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Is the dark matter a solid?
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A smooth unclustered dark matter component with negative pressure could reconcile a flat universe with the
many observations that find a density in ordinary, clustered matter well below the critical density and also
explain the recent high red-shift supernova data suggesting that the expansion of the universe is now acceler-
ating. For a perfect fluid negative pressure leads to instabilities that are most severe on the shortest scales.
However, if instead the dark matter is a solid, with an elastic resistance to pure shear deformations, an equation
of state with negative pressure can avoid these short wavelength instabilities. Such a solid may arise as the
result of different kinds of microphysics. Two possible candidates for a solid dark matter component are a
frustrated network of non-Abelian cosmic strings or a frustrated network of domain walls. If these networks
settle down to an equilibrium configuration that gets carried along and stretched by the Hubble flow, equations
of state result withw521/3 andw522/3, respectively. One expects the sound speeds for the solid dark
matter component to comprise an appreciable fraction of the speed of light. Therefore, the solid dark matter
does not cluster, except on the very largest scales, accessible only through observing the large-angle CMB
anisotropy. In this paper we develop a generally covariant, continuum description for the dynamics of a solid
dark matter component. We derive the evolution equations for the cosmological perturbations in a flat universe
with CDM1~solid! and compute the resulting large-angle CMB anisotropy. The formalism presented here
applies to any generalized dark matter with negative pressure and a nondissipative resistance to shear.
@S0556-2821~99!05110-3#

PACS number~s!: 95.35.1d, 98.80.2k
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I. INTRODUCTION

Most determinations of the cosmological density para
eter V05(r/rcrit), where rcrit5(3/8pG)H0

2, now indicate
thatVm'0.260.1, a value well below theVm51 value sug-
gested by flat cosmological models.~For a nice review of the
current observations see Refs.@1#.! Most of these technique
for determiningVm , however, are sensitive only to matt
that is clustered gravitationally and do not rule out a smoo
unclustered component that could make up the differe
between the observed value ofVm and unity.

The earliest proposal for a smooth component is the c
mological constantL, first introduced by Einstein@2#, later
denounced by him@3#, and more recently resurrected to re
oncile the observations with a flat universe@4#. The cosmo-
logical constant is somewhat of an embarrassment for th
retical physics because dimensional arguments wo
suggestL'M pl

4, a value more than a hundred orders
magnitude too big@5#. Perhaps some not yet discovered sy
metry makesL vanish exactly, but at this point we lack eve
the vaguest idea of what kind of symmetry could do the j
Supersymmetry somewhat mitigates the difficulty, mak
MSSB

4 rather thanM pl
4 the naive guess forL, but even with

supersymmetry ifL does not vanish, a formidable fine tun
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ing problem persists. A largeVL overpredicts the number o
gravitationally lensed quasars@6#. As an alternative toL, it
has been proposed that there could exist a very light,
tremely weakly coupled scalar field that could act as a te
porary cosmological constant, even though the true value
the cosmological constant vanishes exactly@23#. But this re-
quires a particle of implausibly small mass, somewhere
the neighborhood of 10233eV.

In this paper we discuss another possibility: a solid d
matter component with significant negative pressure. H
significantmeans that the negative pressure, or equivale
tension, of the solid matter component is comparable in m
nitude to its energy density. An equation of state with lar
negative pressures can lead to sound speeds comparab
the speed of light, so that the Jeans length for this compon
is enormous, comparable to the size of our present horiz
Consequently, the solid dark matter component does
cluster except on extremely large scales. Because of this
low measurements ofV can be reconciled with a spatiall
flat universe. The clustering of the solid dark matter comp
nent on very large scales is accessible to observation
through its effect on the large-angle cosmic microwave
isotropy ~CMB! anisotropy.

A solid dark matter component can also help explain
the recent observations of distant type Ia supernovae
suggest that the universe is now accelerating@7–14#. For the
expansion of the universe to accelerate some exotic form
matter with w5(p/r),21/3 is required. A perfect fluid
with w,0 is not possible because its sound speed would
©1999 The American Physical Society05-1
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MARTIN BUCHER AND DAVID SPERGEL PHYSICAL REVIEW D60 043505
imaginary, indicating instabilities whose growth rate d
verges as the wavelength approaches zero. Such a
would clearly be unphysical. For a solid, however, re
sound speeds are possible because a shear modulus of
cient magnitude removes these instabilities.

In this paper we explore the dynamics of a solid da
matter component by developing a continuum description
such a component within the framework of general relativ
and incorporating the solid dark matter component into
linearized theory for the evolution of cosmological perturb
tions. In particular we explore the consequences of suc
component for the large angle CMB anisotropy.

