider Schwarzschild–
Sitter spacetimes with supercritical values ofL which are
dynamic everywhere.!

On the other hand, it has been shown recently that
anti-de Sitter spacetimes play an important role in the su
string theory@4#. Therefore, it is useful to investigate also th
influence of an attractive cosmological constantL,0 on the
black-hole solutions. We restrict our attention again to
simplest case of the spherically symmetric, Schwarzsch
anti-de Sitter spacetimes.

We shall estimate at which regions properties of both
Schwarzschild–de Sitter and Schwarzschild–anti-de S
spacetimes become significantly different than the co
sponding properties of the pure Schwarzschild spacet
~with L50). The modifications will be tested by using thre
phenomena that can be both astrophysically relevant an
lustrative.

*Email address: Zdenek.Stuchlik@fpf.slu.cz
†Email address: Stanislav.Hledik@fpf.slu.cz
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In Sec. II, an appropriate ‘‘effective potential’’ governin
the radial motion of test particles and a ‘‘generalized effe
tive potential’’ for the radial motion of photons are give
The effect of a nonzero cosmological constant is clearly
flected by their asymptotic behavior.

In Sec. III, impact of the asymptotic behavior of th
spacetimes with a nonzero cosmological constant on
character of the photon escape cones related to the fami
static observers is illustrated.

In Sec. IV, embedding diagrams oft5const sections of
central planes of both the ordinary geometry and optical
erence geometry associated with the Schwarzschild–de S
and Schwarzschild–anti-de Sitter spacetimes are constru
and compared with the corresponding embedding diagr
of the Schwarzschild spacetime. The embedding diagra
give in an illustrative way information on changes of th
spacetime structure caused by the presence of a nonzero
mological constant. The embeddings of the optical refere
geometry into the three-dimensional Euclidean space ca
be constructed for the whole static part of the spacetimes;
limits of embeddability are established. In the case of
Schwarzschild–anti-de Sitter spacetimes even the
beddability of the ordinary geometry is limited.

In Sec. V, relations between the limits of embeddabil
of the optical reference geometry of the vacuum spheric
symmetric spacetimes withLÞ0 and the limits on the oute
radius of interior solutions of Einstein’s equations withL
Þ0 for static and spherically symmetric configurations
uniform density are discussed. Further, it is shown that
limit of embeddability of the ordinary geometry is related
a special class of the interior solutions of Einstein’s eq
tions with L,0.

In Sec. VI, concluding remarks concerning differences
the properties of the Schwarzschild–de Sitter a
Schwarzschild–anti-de Sitter spacetimes and the p
Schwarzschild spacetime are presented.

II. THE MOTION OF TEST PARTICLES AND PHOTONS

In the standard Schwarzschild coordinates (t,r ,u,f), and
the geometric system of units (c5G51), the
©1999 The American Physical Society06-1
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Schwarzschild–de Sitter (L.0), and Schwarzschild–
anti-de Sitter (L,0) spacetimes are determined by the li
element

ds252S 12
2M

r
2

L

3
r 2Ddt2

1S 12
2M

r
2

L

3
r 2D 21

dr21r 2~du21sin2 u df2!,

~1!

whereM is the mass parameter of these spacetimes. H
ever, it is useful to introduce a dimensionless parameter

y5LM2/3, ~2!

and use dimensionless coordinatest˜t/M , r˜r /M . It is
equivalent to puttingM51. The event horizons of the geom
etry ~1! are then given by the condition

gtt[12
2

r
2yr250. ~3!

The loci of the event horizons are determined by the rela

y5yh~r ![
r 22

r 3 ; ~4!

the function yh(r ) is illustrated in Figs. 1 and 4. In th
Schwarzschild–de Sitter spacetimes, two event horizons
ist if 0,y,ycrit51/27. The black-hole horizon is located

r h5
1

A3y
cos

p1j

3
, ~5!

the cosmological horizon at

FIG. 1. Characteristic functions of the Schwarzschild–de Si
spacetimes:yh(r ) ~dashed line! determines loci of the black-hole
~the inner one! and cosmological~the outer one! horizons;ye(opt)(r )
~dashed-dotted line! determines limits of embeddability of the cen
tral planes of the optical reference geometry into three-dimensi
Euclidean space;r 53 andys(r ) determine limits of unstable cir
cular orbits~dark shaded region!; yms(r ) determines limits of stable
circular orbits~light shaded region!. Notice that limits on existence
of the static configurations of uniform density are determined
ye(opt)(r ) at r ,3, but byys(r ) at r .3.
04400
-

n

x-

r c5
1

A3y
cos

p2j

3
, ~6!

where

j5cos21~3)y!. ~7!

The spacetime is dynamic atr ,r h and r .r c . If y5ycrit
51/27, the horizons coincide atr h53. If y.1/27, the space-
time is dynamic at allr .0. In the Schwarzschild–anti-d
Sitter spacetimes, a black-hole horizon always exist, and
location is determined by the relation

r h5S 2
1

yD 1/2H F11S 12
1

27yD 1/2G1/3

1F12S 12
1

27yD 1/2G1/3J . ~8!

The motion of test particles and photons is governed
the geodesic structure of the spacetime. The geodesic e
tion reads

Dpm

dl
50, ~9!

wherepm[dxm/dl is the four-momentum, andl is the af-
fine parameter. The normalization condition reads

pmpm52m2, ~10!

wherem is the rest mass of test particles;m50 for photons.
It follows from central symmetry of the geometry~1! that

the motion of test particles and photons is allowed in
central planes only. Because of the existence of the t
Killing vector j(t)5]/]t and the axial onej(f)5]/]f, two
constants of motion, which are the projections of the fo
momentum onto the Killing vectors, must exist:

pt5gtmpm52E, pf5gfmpm5F. ~11!

