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Is the dark matter a solid?
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A smooth unclustered dark matter component with negative pressure could reconcile a flat universe with the
many observations that find a density in ordinary, clustered matter well below the critical density and also
explain the recent high red-shift supernova data suggesting that the expansion of the universe is now acceler-
ating. For a perfect fluid negative pressure leads to instabilities that are most severe on the shortest scales.
However, if instead the dark matter is a solid, with an elastic resistance to pure shear deformations, an equation
of state with negative pressure can avoid these short wavelength instabilities. Such a solid may arise as the
result of different kinds of microphysics. Two possible candidates for a solid dark matter component are a
frustrated network of non-Abelian cosmic strings or a frustrated network of domain walls. If these networks
settle down to an equilibrium configuration that gets carried along and stretched by the Hubble flow, equations
of state result withw=—1/3 andw= —2/3, respectively. One expects the sound speeds for the solid dark
matter component to comprise an appreciable fraction of the speed of light. Therefore, the solid dark matter
does not cluster, except on the very largest scales, accessible only through observing the large-angle CMB
anisotropy. In this paper we develop a generally covariant, continuum description for the dynamics of a solid
dark matter component. We derive the evolution equations for the cosmological perturbations in a flat universe
with CDM+(solid) and compute the resulting large-angle CMB anisotropy. The formalism presented here
applies to any generalized dark matter with negative pressure and a nondissipative resistance to shear.
[S0556-282(99)05110-3

PACS numbe(s): 95.35+d, 98.80—k

[. INTRODUCTION ing problem persists. A larg@ , overpredicts the number of
gravitationally lensed quasal6]. As an alternative ta\, it
Most determinations of the cosmological density param-has been proposed that there could exist a very light, ex-
eter Qo= (p/pei), Where pe=(3/87G)H3, now indicate tremely weakly coupled scalar field that could act as a tem-
thatQ,,~0.2+0.1, a value well below th@,,=1 value sug- porary cosmological constant, even though the true value of
gested by flat cosmological mode{5or a nice review of the the cosmological constant vanishes exaf2§]. But this re-
current observations see Ref$].) Most of these techniques quires a particle of implausibly small mass, somewhere in
for determiningQ),,, however, are sensitive only to matter the neighborhood of 1G3eV.
that is clustered gravitationally and do not rule out a smooth, In this paper we discuss another possibility: a solid dark
unclustered component that could make up the differencenatter component with significant negative pressure. Here
between the observed value Qf, and unity. significantmeans that the negative pressure, or equivalently
The earliest proposal for a smooth component is the costension, of the solid matter component is comparable in mag-
mological constan\, first introduced by Einsteif2], later  nitude to its energy density. An equation of state with large
denounced by himi3], and more recently resurrected to rec- negative pressures can lead to sound speeds comparable to
oncile the observations with a flat univerigd. The cosmo- the speed of light, so that the Jeans length for this component
logical constant is somewhat of an embarrassment for theds enormous, comparable to the size of our present horizon.
retical physics because dimensional arguments woul@onsequently, the solid dark matter component does not
suggestAprﬁ‘, a value more than a hundred orders of cluster except on extremely large scales. Because of this the
magnitude too bi¢5]. Perhaps some not yet discovered sym-low measurements df can be reconciled with a spatially
metry makes\ vanish exactly, but at this point we lack even flat universe. The clustering of the solid dark matter compo-
the vaguest idea of what kind of symmetry could do the jobnent on very large scales is accessible to observation only
Supersymmetry somewhat mitigates the difficulty, makingthrough its effect on the large-angle cosmic microwave an-
Mssg' rather tharM,* the naive guess fok, but even with  isotropy (CMB) anisotropy.
supersymmetry ifA does not vanish, a formidable fine tun- A solid dark matter component can also help explain the
the recent observations of distant type la supernovae that
suggest that the universe is now accelerafihgl4]. For the