A solid dark matter component could arise from a varie
of different microphysics. Two known ways such a comp
nent could arise are from networks of frustrated cosm
strings@15–18# or domain walls@20–22,24–26#. While the
simplest Abelian cosmic strings obey a scaling solution
that the number of strings per horizon volume remains c
stant, for non-Abelian cosmic strings topological obstru
tions prevent the intercommuting necessary for the brea
long strings that leads to scaling behavior. The nonunit e
ments of the fundamental groupp1(G/H) classify the pos-
sible types of cosmic strings. When two strings whose wi
ings or magnetic fluxes are described by non-commu
elements ofp1(G/H) try to cross, the strings cannot pa
through each other without forming a third string betwe
them. This has the effect of preventing crossings because
tension of the intermediate strings tries to pull the two strin
back toward their previous uncrossed positions. It is poss
that these effects lead to a scaling solution albeit one w
many more strings per horizon volume, but the simulatio
by Pen and Spergel suggest that the strings settle down
stable configuration which subsequently gets carried al
with the Hubble flow. In a forthcoming paper, we show th
stable string configurations do exist which strengthens
case for a string dominated universe. Similar simulations
domain walls by Kubotani suggest domain walls in mod
with many types of domain walls exhibit similar behavior.
cellular foam type structure in equilibrium forms with se
eral wall meeting at linelike junctions. A string-dominate
universe givesw521/3, which in the absence of other da
matter would give a universe that is neither accelerating
decelerating. A symmetry breaking scale of a few TeV an
string separation today of a few A.U. would giveVstring
today in the interesting range between zero and one.~This
estimate is subject to considerable uncertainty becaus
range of string density at formation is possible and the len
of the transient before string dominated behavior takes o
is uncertain and model dependent.! For domain walls carried
along with the Hubble flow,w522/3 and a symmetry
breaking scale of a few MeV and a mean domain wall se
ration of some tens of parsecs are suggested~subject to the
same uncertainties!. The fact that new physics occurs
larger energy scales than forquintessenceor L is a positive
feature of these scenarios. It should be stressed that the
malism in the paper applies equally well to a solid comp
nent with the same continuum description but of complet
different origin.

A slightly different type of solid dark matter has bee
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proposed by Eichler to explain certain aspects of large-s
structure@30#. In this scenario a solid condenses and sub
quently fractures when stretched beyond its breaking p
by expansion of the universe. The dark matter contempla
in this paper does not fracture. It can experience unlimi
stretching without becoming in any sense weakened. Fo
solid composed of frustrated topological defects it is easy
see why ruptures or fractures do not occur. The constitu
defects lack a preferred size. Upon stretching or shrinki
the transverse structure of the defects remains unchan
This is quite unlike an ordinary solid composed of atoms,
which quantum mechanics establishes a preferred length
the chemical bonds.

The organization of this paper is as follows. In Sec. II
this paper we develop a generally covariant description
the dynamics of a continuous medium~such as the string
network! in curved space. For the spacetime with the me
Gmn5a2(h)@hmn1hmn# wherehmn is regarded as small, we
expand the action to quadratic order and compute the e
tions of motion and the resulting stress-energy for the so
dark matter component. In Sec. III we combine the results
Sec. II with the linearized theory of cosmological perturb
tions using Newtonian gauge and derive the equations
motion for a spatially flat universe with cold dark matt
~CDM! and a solid dark matter~SDM! component. In Sec
IV compute the large-angle CMB anisotropy for models w
SDM. Finally, in Sec. V we present some concluding r
marks. In this paper we use the sign conventionhmn

5diag@21,11,11,11#.

II. CONTINUUM DESCRIPTION

This section presents an action that describes the dyn
ics of a dissipationless elastic medium in curved space.
though developed to describe the response of a non-Abe
string network to metric cosmological perturbations, this fo
malism applies to other forms of solid dark matter and to
wide variety of situations involving continuous media
curved space. The problem of describing the dynamics o
solid within the framework of general relativity has bee
previously considered by Carter and Quintana in the stud
the crusts of neutron stars@28# and others@29#. In this section
we present a self contained treatment particularly suited
the consideration of linearized perturbations in an expand
universe.

A continuous medium is a kind of three-dimension
membrane but quite different from the now much discus
‘‘fundamental’’ branes. A continuous medium has intern
structure. As the medium moves, each constituent part
traces out its own world line. For continuous media the
lowed reparametrizations are limited to reparametrizati
that preserve these world lines. Geometrically a continu
medium may be regarded as a congruence of world lines.
use a three dimensional coordinatey to parametrize these
world lines. The coordinatet is an arbitrary time coordinate
parametrizing the direction along these world lines.

A metric hab is defined ony-space. The volume induce
by this metric indicates the density of world lines and t
additional internal metric structure provides a reference w
5-2
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IS THE DARK MATTER A SOLID? PHYSICAL REVIEW D60 043505
respect to which to characterize pure shear~i.e., volume pre-
serving! deformations. In the classical exposition of elast
ity theory ~e.g., as in the book by Landau and Lifshitz@19#!
hab5dab5(const). However, when a solid is formed in
warped~i.e., curved! spacetime, there generally does not e
ist any coordinatization of the world lines so thathab
5dab . For the moment let us imagine ourselves in the
stantaneous rest frame of a volume element of the med
choosingt so that]/]t is orthogonal to]/]ya (a51,2,3).
The background spacetime metricGmn induces the following
metric ony-space:

gab5Gmn

]Xm

]ya

]Xn

]yb . ~2.1!

For an arbitrary time parametrization, where]/]t is not nec-
essarily orthogonal to]/]ya, the induced metric may rewrit
ten as

gab5Gmn
~s!

