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Exact solutions for the intrinsic geometry of black hole coalescence
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We describe the null geometry of a multiple black hole event horizon in terms of a conformal rescaling of
a flat space null hypersurface. For the prolate spheroidal case, we show that the method reproduces the
‘‘pair-of-pants’’ shaped horizon found in the numerical simulation of the head-on-collision of black holes. For
the oblate case, it reproduces the initially toroidal event horizon found in the numerical simulation of the
collapse of a rotating cluster. The analytic nature of the approach makes further conclusions possible, such as
a bearing on the hoop conjecture. From a time reversed point of view, the approach yields a description of the
past event horizon of a fissioning white hole, which can be used as null data for the characteristic evolution of
the exterior space-time.@S0556-2821~99!05314-X#

PACS number~s!: 04.20.Ex, 04.25.Dm, 04.25.Nx, 04.70.Bw
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I. INTRODUCTION

Numerical simulations of axisymmetric space-times ha
enabled construction of the event horizon traced out by
evolution of dynamical black holes@1–6#. In addition to con-
firming behavior dictated by the general laws of black h
dynamics@7,8#, the simulations supply further insight whic
was not anticipated from analytic theory. In the case o
head-on collision, they supply the details of how the ho
form and merge@9#. In the case of rotating collapse, the
reveal how an initially toroidal structure is compatible wi
topological censorship@10#. In this paper, we present a thre
dimensional analytic description of the event horizon fo
multiple black hole space-time which, in the axisymmet
case, reproduces the qualitative features of the above s
lations.

As a stand-alone item, a black hole horizon is a null h
persurface whose cross-sectional surface area monotoni
increases and approaches a finite limit in the future. T
numberof black holes contained at a given time is not co
ventionally defined in terms of such a stand-alone picture
rather in terms of the number of disjoint sections given
the intersection of the horizon with a Cauchy hypersurfa
@7,8#. In the approach we present here, in the case of a h
on-collision the notion of ‘‘two holes’’ arises intrinsically
from a preferred slicing of the horizon based upon an affi
parameter along its generating null rays.

For this purpose, we consider the geometry of a null
persurfaceN whose surface area has a finite asympto
limit. The intrinsic and extrinsic geometrical properties of
null hypersurface cannot be described in terms of the s
‘‘3 11’’ formalism used for a spacelike hypersurface. In p
ticular, the degenerate three-metric of a null hypersurf
does not define an intrinsic covariant derivative, in contr
with the case of a spacelike hypersurface. Dautcourt@11# has
presented an alternative formalism for inducing an intrin
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geometry on a null hypersurface from the embedding geo
etry. Geroch@12# used a similar approach to describe n
infinity I as a three-dimensional null hypersurface detac
from the physical space-timeM . In Sec. II, we take an analo
gous approach to treat the null hypersurface traced out b
black hole as a stand-alone geometric object.

Numerical investigations@1–6# of event horizons have
used the Cauchy initial value problem to evolve a black h
space-time throughout a domain of sufficient extent~both in
space and time! so as to include an apparent horizon whi
has become approximately~but not exactly! stationary. This
implies that the marginally trapped surfaces defining the
parent horizon have almost stopped growing in surface a
The event horizon is then located by examining the null g
desics which pass in the vicinity of the last quasistation
marginally trapped surface obtained in the evolution. T
approach adopted in this paper is rather different. We h
developed a method that constructs a null hypersurf
whose surface area has finite asymptotic limit and wh
intrinsic geometry satisfies all other requirements for a n
singular event horizon. Thus, from all intrinsic criteria, th
null hypersurface represents an event horizonH. The results
of this paper depend only upon the intrinsic geometry ofH
and not upon the properties of the embedding space-t
~which will be presented in subsequent papers!. Even so, in
order to show that the results of this paper are physic
meaningful, it is necessary to discuss whether there exis
space-time in whichH can be embedded.

There is a formal construction of a vacuum space-ti
based upon the characteristic initial value problem posed
an intersecting pair of null hypersurfaces@13–15#. Here we
consider two null hypersurfaces intersecting in a topolo
cally spherical surfaceS0 . Intrinsic geometrical data must b
given on the two null hypersurfaces, as well as a quant
called the twist@14,15#, which is analogous to an extrinsi
curvature in the Cauchy problem. We can apply this form
ism to the case whereS0 is a cross section of the even
horizon at a late quasistationary time. Then, referring to F
1,H intersects the ingoing null hypersurfaceJ1 at S0 . Char-
acteristic data given on the portion ofH andJ1 to the past of

s
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LUIS LEHNER et al. PHYSICAL REVIEW D 60 044005
S0 , leads to a formal solution of the vacuum equations in
domain of dependenceD2 to the past ofS0 . To the extent
that S0 lies in the late time stationary region of the horizo
J1 approximates future null infinity. So, for a horizon d
scribing a binary black hole, the physically appropriate ch
acteristic data onJ1 would describe the outgoing radiatio
emitted during the merger, although any data satisfying
constraints would formally lead to a consistent vacu
space-time.~As in the Cauchy problem, Einstein’s equatio
imply constraints on the characteristic initial data but the
reduce to propagation equations along the null geodesic
that it is simple to isolate the unconstrained free data.!