*Email address: M.A.Bucher@damtp.cam.ac.uk expansion of the universe to accelerate some exotic form of
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imaginary, indicating instabilities whose growth rate di- proposed by Eichler to explain certain aspects of large-scale
verges as the wavelength approaches zero. Such a flustructure[30]. In this scenario a solid condenses and subse-
would clearly be unphysical. For a solid, however, realquently fractures when stretched beyond its breaking point
sound speeds are possible because a shear modulus of sufifi- expansion of the universe. The dark matter contemplated
cient magnitude removes these instabilities. in this paper does not fracture. It can experience unlimited
In this paper we explore the dynamics of a solid darkstretching without becoming in any sense weakened. For a
matter component by developing a continuum description fopolid composed of frustrated topological defects it is easy to
such a component within the framework of general relativitySe€ Why ruptures or fractures do not occur. The constituent
and incorporating the solid dark matter component into thélefects lack a preferred size. Upon stretching or shrinking,
linearized theory for the evolution of cosmological perturba-the transverse structure of the defects remains unchanged.
tions. In particular we explore the consequences of such &his is quite unlike an ordinary solid composed of atoms, for
component for the large angle CMB anisotropy. which quantum mechanics establishes a preferred length for
A solid dark matter component could arise from a varietythe chemical bonds. _ .
of different microphysics. Two known ways such a compo- .The organization of this paper is as foII.ows. In Sgc.. Il of
nent could arise are from networks of frustrated cosmidhis paper we develop a generally covariant description of
strings[15—18 or domain walls[20—22,24—2% While the the dyna_m|cs of a continuous medlu@u_ch as_the string _
simplest Abelian cosmic strings obey a scaling solution sd'€tworK in curved space. For the spacetime with the metric
that the number of strings per horizon volume remains conGu»=2a(7)[7,,+h,,] whereh,,, is regarded as small, we
stant, for non-Abelian cosmic strings topological obstruc-€xpand the action to quadratic order and compute the equa-
tions prevent the intercommuting necessary for the breakufions of motion and the resulting stress-energy for the solid
long strings that leads to scaling behavior. The nonunit eledark matter component. In Sec. Ill we combine the results of
ments of the fundamental group,(G/H) classify the pos- Sec. Il with the linearized theory of cosmological perturba-
sible types of cosmic strings. When two strings whose windions using Newtonian gauge and derive the equations of
ings or magnetic fluxes are described by non-commutingnotion for a spa_tlally flat universe with cold dark matter
elements ofm,(G/H) try to cross, the strings cannot pass (CDM) and a solid dark matte(SDM) component. In Sec.
through each other without forming a third string between!V compute the large-angle CMB anisotropy for models with
them. This has the effect of preventing crossings because thePM. Finally, in Sec. V we present some concluding re-
tension of the intermediate strings tries to pull the two stringgnarks. In this paper we use the sign conventigp,
back toward their previous uncrossed positions. It is possible diad —1,+1,+1,+1].
that these effects lead to a scaling solution albeit one with
many more strings per horizon volume, but the simulations
by Pen and Spergel suggest that the strings settle down to a
stable configuration which subsequently gets carried along This section presents an action that describes the dynam-
with the Hubble flow. In a forthcoming paper, we show thatics of a dissipationless elastic medium in curved space. Al-
stable string configurations do exist which strengthens théhough developed to describe the response of a non-Abelian
case for a string dominated universe. Similar simulations obtring network to metric cosmological perturbations, this for-
domain walls by Kubotani suggest domain walls in modelsmalism applies to other forms of solid dark matter and to a
with many types of domain walls exhibit similar behavior. A wide variety of situations involving continuous media in
cellular foam type structure in equilibrium forms with sev- curved space. The problem of describing the dynamics of a
eral wall meeting at linelike junctions. A string-dominated solid within the framework of general relativity has been
universe givesv= —1/3, which in the absence of other dark previously considered by Carter and Quintana in the study of
matter would give a universe that is neither accelerating othe crusts of neutron staf&8] and other$29]. In this section
decelerating. A symmetry breaking scale of a few TeV and ave present a self contained treatment particularly suited to
string separation today of a few A.U. would gi¥eg i,y  the consideration of linearized perturbations in an expanding
today in the interesting range between zero and ¢fleis  universe.
estimate is subject to considerable uncertainty because a A continuous medium is a kind of three-dimensional
range of string density at formation is possible and the lengttmembrane but quite different from the now much discussed
of the transient before string dominated behavior takes ovetfundamental” branes. A continuous medium has internal
is uncertain and model dependerior domain walls carried structure. As the medium moves, each constituent particle
along with the Hubble floww=—2/3 and a symmetry traces out its own world line. For continuous media the al-
breaking scale of a few MeV and a mean domain wall sepalowed reparametrizations are limited to reparametrizations
ration of some tens of parsecs are suggessebject to the that preserve these world lines. Geometrically a continuous
same uncertainti¢s The fact that new physics occurs at medium may be regarded as a congruence of world lines. We
larger energy scales than fquintessencer A is a positive use a three dimensional coordinateto parametrize these
feature of these scenarios. It should be stressed that the farorld lines. The coordinateis an arbitrary time coordinate
malism in the paper applies equally well to a solid compo-parametrizing the direction along these world lines.
nent with the same continuum description but of completely A metric h,y, is defined ony-space. The volume induced
different origin. by this metric indicates the density of world lines and the
A slightly different type of solid dark matter has been additional internal metric structure provides a reference with