]Xm

]ya

]Xn

]yb , ~2.2!

where Gmn
(s)5UmUn1Gmn and Um5(]Xm/]t)/

AGjh(]Xj/]t) (]Xh/]t). Gmn
(s) projects out displacement

along]/]t.
The local deformation state of the medium is determin

by comparinggab to hab—by the three principal value
l1 ,l2 ,l3 of gab with respect tohab . ~We assume that the
medium is isotropic, for otherwise more structure thanhab
alone is required to characterize the deformation state of
medium.! In ordinary elasticity theory,hab5dab ,gab is the
strain tensor, andl1 ,l2 ,l3 are its principal values. The sca
lar invariants g(1)5habgab , g(2)5habgbch

cdgda , g(3)
5habgbch

cdgdeh
e fgf a suffice to characterize completely th

principal values, and the local density in the local instan
neous rest frame with respect to theh volume element may
be expressed asr (h)5r (h)(g(1) ,g(2) ,g(3)). In terms of the
principal valuesg(1)5l11l21l3 , g(2)5l1

21l2
21l3

2,
andg(3)5l1

31l2
31l3

3.
It follows that the action is

S52E dtE d3yAh r~g~1! ,g~2! ,g~3!!A2Gmn

]Xm

]t

]Xn

]t
.

~2.3!

One may view Eq.~2.3! as a generalization of the free pa
ticle action S52m*dt. If r(g(1) ,g(2) ,g(3))5(const), the
action~2.3! merely describes a congruence of noninteracti
freely falling particles. However, in the general case the
moving density with respect to the internal coordinates v
ies as deformations of the medium alter its internal ener
The potential energy of the medium resides in the funct
r(g(1) ,g(2) ,g(3)).

We now recast the action~2.3! into a more familiar form
by considering an elastic medium in almost flat space.
assume a spacetime metricGmn5hmn1hmn , an internal
04350
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metric hab5dab1bab , and Xi5yi1j i(y,t) where hmn ,
bab , andj i(y,t) are regarded as small. We also setX05t.

We expand

r5rs1tsS dV

V D1KsS dV

V D 2

1msS~5!ab S~5!
ab . ~2.4!

Herets is the tension andKs andms are the compressiona
and shear moduli, respectively, and the tensorS(5)ab is the
pure shear component of the strain tensor. From the rela
~valid to quadratic order!

S 11
dV

V D5
Augabu

Auhabu
5

Audab1sabu

Audab1babu
5

11
s

2
1

s2

8
2

si j s
i j

4

11
b

2
1

b2

8
2

bi j b
i j

4

,

~2.5!

it follows that

dV

V
5

s

2
1

s2

8
2

si j s
i j

4
2

b

2
1

bi j b
i j

4
1

b2

8
2

bs

4
. ~2.6!

Here to quadratic order

sab5$d i
a1j i

,a~y,t !%$d i j 1hi j ~X!

1~ j̇ i1h0i !~ j̇ j1h0 j !%$d
j
b1j j

,b~y,t !%2dab

5ja,b1jb,a1hab1jk¹khab1j i ,aj i ,b1haij i ,b1hbij i ,a

1 j̇aj̇b1h0aj̇b1h0bj̇a1h0ah0b , ~2.7!

and to quadratic order

dV

V
5ja,a1

1

2
haa1

1

2
jc¹chaa2

1

2
ja,bjb,a

1
1

2
ja,ajb,b2

1

2
ja,abbb2

1

4
haabbb

1
1

8
haahbb2

1

4
habhab1

1

2
ja,ahbb2

1

2
baa1

1

4
babbab

1
1

8
baabbb1

1

2
j̇aj̇a1h0aj̇a1

1

2
h0ah0b . ~2.8!

To linear order~which is sufficient here!, the pure shear par
of the strain is

Sab
~5!5ja,b1jb,a1hab2bab2

1

3
dab~2jc,c1hcc2bcc!.

~2.9!

Combining and expanding to quadratic order, we obtain
5-3
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S5E dtE d3yF11
b

2
1

b2

8
2

babb
ab

4 G
3Frs1tsH ja,a1

1

2
haa1

1

2
jc¹chaa2

1

2
ja,bjb,a1

1

2
ja,ajb,b2

1

2
ja,abbb

2
1

4
haabbb1

1

8
haahbb2

1

4
habhab1

1

2
ja,ahbb2

1

2
baa1

1

4
babbab1

1

8
baabbb

1
1

2
j̇aj̇a1h0aj̇a1

1

2
h0ah0bJ 1KsH j i

,i1
1

2
hi

i2
1

2
bi

i J 2

1msH ja,b1jb,a1hab2bab2
1

3
dab~2jc,c1hcc2bcc!J 2G

3Fh00

2
1

h00
2

8
1

1

2
j i¹ ih001h0i j̇

i1
1

2
j̇ i 221G , ~2.10!

and expanding out to quadratic order and omitting terms that do not contribute to the equations of motion or to the
energyTmn, we obtain

S5E dtE d3yF S rs2ts

2 D j̇21~rs2ts!h0i j̇
i

2rsH 2
h00

2
2

baah00

4
2

h00
2

8
2

1

2
~jc¹c!h00J

2tsH ja,a1
1

2
haa1

1

2
~jc¹c!haa2

1

2
ja,bjb,a1

1

2
ja,ajb,b2

1

2
ja,ah00

1
1

2
ja,ahbb1

1

4
h00baa2

1

4
h00haa1

1

8
haahbb2

1

4
habhab1

1

2
h0ah0aJ

2KsH j i
,i1

1

2
hi

i2
1

2
bi

i J 2

2msH ja,b1jb,a1hab2bab2
1

3
dab~2jc,c1hcc2bcc!J 2G . ~2.11!
le

-

el
It follows that the equation of motion forj is

~rs2ts!j̈ i1~rs2ts!ḣ0i2
1

2
~rs2ts!¹ ih00

2Ks@2j j , j i 1hj j ,i2bj j ,i #2msF4j i , j j 1
4

3
j j ,i j

24bi j , j1
4

3
bj j ,i14hi j , j2

4

3
hj j ,i G50. ~2.12!