There are theorems establishing the existence of solut
to this double null initial value problem@16–18#. Although
global issues remain unresolved, these theorems guara
existence in some neighborhood of the initial hypersurfac
The double null version of the characteristic initial val
problem is equivalent to the world tube–null cone proble
@19# in the case where the world tube is null. There exist
stable, accurate and efficient characteristic evolution c
@20,21# ~thePITT code! which evolves this initial value prob
lem and which could be applied to construct a numeri
solution to the situation described in Fig. 1. This provides
local existence of a space-time satisfying Einstein’s eq
tions in the finite difference approximation. Ideally, w
would like to construct a numerical solution throughout t
domain of dependenceD2 but that is more problematica
The evolution algorithm requires the foliation ofD2 by a
one parameter family of null hypersurfacesJv . However,
referring to Fig. 1, such a foliation becomes singular atJM in
the portion of the horizon corresponding to black ho
merger. Thus one could only obtain the post-merger spa
time by this procedure. This problem is due to a coordin
singularity, not a physical singularity, and from a mathema
cal point-of-view the space-time is extendable to ear
times; but just how much earlier cannot be answered b

FIG. 1. A portion of the space-time prior to the coalescence
two black holes. The parameterv labels the advanced time on
family of incoming null hypersurfaces.D2 is the domain of depen
dence of characteristic data given on the event horizonH and on
J1.
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characteristic evolution. Thus the analytic event horizon fo
black hole collision, which we present in this paper, can
used as characteristic initial data to construct a vacu
space-time ~either analytically or numerically! covering
some domain preceding the merger.

A major motivation for the present study stems from
potential indirect application of the results to a calculation
the gravitational waveform radiated by coalescing bla
holes using thePITT code. Wave forms from highly nonlin
ear, highly distorted single black holes have already b
obtained with this code@20,21#. In these simulations@20#,
the two null hypersurfaces were chosen to be~i! a portion of
the past horizon~white hole! of a Schwarzschild space-tim
and~ii ! an outgoing null hypersurface emanating from a sl
of the past horizon toI1, which ~in order to introduce dis-
tortion! contains incoming radiation. The code has equal
pability of carrying out such simulations with the stat
Schwarzschild white hole replaced by a dynamic past h
zon corresponding to a white hole which is initially statio
ary and later fissions into a pair of white holes. In a tim
reversed scenario, the outgoing wave form from this wh
hole explosion corresponds to theincoming radiation inci-
dent from past null infinity on the merger of a pair of blac
holes. While this is not the correct physical prescription
initial conditions for black hole coalescence, if the syste
were linear this incoming radiation could be used to dr
inferences about theoutgoingradiation. Such linearity is of
course not expected. Yet any means of obtaining a handl
the merger wave form is of current importance. In addition
solution of this problem would unambiguously yield the ou
going radiation from a white hole explosion, a system of
least academic interest.

The time reversal of the intrinsic geometry of the eve
horizon of a black hole, results in the event horizon of
white hole, and vice versa. The construction developed
this paper is naturally expressed in terms of a white hole
bifurcates in the future, and thus our method is presented
the case of a white hole. The reinterpretation of our resu
in terms of a black hole horizon, is straightforward. Thus
pose our investigation in terms of a white hole horizonH,
which constitutes a portion of a null hypersurfaceN, with
the property that its surface area decreases into the future
has a a finite asymptotic limit in the past. The null rays ofN
leaveH at points where they meet other null rays ofN. Such
end points can occur at a ‘‘crossover’’ point, where initial
non-neighboring rays intersect, or at a caustic, where ne
boring rays intersect. These properties follow from the fu
damental theorems of black hole physics.@7,8#

Note that a crossover point may also be a caustic, as in
case of a spherically symmetric light cone and also in
case of the prolate spheroidal light cone considered in S
IV. In addition, a portion ofN can continue smoothly acros
a noncaustic crossover point, as in the example of the ob
spheroidal light cone considered in Sec. IV. However,H
must end at such a crossover point.

In this paper, we do not calculate the gravitational rad
tion emitted by the system but study only the internal d
namics ofH. In Sec. IV we specialize to the axisymmetr
case which facilitates an analytic treatment of the endpo

f
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EXACT SOLUTIONS FOR THE INTRINSIC GEOMETRY . . . PHYSICAL REVIEW D60 044005
of H. We find that the bifurcation ofH in a white hole
explosion has the same ‘‘pair-of-pants’’ structure~in a time
reversed sense! observed in the numerical simulation of
head-on collision of black holes. Further features eme
such as the ultimate fate of an ‘‘eternal’’ pants leg, the d
tails of toroidal black hole formation in the vacuum case a
a bearing on a strict version of the hoop conjecture@22#.

