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Exact solutions for the intrinsic geometry of black hole coalescence
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We describe the null geometry of a multiple black hole event horizon in terms of a conformal rescaling of
a flat space null hypersurface. For the prolate spheroidal case, we show that the method reproduces the
“pair-of-pants” shaped horizon found in the numerical simulation of the head-on-collision of black holes. For
the oblate case, it reproduces the initially toroidal event horizon found in the numerical simulation of the
collapse of a rotating cluster. The analytic nature of the approach makes further conclusions possible, such as
a bearing on the hoop conjecture. From a time reversed point of view, the approach yields a description of the
past event horizon of a fissioning white hole, which can be used as null data for the characteristic evolution of
the exterior space-tim¢S0556-282(99)05314-X]

PACS numbd(s): 04.20.Ex, 04.25.Dm, 04.25.Nx, 04.70.Bw

[. INTRODUCTION geometry on a null hypersurface from the embedding geom-
etry. Geroch[12] used a similar approach to describe null
Numerical simulations of axisymmetric space-times havanfinity Z as a three-dimensional null hypersurface detached
enabled construction of the event horizon traced out by thé&rom the physical space-timd. In Sec. Il, we take an analo-
evolution of dynamical black hold4—6]. In addition to con-  gous approach to treat the null hypersurface traced out by a
firming behavior dictated by the general laws of black holeblack hole as a stand-alone geometric object.
dynamics[7,8], the simulations supply further insight which Numerical investigationg1—6] of event horizons have
was not anticipated from analytic theory. In the case of aused the Cauchy initial value problem to evolve a black hole
head-on collision, they supply the details of how the holespace-time throughout a domain of sufficient extéuth in
form and mergd9]. In the case of rotating collapse, they space and timeso as to include an apparent horizon which
reveal how an initially toroidal structure is compatible with has become approximatefiput not exactly stationary. This
topological censorshifl0]. In this paper, we present a three- implies that the marginally trapped surfaces defining the ap-
dimensional analytic description of the event horizon for aparent horizon have almost stopped growing in surface area.
multiple black hole space-time which, in the axisymmetric The event horizon is then located by examining the null geo-
case, reproduces the qualitative features of the above simdesics which pass in the vicinity of the last quasistationary
lations. marginally trapped surface obtained in the evolution. The
As a stand-alone item, a black hole horizon is a null hy-approach adopted in this paper is rather different. We have
persurface whose cross-sectional surface area monotonicalieveloped a method that constructs a null hypersurface
increases and approaches a finite limit in the future. Thavhose surface area has finite asymptotic limit and whose
numberof black holes contained at a given time is not con-intrinsic geometry satisfies all other requirements for a non-
ventionally defined in terms of such a stand-alone picture busingular event horizon. Thus, from all intrinsic criteria, this
rather in terms of the number of disjoint sections given bynull hypersurface represents an event horizorThe results
the intersection of the horizon with a Cauchy hypersurfaceof this paper depend only upon the intrinsic geometryHof
[7,8]. In the approach we present here, in the case of a hea@dnd not upon the properties of the embedding space-time
on-collision the notion of “two holes” arises intrinsically (which will be presented in subsequent papeEven so, in
from a preferred slicing of the horizon based upon an affineorder to show that the results of this paper are physically
parameter along its generating null rays. meaningful, it is necessary to discuss whether there exists a
For this purpose, we consider the geometry of a null hy-space-time in which{ can be embedded.
persurface N whose surface area has a finite asymptotic There is a formal construction of a vacuum space-time
limit. The intrinsic and extrinsic geometrical properties of abased upon the characteristic initial value problem posed on
null hypersurface cannot be described in terms of the saman intersecting pair of null hypersurfacgk3—15. Here we
“3 + 1" formalism used for a spacelike hypersurface. In par-consider two null hypersurfaces intersecting in a topologi-
ticular, the degenerate three-metric of a null hypersurfaceally spherical surfac&,. Intrinsic geometrical data must be
does not define an intrinsic covariant derivative, in contrasgiven on the two null hypersurfaces, as well as a quantity,
with the case of a spacelike hypersurface. Dautddirthas  called the twis{14,15, which is analogous to an extrinsic
presented an alternative formalism for inducing an intrinsiccurvature in the Cauchy problem. We can apply this formal-
ism to the case wher&; is a cross section of the event
horizon at a late quasistationary time. Then, referring to Fig.
*Present address: Center for Relativity, The University of Texasl,  intersects the ingoing null hypersurfaté atS,. Char-
at Austin, Austin, TX 78712. acteristic data given on the portionafandJ™ to the past of
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characteristic evolution. Thus the analytic event horizon for a
black hole collision, which we present in this paper, can be
used as characteristic initial data to construct a vacuum
space-time (either analytically or numerically covering
some domain preceding the merger.