With the coupling to gravity ignored, which is a reasonab
approximation for short wavelengths, the sound speeds

cS
25

16
3 ms12Ks

~rs2ts!
, cV

25
4ms

~rs2ts!
~2.13!

follow for the longitudinal~scalar! mode and the two trans
verse~vector! modes, respectively.

We next compute the stress-energy, defined by the r
tion
04350
a-

dS5
1

2 E d4xA2GTmn~dGmn!. ~2.14!

We use the expansion 1/A2uGmnu5@11h00/22hi i /2
1O(h2)# and the relationAwaa

2 1B(wab2 1
3dabwcc)

25(A
2 1

3B)waa
2 1Bwabwab . It follows that ~to linear order!

T0
052rs2

1

2
~rs2ts!~bii 2hi i 22j i ,i !,

Ti
05~rs2ts!~ j̇ i1h0i !,

Ti
j52tsd i j 22S Ks2

4

3
msD d i j S ja,a1

1

2
haa2

1

2
baaD

24ms~ j i , j1j j ,i1hi j 2bi j ! . ~2.15!
5-4
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We now turn to the continuum description of the so
dark matter component with the expansion of the unive
included using conformal timeh so that the background me
ric becomes

Gmn5a2~h!•@hmn1hmn#. ~2.16!

We modify the notation for the expansion of the comovi
density as follows:

r5rsa
l~h!H 11 t̃sS dV

V D1K̃sS dV

V D 2

1m̃sS~5!abS~5!
abJ ,

~2.17!

so thatt̃s , K̃s , and m̃s are dimensionless. We take the e
ponentl to be constant, although the generalization of this
straightforward. The physical density scales asrphys
5rcm /a3(h)5rsa

l23(h). Given l, the dimensionless pa
rameters
04350
e

s

t̃s5
l

3
, K̃s5

l~l23!

18
~2.18!

are fixed, andm̃s is variable only within the range

maxF0,
23

8
K̃sG<m̃s<

~12 t̃s!

4
, ~2.19!

obtained by requiring stability on short wavelengths and s
luminal longitudinal and transverse sound speeds. For f
trated non-Abelian strings,t̃s51/3 and K̃s521/9; for a
frustrated network of domain walls,t̃s52/3 andK̃s521/9.

For the expanding universe, the action~2.10! is modified
as follows:
S5E dhE d3yrsa
l11~h!F11

b

2
1

b2

8
2

babb
ab

4 G
3F11 t̃sH ja,a1

1

2
haa1

1

2
jc¹chaa2

1

2
ja,bjb,a1

1

2
ja,ajb,b2

1

2
ja,abbb

2
1

4
haabbb1

1

8
haahbb2

1

4
habhab1

1

2
ja,ahbb2

1

2
baa1

1

4
babbab1

1

8
baabbb1

1

2
j̇aj̇a1h0aj̇a1

1

2
h0ah0bJ

1K̃sH j i
,i1

1

2
hi

i2
1

2
bi

i J 2

1m̃sH ja,b1jb,a1hab2bab2
1

3
dab~2jc,c1hcc2bcc!J 2G

3Fh00

2
1

h00
2

8
1

1

2
j i¹ ih001h0i j̇

i1
1

2
j̇ i 221G . ~2.20!
The equations of motion are modified to

~12 t̃s!F j̈ i1~l11!
ȧ

a
j̇ i G1~12 t̃s!F ḣ0i1~l11!

ȧ

a
h0i G

2
1

2
~12 t̃s!¹ ih002K̃s@2j j , j i 1hj j ,i2bj j ,i #

2m̃sF4j i , j j 1
4

3
j j ,i j 24bi j , j1

4

3
bj j ,i14hi j , j2

4

3
hj j ,i G

50. ~2.21!

In the expanding universe, the stress-energy~to linear order!
is

T0
05a~l23!rsF212

1

2
~12 t̃s!~bii 2hi i 22j i ,i !G

Ti
05a~l23!rs@~12 t̃s!~ j̇ i1h0i !#,
Ti
j5a~l23!rsF2 t̃sd i j

22S K̃s2
4

3
m̃sD d i j S ja,a1

1

2
haa2

1

2
baaD

24m̃s~j i , j1j j ,i1hi j 2bi j !G . ~2.22!

III. COUPLING TO GRAVITY

We choose Newtonian gauge~which is equivalent to the
gauge invariant formalism of Bardeen!, so that the metric
takes the form

ds25a2~h!@2dh2~112f!

1dxidxj$d i j ~122c!1hi j
~V!1hi j

~T!%#, ~3.1!
5-5
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MARTIN BUCHER AND DAVID SPERGEL PHYSICAL REVIEW D60 043505
wherehi j
(V) andhi j

(T) are purevectorand tensorparts of the
spatial-spatial metric perturbation, respectively. In deal
with cosmological perturbations it is convenient to defi
any vector or tensor that can be expressed by taking de
tives of a scalar quantity asscalar. Likewise, a tensor tha
can be expressed as a derivative of avector is regarded as
vector. With these definitions the linearized equations se
rate into independentscalar, vector, and tensorblocks. We
assume a flat universe filled with cold dark matter and a s
dark matter component.

We decompose the displacement field

j5j~S!1j~V!, ~3.2!

and the internal metric of the solid dark matter compone

bi j 52btr
~S!d i j 1bntr

~S!S kikj2
1

3
d i j k

2

k2
D 1bi j

~V!1bi j
~T! .

~3.3!