II. THREE-DIMENSIONAL AFFINE NULL
GEOMETRY

It is useful to considerN as one of the null hypersurface
in the double null initial value problem for the vacuum Ei
stein equations. As first shown by Sachs@13#, the evolution
of the double null problem requires as boundary data
intrinsic conformal geometry onN, i.e., a metricgab ex-
pressed in terms of an affine parameteru, up to the confor-
mal freedomgab˜V2gab . In addition, the intrinsic confor-
mal geometry must be specified on a null hypersurf
meetingN transversely at some cross sectionS0 , as well as
the intrinsic two-geometry and certain extrinsic curvatu
quantities ofS0 . Here we restrict our attention to the intrin
sic properties ofN and S0 . As emphasized by Haywar
@14,15#, it is important to consider specification of an affin
parameteru onN as part of the data.

This intrinsic data obey the Sachs equations@23# govern-
ing the expansion or contraction ofN. As a consequence, th
data determine a unique metricgab from the conformal
equivalence class onN. Here gab satisfies the degenerac
conditiongabn

b50, wherenb is tangent to the generators o
N. We choosena to have the affine normalizationna]a
5]u .

Our aim is to use a special choice ofN as a stand-alone
model of a white hole horizonH. We require thatH be
complete in the past and that its surface area have a fi
asymptotic limit asu˜2`. H ends in the future at point
where its generators intersect, either at a caustic or cross
point.

The Sachs equations can be derived by projecting the
evant components of the four-dimensional Einstein equa
into three-dimensional form. In doing so, we must deal w
the degeneracy ofgab in representing the counterpart o
4-dimensional covariant derivatives as operators onN. The
formalism adopted here makes explicit use of the affi
structure ofN.

We begin with the four dimensional description ofN as a
null hypersurface embedded in a vacuum space-time w
metric gab and covariant derivative¹a . On N, the affine
tangent to the generators satisfies the geodesic equ
nb¹bna50 and the hypersurface orthogonality conditi
n[a¹bnc]50. We make no assumptions about the beha
of na off N. We project four-dimensional tensor fields intoN
using the operator

Pa
b5da

b1nal b, ~2.1!

wherel a is the unique outgoing null vector field onN which
is orthogonal to the affine cross sections and satisfiesl ana
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521. We can setl a52¹au, whereu is any smooth exten-
sion of the affine parameter to a field in the neighborhood
N.

The projected metricgab5Pa
cPb

dgcd is the pullback of the
four-metric gab to N. When restricted to the two-surface
determined by the affine foliation, the projected contrava
ant metricgab5Pc

aPd
bgcd is the~unique! inverse of the pull-

back ofgab .
We introduce the shorthand notation'Ta

b for the projec-
tion ~to the tangent space ofN! of a tensorTa

b . Thus,'na

5na and' l a5 l a . In addition, the following useful formula
hold onN:

05'na , ~2.2!

05' l a, ~2.3!

05'Lnl a , ~2.4!

05'Lnna , ~2.5!

05'¹ [anb] , ~2.6!

'Lngab5Lngab , ~2.7!

'L n
2gab5L n

2gab . ~2.8!

The last two of these equations can be verified using
commutation relation

05'@Ln ,'#. ~2.9!

Our purpose is to rewrite the projected curvature com
nentsFab5'ncndRcabd5'nc(¹c¹a2¹a¹c)nb in a form
intrinsic toN. By applying the above formulas, we obtain

Fab5
1

2
L n

2gab2
1

4
gcd~Lngac!Lngbd . ~2.10!

This further simplifies by settinggab5R2hab and gab

5R22hab where habLnhab50. ~This can be achieved by
choosingR2 as the determinant of the restriction ofgab to
the surfaces of the affine foliation.! Then, in terms of the
shear tensorSab5Lnhab ,

Fab5
1

2
Ln~R2hab!1habRL n

2R2
1

4
R2hcdSacSbd .

~2.11!

The Sachs equations follow immediately from Eq.~2.11!.
Taking the trace ofFab results in

ncndRcd52
2L n

2R

R
2

1

2
S2, ~2.12!

where Rcd is the Ricci tensor and whereS2

5(1/2)habhcdSacSbd . Then in thevacuum caseit follows
that
5-3
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LUIS LEHNER et al. PHYSICAL REVIEW D 60 044005
L n
2R52

1

4
RS2. ~2.13!

The trace free part of Eq.~2.11! yields

Cab5
1

2
Ln~R2Sab!2

1

2
R2S2hab , ~2.14!

whereCab are projected components of Weyl curvature.
We proceed further to decompose the shear in terms o

normalized eigenvectorspa andqa satisfyingSab(pb1 iqb)
5Shab(pb2 iqb). Then hab5papb1qaqb and Sab
5S(papb2qaqb), wherepa1 iqa5hab(pb1 iqb) and satis-
fies paLnpa1qaLnqa50 andpaLnqa1qaLnpa50.