A major motivation for the present study stems from a
potential indirect application of the results to a calculation of
the gravitational waveform radiated by coalescing black
holes using theeITT code. Wave forms from highly nonlin-
ear, highly distorted single black holes have already been
obtained with this cod¢20,21]. In these simulation$20],
the two null hypersurfaces were chosen ta(ipe portion of
the past horizoriwhite hole of a Schwarzschild space-time
and(ii) an outgoing null hypersurface emanating from a slice
of the past horizon t@*, which (in order to introduce dis-
tortion) contains incoming radiation. The code has equal ca-
pability of carrying out such simulations with the static

FIG. 1. A portion of the space-time prior to the coalescence ofSchwarzschild white hole replaced by a dynamic past hori-
two black holes. The parameterlabels the advanced time on a zon corresponding to a white hole which is initially station-
family of incoming null hypersurface® ~ is the domain of depen- ary and later fissions into a pair of white holes. In a time-
dence of characteristic data given on the event horizoand on  reversed scenario, the outgoing wave form from this white
J*. hole explosion corresponds to tlecoming radiation inci-

dent from past null infinity on the merger of a pair of black
Sy, leads to a formal solution of the vacuum equations in theholes. While this is not the correct physical prescription of
domain of dependende ~ to the past ofS,. To the extent initial conditions for black hole coalescence, if the system
thatSy lies in the late time stationary region of the horizon, were linear this incoming radiation could be used to draw
J* approximates future null infinity. So, for a horizon de- inferences about theutgoingradiation. Such linearity is of
scribing a binary black hole, the physically appropriate charcourse not expected. Yet any means of obtaining a handle on
acteristic data od™ would describe the outgoing radiation the merger wave form is of current importance. In addition, a
emitted during the merger, although any data satisfying theolution of this problem would unambiguously yield the out-
constraints would formally lead to a consistent vacuumgoing radiation from a white hole explosion, a system of at
space-time(As in the Cauchy problem, Einstein’s equations least academic interest.
imply constraints on the characteristic initial data but these The time reversal of the intrinsic geometry of the event
reduce to propagation equations along the null geodesics swrizon of a black hole, results in the event horizon of a
that it is simple to isolate the unconstrained free data. white hole, and vice versa. The construction developed in

There are theorems establishing the existence of solutiortdis paper is naturally expressed in terms of a white hole that
to this double null initial value problerfil6—18. Although  bifurcates in the future, and thus our method is presented for
global issues remain unresolved, these theorems guarantte case of a white hole. The reinterpretation of our results,
existence in some neighborhood of the initial hypersurfacesn terms of a black hole horizon, is straightforward. Thus we
The double null version of the characteristic initial value pose our investigation in terms of a white hole horizkn
problem is equivalent to the world tube—null cone problemwhich constitutes a portion of a null hypersurfaté with
[19] in the case where the world tube is null. There exists ahe property that its surface area decreases into the future and
stable, accurate and efficient characteristic evolution codbas a a finite asymptotic limit in the past. The null rays\6f
[20,21] (thePITT codg which evolves this initial value prob- leaveH at points where they meet other null rays\df Such
lem and which could be applied to construct a numericaknd points can occur at a “crossover” point, where initially
solution to the situation described in Fig. 1. This provides thenon-neighboring rays intersect, or at a caustic, where neigh-
local existence of a space-time satisfying Einstein’s equaboring rays intersect. These properties follow from the fun-
tions in the finite difference approximation. Ideally, we damental theorems of black hole physics8]
would like to construct a numerical solution throughout the  Note that a crossover point may also be a caustic, as in the
domain of dependencB ™ but that is more problematical. case of a spherically symmetric light cone and also in the
The evolution algorithm requires the foliation 8" by a  case of the prolate spheroidal light cone considered in Sec.
one parameter family of null hypersurfacds. However, V. In addition, a portion of\V" can continue smoothly across
referring to Fig. 1, such a foliation becomes singuladain a noncaustic crossover point, as in the example of the oblate
the portion of the horizon corresponding to black holespheroidal light cone considered in Sec. IV. HowevAr,
merger. Thus one could only obtain the post-merger spacenust end at such a crossover point.
time by this procedure. This problem is due to a coordinate In this paper, we do not calculate the gravitational radia-
singularity, not a physical singularity, and from a mathemati-tion emitted by the system but study only the internal dy-
cal point-of-view the space-time is extendable to earliemamics ofH. In Sec. IV we specialize to the axisymmetric
times; but just how much earlier cannot be answered by @&ase which facilitates an analytic treatment of the endpoints
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of H. We find that the bifurcation of{ in a white hole =-1. We can set,=—V,u, whereu is any smooth exten-
explosion has the same “pair-of-pants” structne a time  sion of the affine parameter to a field in the neighborhood of
reversed senseobserved in the numerical simulation of a .
head-on collision of black holes. Further features emerge, The projected metrig,,= PSP{g.q is the pullback of the
such as the ultimate fate of an “eternal” pants leg, the defour-metric g,, to . When restricted to the two-surfaces
tails of toroidal black hole formation in the vacuum case anddetermined by the affine foliation, the projected contravari-
a bearing on a strict version of the hoop conjec{@2|. ant metricy?®=P2P2g°? is the (unique inverse of the pull-
back ofg,p,.