II. CONTINUUM DESCRIPTION
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respect to which to characterize pure shiar, volume pre-  metric h,,=8,,+b,,, and X'=y'+£&'(y,t) where o

serving deformations. In the classical exposition of elastic-, and¢ (y,t) are regarded as small. We also ¥8t=t.

ity theory (e.g., as in the book by Landau and Lifshiti]) We expand

h,,= dap=(const). However, when a solid is formed in a

warped(i.e., curved spacetime, there generally does not ex-

ist any coordinatization of the world lines so thht,

= 65,,. For the moment let us imagine ourselves in the in- P=pstTs

stantaneous rest frame of a volume element of the medium,

choosingt so thatd/at is orthogonal tod/dy? (a=1,2,3). Here g is the tension an&g and u¢ are the compressional

The background spacetime met@g, , induces the following and shear moduli, respectively, and the terSgy,, is the

metric ony-space: pure shear component of the strain tensor. From the relation
(valid to quadratic order

2
+ msS(5)ab 5?5b) . (24

v +Kg

\Y,

IXH gX”

Jab= G,WW v 2. 1S, 3_2_ si;s’
1 oV _ \/|gab| _ \/| 5ab+sab| _ 2 8 4
For an arbitrary time parametrization, whei@t is not nec- vl N - N - b b2 b;bl’
essarily orthogonal te/dy?, the induced metric may rewrit- 1+ > + 8 T4
ten as 2.5
A it follows that
G IX* 9X 2.2
Jab m gy WB! :
&V s s* s;st bbbl b? bs
where  GO=U,U,+G,, and U= (aX*/dt)l v 2tg 4 2t tg g 29
VG, (aXFTat) (aX7Iat). G projects out displacements
alongd/at. Here to quadratic order
The local deformation state of the medium is determined
by comparingg,, to h,,—by the three principal values o i
N1,N2, N5 Of g, With respect toh,,. (We assume that the Sap={0'at & a(y.}{ 8 + hij(X)
medium is isotropic, for otherwise more structure thep F(E+Da ) (E D) S+ & (V=8
alone is required to characterize the deformation state of the (&% Do) (£+ Doy H o+ €5(¥,1)} = Ga
medium) In ordinary elasticity theoryh,,= 8ap,9ap IS the =&aptépathapt EV hapt &i aéiptNgi& pthyiéia
strain tensor, anal1,\,,\ 3 are its principal values. The sca- . . .
lar invariants gf(l)zhabgab, 92)=h?"0pc®Yua, (3 + &aépt Noaéh+Nopéat Noahop, 2.7

=habg, .h®g4.h¢'gs, suffice to characterize completely the ,
principal values, and the local density in the local instanta@nd to quadratic order
neous rest frame with respect to thezolume element may
bg expressed s =Py (9(1).9(2),9(3)) - Inztermg of t2he SV 1 1 1
principal valuesgy=A1+N\,+ N3, g)=N1"+ A +\35% v ~6aat yhaat; &V chaa— 5 &abéba
andg(3): )\13+ )\2 + )\33.