The goal is to solve Eq.~2.13! in a way consistent with a
white hole horizonH on a portion ofN. Thus the Weyl
curvature must be nonsingular onH. This requires that the
contractionCab with a unit vector~normalized with respec
to gab! yield a nonsingular scalar field onH ~including the
end points ofH!; i.e., that

C5R22~pa1 iqa!~pb1 iqb!Cab

5R22Ln~R2S!1 iS~qaLnpa2paLnqa! ~2.15!

be nonsingular.

III. CONFORMALLY FLAT NULL GEOMETRY

The Weyl smooth solutions of Eq.~2.13! have a large
degree of freedom corresponding to the outgoing radia
crossingN. In order to restrict this freedom we consid
solutions whose null metric is conformal to that of a n
hypersurface embedded in a flat Minkowski space-time.

Consider then the flat space case, where we denote
corresponding fields onN as ĝab , R̂, ĥab , n̂a, û, etc. For
convenience, we writeF85Ln̂F for tensor fieldsF. Since
Ĉab50, Eq. ~2.14! implies (p̂a1 i q̂a)( p̂a2 i q̂a)850 and
R̂2Ŝ5s, wheres850. The conditions on the eigenvecto
may be summarized byp̂a85(S/2)p̂a and q̂a852(S/2)q̂a .

The focusing equation~2.13! now integrates to give

R̂25~Aû1B!22
1

4
s2, ~3.1!

whereA85B850. We adjust the affine freedom inû so that
R̂˜û as û˜` and so that the two caustics ofR̂ are placed
symmetrically. Then Eq.~3.1! reduces to

R̂25S û1
1

2
s D S û2

1

2
s D . ~3.2!

We choose conventions so that thes>0, so that the caustic
corresponding to theq principle direction is reached first
moving along a ray in the direction of increasingû.

The dependence of the eigenvectors is determined to

p̂a5S û2s/2

û1s/2D
1/2

Pa , ~3.3!
04400
its
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q̂a5S û1s/2

û2s/2D
1/2

Qa , ~3.4!

where (Pa1 iQa)850. The resultingû-dependent family of
two-metrics, comprise the classic description of the tw
geometries generated by the parallel map@24# of a surfaceS0
embedded in Euclidean space. The parallel map consis
translations by the same distanceDû along each normal to
the surface~identical to Huyghen’s construction for propa
gating a wave front!. Equivalently, by consideringS0 to be
embedded at timet50 in a Minkowski space-time, the trans
lation along each ingoing normal null direction through t
time Dû5t, generates a null-hypersurface foliated by co
stant time slicesŜt .

In applying this construction, we chooseS0 to be convex
so that Ŝt traces out the flat space wave fronts of a n
hypersurface converging in the inward direction. From t
point of view of the flat embedding,s is the distance be-
tween the two caustics generically encountered along e
null ray.

Given such a flat space null hypersurface, with the c
vexity property that its caustics are reached at finiteû, we
generate a curved space null cone with the same confo
structure, i.e.,gab5V2ĝab . We thus setR5VR̂ and hab

5ĥab . We do not require that the two affine structures ag
and setna5Ln̂a so that]u5L] û andS5LŜ. Our goal is
to investigate the properties of the foliationSt determined by
translatingS0 through the curved space affine timeDu5t.

The curved space focusing equation~2.13! now reduces to

L8~V8R̂1VR̂8!1L~V9R̂12V8R̂8!50 ~3.5!

and the Weyl curvature, defined in Eq.~2.14!, reduces to

Cab5
sL

2
~V2L!8~papb2qaqb! ~3.6!

with the Weyl scalar, defined in Eq.~2.15!, given by

C5s
L~V2L!8

V2R̂2
. ~3.7!

The goal is to solve these equations to construct a n
singular white hole horizonH. ThenC must be nonsingular
onH and the scalar fieldsV andL must be smooth positive
functions, except possibly at the end points ofH. In addition,
the surface area ofH must approach a finite limit asu
˜2`.

We require thatu and û approach2` together at the
same rate so that we may restrict the affine freedom inu by
requiring thatu8˜1. The surface area function must have
finite limit R˜R` asu˜2`, corresponding to an irreduc
ible mass@8# M`5R`/2. Then, from inspection of Eq.~3.7!,
Vû˜2R` and L˜1, as û˜2`. We also assume tha
these conditions are uniformly satisfied along each null
in terms of a 1/û expansion. This puts constraints on th
fields L and V which satisfy Eq.~3.5!. In order to apply
5-4
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EXACT SOLUTIONS FOR THE INTRINSIC GEOMETRY . . . PHYSICAL REVIEW D60 044005
these conditions it is convenient to introduce the funct
F5LV2. Then the smoothness ofC requires thatF850 at
a caustic. Also, the asymptotic conditions onV andL as û
˜2` requireû2F˜R`

2 so that,û(logF)8˜22.
Equation~3.5! can now be rewritten in terms ofF andV

as

~ logF !85
V@1/V#9

@ log~VR̂!#8
. ~3.8!