A. Scalar perturbations

We first consider thescalar perturbations. The linearize
Einstein equations for thescalar sector are

dG0
05

22

a2 @¹2c23H~ ċ1Hf!#

5~8pG!@2rcd1Q0
0#, ~3.4a!

dG~S!
i
05

22

a2 @ċ1Hf# u i

5~8pG!@rcv u i1Q~S!
i
0#, ~3.4b!

dG~S2tr !
i
j5

2

a2 F c̈12Hċ1Hḟ1~2Ḣ1H2!f

1
1

3
¹2~f2c!Gd i

j

5~8pG!Q~S2tr !
i
j , ~3.4c!

dG~S2ntr !
i
j5

21

a2 F S ¹ i¹
j2

1

3
d i

j¹2D ~f2c!G
5~8pG!Q~S2ntr !

i
j , ~3.4d!

where tr and ntr denote the pure trace and tracelessscalar
parts of the spatial-spatial tensors, respectively. The dots
resent derivatives with respect to conformal time,H
5(ȧ/a), rc5Vcdm(3/8pG)H2a22, and v i5v u i ~i.e., v is
the potential for thescalar part of the velocity field!. The
covariantly divergenceless tensorQmn is the perturbation in
the stress-energy of the solid dark matter component.

Equations~3.4a! and ~3.4b! may be combined to obtain
04350
g

a-

-

id

p-

¹2c5
3

2
H2FVcdm~dcdm23Hvcdm!

1
1

rcrit
~2Q0

023HV!G , ~3.5!

whereQ0
i(string-scalar)5Vu i ~i.e.,V is the potential used to

represent thescalarcomponent of the solid dark matter com
ponent momentum density!. Similarly, Eq. ~3.4d! may be
recast as

S ¹ i¹
j2

1

3
d i

j¹2D ~c2f!53H2
1

rcrit
Q~S2ntr !

i
j . ~3.6!

The equations of motion for the cold dark matter~CDM!
component are

ḋcdm52~¹•vcdm!13ċ,

v̇cdm1Hvcdm52¹f. ~3.7!

For thescalarmode of the solid dark matter component, t
equation of motion is

~12 t̃s!$j̈~S!1~l11!Hj̇~S!1¹f%

5S 2K̃s1
16m̃s

3 D $¹2j~S!23¹~c1btr
~S!!%. ~3.8!

Finally, we have the equations

Q0
05

2~rs2ts!

a~32l! F2j i ,i2
1

2
hi i 1

1

2
bii G

5
2~rs2ts!

a~32l! @2j i ,i13c13btr
~S!#,

Q~S2ntr !
i
j524m̃s

rs

a~32l!

3Fj i , j1j j ,i2
2

3
d i j jk,k2bi j

~S2ntr !G . ~3.9!

With the equations of motion for the cosmological pertu
bations including the solid dark matter component deriv
we now turn to initial conditions. For each wave numberk
there exist four modes: two growing modes and two dec
ing modes. This pair of perturbations corresponds to the
distinct ways in which the solid dark matter generates a
alters the growth of perturbations. If prior to the phase tra
sition that produced the solid dark matter, there were pre
isting curvature fluctuations, then the presence of the s
dark matter alters the evolution of the fluctuations. This
similar to the way in which a cosmological constant, neu
nos, or quintessence alters the evolution of the fluctuatio
In addition, the generation of the solid dark matter~e.g.,
string formation! at a phase transition can produce new flu
tuations. These entropy fluctuations correspond to variati
in the dark matter density at the surfaceT5Tpt , whereTpt is
the phase transition temperature. These white noise ent
5-6
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fluctuations are likely to be small on scales large compa
to the horizon scale at the phase transition.

We focus on the effect of the solid dark matter on t
evolution of preexisting scalar, vector and tensor fluct
tions. Inflation generates primarily scalar and tensor fluct
tions; however, we include the vector term for completene
On the surfaceT5Tpt the solid dark matter component in
herits as its intrinsic spatial metric the metric on this surfa
induced by the background spacetime metric. Specifica
for small perturbations this gives

bab5F22c1
2

3

d rad

~11wrad!Gdab , ~3.10!

or, equivalently,

btr
~S!52c1

1

3

d r

~11wr !
, bntr

~S!50. ~3.11!

Initially, we assume thatj5 j̇50. The second term in Eq
~3.10! arises from the shift in time of the surface of consta
density relative to the surfaces of constant cosmic time
Newtonian gauge. Since the wavelengths of interest at
point lie far beyond the Hubble length, we have ignor
perturbations in the velocity of the radiation fluid. We a
sume that (kh)!1 and that only the growing mode is re
evant.

The perfect fluid analogue of the above is as follows. F
temperaturesT.Tpt , the universe is filled with a single per
fect fluid, which atT5Tpt instantaneously splits into sever
uncoupled perfect fluid components, labeled byA
51,...,N). In this case the matching condition isd/(11w)
5dA /(11wA) for all A and all velocities may be neglecte
While the Lagrangian formalism developed in this pap
rather than the more familiar Eulerian formalism could
used to describe this perfect fluid situation, for non-Abel
strings, and similarly any solid with harmonic resistance
shear, the more general Lagrangian description is requir

We now consider the subsequent evolution given th
initial conditions. In the situations of interest the solid da
matter component is formed well before radiation-mat
equality and solid dark matter component contributes ne
gibly to the matter density of the universe compared to ot
components until well into the matter dominated epoch.