It follows that the action is 1 1 1
+ Ega,agb,b_ Ega,abbb_ Zhaabbb

/ IXH X"
= 3 _ ARG 1 1 1 1 1
S f dtJ d Y\/ﬁp(g(l) Y 79(3)) G’“V o ot + _haahbb_ _habhab+ Efa,ahbb_ Ebaa+ Zbabbab

(2.3 8 4

1 1. . .1
One may view Eq(2.3) as a generalization of the free par- + g Padbbo T 5 £adat Noaat 5 Noallop - 2.9
ticle actionS=—mfdr. If p(g(1).9¢2).9s)) = (const), the
action(2.3) merely describes a congruence of noninteractingsrg inear order(which is sufficient herg the pure shear part
freely falling particles. However, in the general case the oyt the strain is
moving density with respect to the internal coordinates var-
ies as deformations of the medium alter its internal energy.

The potential energy of the medium resides in the function 5) 1
P(g(l) ,g(z) ,g(S))_ ab = ga,b"' fb,a"' hab_ bab_ § 5ab(2§c,c+ hcc_ bcc)-
We now recast the actiof2.3) into a more familiar form (2.9

by considering an elastic medium in almost flat space. We

assume a spacetime metr@®,,=7,,+h,,, an internal Combining and expanding to quadratic order, we obtain

043505-3



MARTIN BUCHER AND DAVID SPERGEL PHYSICAL REVIEW D60 043505

S=j dtf d3y

X

1+b+
28 4

b? babbab}

1 1 1 1 1
pst s fa,a+ ihaa+ Egcvchaa_ Ega,bgb,a'i' Efaﬁgb,b_ Ega,abbb

1 1 1 1 1 1 1
- Zhaabbb+ §haahbb_ Zhabhab+ E ga,ahbb_ E baa+ Zbabbab+ § baabbb

1. . o1 o117
+§§a§a+h0a§a+§h0ah0b +Ks §,i+§hi_§bi

1 2
‘fa,b+ gb,a"' hab_ bab_ § 5ab(2§c,c+ hcc_ bcc)] }

+ s
hp hi 1 . 1.
X 7+?+§§'Vih00+h0i§'+§§'2—l , (2.10

and expanding out to quadratic order and omitting terms that do not contribute to the equations of motion or to the stress-
energyT#”, we obtain

szfdtf d%[(%

Do baahoo hgo 1
—Ps[ — az —5  2(EVe)hoo

£+ (ps— 19 hgié

—Tg

1 1 . 1 1 1
ga,a+ Ehaa+ 5(5 Vc)haa_ Ega,bgb,a+ Ega,agb,b_ Ega,ahoo

1 1 1 1 1 1
+ E ga,ahbb+ ZhOObaa_ ZhOOhaa+ ghaahbb_ Zhabhab+ EhOahOa]

1 2
_Ks ga,b"’fb,a"'hab_ bab_ §5ab(2§c,c+hcc_ bcc)] } (2-11)

1 1 ?
§,i+§hi_§bi — Ms

It follows that the equation of motion fof is 1
5s=§ f d*x—GT*"(5G,,). (2.19

. . 1
(ps— 79 &+ (ps— 7)o — E(Ps_ 7s) Viligo

4 We use the expansion \i+|GW|=[1+h00/2—h“/2
—Ks[zg,-,ji+h“,i—b,-j,i]—ﬂs{%,“+§gi,ij +0(h?)] and the relationAw?,+ B(Wap— 28apWee) 2= (A
— 1B)W2,+ BWypW,y . It follows that(to linear ordey