We can generate solutions to Eq.~3.8! by making an ansatz
for V and then integrating to determineF. The above
smoothness condition thatF must satisfy at a caustic is the
automatically satisfied ifV is smooth. The asymptotic con
ditions require that the ansatz satisfyVR̂˜R`1O(1/û2)
andu2(VR̂21)˜2s2/24.

In order for the resulting model to represent a nonsingu
white hole, additional conditions arise at a shear-free r
Along such a ray, the focusing equation~2.13! implies that
]u

2R50 with solutionR5C11C2u. Accordingly,R must be
a constant along each ray since it approaches a finite limitR`

asu˜2`. Thus we must require that our ansatz reduce
V5R` /R̂ along a shear-free ray. Such rays occur at a
umbilical point ofS0 where the two curvature eigenvalue
are equal ands50. For surfaces of revolution the poles a
always umbilical. Umbilics are a major factor in determinin
the qualitative behavior of the white hole model. Along
nonumbilical ray, the completeness ofH as a white hole
model requires that the range ofu extend to a crossover poin
or caustic, where it hits another ray and the hole termina
However, along an umbilic, the white hole need not term
nate and can extend to infiniteu. As we shall illustrate, this
is the mechanism which leads to multiple black holes inu
foliation of H.

The behavior at umbilics imposes further conditions
our ansatz. For example, suppose that the white hole te
nates along a set of nonumbilical causticsû52s/2 which
has an endless umbilic ray on its boundary wheres50.
Thenu must be finite along the nonumbilic set but approa
` as s˜0. Also, u851/L must have the same behavi
since the caustic set, including its boundary, is reache
finite û.

The simple ansatz

V52R`S û1
s2

12~r2û! D
21

~3.9!

satisfies all the above conditions if the parameterr is chosen
so thatr>s/A13. ThenV.0 in the white hole region con
tained insideû<2s/2. Furthermore, integration of Eq.~3.8!
gives

F5
16R`

2 ~ û2r!2~2û25r1m!2(2r/m21)

~2û25r2m!2(2r/m11) ~3.10!

and
04400
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u85
9

@12û~ û2r!2s2#2

~2û25r2m!2(2r/m11)

~2û25r1m!2 (2r/m21) ,

~3.11!

wherem5A13r22s2 is real and positive. The asymptoti
expansion of the integral gives

u5û212r ln û1C1OS 1

ûD , ~3.12!

whereC is the integration constant.
On the caustic setû52s/2, we have

C5
8s4

81~s12r!6~s13r! S s15r2m

s15r1m D 8r/m

, ~3.13!

which is manifestly regular, and

u85
9~s12r!2

s2 S s15r1m

s15r2m D 4r/m

, ~3.14!

which displays the required singular behavior ass˜0 at an
umbilical point and is otherwise regular.

It is instructive to examine the behavior of the extrins
curvature eigenvalues defined onH according to

kp5
papbLngab

2R2 5
S

2
1

]uR

R
~3.15!

and

kq5
qaqbLngab

2R2 52
S

2
1

]uR

R
. ~3.16!

For our flat space model,k̂p51/(û2s/2) and k̂q51/(û
1s/2). Then k (p,q)5L(k̂ (p,q)1V21] ûV). For the ansatz
~3.9!, these reduce to

kp5
s@12u~u2r!2s2#@12~u2r!21s~s24u12r!#

9~u2r!~2u2s!

3
~22u15r2m!2[(2r/m)21]

~22u15r1m!2[(2r/m)11] ~3.17!

and

kq5
2s@12u~u2r!2s2#@12~u2r!21s~s14u22r!#

9~u2r!~2u1s!

3
~22u15r2m!2[(2r/m)21]

~22u15r1m!2[(2r/m)11] . ~3.18!

Both kp and kq approach 0 as the white hole approach
‘‘equilibrium’’ as u˜2`. However, for large negativeu it
is clear from examining the dominant terms in Eqs.~3.17!
and ~3.18! that kp.0 and kq,0. So, although the mea
curvature ofH is negative in agreement with net focusing,H
expands in thep principle direction. As illustrated in Sec
5-5
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IV, the effect of this expansion as it becomes stronger n
the q caustic provides the characteristic shape of a bifurc
ing horizon.

IV. THE CONFORMALLY SPHEROIDAL CASE

The preceding analysis describes the dependence o
null geometry ofH on affine parameter along a ray. In ord
to obtain a model of an exploding white hole we examine
global dependence of the geometry on the angular coo
nates parametrizing the rays ofH. In the simplest case,S0 is
a sphere. Thens50 on all rays,ĥab5qab the unit sphere
metric,R̂52û and the ansatz Eq.~3.9! reduces toR5R` so
that the horizon is stationary. A conformally spherical wh
~black! hole is topless~bottomless! along all rays.