Assuming either complete matter or complete radiat
domination givesd522f522c on superhorizon scales
Consequently,btr

(S)52(3/2)c during radiation domination
on the scales of interest. During the matter-radiation tra
tion c drops by a factor of~9/10! while btr

(S) does not change
therefore, during matter domination on superhorizon sca
btr

(S)52(5/3)c.
To follow the evolution of the perturbations through th

transition from matter to solid dark matter domination, it
convenient to define the variableS5(¹•j). The equation of
motion becomes
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~12 t̃s!S̈1~11l!H~12 t̃s!Ṡ2S 2K̃s1
16m̃s

3 D¹2S

52F ~12 t̃s!¹
2f13S 2K̃s1

16m̃s

3 D¹2~c1btr
~S!!G ,

~3.12!

and the sources become

Q0
05rcritVsdm~12 t̃s!@S23~c1btr

~S!!#,

Q~S2tr !
i
j5d i

j~22rcritVsdmK̃s!@S23~c1btr
~S!!#,

Q~S2ntr !
i
j528m̃srcritVsdmS kik

j2 1
3 k2d i

j

k2 D S.

~3.13!

It follows that

2¹2~c2f!5k2~c2f!524m̃sVsdmH2S ~3.14!

and

c̈12Hċ1Hḟ1~2Ḣ1H2!f1
1

3
¹2~f2c!

523H2VsdmK̃s@S23~c1btr
~S!!#. ~3.15!

Initially, far outside the horizon,S5Ṡ50. It follows thatS
5O(1)•(kh)2

•c on superhorizon scales.
The evolution of the gravitational potentials after the r

diation epoch may be computed by solving Eqs.~3.12!,
~3.14!, and ~3.15! combined with the initial conditionsS
5Ṡ50, c5c init , btr

(S)52(5/3)c init , andċ50. For a non-
Abelian string network stretched by the Hubble flow, t
evolution of the scale factor is given bya(h)5ā@coshh
21# whereVm5sech2@h/2#, just as for a hyperbolic univers
with CDM.

As a practical matter, it is better to use synchronous ga
to evolve the perturbations because synchronous gaug
better behaved on superhorizon scales. In Newtonian ga
the density and velocity perturbations on superhorizon sc
are not small. This results from the warping of surfaces
constant cosmic time required to make the spatial part of
metric conformally flat. As a consequence using the c
straint equations to determine the Newtonian potentials
their time derivatives involves delicate cancellations betwe
large quantities, cancellations that become increasingly d
cate as one passes to earlier times. Synchronous gaug
the other hand, is more robust. For the adiabatic grow
mode synchronous gauge~with the amplitude of the gauge
modes set to zero! rapidly approaches a comoving, consta
density gauge as one passes to superhorizon scales. Wit
convention~Ref. @26#!
5-7
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ds252dh21a2~h!Fd i j 1h~k,h!k̂i k̂ j

16h~k,h!S k̂i k̂ j2
1

3
d i j D Gdxidxj , ~3.16!

at early times during the radiation epoch on superhori
scales one hasd;O(k2h2) andu;O(k4h3) for all compo-
nents contributing to the stress-energy andh;O(k2h2), and
the only appreciable perturbation ish;O(1). For thesolid
dark matter for initial conditions on superhorizon scales i
an adequate approximation to setj5 j̇50 and bi j

56h(k,h)( k̂i k̂ j2
1
3 )d i j . The Newtonian potentials may b

calculated from the synchronous variables according to

f5
1

2k2 @~ ḧ16ḧ!1H~ ḣ16ḣ!#,

c5ḣ2
H

2k2 ~ ḣ16ḣ!. ~3.17!

B. Vector perturbations

For completeness in this subsection we give the evolu
equations for the vector sector. Although for each wa
numberk the solid dark matter component has two dynam
cal vector degrees of freedom, for the usual inflationary m
els combined with a solid dark matter component these v
tor modes are not excited. As before, on the initial surfac
T5Tpt the solid dark matter component inherits as its intr
sic metric the metric on this surface induced by the spa
time metric, but if thehi j

(V)50, it follows thatbi j
(V)50. Simi-

larly, on this surface on superhorizon scalesj(V)5 j̇(V)50.
We also have the gauge conditionh0i

(V)50.
For the CDM the equation of motion for thevectormodes

is

v̇cdm
~V! 1Hvcdm

~V! 5
1

2
¹•hI ~V!. ~3.18!

Similarly, for the twovectormodes of the solid dark matte
component, the equations of motion are

~12 t̃s!$j̈~V!1~11l!Hj̇~V!%

52m̃$¹2j~V!1¹•hI ~V!2¹•bI ~V!%. ~3.19!

The Einstein equations for thevectorsector are

1

a2 ¹ j•ḣj i
~V!5~8pG!@rcdmvcdmi

~V!1Q0i
~V!#,

1

a2 @ḧi j
~V!12Hḣi j

~V!#5~8pG!Q i j
~V! . ~3.20!

Finally, we have the equations
04350
n

s

n
e
-
-

c-
at
-
e-

Q~V!
i
05

rs

a~32l! ~12 t̃s!j̇ i
~V! ,

Q~V!
i
j5

rs

a~32l! ~24m̃s!@j i , j
~V!2j j ,i

~V!1hi j
~V!2bi j

~V!#. ~3.21!

C. Tensor perturbations

Primordial tensor perturbations, such as those gener
during inflation, are influenced by the solid dark matter co
ponent.