We introduce the shorthand notatiﬂmTE1 for the projec-
tion (to the tangent space o) of a tensorTS. Thus, L n?

=n?andll,=1,. In addition, the following useful formula
It is useful to conside/ as one of the null hypersurfaces hold on A~

in the double null initial value problem for the vacuum Ein-

Il. THREE-DIMENSIONAL AFFINE NULL
GEOMETRY

stein equations. As first shown by Sadi§], the evolution 0=1n,, (2.2

of the double null problem requires as boundary data the

intrinsic conformal geometry oV, i.e., a metricy,, ex- 0=112, (2.3

pressed in terms of an affine paramaterup to the confor-

mal freedomy,,— Q?y,,. In addition, the intrinsic confor- 0=LL,l,, (2.4)

mal geometry must be specified on a null hypersurface

meeting/\ transversely at some cross sectify) as well as 0=12L.n,, (2.5

the intrinsic two-geometry and certain extrinsic curvature

quantities ofS,. Here we restrict our attention to the intrin- 0=1V..n (2.6)

sic properties ofA/ and S,. As emphasized by Hayward fa”’bl» '

[14,15, it is important to consider specification of an affine _

parameteu on A\ as part of the data. L £nGap=LnYab, @7
This intrinsic data obey the Sachs equatip23] govern Lﬁﬁgafﬁﬁyab- 2.8

ing the expansion or contraction 6f. As a consequence, the
data determine a unique metrig,, from the conformal
equivalence class o. Here v,, satisfies the degeneracy
condition y,,n°=0, wheren® is tangent to the generators of
N. We choosen? to have the affine normalization?g,
=d,.

(3u|r a]lcm IS tthUS: ? srp])eqalﬁc_;[ho\;(\:IeM as a s:ﬁntc;_—[alt?ne Our purpose is to rewrite the projected curvature compo-
model of a white hole horizor{. We require tha € nents®,,=1n°n%R,.pq=L N°(V.V4—V,.V)N, in a form

complete in the past and that its surface area have a ﬁn"i’?ltrinsic to . By applying the above formulas, we obtain
asymptotic limit asu— —o. H ends in the future at points ’
where its generators intersect, either at a caustic or crossover 1 1
point. CDab:E/v‘ﬁ')’ab_ 4 ')’Cd(‘cn')’ac)‘cn'ybd-
The Sachs equations can be derived by projecting the rel-
evant components of the four-dimensional Einstein equatio
into three-dimensional form. In doing so, we must deal with
the degeneracy o in representing the counterpart of . . e
4-dime?1$ional Zovgﬁ;nt der?vatives a?s operators/\érEThe choosingR® as the detgrmlnapt .Of the restriction 9ly t0
formalism adopted here makes explicit use of the affinethe surfaces of the affine foliationThen, in terms of the
structure of\" shear tensok, .= L,h,p,
We begin with the four dimensional description.gfas a
null hypersurface embedded in a vacuum space-time with
metric g, and covariant derivativéd/,. On N, the affine
tangent to the generators satisfies the geodesic equation
n®V,n®=0 and the hypersurface orthogonality condition
nlavPnl=0. We make no assumptions about the behaviorl_
of n? off /. We project four-dimensional tensor fields int6 a
using the operator

The last two of these equations can be verified using the
commutation relation

0=L[Ly,L]. (2.9

(2.10

l:]'his further simplifies by settingy,,=R?h,, and 2"
=R 2h3® where h#"£ h,,=0. (This can be achieved by

1 2 2 1 2|1 cd
(I)ab:E‘Cn(R hab)+habR‘CnR_ZR h 2aCE’bd'
(2.12)

The Sachs equations follow immediately from E2.11).
king the trace ofb,, results in

2LR 1
n°n9Ryy= — = —522, (212
PP=6°+n,I°, (2.1)
where R,y is the Ricci tensor and whereX?

wherel? is the unique outgoing null vector field oxf which
is orthogonal to the affine cross sections and satisfies

=(1/2)h"h°ds, 3 4. Then in thevacuum casét follows
that
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2 1 2
L‘nR:—ZRE . (2.13
The trace free part of Eq2.11) yields
1 2 1 25 2
\Pabziﬁn(R Eab)_ ER 2 Nab, (2.14

whereWV ., are projected components of Weyl curvature.