In the spacetimes with a nonzero cosmological constant,
constants of motionE andF cannot be interpreted as energ
and axial component of the angular momentum at infin
since their geometry is not asymptotically flat. It should b
therefore, interesting to discuss a possibility to find regio
of these spacetimes which have character that is ‘‘close’
the character of the Schwarzschild spacetime.

It is useful to introduce specific energyE, specific angular
momentumL and impact parameterl by the relations

E5
E
m

, L5
F

m
, l5

F

E . ~12!

If we choose the plane of the motion to be the equato
plane (u5p/2), we find that the motion of test particle
(mÞ0) is determined by an ‘‘effective potential’’@5#

Veff~r ;L,y![S 12
2

r
2yr2D S 11

L2

r 2 D . ~13!
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SOME PROPERTIES OF THE SCHWARZSCHILD–de . . . PHYSICAL REVIEW D 60 044006
The motion is allowed in regions where

E2>Veff~r ;L,y!, ~14!

and the turning points of the radial motion are determined
the conditionE25Veff(r;L,y).

The radial motion of photons (m50) can be determined
by a ‘‘generalized effective potential,’’ related to the impa
parameterl. The motion is allowed in regions where

l2< lR
2~r ;y![

r 3

r 222yr3 , ~15!

the conditionl25 lR
2(r ;y) gives the turning points of the ra

dial motion.
The functionsVeff(r;L,y) and lR

2(r ;y) are defined between
the black-hole and cosmological horizons in the case of
Schwarzschild–de Sitter spacetimes;Veff is zero at the hori-
zons, whilelR

2 diverges there. The functions are defined at
radii above the black-hole horizons in the case of
Schwarzschild–anti-de Sitter spacetimes;Veff is zero at the
horizon, whilelR

2 diverges there. Purely radial motion~with
L50, or l50) was discussed in Ref.@6#.

Circular orbits of test particles correspond to local e
trema (]Veff /]r50) of the effective potential. Maxima
(]2Veff /]r2,0) determine unstable circular orbits, minim
(]2Veff /]r2.0) determine stable circular orbits. The speci
energy and specific angular momentum of particles on cir
lar orbits are determined by the relations@5#

Ec~r ;y!5S 12
2

r
2yr2D S 12

3

r D 21/2

, ~16!

Lc~r ;y!5@r ~12yr3!#1/2S 12
3

r D 21/2

. ~17!

The circular orbits can exist at radii limited by

3,r<r s[y21/3. ~18!

At r 53, both Ec and Lc diverge; a photon circular orbi
exists there. It is given by a local minimum of the functio
lR
2(r ;y), which is located atr 53 independently of the value

of the cosmological parametery. Of course, the impact pa
rameter of the photon circular orbit depends ony:

lc
2~y!5

27

1227y
. ~19!

Thus, similarly to the ‘‘pure’’ Schwarzschild case, th
radii of circular orbits are limited from below by the photo
circular orbit at r 53. In the case of the Schwarzschild
anti-de Sitter spacetimes (y,0), this is the only restriction
Further, we shall discuss the properties of the effective
tentials separately in the casesy.0 andy,0.

A. The Schwarzschild–de Sitter spacetimes

The radii of circular orbits are limited from above at s
called static radius, where the gravitational attraction
04400
y
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e
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-

voked by the mass of the source is just compensated by
cosmological repulsion. The static radius is given by the c
dition

y5ys~r ![
1

r 3 ; ~20!

ys(r ) is illustrated in Fig. 1. At the static radius, particle
with the specific energy

Es~y!5~123y1/3!1/2, ~21!

~andL50) are at an unstable equilibrium.
The stable circular orbits exist at radii limited by the r

lation

4yr4215yr32r 16<0. ~22!

The marginally stable orbits are given by

y5yms~r ![
r 26

r 3~4r 215!
. ~23!

The functionyms(r ) is illustrated in Fig. 1. Its zero is atr
56, corresponding to the marginally stable circular orbit
the Schwarzschild spacetime. The functionyms(r ) diverges
at r 50, and at r 515/4; yms˜1` for r˜0, and if r
˜15/4 from below, and it has a minimum atr 53, where
yms51/27. However, the functionyms(r ) is physically irrel-
evant at whole the range 0,r ,15/4, becauseyms(r )
.1/27 there, i.e., it corresponds to spacetimes that are
namical at allr .0. The physically relevant part ofyms(r ) is
located atr>6. Its maximum is located atr c(ms)515/2, and
the maximum value of the cosmological parameter allow
existence of stable circular orbits is

yc(ms)5
12

154 .0.000237. ~24!

The corresponding critical value of Schwarzschild ma
Mc(ms)5(3yc(ms) /L)1/2; considering an upper limit on the
cosmological parameterL;10255cm22 @7#, we find

Mc(ms)'8.4331025 cm;5.7531020M ( . ~25!

The behavior of the effective potential is illustrated for thr
typical situations (y.yc(ms) , y,yc(ms) , y!yc(ms)) in Fig. 2.

B. The Schwarzschild–anti-de Sitter spacetimes

In this case, the asymptotical behavior of the functio
determining motion of test particles and photons has ra
cally different character, and it is given by

Veff~r˜`;y!;2yr2, lR
2~r˜`,y!;2y21. ~26!