Since all topologically spherical geometries are conf
mally related, the conformal null geometry of a stationa
white ~or black! hole is unique. What distinguishes a Ke
horizon from a Schwarzschild horizon is the initial geome
of S0 , which determinesR` . In the Kerr case,R` is the
conformal factor relating the geometry of the Kerr horizon
the unit sphere.~The spin of the Kerr hole arises from a
extrinsic geometric quantity which can also be freely spe
fied onS0 .! In the Schwarzschild case,R` can chosen to be
a constant~independent of angle!.

In the case in whichS0 is a prolate spheroid~ellipsoid of
revolution!, we will show how the identical horizon structur
arises, as found in the simulation of colliding black hole
Furthermore, in the oblate case, we will show how a tem
rarily toroidal horizon arises, as found in the simulation
rotating collapse.

We start with the two-dimensional surfaceS0 describing
the spheroid

x21y2

a2 1
z2

b2 51, ~4.1!

which can be alternatively described in coordinatesyA

5(u,f), by the map

x5a sinu cosf, ~4.2!

y5a sinu sinf, ~4.3!

z5b cosu, ~4.4!

with uP@0,p# andfP@0,2p). The intrinsic metric ofS0 is

ĝABdyAdyB5~a2 cos2 u1b2 sin2 u!du21a2 sin2 udf2.
~4.5!

The determinant condition provides a way to defineR̂2 as

R̂25
det~ ĝ!

det~q!
, ~4.6!

@with qAB the unit sphere metric in~u,f! coordinates#. There-
fore, R̂25aAb2 sin2 u1a2 cos2 u. A straightforward calcula-
tion provides the principal radii of curvature ofS0 ,
04400
ar
t-

he

e
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f

r u5
~a2 cos2 u1b2 sin2 u!3/2

ab
~4.7!

and

r f5
aAa2 cos2 u1b2 sin2 u

b
. ~4.8!

We considerS0 to be isometrically embedded at timet
50 in Minkowski space and identify theû foliation of H
with the ~ingoing! null hypersurface emanating fromS0 . We
invariantly identify the functions in our model ofH as the
difference between the principle curvatures ofS0 :

s5ur u2r fu5
ub22a2usin2 uAa2 cos2 u1b2 sin2 u

ab
.

~4.9!

We setû5u0 onS0 . Then our convention thatû50 midway
between the two caustics ofH allows us to invariantly iden-
tify

u052
~r u1r f!

2

52
~2a21~b22a2!sin2 u!Aa2 cos2 u1b2 sin2 u

2ab
.

~4.10!

This determines both the metricĝab and affine parameterû
for the flat spheroidal null cone.

The conformal factor for the metricgab5V2ĝab of the
curved space version is determined by the ansatz Eq.~3.9!.
Here, in order to satisfy smoothness conditions, we req
that the parameterr>sM /A13, wheresM is the maximum
value ofs attained onS0 . Fora<b), the maximum occurs
at the equator andsM5ub22a2u/a. For the highly oblate
case witha.b), the maximum occurs between the equa
and poles andsM52a2/(3)b).

To determine the curved space affine parameter, we
u5u0 on S0 . Along with the condition that]u/]û˜1 as
û˜2` this fixes the remaining affine freedom inu, i.e., the
ray dependent integration constantC in Eq. ~3.12!. With this
choice,u5û on S0 and]u /] û˜1 asû˜2`.

Figure 2 illustrates the features of the flat space sphero
null hypersurfaceNflat , with horizontal lines corresponding
to the foliationŜt given by û5u01t. In the illustration, we
suppress the rotational symmetry. As discussed below, w
the spheroid is prolate~oblate!, the crossover pointsX where
Nflat pinches off is a spacelike line~disc!. The features of the
conformally related curved space versionN are quite similar
when viewed with respect to the Minkowski foliationŜt .
The chief difference is the effect of the conformal factor
the expansion and shape of the surfacesŜt , which produces
a finite surface area asû˜2`. The features ofN with
respect to the curved space affine foliationSt , given by u

5u01t, are qualitatively similar to those forŜt at early
times. The interesting black hole physics occurs near
5-6
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EXACT SOLUTIONS FOR THE INTRINSIC GEOMETRY . . . PHYSICAL REVIEW D60 044005
crossover region of where the foliationsSt and Ŝt have to-
pologically different properties. These are best illustrated
embedding techniques.

A. Embedding

Embedding diagrams constitute valuable tools for visu
izing the intrinsic geometry of a curved two-dimensional s
face. By embedding the surface in a flat three-dimensio
Euclidean space, one obtains a surface with the same in
sic geometry. The following technique was developed
Smarr, who applied it to the description of the Kerr bla
hole@25#. More recently, it has been employed to analyze
event horizon of the head-on-collision of black holes@26#.
Here we describe its application to our model.

The first step is to introduce the angular coordinateh
5cosu which makes det(qAB)51. In (û,h,f) coordinates,
the intrinsic metric of the horizon is

gabdxadxb5V2R̂2~ f 21dh21 f df2!, ~4.11!

where

f 5
~12h2!~ û1s/2!