PHYSICAL REVIEW D 60 044005

112
Qa. (3.9

0+o/2

9= =02

where P,+iQ,)'=0. The resultingi-dependent family of
two-metrics, comprise the classic description of the two-
geometries generated by the parallel 24y of a surfaceS,
embedded in Euclidean space. The parallel map consists of
translations by the same distana@ along each normal to
the surface(identical to Huyghen’s construction for propa-

normalized eigenvectong® andg? satisfyingS ,,(p®+iq®)
=3hap(p°=i0").  Then hg,=p.pp+dad, and 3
=3(PaPp—Galp), Wherep,+ig,=h,,(p°+ig°) and satis-
fies pLnpat9®Ln0a=0 andp®L g, +q*L,pa=0.

The goal is to solve Eq2.13 in a way consistent with a
white hole horizonH on a portion of V. Thus the Weyl
curvature must be nonsingular ét. This requires that the
contractionV ., with a unit vector(normalized with respect
to vap) Yield a nonsingular scalar field ol (including the
end points ofH); i.e., that

V=R (p*+ig®)(p°+iq”) ¥ ap
= Rizﬁn( RZE) + iz(qa‘cnpa_ paEnQa) (2.19

be nonsingular.

IIl. CONFORMALLY FLAT NULL GEOMETRY

The Weyl smooth solutions of Eq2.13 have a large

embedded at time=0 in a Minkowski space-time, the trans-
lation along each ingoing normal null direction through the
time AQ=t, generates a null-hypersurface foliated by con-

stant time slices, .
In applying this construction, we choo&g to be convex

so thatS; traces out the flat space wave fronts of a null
hypersurface converging in the inward direction. From the
point of view of the flat embeddingr is the distance be-
tween the two caustics generically encountered along each
null ray.

Given such a flat space null hypersurface, with the con-
vexity property that its caustics are reached at fifiteve
generate a curved space null cone with the same conformal

structure, i.e.,yap=0%%,,. We thus seR=QR and hyy,
=h,,. We do not require that the two affine structures agree

and sein?= AA? so thatd,=Ad; andS=AS. Our goal is
to investigate the properties of the foliati§qpdetermined by
translatingS, through the curved space affine timei=t.

degree of freedom corresponding to the outgoing radiation The curved space focusing equati@i3 now reduces to
crossing . In order to restrict this freedom we consider

solutions whose null metric is conformal to that of a null (3.5
hypersurface embedded in a flat Minkowski space-time.

Consider then the flat space case, where we denote thgd the Weyl curvature, defined in E@.14), reduces to
corresponding fields o as v, R, ﬁab, h?, a, etc. For
convenience, we writé€’ = LzF for tensor fieldsF. Since

A (Q'R+OR)+A(Q'R+2Q'R")=0

oA
R Y, o=—o(Q%A)’ - .
Wop=0, Eq. (214 implies (p°+iG?)(pa—idy) =0 and =g (VA (PaPo= ) (39
R?S =0, whereo'=0. The conditions on the eigenvectors . . . .
may be summarized by,=(3/2)p, andd.=— (3/2)d.. with the Weyl scalar, defined in EqR.15), given by
The focusing equatiof2.13 now integrates to give AQ2A)
i 1 —o———. (3.7
R?=(AU+B)?— Zo?, (3.0 R

4

The goal is to solve these equations to construct a non-
singular white hole horizoft{. ThenW¥ must be nonsingular
onH and the scalar field® and A must be smooth positive
functions, except possibly at the end pointg6fin addition,
the surface area of{ must approach a finite limit as
— — 0,

We require thatu and G approach—« together at the
same rate so that we may restrict the affine freedomn fry
requiring thatu’— 1. The surface area function must have a
corresponding to the principle direction is reached first, finite limit R—R., asu— —o°, corresponding to an irreduc-
moving along a ray in the direction of increasifig ible mas{8] M, =R../2. Then, from inspection of E43.7),

The dependence of the eigenvectors is determined to be){i— - R, and A—1, as— —o. We also assume that
these conditions are uniformly satisfied along each null ray
in terms of a 1li expansion. This puts constraints on the
fields A and Q which satisfy Eq.(3.5). In order to apply

whereA’ =B’ =0. We adjust the affine freedom inso that

R—0 asi— and so that the two caustics Bfare placed
symmetrically. Then Eq(3.1) reduces to

1
u+ EO’

1
u—so.

ro
R 2

(3.2

We choose conventions so that the=0, so that the caustic

0—o/2\ 12
0+ ol2 a

Pa= (3.3
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these conditions it is convenient to introduce the function 9 (20—5p— p)?@e/rt1)
F=AQ?. Then the smoothness &f requires thaF’'=0 at u'= ~ 272 Ton 2 (2plp—1) >
. ; > - 120(0—p)— 20—5p+ Pl
a caustic. Also, the asymptotic conditions Qnand A asi [120(0=p)=o7]" ( ptu) (3.11)
— —o require0?F—R2 so that,i(logF)' ——2.
Equation(3.5) can now be rewritten in terms & and() Where’uz ‘/13P2_0'2 is real and positive_ The asymptotic
as expansion of the integral gives