The effective potential is illustrated again for three typic
situations ~with the same magnitude ofy as in the
Schwarzschild–de Sitter case! in Fig. 3. Now, the stable cir-
cular orbits can exist for all values of the attractive cosm
logical parameter. The marginally stable orbits are again
6-3
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Z. STUCHLÍK AND S. HLEDÍK PHYSICAL REVIEW D 60 044006
FIG. 2. Effective potential of the test-particle motion in th
Schwarzschild–de Sitter spacetimes. The potential is given for v
ous specific axial momenta for the spacetimes with~a! y51023

.yc(ms)'0.000237, when stable circular orbits cannot exist,~b! y
51026 and~c! y510212, when stable circular orbit, correspondin
to minima of the effective potential, are possible. For comparis
in ~d!, the effective potential is given for various values ofy, with
L54 fixed.
04400
ri-

,

FIG. 3. Effective potential of the test-particle motion in th
Schwarzschild–anti-de Sitter spacetimes. The potential is given
various specific angular momenta for the spacetimes with~a! y5
21023, ~b! y521026, ~c! y5210212. For all y,0 the effective
potential has the same character; stable circular orbits are pos
in all the cases withy,0. For comparison, in~d!, the potential is
given for variousy,0 with L55 fixed.
6-4
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SOME PROPERTIES OF THE SCHWARZSCHILD–de . . . PHYSICAL REVIEW D 60 044006
termined by the relation~23!; their radii shift from r ms˜6
~for y˜0) to r ms˜15/4 ~for y˜2`).

For the Schwarzschild–anti-de Sitter spacetimes, the
of the black-hole horizon, the circular photon orbit, and t
marginally stable circular orbit are illustrated in Fig. 4. T
‘‘generalized effective potential’’ for the photon motio
lR
2(r ;y) is illustrated in Fig. 5, for the spacetimes with bo
y.0 andy,0.

III. PHOTON ESCAPE CONES

We shall demonstrate the influence of both repulsive
attractive cosmological constant on the behavior of pho
escape cones related to the family of static observers.
though measured by local observers, the photon escape c

FIG. 4. Characteristic functions of the Schwarzschild–anti
Sitter spacetimes:yh(r ) ~dashed line! determines loci the black
hole event horizon;ye(opt)(r ) ~dashed-dotted line! determines limits
of embeddability of the optical geometry onto Euclidean spacer
53 gives limit on existence of unstable circular orbits~dark shaded
region!; yms(r ) determines limit of stable circular orbits~light
shaded region!; ye(ord)(r ) ~solid line! determines limit of em-
beddability of the ordinary geometry~of the central planes oft
5const sections! into the Euclidean geometry. Limits on existen
of the static configurations of uniform density are given by t
function ye(opt) . Above the intersection ofye(ord)(r ) and ye(opt)(r )
~at the pointr 53/2, y5216/27) the static configurations of un
form density, characterized by the functionye(ord)(r ), cannot exist.

FIG. 5. The generalized ‘‘effective potential’’ of the photo
motion in both the Schwarzschild–de Sitter and Schwarzsch
anti-de Sitter spacetimes. The generalized effective potential is
lated to the impact parameter.
04400
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reflect global properties of the spacetimes under consi
ation.

The tetrad of vectors carried by the static observers is

e(t)5S 12
2

r
2yr2D 1/2 ]

]t
, ~27!

e(r )5S 12
2

r
2yr2D 21/2 ]

]r
, ~28!

e(u)5
1

r

]

]u
, ~29!

e(f)5
1

r sinu

]

]f
. ~30!

The components of the four-momentum of a photon as m
sured by a static observer are

p(a)5pme(a)
m . ~31!

Using relationsp(t)52p(t) , p(f)5p(f) , p(r )5p(r ) , we can
find the directional anglec of the photon~i.e., the angle
measured by the observer relative to its outward radial dir
tion! to be given by the relations

sinc5
p(f)

p(t) 5S 12
2

r
2yr2D 1/2 l

r
, ~32!

cosc5
p(r )

p(t) 56F12S 12
2

r
2yr2D l2

r 2G1/2

. ~33!

The photon escape cones can be determined by using
function lR

2(r ;y) governing the photon motion. In establish
ing the directional anglecc of an marginally escaping pho
ton, the impact parameterlc of the unstable circular photon
orbit plays the crucial role for static observers located b
under and above the circular photon orbit atr 53; for sim-
plicity we consider only positive values oflc because the
cone is symmetric about the radial direction. Atr 53, the
escape angle is

cc~r 53;y!5
p

2
, ~34!

independently ofy. Directional escaping angles atrÞ3 can
be determined by inserting the formula forlc into Eqs.~32!
and ~33!. We arrive at the expressions

sincc~r ;y!5S 27~r 222yr3!

r 3~1227y! D 1/2

, ~35!

coscc~r ;y!56S r 3227r 154

r 3~1227y! D 1/2

, ~36!

which reduce to the ‘‘Schwarzschild’’ (y50) formulas

sincc~r !5S 27~r 22!

r 3 D 1/2

, ~37!

e

–
e-
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FIG. 6. Photon escape cones in the Schwarzschild–de Sitter spacetimes. The cones given at typical radii in the spacetimy
51023 are compared with the corresponding cones in the pure Schwarzschild spacetime (y50). Close to the black-hole horizon~e.g., at
r 52.01), the escape cone of the Schwarzschild–de Sitter spacetime~dark gray! is significantly narrower than the Schwarzschild one~light
gray!. As r tends tor 53, corresponding to the radius of photon circular orbits, the cones become closer, and they coincide atr 53, where
the opening anglec5p/2. At r .3, the Schwarzschild escape cone becomes narrower than the Schwarzschild–de Sitter cone~with c
.p/2). The complementary photon capture cone is narrower in the Schwarzschild–de Sitter spacetime; the differences can be
close to the cosmological horizon.
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coscc~r !56S 12
27

r 2 1
54

r 3 D 1/2

. ~38!

For r ,3, the marginally escaping photon is radially outwa
directed (p(r ).0 and coscc is taken with the plus sign!, for
r .3, it is inwards directed (p(r ),0 and coscc is taken with
the minus sign!.

A. The Schwarzschild–de Sitter spacetimes

The behavior of the escape cones is presented in Fig
At a fixed ~and allowed! r ,3, the escape cone of th
Schwarzschild spacetime is the widest one, and it g
smaller withy growing. On the other hand, at a fixed~and
allowed! r .3, the Schwarzschild escape cone is the smal
one. Of course, the complementary Schwarzschild pho
capture cone is the widest one atr .3. Close to the cosmo
logical horizon, the Schwarzschild–de Sitter capture co
gets to be strongly narrower than the Schwarzschild cap
cone, as one can expect intuitively.