~ û2s/2!
. ~4.12!

This can then be transformed into (u,h,f) coordinates by
the substitutionû5û(u,h,f), where û(u,h,f) is deter-
mined by integrating Eq.~3.11!. The results of this paper ar
based upon carrying out the integral by means of a Ta
expansion inu aboutu0 up to sixth order.~No substantial
change in our results were seen in going from fourth orde
sixth!.

Now, one can isometrically embed this surface in a thr
dimensional Euclidean space with Cartesian coordinatexi

by the map

FIG. 2. Spheroidal (Nflat) and conformally spheroidal~N! null
hypersurfaces: Factoring out the rotational symmetry allows the
liations to be depicted as lines from pole to pole. The Minkow

foliation indicated byŜi is drawn horizontally. The curved affin
foliation is indicated bySi .
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x15F~h!cosf, x25F~h!sinf, x35G~h!, ~4.13!

where

F5VR̂Af ,

G,h5AV2R̂2/ f 2F ,h
2 . ~4.14!

The quantitiesF andG are used to display the surface
the familiar three-dimensional flat space at a given instan
time determined by theu foliation. Moreover, one can moni
tor the embedding at different instants of time and produ
an ‘‘embedding history’’ which shows the evolution of th
surface’s geometry. By suppressing thef direction one can
stack f5const cross sections of the embedding of theSt
foliation in a three-dimensional fashion, with the vertic
axis labeling t and the horizontal axes labelingF
5A(x1)21(x2)2 andG5x3.

B. The pair-of-pants

We first describe the prolate caseb.a in which the cross-
over pointsX in the flat-space model are also a line of cau
tics with respect to thef principle direction.~Thus thef
direction corresponds to theq principle direction!. In Fig. 2
the rotational symmetry has been factored out so
Minkowski time foliation Ŝt of the underlying flat space
spheroidal null hypersurface corresponds to horizontal lin
The effect of curvature focuses the conformally related n
hypersurfaceN and introduces an upward bulge in theSt
foliation, which gets enhanced at later times to produce
sliceS* at which the white hole bifurcates. The vertical tim
sequence in our figures corresponds to white holes but
figures can be turned upside down to depict the correspo
ing scenario for black holes, in this case a black hole mer
The pointsC represent the caustics at the poles which
reached at finite times in the flat model but correspond
infinite affine times in the curved model.

Profiles of the embedding diagram ofSt at various stages
are shown in Fig. 3. Proceeding backward in time from
initial prolate spheroidS0 , the cross sections form the sphe
Sinf as t˜2`. Proceeding forward in time, they form th
surfaceS* ~also indicated in Fig. 2! where the white hole is
at the verge of fissioning. Note that the two white hol
which are produced each have a sharp point at their in
pole.

Figure 4 shows a time stacking of embedding diagrams
theSt foliation to form an~inverted! pair-of-pants and Fig. 5
gives a cutaway view of the bifurcation. The main features
the pair-of pants agree with those found in numerical sim
lation of the head-on vacuum black hole collision@2#, as
described in Refs.@9,26#. However, the analytic nature of th
present work allows us to draw the following further concl
sions. First, for the vacuum case, the pair-of-pants is ete
along the two umbilical rays at the poles. However, the le
pinch off and shrink asymptotically since every other r
eventually reaches the crossoverX at finiteu. Also, referring
to the discussion following Eq.~3.18!, the principle curva-
turekq corresponding to theu direction is everywhere nega

-
i
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tive, except at the poles and in the limitû˜2` wherekq
50. It is most negative along the equatorial rays, wh
gives rise to the bow-legged shape of the pair-of-pants.

C. Toroidal horizons and the hoop conjecture

In the oblate casea.b, the crossover pointsX in Fig. 2
~in which the orbits of the rotational symmetry have be
factored out! correspond to the same crossover points as
the prolate case. The difference between the two cases i
orientation of the axis of rotation. WhereasX lies on the
rotation axis in the prolate case~and thus determines a cau
tic line under revolution!, in the oblate caseX rotates to form
a disc. Only the outer rim of the disc~generated by revolu
tion of the equatorial pointsC in Fig. 2! consists of caustic
points.

Note that the induced metricgabuX of the crossover disc is
single-valued~except at the caustic rimC where it is singu-
lar!; i.e., its value does not depend upon whetherX is ap-
proached from the top or bottom. This is because~i! by con-
struction of N as a null hypersurface embedded
Minkowski space,ĝabuX is single-valued and~ii ! the confor-
mal factor V has reflection symmetry with respect to th
equatorial plane. More generally, in the absence of sym
try, establishment of consistency conditions for a sing
valued metric on the crossover surface would be more c
plicated.