Q[107” . .
(logF)’=#. (3.9 u=0—-12pIn0+C+0

[log(QR)]’

:
3 (3.12

) . whereC is the integration constant.
We can generate solutions to H§.8) by making an ansatz On the caustic séi= — o/2, we have

for 0 and then integrating to determiné. The above

smoothness condition th&t must satisfy at a caustic is then 804 o+5p—u\8#
automatically satisfied if) is smooth. Trle asymptotic con- V= 81(c+2p)%(o+3p) | ot 5p+ , (313
ditions require that the ansatz satisfyR— R..-+O(1/0?)
andu?(QR—1)— — ¢?/24. which is manifestly regular, and

In order for the resulting model to represent a nonsingular
white hole, additional conditions arise at a shear-free ray. . 9o+2p)?[o+5pt |t
Along such a ray, the focusing equatiéh13 implies that u= o2 o+5p— ' (3.1

#2R=0 with solutionR=C; + C,u. Accordingly,R must be

a constant along each ray since it approaches a finiteRmit  which displays the required singular behaviorsas:0 at an

asu— —oo. Thus we must require that our ansatz reduce taumbilical point and is otherwise regular.

Q:Rwlﬁ a|0ng a shear-free ray. Such rays occur at any It is instructive to examine the behavior of the extrinsic

umbilical point of S, where the two curvature eigenvalues curvature eigenvalues defined dhaccording to

are equal an@=0. For surfaces of revolution the poles are ab

always umbilical. Umbilics are a major factor in determining o — PP LnYab _ X 4R (3.15

the qualitative behavior of the white hole model. Along a P 2R? 2 R '

nonumbilical ray, the completeness &f as a white hole

model requires that the rangewextend to a crossover point and

or caustic, where it hits another ray and the hole terminates.

However, along an umbilic, the white hole need not termi- C9*9°Lavan . 2 AR

nate and can extend to infinite As we shall illustrate, this TRz 2T R

is the mechanism which leads to multiple black holes in a

foliation of H. For our flat space modeli,=1/(0—0/2) and kq=1/(0
The behavior at umbilics imposes further conditions on+¢/2). Then K(p‘q):A(l’\((pyq)‘f‘QilaaQ). For the ansatz

our ansatz. For example, suppose that the white hole term{3.9), these reduce to

nates along a set of nonumbilical caustics — ¢/2 which

(3.16

has an endless umbilic ray on its boundary whereO0. _0’[12U(U—p)—0'2][12(u—p)2+ o(oc—4u+2p)]
Thenu must be finite along the nonumbilic set but approach “p~ 9(u—p)(2u—o)
© as c—0. Also, u"=1/A must have the same behavior o201
since the caustic set, including its boundary, is reached at (—2u+5p— )2l 1] (3.17
finite Q. (_2u+5p+’u)2[(2pm)+1] .
The simple ansatz
and
0_2 -1
Q=-R. 0+—12(p_0)) (3.9 _ —ol12u(u—p)— o®[12u—p)*+ o (o +4u—2p)]
“a 9(u—p)(2u+o)

satisfies all the above conditions if the parametes chosen (—2u+5p— w)2l@elw)-1]

so thatp=¢//13. ThenQ)>0 in the white hole region con-
tained insidél< — ¢/2. Furthermore, integration of E(3.9
gives

(—2u+5p+ )2l 1T (3.18

Both «, and x4 approach 0 as the white hole approaches
2o \2ion 2(2plu—1) “equilibrium” as u— —«. However, for large negative it
_ 16r.(0 Ap) (24 5p+/'“) o (310  Is clear from examining the dominant terms in E¢8.17
(20—5p— )2/ D) and (3.189 that x,>0 and k,<0. So, although the mean
curvature ofH is negative in agreement with net focusirig,
and expands in the principle direction. As illustrated in Sec.
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IV, the effect of this expansion as it becomes stronger near (a%cog 6+ b?sir? 6)%7?

the g caustic provides the characteristic shape of a bifurcat- ) ab 4.7
ing horizon.
and
IV. THE CONFORMALLY SPHEROIDAL CASE
_ _ _ a\a?cos 6+b?sirf 6
The preceding analysis describes the dependence of the re= b . (4.9

null geometry ofH on affine parameter along a ray. In order

to obtain a model of an exploding white hole we examine the e considersS, to be isometrically embedded at tinte
global dependence of the geometry on the angular coordi= g jn Minkowski space and identify th@ foliation of

nates parametrizing the rays&f In the simplest cas& is
a sphere. Thew=0 on all rays,h,,= 0, the unit sphere
metric,R= — 0 and the ansatz E¢3.9) reduces tdiR=R.. SO

with the (ingoing) null hypersurface emanating frofy. We
invariantly identify the functioro- in our model of H{ as the
difference between the principle curvaturesSgt

that the horizon is stationary. A conformally spherical white
(black) hole is toplesgbottomless along all rays.