4
+=b

4

i3

1
O, (o _ C_h —2&
With the coupling to gravity ignored, which is a reasonable To Ps™ 3 (ps= 7o) (i —1i = 26;,1),

approximation for short wavelengths, the sound speeds

16 -
e Mt o Aus (213 Ti%=(ps= 73) (€' + hoy),
(ps— 7o) (ps—7s)
follow for the longitudinal(scalay mode and the two trans- ) 4 1 1
verse(vecton modes, respectively. Ti'=—16,j—2| Ks— §,U«s) Sij| €aat 5Naa™ 5 Paa
We next compute the stress-energy, defined by the rela-
tion _4Ms(§i,j+§j,i+hij_bij)- (213
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We now turn to the continuum description of the solid N -~ NMA-3)
dark matter component with the expansion of the universe 7s=3 Ke=—g— (2.18
included using conformal tim@ so that the background met-
ric becomes

GW:a2( ) [7,,+h,,]. (2.16  are fixed, andis is variable only within the range
We modify the notation for the expansion of the comoving
density as follows: —3._ (1-75)
max 0,—= K|t , (2.19

P:Psa}\( ) 1+7s| Vi +K Vi ) +MSS(5)abS(5)a )

2.17 obtained by requiring stability on short wavelengths and sub-
so thaf,, K., and7. are dimensionless. We take the ex- luminal longitudinal and transverse sound speeds. For frus-
ponentx to be constant, although the generalization of this igrated non-Abelian strings7,=1/3 and Ks=—1/9; for a
stralghtforward The physical density scales pagn,s frustrated network of domain wall$s=2/3 andK = —1/9.
=peml@a®(n)=pa* 3(7). Given\, the dimensionless pa- For the expanding universe, the acti¢ghl0 is mOdIerd
rameters as follows:

|
b b? bypb®
JdnJ dypsa ()| 1+ 5+ 5 aZ }

x| 147,

1 1 c 1 1 1
ga,a"' Ehaa"' Ef Vchaa_ Ega,bgb,a+ Ega,agb,b_ E‘fa,abbb

1 1 1 1 1 1. . . 1
_habhab+ E §a,ahbb_ Ebaa"" Z babbab+ gbaabbb+ E §a§a+h0a§a+ EhOahOb

1 1
- Zhaabbb+ ghaahbb_ 4

2
K g‘-+}hi-—}bi-] + 7
s|s i o HiIT S Ms

1 2
ga,b"' gb,a"' hab_ bab_ § 5ab(2§c,c+ hcc_ bcc)] }

hoo h§o 1, N T
X| 5 g 5 Vihothoé + 5 ¢ 211, (2.20

The equations of motion are modified to

TJ—ao‘ 3pd — 750

.. a. . a
§i+()\+1)5§i h0i+()\+1)ah0i}

(1_75) +(1_7s)

~ 4 . 1 1
-2 Ks_gl-"s o ga,a+§haa_§baa

1 ~
~ 5 (1779 Vihoo— Kd 2¢j ji +jj i~ byj ] ~
—Aug(& i+ & ithij—by)|. (2.22
4 4
_“S[4§i,jj+ §§J ij —4bij, iT3 le i+ 4hy; — 3hjj,i}
=0. (2.22 I1l. COUPLING TO GRAVITY

In the expanding universe, the stress-endtgylinear order We choose Newtonian gaugwhich is equivalent to the
is gauge invariant formalism of Bardegrso that the metric

takes the form

1
Tooza(xa)Ps[ 1= 5(1-79 (b —hy _2§i,i)}
ds’=a?(n)[—dn*(1+2¢)

T.0= a3 [ (1—7)(£+ )], +dxXdx{5;(1-2¢)+h{"+h{"}], (3.1
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whereh{" andh{" are purevectorandtensorparts of the , ,
spatial-spatial metric perturbation, respectively. In dealing V=M {chm(écdm_‘?’HVcdm)
with cosmological perturbations it is convenient to define
any vector or tensor that can be expressed by taking deriva-
tives of a scalar quantity ascalar. Likewise, a tensor that
can be expressed as a derivative ofextoris regarded as
vector. With these definitions the linearized equations sepawhere@oi(string—scalap=V“ (i.e., Vis the potential used to
rate into independerdcalar, vector andtensorblocks. We  represent thecalarcomponent of the solid dark matter com-
assume a flat universe filled with cold dark matter and a soliggonent momentum densjtySimilarly, Eq. (3.4d may be
dark matter component. recast as