The linearized Einstein equation for thetensorsector is

1

a2 @ḧi j
~T!12Hḣi j

~T!2¹2ḧi j
~T!#5~8pG!Q i j

~T! . ~3.22!

The tensorstress-energy from the solid dark matter comp
nent is given by

Q i
~T! j

524m̃srcritVsh
T

i
j2hT

i
j~n50!, ~3.23!

which may be inserted into Eq.~3.20! to obtain

ḧi j
~T!12Hḣi j

~T!2¹2ḧi j
~T!112m̃sVsdmH2hT

i
j2hT

i
j~n50!

50. ~3.24!

Physically, the response of the solid dark matter compon
contributes a mass term to the gravity waves.

IV. IMPLICATIONS FOR THE CMB ANISOTROPY

We now explore the consequences of a solid dark ma
component for the predicted CMB anisotropy. Thescalar
contribution is given by the Sachs-Wolfe formula

DT

T
~u,f!5

1

3
f~r ls ,u,f,h ls!

1E
h ls

h0
dhS ]c

]h
1

]f

]h DU
r 5h02h

. ~4.1!

Expanding the CMB anisotropy into spherical harmonics

DT

T
~u,f!5(

lm
almYlm~u,f!, ~4.2!

one obtains the following expression for the expected mu
pole moment variance:

cl5^ualmu2&5E
0

`

dkP~k!F1

3
F~h ls ;k! j l~krls!

1E
h ls

h0
dh j l~kr !$Ċ~h,k!1Ḟ~h,k!%G2

. ~4.3!

HereP(k) is the primordial power spectrum, which we set
P(k)}1/k, indicating a featureless, scale-invarian
Harrison-Zeldovich primordial spectrum. Here the functio
C(h,k) and F(h,k) indicate the time dependence of th
5-8
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growing modes of wave numberk of c andf, respectively,
and are normalized to unity ash˜0.

On small angular scales (l *30), the solid dark matte
component does not play a significant role in determining
CMB anisotropy because on these scales the anisotrop
almost exclusively determined by what happens at the
face of last scatter whenVsolid is negligible, and the contri-
bution of the integrated Sachs-Wolfe term on these scale
negligible. On larger angular scales, however, the contri
tion through the integrated Sachs-Wolfe term of the deca
the gravitational potential contributes significantly to t
low-l moments, and since the details of how the poten
decays depend on the dynamics of the smooth compon
one expects the dynamics of the solid dark matter compo
to play an important role in determining these CMB m
ments.

To illustrate the effect of a solid dark matter compone
we compare the evolution of the gravitational potentials a
the large-angle CMB moments for the following nine cosm
logical models, some with a solid dark matter compon
and others included for purposes of comparison.

(0). A flat Vm51 universe.In this critical universe filled
with cold dark matter the gravitational potentialsf and c
remain constant at late times, so there is no integrated Sa
Wolfe contribution.

(1). A hyperbolic Vm50.3 universe. The scale factor
a(h) for this hyperbolic universe with no dark matter oth
than a subcritical cold dark matter component evolves
actly as the scale factor for the string dominated unive
However, the negative spatial curvature and differing de
of the gravitational potential at late times leads to a differ
shape for the low-l CMB moments.

(2). A flatVm50.3 string dominated universe.In this flat
universe with a subcritical density of cold dark matter a
the remainder in a network of frustrated non-Abelian strin
the physical density in the solid string network compon
scales asrs}a22, becoming the dominant form of matter
late times. The behavior of the solid string component
pends on the strength of the resistance to pure shearm̃s . We
consider the following three subcases.

(2a) cS50, cV51/2. (m̃s51/24).
(2b) cS51/), cV51/&. (m̃s51/12).
(2c) cS51, cV51. (m̃s51/6).

(3). A flat Vm50.3 domain wall dominated universe.In
this flat cosmological model a network of frustrated dom
walls formed in a late-time phase transition gives a den
that scales asrs51/a. As for the string-dominated universe
we consider three subcases.

(3a) cS50, cV51/&. (m̃s51/24).
(3b) cS51/), cV5)/2. (m̃s53/48).
(3c) cS5A2/3, cV51. (m̃s51/12).

(4). A flat Vm50.3 L-dominated universe.This flat uni-
verse with a cosmological constant may be interpreted a
degenerate case of a solid dark matter component in w
ts˜1.

Figures 1~a! and 1~b! indicate the evolution of the gravi
tational potentialsf and c, respectively, in the limitk˜0
~i.e., on superhorizon scales! for the various models. The
potentials have been normalized to unity at early times
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the horizontal axis indicates conformal time, normalized
that h51 today. Models~1!, ~2a!–~2c!, ~3a!–~3c!, ~4! are
indicated, with no offset for model~1! and offsets increasing
by 0.1 for each successive model, introduced to separate
curves in the plot. Although models~1! and ~2a!–~2c! have
the same evolution of the scale factor, the evolution of
potential is different at later times. The fact thatf and c
evolve differently is due to the presence of large anisotro
stresses. In the domain wall dominated models the deca
the Newtonian potentialc is much greater than in the hype
bolic or L models leading to a significantly larger integrat
Sachs-Wolfe contribution to the CMB moments.