Since all topologically spherical geometries are confor-
mally related, the conformal null geometry of a stationary
white (or black hole is unique. What distinguishes a Kerr
horizon from a Schwarzschild horizon is the initial geometry
of Sy, which determinesRR... In the Kerr caseR.. is the ’
conformal factor relating the geometry of the Kerr horizon totify
the unit sphere(The spin of the Kerr hole arises from an
extrinsic geometric quantity which can also be freely speci- y,=
fied onSy.) In the Schwarzschild casB,. can chosen to be
a constanfindependent of angle

In the case in whicl&, is a prolate spheroiellipsoid of =
revolution, we will show how the identical horizon structure
arises, as found in the simulation of colliding black holes. (4.10
Furthermore, in the oblate case, we will show how a tempo-
rarily toroidal horizon arises, as found in the simulation of This determines both the metrig,, and affine parametdr

|b?—a?|sir? 6\/a? cos 0+ b?sir? 0
ab '

=[rg—ryl=
4.9

We setll=ugy onSy. Then our convention thét=0 midway
between the two caustics &f allows us to invariantly iden-

_ (rot+ry)
2

(2a’+ (b%—a?)sir? ) \a? cos 6+b?sir? ¢
B 2ab '

rotating collapse.
We start with the two-dimensional surfadg describing
the spheroid

X2+y2 Z2
+ —
a’ b?

—1, 4.1

which can be alternatively described in coordinatgs
=(6,¢), by the map

X=asinf cosg, (4.2
y=asinfsing, (4.3
z=bcosb, (4.4

with #e[0,7] and ¢ €[ 0,27). The intrinsic metric ofSy is

gapdy dyB=(a?cog 6+ b?sir? 6)d6>+a? sir? 6d ¢2.

(4.9
The determinant condition provides a way to defitfeas
~, de(g)
RP=—0—, 4.6
deta) 49

[with gag the unit sphere metric i¥,¢) coordinate There-

fore, R?=a\/b?sir? +a’cos 6. A straightforward calcula-
tion provides the principal radii of curvature 6§,

for the flat spheroidal null cone.

The conformal factor for the metrig,,=Q?%,, of the
curved space version is determined by the ansatz(E§).
Here, in order to satisfy smoothness conditions, we require
that the parametes= oy, /\/13, whereo, is the maximum
value ofo attained onS,. Fora<bv3, the maximum occurs
at the equator andy,=|b?>—a?|/a. For the highly oblate
case witha>bv3, the maximum occurs between the equator
and poles andry, =2a%/(3v3b).

To determine the curved space affine parameter, we set
u=ug on Sy. Along with the condition thavu/oi—1 as
00— — oo this fixes the remaining affine freedomuni.e., the
ray dependent integration const&hin Eq. (3.12. With this
choice,u=0 on Sy andd, /dy;—1 asli— — .

Figure 2 illustrates the features of the flat space spheroidal
null hypersurfaceV;,, with horizontal lines corresponding

to the foliationS, given by=ug+t. In the illustration, we
suppress the rotational symmetry. As discussed below, when
the spheroid is prolatéoblate, the crossover point& where
Niat pinches off is a spacelike lingliso. The features of the
conformally related curved space versidare quite similar
when viewed with respect to the Minkowski foliatic, .

The chief difference is the effect of the conformal factor on
the expansion and shape of the surfa%gswhich produces

a finite surface area a3— —c. The features of\/ with
respect to the curved space affine foliati®n given byu
=u,+t, are qualitatively similar to those fo§, at early
times. The interesting black hole physics occurs near the
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X x'=F(p)cos¢, x*=F(m)sing, x*=G(y), (413

where

F=QR\T,

G,,= VORI -F? . (4.19

The quantitied= andG are used to display the surface in
the familiar three-dimensional flat space at a given instant of
time determined by tha foliation. Moreover, one can moni-

N tor the embedding at different instants of time and produce
5 an “embedding history” which shows the evolution of the
surface’s geometry. By suppressing thalirection one can
stack ¢=const cross sections of the embedding of e
foliation in a three-dimensional fashion, with the vertical

FIG. 2. Spheroidal {/;,) and conformally spheroidd\V) null axis_labeling t and thgz horizontal - axes  labeling:
hypersurfaces: Factoring out the rotational symmetry allows the fo= V(X)) +(X%)“ andG=x".
liations to be depicted as lines from pole to pole. The Minkowski
foliation indicated byS is drawn horizontally. The curved affine B. The pair-of-pants

foliation is indicated byS; . We first describe the prolate case a in which the cross-

R over pointsX in the flat-space model are also a line of caus-
crossover region of where the foliatio® and S; have to-  tics with respect to thep principle direction.(Thus the ¢
pologically different properties. These are best illustrated bydirection corresponds to treg principle direction. In Fig. 2

embedding techniques. the rotational symmetry has been factored out so a
Minkowski time foliation S of the underlying flat space
A. Embedding spheroidal null hypersurface corresponds to horizontal lines.