FIG. 3. Embedding snapshots profiling fission of an initia
spheroidal white holeS0 in terms of the coordinatesF andG: The
white holes are the surfaces formed by rotating the profiles ab
the horizontalG axis.
04400
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the
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In the oblate case theu direction has the smallest radius o
curvature~corresponding to theq principle direction!. The
umbilical rays at the poles cross before they caustic, so
the infinite umbilical stretch in theSt foliation for the prolate
case does not arise in the oblate case. Thus the event ho
is completed in finite affine time, in contrast to the prola
case.

Another important difference also arises in this case. T
umbilical stretch produces toroidal cross sections of the
rizon, rather than the two spherical sections arising in
prolate case. The details of the formation of the torus are b
understood in terms of the affine displacementDu(u) be-
tweenS0 andX, as a function of theu coordinate of the ray.
In terms of Minkowski time, the corresponding time di
placement is@10#

Dû~u!5b2Asin2 u

a2 1
cos2 u

b2 . ~4.15!

Then

Du~u!5E
u0

u01Dû

u8dû, ~4.16!

ut

FIG. 4. The embedding history of the axisymmetric fission o
white hole into two white holes: The time slicesSt are horizontal
and proceed upward ast increases. The spatial origin of the embe
ding axes is offset from the center for clarity. The suppressed s
metry dimension corresponds to a rotation about theG axis. The
history extends into both the future and past of the initial surfa
S0 , which lies approximately halfway up the picture. A time r
versed view gives the pair-of-pants picture for the head on collis
of two black holes.
5-8
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whereu8 is given by Eq.~3.11! andu0 by Eq. ~4.10!. In the
oblate case,Dû has its minima at the equator butDu has
minima at the poles and exhibits a monotonic growth
wards the equator. As a result, theSt foliation first touchesX
at the space-time point where the two polar rays inters
creating a surface of revolution with the same double te
drop profile asS* in Fig. 3, but now rotated about the ve
tical axis through the center. In successive cross sectionSt
forms a torus~with sharp inner rim!, which shrinks to a circle
as the horizon terminates. The tidal deformation introdu
in the St foliation of the curved space model is somewh
analogous to the pair-of-pants shape, except now the ide
fications of the suppressed rotational symmetry lead to a
roidal topology ofSt for a period of time following the bi-
furcation. This regime corresponds to the scenario found
the numerical simulation of the collapse of a rotating clus
of particles@1,3,10#.

Euclidean embedding is not possible for this full seque
of toroidal white hole formation. Similar results were prev
ously noted by Smarr@25# in regard to the nonexistence of
Euclidean embedding for high angular momentum K
black holes. The schematic profiles in Fig. 6 indicate
qualitative topological features of the evolution.

The analytic nature of the present approach allows u
draw further conclusions. In the oblate case, thep principle
curvature direction in whichkp is positive corresponds to th
f direction, so that the equatorial circumferenceC is always
larger than its asymptotic value 2pR` . This has important
bearing on the hoop conjecture@22#, which in its original
formulation would require thatC&4pM . The exact nature
of the massM and of the inequality were purposely le
vague in the statement of the conjecture for purposes of
ther mathematical refinement. If we identifyM as the irre-
ducible mass associated with the surface area 4pR`

2 then
M5R`/2 andC.4pM at every finiteu. The largest value
of C occurs at the equatorial rim of the crossover disc wh

FIG. 5. A downward view of the portion of the embeddin
history fromS0 up to the verge of bifurcation where the light rays
opposite points on the equator are about to cross.
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3~A1312!

~A1313!
@4pM #'2.546@4pM #, ~4.17!

for the choicer5sM ~which maximizes the result!. Al-
though our model should not be expected to provide
sharpest bound, this result suggests a significant restric
on any plausible version of the hoop conjecture.

V. CONCLUSION

We have shown that it is possible to treat multiple bla
or white holes via a stand-alone model of the event horiz
based upon constraint equations for the characteristic in
value problem. In this paper, we have concentrated on
constraint governing the internal geometry of the horizo
Remarkably, this single equation produces such rich res
Even more interesting features should be expected for m
els conformal to flat space null hypersurfaces with mo
structure than the spheroidal case considered here.

In subsequent work, we will extend the treatment to t
constraint governing the extrinsic curvature. The bound
conditions provided by the solution of this constraint pro
lem is the missing ingredient necessary to evolve the exte
space-time by means of an existing characteristic code.
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@21# R. Gómez, L. Lehner, R. Marsa, and J. Winicour, Phys. Rev

57, 4778~1997!.
@22# K. Thorne, inMagic without Magic; John Archibald Wheeler,

edited by J. Klauder~Freeman, San Francisco, 1972!, p. 231.
@23# R. K. Sachs, Proc. R. Soc. LondonA264, 309 ~1961!.
@24# L. P. Eisenhart,An Introduction to Differential Geometry

~Princeton University Press, Princeton, 1940!, p. 272.
@25# L. Smarr, Phys. Rev. D7, 289 ~1973!.
@26# J. Masso´, E. Seidel, W-M Suen, and P. Walker, Phys. Rev.

59, 064022~1999!.
5-10