B. The Schwarzschild–anti-de Sitter spacetimes

The behavior of the escape cones is presented in Fig
At a fixed ~and allowed! r ,3, the escape cone of th
Schwarzschild spacetime is the narrowest one; it gets w
with y descending. At a fixedr .3, the Schwarzschild es
cape cone becomes greater than the cones withy,0. The
complementary photon capture cone of the pure Schwa
child spacetime lies inside the capture cones of the sp
04400
6.

ts

st
n

e
re

7.

er

s-
e-

times withy,0. Asymptotically~for r˜`), the Schwarzs-
child capture cone degenerates into the inward ra
direction, while the Schwarzschild–anti-de Sitter cone co
verges to an opening angle which is nonzero. One can
that

sincc~r˜`;y,0!;3S 3y

27y21D 1/2

. ~39!

This behavior of the escape cones clearly illustrates modi
asymptotic character of the Schwarzschild–anti-de Si
spacetimes.

IV. EMBEDDING DIAGRAMS

Curvature of static parts of the vacuum, spherically sy
metric black-hole spacetimes with a nonzero cosmolog
constant can be conveniently illustrated by embedding d
grams. Comparison of these embedding diagrams with th
constructed for the pure Schwarzschild spacetimes@8,9#
gives an intuitive insight into the change of the character
the spacetime caused by the cosmological constant. It is
ful for both ordinary and optical geometry.

The existence of the field of the time Killing vector]/]t
enables us to define a privileged notion of space using
hypersurfaces oft5const. First, we shall use the induce
metric on these hypersurfaces~i.e., the space components o
the metric tensorgik)—we call it ordinary space. Then, w
shall consider so called optical reference geometry refe
to the t5const hypersurfaces by an appropriate conform
6-6
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FIG. 7. Photon escape cones in the Schwarzschild–anti-de Sitter spacetimes. The cones are given at typical radii for the spac
y521023 ~dark gray!, and compared with the corresponding Schwarzschild cones~light gray!. Contrary to the situation in the spacetime
with y.0, in the Schwarzschild–anti-de Sitter spacetimes the escape cone is wider than the Schwarzschild escape cone atr ,3. They
coincide atr 53, again. Atr .3, the Schwarzschild capture cone is narrower than the Schwarzschild–anti-de Sitter capture cone. Asr tends
to infinity, the difference between both cones becomes more evident, while the Schwarzschild capture cone degenerates into a ra
directed line, the Schwarzschild–anti-de Sitter capture cone converges to a constant-angle cone.
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scaling @9#. Geometry of all the central planes of these h
persurfaces is the same as those of the equatorial planu
5p/2) as a consequence of the central symmetry of
spherically symmetric spacetimes. Therefore, the embed
diagrams will be constructed for the equatorial plane in
the considered cases.

A. Embedding of the ordinary geometry

We shall embed the surface described by the line elem

dl (S2deS)
2 5S 12

2

r
2yr2D 21

dr21r 2df2, ~40!

corresponding to the equatorial plane oft5const hypersur-
face, into a flat Euclidean three-dimensional space wh
line element is in the standard cylindrical coordinates giv
by

ds25dr21r2df21dz2. ~41!

The embedding is given by the surfacez5z(r), which have
to isometric with the equatorial plane of thet5const hyper-
surface of the spacetime. Thus we have to identify the
element given by

dl (E)
2 5F11S dz

dr D 2Gdr21r2df2 ~42!

with the line element~40!.
We can identify the azimuthal coordinatesf; moreover,

in the case of the ordinary space, also the radial coordin
04400
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r andr can be identified. The embedding diagram can th
be given by the formulaz5z(r ), which can be obtained by
integrating the relation

dz

dr
56S 21yr3

r 222yr3D 1/2

. ~43!

The choice of the positive or negative sign in Eq.~43! leads
to isometric surfaces, and is therefore irrelevant.

1. The Schwarzschild–de Sitter spacetimes

In the case of a repulsive cosmological constant, the e
bedding can be constructed for complete static regions
tween the black-hole (r h) and cosmological (r c) horizons.
Recall that the static region exists fory<1/27 only. The
embeddings are given for several typical values ofy (0,y
,1/27) in Fig. 8; the pure Schwarzschild case (y50) is
included for comparison. The presence of a repulsive cos
logical constant alters the character of the embedding
gram substantially in comparison with the case ofy50. Due
to the asymptotical behavior of the Schwarzschild–de Si
spacetimes, the embedding diagrams have a shape c
sponding to a funnel—a throat corresponds to both the bla
hole and cosmological horizons. Withy growing, distance
between the horizons decreases, and the height of the
gram decreases too. The shape of the embedding diag
becomes closer and closer to a cylindrical surface with m
and more limited height. Withy˜1/27 the diagram is
shrinking to the circle of radiusr 53.
6-7
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2. The Schwarzschild–anti-de Sitter spacetimes

In the case of an attractive cosmological constant,
static region extends from the black-hole horizon to infini

FIG. 8. Embedding diagrams of the ordinary induced geome
of t5const sections of the Schwarzschild–de Sitter spacetimes.
pure Schwarzschild case (y50) is taken for comparison in~a!. The
diagrams are given for~b! y51026, ~c! y50.002, and~d! y
50.03. Fory50 the diagram is asymptotically flat@see~a!#. For
0,y,1/27, the diagram resembles a funnel having a throat at b
the black-hole and cosmological horizons. Note that bothr and z
scales are adjusted so that all the plots occupy approximately
same area. For real proportions, see Fig. 10.
04400
e
.