Embedding diagrams constitute valuable tools for visual—:]—he effe:it o;\?urvztgr? fgcuses the confo(;rr;)allly re_latted null
izing the intrinsic geometry of a curved two-dimensional sur- ypersurfaceV and introduces an upward bulge in tBg

face. By embedding the surface in a flat three—dimensionafP."ation’ whiqh gets enhanced a't later times to p“?duc? the
Euclidean space, one obtains a surface with the same intrir?—“ces* at ‘.Nh'Ch the white hole bifurcates. The vertical time

sic geometry. The following technique was developed bys_equence in our figures qorresponds to vyh|te holes but the
Smarr, who applied it to the description of the Kerr blackﬂgures can be turned upside down to depict the correspond-

hole[25]. More recently, it has been employed to analyze th ng Scer_‘afif’ for black holes, in thi§ case a black hole merger.
event horizon of the head-on-collision of black ho[@§]. he pomtsC_r_epre_sent ?he caustics at the poles which are
Here we describe its application to our model reached at finite times in the flat model but correspond to

The first step is to introduce the angular coordingte infinite .affine times in the'curvgd model. .
— cosf which makes detg)=1. In (0,7,¢) coordinates, Profiles of the embedding diagram §f at various stages

the intrinsic metric of the horizon is are shown in Fig. 3. Proceeding backward in time from the

initial prolate spheroids,, the cross sections form the sphere

yapdx2dxP= QO2R2(f ~1d 72+ fd ¢?), (4.11) Syt ast— —. Proceeding forward in time, they form the
surfaceS* (also indicated in Fig. Pwhere the white hole is
at the verge of fissioning. Note that the two white holes

where which are produced each have a sharp point at their inner
ovn pole.
f= (1 ? )0+ o/2) ) (4.12 Figure 4 shows a time stacking of embedding diagrams of
(0—=0al2) the S, foliation to form an(inverted pair-of-pants and Fig. 5

gives a cutaway view of the bifurcation. The main features of

This can then be transformed inta,{, $) coordinates by the pair-of pants agree with those found in numerical simu-
the substitutiond=0(u, n,¢), where 0(u,7n,¢) is deter- lation of the head-on vacuum black hole collisip?], as
mined by integrating Eq.3.11). The results of this paper are described in Ref49,26]. However, the analytic nature of the
based upon carrying out the integral by means of a Taylopresent work allows us to draw the following further conclu-
expansion inu aboutu, up to sixth order(No substantial sions. First, for the vacuum case, the pair-of-pants is eternal
change in our results were seen in going from fourth order t@long the two umbilical rays at the poles. However, the legs
sixth). pinch off and shrink asymptotically since every other ray

Now, one can isometrically embed this surface in a threeeventually reaches the crossoveat finiteu. Also, referring
dimensional Euclidean space with Cartesian coordingtes to the discussion following Eq3.18), the principle curva-
by the map ture k4 corresponding to thé direction is everywhere nega-
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FIG. 3. Embedding snapshots profiling fission of an initially ~ FIG. 4. The embedding history of the axisymmetric fission of a
spheroidal white hole, in terms of the coordinates andG: The white hole into two white holes: The time slic&s are horizontal
white holes are the surfaces formed by rotating the profiles aboutnd proceed upward @sncreases. The spatial origin of the embed-
the horizontalG axis. ding axes is offset from the center for clarity. The suppressed sym-
metry dimension corresponds to a rotation about@aexis. The
history extends into both the future and past of the initial surface
Sy, which lies approximately halfway up the picture. A time re-
versed view gives the pair-of-pants picture for the head on collision
of two black holes.

tive, except at the poles and in the lindit- —o where «
=0. It is most negative along the equatorial rays, which
gives rise to the bow-legged shape of the pair-of-pants.

C. Toroidal horizons and the hoop conjecture In the oblate case thedirection has the smallest radius of
o curvature(corresponding to the principle direction. The

In the oblate casa>b, the crossover pointX in Fig. 2 ympilical rays at the poles cross before they caustic, so that
(in which the orbits of the rotational symmetry have beenthe infinite umbilical stretch in th&, foliation for the prolate
factored out correspond to the same crossover points as itase does not arise in the oblate case. Thus the event horizon
the prolate case. The difference between the two cases is tig completed in finite affine time, in contrast to the prolate
orientation of the axis of rotation. Where¥slies on the ¢gse.
rotation axis in the prolate casand thus determines a caus-  Another important difference also arises in this case. The
tic line under revolutiop in the oblate cas¥ rotates to form  ymbilical stretch produces toroidal cross sections of the ho-
a disc. Only the outer rim of the diggenerated by revolu- rizon, rather than the two spherical sections arising in the
tion of the equatorial point€ in Fig. 2) consists of caustic prolate case. The details of the formation of the torus are best
points. understood in terms of the affine displacemant(6) be-