Figure 2 shows the CMB moments for these models fr
l 52 throughl 530 normalized so thatc30 agrees for all the
models. The vertical axis iscl• l ( l 11) with offsets increas-
ing by of 0.2. The shapes of the CMB moments were co
puted with a method that does not take into account
effects producing the beginning of the rise toward the Do
pler peak toward increasingl. In other words,l ( l 11)cl
would be constant for a flat CDM universe when in fact the
is a 40% rise in this quantity byl 530. Therefore, only the

FIG. 1. Panels~a! and~b! show the evolution of the potentialsf
and c, respectively for vanishing wave number as a function
conformal time for models~1!, ~2a!–~2c!, ~3a!–~3c!, and ~4!. All
the potentials are normalized to unity at vanishing conformal tim
The curves for each successive model have been displaced up
by 0.1.
5-9
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relative differences in shape are significant. A more deta
study of these models using a Boltzman code will be p
sented in a forthcoming paper.

V. DISCUSSION

In this paper we have developed a continuum formali
for describing the dynamics of a ‘‘solid dark matter’’~SDM!
component and shown how cosmological perturbati
evolve with such a component included. The advantage
positing an SDM component are as follows.~1!. It is possible
to reconcile a spatially flat cosmology with the numero
measurements ofV indicating a low value because mo
methods of measuringV are sensitive only to matter that
clustered~e.g., on scales comparable to the size of gala
clusters or smaller! and the SDM remains unclustered, e
cept on the very largest scales comparable in size to
present horizon.~2! SDM can provide the negative pressu
suggested by the recent SNIa observations at high red-s
thus explaining the lower than expected apparent lumin
ties of the distant supernovae. Supernova observations
potentially constrain the equation of state, thus distingui
ing a SDM-dominated universe from a cosmological co
stant dominated universe.~3! With SDM it is not necessary
to posit a new, surprisingly small energy scale. SDM fro
string or domain wall networks results from new physics
higher energy scales. SDM thus avoids the fine tuning d
culties of a straightoutL term or of the ‘‘quintessence’
models with an extremely slowly evolving scalar field th
gives the same qualitative effect asL.

Introducing an equation of state with negative pressur
a delicate matter. If one wishes to consider perturbation
homogeneity and isotropy, considerations of general cov
ance and causality prohibit one from introducing a smo
background component that does not cluster in anad hoc
way. Since locally it is impossible to determine what t
‘‘unperturbed’’ background solution in the absence of p
turbations would have been, a ‘‘smooth component’’ must
introduced in a manner that specifies how perturbati

FIG. 2. CMB multipole moments.The CMB multipole moments
are plotted for models~1!, ~2a!–~2c!, ~3a!–~3c!, and ~4! with suc-
cessive curves displaced upward by 0.2.l ( l 11)cl is plotted and the
curves are normalized to unity atl 530.
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evolve, and to do this more than merely specifyingw
5(p/r) is required. For an equation of state with negati
pressure, to posit a perfect fluid is not allowed, because
sound speed on short wavelengths would be imaginary, i
cating instabilities whose growth rate diverges as the wa
length approaches zero. In SDM a sufficiently large sh
modulus removes this instability. In the slowly rolling fiel
models the instability is lacking for an entirely different re
son: there is an inertia associated with changing the str
energy.

Physically, how the instability is avoided in SDM and
quintessence is manifested by the following qualitative d
ferences.~1! SDM, unlike quintessence and most types
dark matter, generates anisotropic stresses.~2! SDM has vec-
tor modes with nonvanishing sound speed.~3! The resistance
to pure shear in SDM gives the graviton a mass, chang
the gravity wave contribution to the CMB on large angu
scales.

We finally offer the following more technical remark
comparing SDM to other possible sources of negative p
sure discussed in the literature.

~1! A pure cosmological constant may be regarded a
degenerate case of the action~2.3! with r(g(1) ,g(2) ,g(3)) set
to (L/8p)Agab. This degenerate case greatly enlarges
reparametrization invariance of Eq.~2.3!. Becausep52r
exactly, the smooth dark matter stress-energy no lon
singles out a special time direction, and consequently for
special case general reparametrizations that mixy and t are
allowed.

~2! If m50, Eq. ~2.3! becomes a Lagrangian descriptio
of a perfect fluid. In this special situation the Lagrangi
description is much more cumbersome than the Eulerian
scription, especially with general relativity taken into a
count. WhenmÞ0, however, an Eulerian description is n
longer possible. Ifm50 andp5wr wherew,0 andwÞ
21, the sound speed becomes imaginary, indicating an
stability, most severe on the smallest scales. Without re
tance against pure shear, the solid dark matter compo
would be similarly unstable. However, for the non-Abelia
strings and domain wall networksm is sufficiently large to
stabilize the medium, as evidenced by all sound speeds b
real.

~3! Quintessence differs in that the medium has an in
nal scalar degree of freedom. One could in fact write dow
more general action for a low-energy description that co
bines quintessence with the continuous medium:

S52E dtE d3yAhr~g~1! ,g~2! ,g~3! ,f!

3A2Gmn

]Xm

]t

]Xn

]t
1E d4xAuGmnu

1

2
@~Dt̂f!2

2cs
2~f,g~1! ,g~2! ,g~3!!~Dyf!2#2V@f#. ~5.1!

Because the stress-energy of the medium breaks Lorent
5-10
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variance down to the rotation group,cs need not equal the
speed of light.

~4! Alexander Vilenkin@27# has pointed out that for the
special casew521/3 ~i.e., frustrated strings!, due to a can-
cellation in Newtonian gauge the strings do not experienc
gravitational force from nonrelativistic matter. In Eq.~2.21!
this can be seen as a cancellation between the gradien
h00 and hii that occurs only for this special case under t
assumption that the source of these potentials has no a
tropic stresses.
s.

3
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