However, we can see directly from Eq.~43! that the embed-
ding diagrams of the ordinary space can be constructed
limited part of the static region, located between the bla
hole horizonr h andr e(ord)5(22/y)1/3. We shall characterize
the limit of embeddability of the ordinary space by the co
dition

y>ye(ord)~r ![2
2

r 3 , ~44!

the functionye(ord)(r ) is illustrated in Fig. 4.
The embedding diagrams of the ordinary induced geo

etry are given for several values ofy,0 in Fig. 9. Now, in
the region of embeddability, the embedding diagrams hav
similar character as in the Schwarzschild case. But, cont
to the Schwarzschild@8# and Kerr @10# case, or the
Schwarzschild–de Sitter case discussed above, where

y
he

th

he

FIG. 9. Embedding diagrams of the ordinary geometry ot
5const section of the Schwarzschild–anti-de Sitter spacetimes.
diagrams are given for~a! y521026, ~b! y520.002, ~c! y5
20.03. Now, the embeddability into the Euclidean space is limi
by the functionye(r ). Note that bothr andz scales are adjusted s
that all the plots occupy approximately the same area. For
proportions, see Fig. 10.
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static part of the ordinary geometry can be embedded
the flat space completely, the embeddability of the ordin
geometry of the Schwarzschild–anti-de Sitter spacetim
limited by the condition~44!. If the embeddability condition
is satisfied, the rate of change of the circumferential len
per unit increase of proper radial distance can be ‘‘fit’’ in
the Euclidean space. In the opposite case, the space is
well defined, but the size of the circumferences grows fa
than it does on a Euclidean plane, and no embedding in
Euclidean space is then possible@11#. Qualitative features of
the modifications of the embedding diagrams of the ordin
geometry are illustrated by Fig. 10~for both y.0 and y
,0).

B. Embedding of the optical geometry

It is useful to consider the optical reference geometry
fined on the hypersurfacest5const by conformal rescaling
The metric coefficients of the optical geometry are given
the relation@9#

g̃ik5~gtt!
21gik5S 12

2

r
2yr2D 21

gik , ~45!

wheregik are the metric coefficients of the ordinary geom
etry. The optical geometry differs significantly from the o
dinary geometry and it reflects in a proper way some hid
properties of the spacetimes under consideration. The ge
sics of the optical space are representing these prope
They coincide with trajectories of light, i.e., they are ‘‘opt
cally straight’’ @12,13#; they are also ‘‘dynamically

FIG. 10. Qualitative features of the embedding diagrams of
ordinary geometry of the Schwarzschild–de Sitter a
Schwarzschild–anti-de Sitter spacetimes in a log-log diagram.
can immediately see how the diagrams withyÞ0 ‘‘peel off’’ the
pure Schwarzschild diagram (y50, bold curve!. All sections with
yÞ0 are complete~i.e., the maximum that can be embedded in
Euclidean space is shown!, except uninteresting lower parts of th
throats. The diagrams clearly indicate modifications of the spa
time structure caused by the presence of a cosmological const
04400
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straight,’’ because test particles moving along geodesics
the optical geometry are kept on these trajectories by a fo
independent of their velocity@14#; they are also ‘‘inertially
straight,’’ because a gyroscope carried along these geode
does not precess along the direction of the motion@15#. It is
well known that a vector representing the gyroscope’s spi
parallelly transported on the surfacez5z(r) in the Euclid-
ean space@15#. Therefore, the embedding diagrams of t
optical geometry give a direct illustration of the precess
of gyroscopes~see Ref.@11# for details!.

For the equatorial section of the optical geometry rela
to the Schwarzschild–de Sitter and Schwarzschild–ant
Sitter spacetimes, we have to identify the line element

d l̃ (S2deS)5S 12
2

r
2yr2D 22

dr21r 2S 12
2

r
2yr2D 21

df2

~46!

with the line element~42!, in order to construct the embed
ding diagram of the optical geometry. The azimuthal ang
can again be directly identified. For the radial coordinat
however, we have to put

r5r S 12
2

r
2yr2D 21/2

. ~47!

The embedding diagrams can be conveniently expressed
ing a parametric form of the embedding formulaz(r)
5z@r(r )#, with r being the parameter. Since

dz

dr
5

dz

dr

dr

dr
, ~48!

we arrive at the formula

S dz

dr D
2

5S 12
2

r
2yr2D 22

2S dr

dr D
2

, ~49!

and finally

dz

dr
56

r

r 222yr3 F 4r 292yr4

r ~r 222yr3!G
1/2

. ~50!

The embedding formulaz5z(r) can then be constructed b
a numerical procedure. Further, it is immediately clear fro
Eq. ~48! that ‘‘turning radii’’ of the embedding diagrams ar
given by the conditiondr/dr50. Since

dr

dr
5S 12

3

r D S 12
2

r
2yr2D 23/2

, ~51!

we can see that the turning radius determining a throat of
embedding diagram of the optical geometry is located jus
r 53, corresponding to the radius of the photon circular orb
it is exactly the same result as that obtained in the p
Schwarzschild case. The radius of the photon circular orb
important from the dynamical point of view, because t
centrifugal force related to the optical geometry reverses
sign there@12,16#. Above the photon circular orbit, the dy
namics is qualitatively Newtonian with the centrifugal forc

e

e

e-
t.
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directed towards increasingr . However, atr 53, the cen-
trifugal force vanishes, and atr ,3M it is directed towards
decreasingr . The photon circular orbit, the throat of th
embedding diagram of the optical geometry (dr/dr50),
and vanishing centrifugal force, all appear at the radiur
53. It is simply given by the fact that the ‘‘effective poten
tial’’ of the photon motion, the Euclidean coordinater of the
embedding, and the centrifugal force, all of them are de
mined by the azimuthal metric coefficient of the optical g
ometry

g̃ff5r 2S 12
2

r
2yr2D 21

. ~52!