Note that the induced metrig,,|x of the crossover discis tweensS, andX, as a function of the coordinate of the ray.
single-valuedexcept at the caustic rir@ where it is singu-  |n terms of Minkowski time, the corresponding time dis-
lar); i.e., its value does not depend upon whetKeis ap-  placement i§10]
proached from the top or bottom. This is beca(iséy con-
struction of A/ as a null hypersurface embedded in ~ ) Sif§ cos 6
Minkowski spacey,p|x is single-valued andi) the confor- Ad(e)=b a2 + bz - (4.19
mal factor () has reflection symmetry with respect to the
equatorial plane. More generally, in the absence of symmeFhen
try, establishment of consistency conditions for a single- Uo+ Al
valued metric on the crossover surface would be more com- Au(g):f u’'dq, (4.1
plicated.
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FIG. 5. A downward view of the portion of the embedding
history fromS, up to the verge of bifurcation where the light rays at
opposite points on the equator are about to cross.

whereu’ is given by Eq(3.1) andu, by Eq.(4.10. In the FIG. 6. Schematic profiles of an initially spheroidal white hole
oblate caseAl has its minima at the equator biu has g going through a toroidal stage. The rotation axis is vertical. The
minima at the poles and exhibits a monotonic growth to-heavy solid line depicts the shape just prior to formation of the

wards the equator. As a result, tBefoliation first touchesK  torus. The inner rim of the torugashed ling has a non smooth
at the space-time point where the two polar rays interseckdge.

creating a surface of revolution with the same double tear-
drop profile asS* in Fig. 3, but now rotated about the ver- 3(V13+2)
tical axis through the center. In successive cross sectns, =———
forms a torugwith sharp inner riny, which shrinks to a circle (\/f’ﬁ‘ 3)
as the horizon terminates. The tidal deformation introduced i , .
in the S, foliation of the curved space model is somewhat/©" the choicep=oy, (which maximizes the result Al-
analogous to the pair-of-pants shape, except now the identil®ugh our model should not be expected to provide the
fications of the suppressed rotational symmetry lead to a tsharpest bou_nd, this _result suggests a s_lgnlflcant restriction
roidal topology ofS, for a period of time following the bi- ©n @ny plausible version of the hoop conjecture.
furcation. This regime corresponds to the scenario found in
the numerical simulation of the collapse of a rotating cluster V. CONCLUSION
of particles[1,3,10.

Euclidean embedding is not possible for this full sequence)

of t(|3r0|d€:1I &/vglt(asholelggrmatlon. (?Itm"tﬁr results'vxéere prefw— based upon constraint equations for the characteristic initial
ously noted by Smaii25] in regard to the nonexistence of a value problem. In this paper, we have concentrated on the

Euclidean embedding for high angular momentum Kerr traint ing the int | trv of the hori
black holes. The schematic profiles in Fig. 6 indicate th -onstrain. governing the internat geometry of the hornzon.

litative tonoloqical feat f th luti eRemarkably, this single equation produces such rich results.

qur#]a ve lotpo ogltca e?tl;]res 0 etevo u |onH I tEven more interesting features should be expected for mod-

€ analylic nalure ot the present approach allows us 15 conformal to flat space null hypersurfaces with more
draw further conclusions. In the oblate case, phprinciple

L : : - structure than the spheroidal case considered here.
curvature direction in whiclk, is positive corresponds to the

directi hat th ol o ; is al In subsequent work, we will extend the treatment to the
¢ direction, ,SOt atthe eguatona C|rcum.erer®e_s aways — constraint governing the extrinsic curvature. The boundary
larger than its asymptotic valuerR... This has important

conditions provided by the solution of this constraint prob-
bearing on the hoop conjectuf@2], which in its original P y P

. ) _ lem is the missing ingredient necessary to evolve the exterior
formulation would require tha€=<4mM. The exact nature - gh,c6 time by means of an existing characteristic code.
of the massM and of the inequality were purposely left

vague in the statement of the conjecture for purposes of fur-
ther mathematical refinement. If we identi as the irre-
ducible mass associated with the surface are#% then This work has been supported by Grant Nos. NSF PHY
M=R./2 andC>4mM at every finiteu. The largest value 9510895 and NSF INT 9515257 to the University of Pitts-
of C occurs at the equatorial rim of the crossover disc wherdurgh and by the Binary Black Hole Grand Challenge Alli-

[4TM]~2.54647M],  (4.17

We have shown that it is possible to treat multiple black
white holes via a stand-alone model of the event horizon
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