It follows from Eq. ~50! that embedding into the Euclid
ean space is possible, if the condition of embeddability

4r 292yr4>0 ~53!

is satisfied. We shall express the limit of embeddability
the optical geometry by the relation

y5ye(opt)~r ![
4r 29

r 4 . ~54!

For y50 we obtain the well known limit of embeddability o
the optical geometry of the Schwarzschild spacetimer e(opt)
59/4 ~see Ref.@9#!. The functionye(opt)(r ) is illustrated in
Fig. 1 for y.0, and in Fig. 4 fory,0.

1. The Schwarzschild–de Sitter spacetimes

The functionye(opt)(r ) has its maximum atr 53, where
ye(opt)51/275ycrit . Therefore, for all the Schwarzschild–d
Sitter spacetimes containing a static region, the embedd
ity of the optical geometry is restricted both from below, a
from above. Using a numerical procedure, the embedd
diagrams are constructed for the same values ofy as in the
case of the ordinary geometry; they are given in Fig. 11.
y!1/27, the embeddings of the optical geometry are v
close to the embedding diagram of the optical geometry
the Schwarzschild spacetime. It is caused by the fact tha
regions of the Schwarzschild–de Sitter spacetimes near
cosmological horizon, which have character significantly d
ferent from that corresponding to the Schwarzschild geo
etry, are ‘‘cut off’’ by the limit of embeddability given by
Eq. ~54!. With y growing up to the critical valueycrit
51/27, the embedding diagrams become restricted to a
gion symmetric around the turning radius atr 53. For y
51/27, the diagram degenerates into the circle atr 53, simi-
larly to the case of the embedding diagrams of the ordin
geometry.

Of course, the optical space is still well defined outs
the regions of the embeddability into the Euclidean space
is useful to demonstrate its properties near the black-hole
cosmological horizons by the behavior of the proper leng
along the radial direction. In the optical geometry, the pro
radial length coincides with the well known Regge-Whee
‘‘tortoise’’ coordinate:
04400
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r * 5E S 12
2

r
2yr2D 21

dr. ~55!

By integration~for 0,y,1/27) we arrive at

r * 5A ln
ur 2r hu

r 1r h1r c
1B ln

ur c2r u
r 1r h1r c

1AS ln
r c

r h
2

1

2D ,

~56!

where

A5
r h

123yrh
2 , B5

r c

123yrc
2 . ~57!

This gives direct meaning of the ‘‘tortoise’’ coordinate in th
optical space. Clearly, the horizons are infinitely far away
the optical geometry; atr;r h , r *˜2` (r;r c , r *˜
1`) logarithmically. On the other hand, in the ordinary g
ometry, the horizons are located at a finite proper radial d
tance

r̃ 5E S 12
2

r
2yr2D 21/2

dr; ~58!

at r'r h , r̃;Ar 2r h, while at r'r c , r̃'Ar c2r .
The optical space continues infinitely beyond the limit

embeddability, approaching asymptotically the geometry

ds̃2'dr* 21
r h

3 exp~2r * /A!

y~r c2r h!~r h2r d!~2r h1r c!

3~du21sin2 u df2! ~59!

for r˜r h , r *˜2` and

ds̃2'dr* 21
r c

3 exp~2r * /B!

y~r c2r h!~r c2r d!~2r c1r h!

3~du21sin2 u df2! ~60!

for r˜r c , r *˜1`. Here

r d52
1

3y
cos

1

3
j. ~61!

2. The Schwarzschild–anti-de Sitter spacetimes

Now the limiting condition~53! restricts embeddability of
the optical geometry only from below~see Fig. 4!; with y
˜2` the limit shifts tor˜0, along with the radius of the
black-hole horizon. The embedding diagrams are constru
by the numerical procedure for the same values ofy as for
the ordinary space. They are given in Fig. 12. These d
grams have a special property, not present for the embed
diagrams in the other cases. Namely, they cover whole
asymptotic part of the Schwarzschild–anti-de Sitter spa
time, but in a restricted part of the Euclidean space. Thi
clear from the asymptotic behavior ofr(r ). For r˜1`,
there is r;(2y)21/2. Clearly, with decreasing attractiv
cosmological constant the embedding diagram is deform
with increasing intensity. The circles ofr 5const are concen
6-10
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FIG. 11. Embedding diagrams of the optical reference geom
of the Schwarzschild–de Sitter spacetimes. The pure Schwarzs
case is taken for comparison in~a!. The diagrams are given for~b!
y51026, ~c! y50.002, and~d! y50.03. They are similar to the
pure Schwarzschild case, because the region near the cosmolo
horizon being of highly different character is ‘‘cut off’’ by the limi
of embeddabilityye(opt)(r ). Note that bothr and z scales are ad-
justed so that all the plots occupy approximately the same area
real proportions, see Fig. 13.
04400
trated with an increasing density aroundr5(2y)21/2 as r
˜`. Qualitative features of the modifications of the embe
ding diagrams of the optical geometry caused byyÞ0 are
illustrated by Fig. 13.

The optical geometry is well defined under the limit
embeddability again. Now, the ‘‘tortoise’’ coordinate
given by

r * 5DH lnur 2r hu2
1

2
lnS r 21rr h2

2

yrh
D

1
62r h

@~61r h!~22r h!#1/2

3H arctanF S 22r h

61r h
D 1/2S 11

2r

r h
D G1EJ J , ~62!

where

D52
22r h

2yrh~31r h!
, E52A2y@11 ln~24y!#.

~63!

We can see again that the black-hole horizon is infinitely
away at the optical geometry. Again, the optical space c
tinues infinitely beyond the limit of embeddability asr
˜r h , andr *˜2`, approaching asymptotically a geomet
similar to Eq.~59!.

V. LIMITS ON STATIC SPHERICALLY SYMMETRIC
CONFIGURATIONS OF UNIFORM DENSITY

We shall focus our attention on an interesting connect
between the limits of embeddability into the thre
dimensional Euclidean space, and restrictions on the e
tence of static, spherically symmetric configurations of u
form density that are nonvacuum solutions of Einstei
equations with a nonzero cosmological constant. Our stud
motivated by a conjecture of Kristiansson, Sonego, a
Abramowicz@11# that the minimum radius of embeddabilit
of the optical geometry coincides with the minimum radi
of a static configuration of uniform density having the sam
spacetime parameters. This conjecture was verified for
Schwarzschild case@8,9#, and the extreme Reissne
Nordström case@11,17#. Here, it will be tested in the case o
the spherically symmetric spacetimes with a nonzero cos
logical constant.

In the standard Schwarzschild coordinates, the line e
ment of spherically symmetric static spacetimes can be gi
in the form

ds252e2Fdt21e2Cdr21r 2~du21sin2 u df2!, ~64!

whereF5F(r ), C5C(r ). Solving the Einstein equation
with LÞ0 for a static configuration of constant densitye, the
interior spacetime of the configuration of an outer radiusR
can be determined@18#. The radial metric coefficient is given
by

ry
ild

ical

or
6-11
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eC(r )5S 12
r 2

a2D 21/2

, ~65!

wherer ,R, and

1

a2 5
1

3
~8pe1L!. ~66!

Denoting

M5
4p

3
eR3, ~67!

we find

FIG. 12. Embedding diagrams of the optical geometry of
Schwarzschild–anti-de Sitter spacetimes. They are given for~a! y
521026, ~b! y520.002, and~c! y520.03. Contrary to the
spacetimes withy.0, the diagrams cover whole asymptotic regi
of the optical geometry; however, it is stretched into finite region
the radial coordinate of the embedding Euclidean space. Note
bothr andz scales are adjusted so that all the plots occupy appr
mately the same area. For real proportions, see Fig. 13.
04400
eC(R)5S 12
R2

a2D 21/2

5S 12
2M

R
2

1

3
LR2D 21/2

, ~68!

and we see immediately that the radial metric coefficient
the interior spacetime is smoothly matched to the cor
sponding metric coefficient of the exterior~vacuum!
Schwarzschild–de Sitter or Schwarzschild–anti-de Si
spacetime of the mass parameterM . The time component of
the internal metric tensor is given by the relation

eF(r )5
9M

6M1LR3 S 12
2M

R
2

L

3
R2D 1/2

2
3M2LR3

6M1LR3 S 12
2Mr 2

R3 2
L

3
r 2D 1/2

; ~69!

again, atr 5R we arrive at

eF(R)5S 12
2M

R
2

L

3
R2D 1/2

, ~70!

and the internal metric component is smoothly matched
the time metric coefficient of the external vacuum spacetim

In the degenerated case, when the attractive cosmolog
constant and the parameters of the configuration are rel
by

1

a2 5
2M

R3 1
L

3
50, ~71!

the internal spacetime is determined by the functions

e

f
at
i-

FIG. 13. Qualitative features of the embedding diagrams of
optical geometry of the Schwarzschild–de Sitter a
Schwarzschild–anti-de Sitter spacetimes in a log-log diagram.
diagrams foryÞ0 ‘‘peel off’’ the pure Schwarzschild diagram (y
50, bold curve!. All sections with y.0 are complete~i.e., the
maximum that can be embedded into Euclidean space is sho!,
except uninteresting lower parts of the diagrams. The diagrams
indicative for modifications of the spacetime structure caused by
presence of a cosmological constant.
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eC(r )51, eF(r )511
3M

2R S r 2

R2 21D ; ~72!

notice that in this case the spacelike sectiont5const have
purely three-dimensional Euclidean geometry. Of cour
also these spacetimes are smoothly matched to the ext
Schwarzschild–anti-de Sitter spacetimes.

The limits on the allowed values of the outer radius of t
static configurations follow from the reality conditions on t
metric coefficients, i.e.,eC(r )>0 and eF(r )>0 ~see Ref.
@18#!. The results can be conveniently given in terms of
dimensionless cosmological parametery5 1

3 LM2 and di-
mensionless outer radius

x5
R

M
. ~73!

The conditioneC(r )>0 leads to a simple and natural restri
tion that the outer radius of the static configuration must
located in the static part of the external spacetimes. Th
fore, the relevant restrictions are given byeF(r )>0.

A. Repulsive cosmological constant„y>0…

Since eF(R).eF(r ).eF(0).0, the reality condition can
be put into the form

@y2y1~x!#@y2y2~x!#,0, ~74!

where

y6~x![
2x2963u2x23u

2x4 ~75!

and

y<ys~x![
1

x3 . ~76!

It follows from the relation~75! that

y2~x![2
2

x3,y,y1~x![
4x29

x4 . ~77!

For y.0 only y1(x) is relevant. Clearly, the functiony1(x)
corresponds just to the functionye(opt)(r ) giving the limit of
embeddability of the optical geometry. However,y1(x) is
relevant only up to its maximum atxmax53, where ymax
51/27. At x>xmax53, the functionys(x) is relevant. In this
case, the outer radius of the static configuration is loca
just at the static radiusr s of the corresponding externa
Schwarzschild–de Sitter spacetime. The gravitational att
tion acting on a test particle on the surface of the configu
tion is just compensated by the cosmological repulsion.~For
x.xs the repulsion prevails, and a static configuration
possible only with a surface stress acting inwards. We s
not consider such a situation.! Therefore, for 0,y,1/27,
static configurations can exist, and their outer radius is l
ited both from below and from above. Only the lower lim
04400
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coincides with the limit of embeddability of the optical ge
ometry of the Schwarzschild–de Sitter spacetimes. The
per limit is different~see Fig. 1!.

B. Attractive cosmological constant„y<0…

It is useful to introduce a family of critical values of th
parametery by the relation~given by 1/a250)

ye(ord)~x![2
2

x3 . ~78!

Notice that the functionye(ord)(x) is not related to em-
beddability of the optical geometry, but, quite surprising
to embeddability function of the ordinary geomet
ye(ord)(r ), given by Eq.~44!.

If y.ye(ord)(x), the relations~74! and ~75! are valid; at
x> 3

2 , y2(x)5ye(ord)(x), while at x< 3
2 , y1(x)5ye(ord)(x).

For x5 3
2 , y2(x)5y1(x)52 16

27 .
If y,ye(ord)(x), the relation~74! has to be replaced by th

relation

@y2y1~x!#@y2y2~x!#.0. ~79!

At x. 3
2 , y2(x)5ye(ord)(x), y1(x)5(4x29)/x4, while at

x, 3
2 , y1(x)5ye(ord)(x) and y2(x)5(4x29)/x4. By put-

ting all the conditions together~see Ref.@18# for details! we
arrive at a relatively simple conclusion that for bothy
.ye(ord)(x) andy,ye(ord)(x) the limit on the outer radius o
the static configurations is given by

y,
4x29

x4 . ~80!

Now, it is related to the limit of embeddability of the optica
geometry of the Schwarzschild–anti-de Sitter spacetim
~see Fig. 4!.

In the special class of the static configurations with th
constant densitye related to the attractive cosmological co
stant by

Le(ord)528pe, ~81!

the outer radii of these configurations are determined by
condition

y5ye(ord)~x!52
2

x3 . ~82!

In this degenerated case, the metric coefficients are give
Eq. ~72!. The restrictioneF(0).0 then implies

x.
3

2
. ~83!

Clearly the special class of static configurations withy
5ye(ord)(x), corresponding to the limit of embeddability o
the ordinary geometry induced on thet5const sections of
the Schwarzschild–anti-de Sitter spacetimes, are allowe
R.3M /2 only, and for the cosmological parameter satis
ing the conditions
6-13
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2
16

27
,y,0. ~84!

VI. CONCLUDING REMARKS

Both a repulsive or an attractive cosmological const
lead to significant changes of the structure of the Schwa
child spacetimes containing black holes. In fact, for any
pulsive cosmological constanty.ycrit51/27, the spacetime
contains no black-hole horizon, and the metric~1! governs a
naked singularity in a dynamic universe. For 0,y,ycrit , the
spacetime is dynamic under the black-hole horizon, a
above the cosmological horizon. Fory,0, a black-hole ho-
rizon always exists; the spacetime is static everywhere ab
the horizon, but its asymptotic structure differs significan
from the limiting Schwarzschild case.

It has been shown that the influence of a nonzero cos
logical constant reflects itself in properties of the motion
test particles and photons, the photon escape cones, an
embedding diagrams. Surprisingly, all the properties k
the same character as in the Schwarzschild case atr 53M
and its vicinity; the photon circular orbits exists there ind
pendently of valuesL and M , if y,ycrit . Moreover, atr
53, the turning point of the throat of embedding diagrams
the optical geometry exists for all values ofy, and the cen-
trifugal force related to the optical geometry reverses its s
there.

The differences appear and grow with distance grow
from r 53M . It is intuitively clear that the regions of th
Schwarzschild–de Sitter and Schwarzschild–anti-de S
spacetimes similar to the corresponding regions of
Schwarzschild spacetime can exist for the parametery small
enough. Such regions can be easily estimated for
Schwarzschild–de Sitter spacetimes. We can consider t
similar to the Schwarzschild spacetime in some regions
they allow existence of stable circular orbits, i.e., if the
parametery,yc(ms)512/154.

The effective potential of the test-particle motion~see Fig.
2! gives an indication that the structure of th
Schwarzschild–de Sitter spacetime is significantly differ
from the structure of the pure Schwarzschild spacet
’’

-

04400
t
s-
-

d

ve

o-
f
the
p

-

f

n

g

er
e

e
m
if

t
e

above the static radius, i.e., atr .r s5y21/3. Notice that for
y!1, the outer boundary of stable circular orbits can be
timated asr ms~out!;(4y)21/3;r s/4

1/3. These estimates ca
be, moreover, supported by the character of the embed
diagrams.

First, one can see~Fig. 11! that strong differences in the
behavior of the embedding diagrams of the ordinary geo
etry of the Schwarzschild–de Sitter and Schwarzsch
spacetimes occur atr .r s . This is confirmed by the behavio
of the embedding diagrams of the optical reference geom
~Fig. 12!; we even obtain an exact criterion—namely, t
limit of embeddability given by Eq.~54!. For y!1, the outer
limit of embeddability can be estimated asr em~out!;(4/y)1/3

;41/3r s . Therefore, we can propose a criterion for t
boundary of the region of strong deviations between
structure of the Schwarzschild–de Sitter and Schwarzsc
spacetimes to be the outer limit of embeddability of the o
tical geometry. In the case of the Schwarzschild–anti-de
ter spacetimes one can propose an analogous criterion fo
region of strong deviations from the pure Schwarzsch
spacetime, namely, the outer limit of embeddability of t
ordinary geometryr e(ord)5(22/y)1/3.

Note that the inner limit of embeddability of the optic
geometry of both the Schwarzschild–de Sitter a
Schwarzschild–anti-de Sitter spacetimes coincide with
inner limit on the existence of the static, spherically symm
ric configurations of uniform density; this fact is in agre
ment with the conjecture of Kristiansson, Sonego a
Abramowicz@11#. However, in the Schwarzschild–de Sitt
spacetimes this coincidence does not hold in the case o
outer limit. The outer limit of embeddability of the optica
geometry can be comparable with the outer radius of
static configurations only in situations where an inwa
directed surface tension of the static configuration comp
sates the influence of the cosmological repulsion.
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