We decompose the displacement field

( 0,°-3HV) |, (3.5

Pcrlt

1 _
(v VJ—§5JV2)(¢/ )= 3H2 ®<S*““>il. (3.6)

Pecrit

E=£9+¢Y, 3.2

The equations of motion for the cold dark matt€DM)

and the internal metric of the solid dark matter component component are

1 . +3
kikj_ §5ijk2 cdm ( Vcdm) w
bj;=2b{Y 5;+ b3 — +b{+b . VeamT HVegm=—V . (3.7

3.3 For thescalar mode of the solid dark matter component, the
equation of motion is

A. Scalar perturbations (1_7_5){55)4_ (M + 1)H§(S)+ V)
We first consider thecalar perturbations. The linearized

Einstein equations for thecalar sector are —| 2R+ s (V2E9-3V(y+b®)). (3.9

-2 .
0o_ _ — 2.
0Go = Zz [Vy=3H(y+He)] Finally, we have the equations

_ B 00 o
~(87G)[ - pei+ 0], (3.4 00— g Inein,
5G9, 0= [¢+H¢h __é&;rj{ £ +3y+30),
:(SWG)[PCVHJF@(S)iO], (3.4b
2 @(S_"”)ij_—‘wsa(fsm
5G(s—tr)i1 2 $+2H¢+H¢+(2H+H2)¢ )
X fi,i*'fi,i_§5ij§k,k—bi(js_n") . (39

+1v%¢—¢ﬂw
3 With the equations of motion for the cosmological pertur-
= (87G)@ (), (3.49 bations including the solid dark matter component derived,
we now turn to initial conditions. For each wave numker
there exist four modes: two growing modes and two decay-
5G(Sntr)_,-:__1[(v_vj_ lg_jvz)(gﬁ_ l//)} ing modes. This pair of perturbations corresponds to the two
T a? : 3" distinct ways in which the solid dark matter generates and
_ (S—ntr) | alters the growth of perturbations. If prior to the phase tran-
=(87G)0 i (3.49 sition that produced the solid dark matter, there were preex-
isting curvature fluctuations, then the presence of the solid
wheretr and ntr denote the pure trace and tracelssalar  dark matter alters the evolution of the fluctuations. This is
parts of the spatial-spatial tensors, respectively. The dots regimilar to the way in which a cosmological constant, neutri-
resent derivatives with respect to conformal tim&  nos, or quintessence alters the evolution of the fluctuations.
=(a/a), pc=Qcam(3/87G)H?a 2, and vi=v|; (i.e,, v is  In addition, the generation of the solid dark matterg.,
the potential for thescalar part of the velocity fieldd The  string formation at a phase transition can produce new fluc-
covariantly divergenceless tens@r,, is the perturbation in  tuations. These entropy fluctuations correspond to variations
the stress-energy of the solid dark matter component. in the dark matter density at the surface T, whereT, is
Equations(3.4g and(3.4b may be combined to obtain  the phase transition temperature. These white noise entropy
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fluctuations are likely to be small on scales large compared o . -
to the horizon scale at the phase transition. (1-7¢)S+(1+NH(1—-75)S— ( 2K+
We focus on the effect of the solid dark matter on the

16u

v3s

evolution of preexisting scalar, vector and tensor fluctua-

tions. Inflation generates primarily scalar and tensor fluctua- = —[(1—?5)V2¢+3
tions; however, we include the vector term for completeness.

On the surfacel =T, the solid dark matter component in- (3.12
herits as its intrinsic spatial metric the metric on this surface

induced by the background spacetime metric. Specificallyand the sources become

for small perturbations this gives

16ps
3

2K+ V2(y+ bgrS))},

®00: Peritsaml 1= 7)[S—3(¢+ b'ErS))]a

2 5rad
bab=| — 20+ = =20 50, 3.1 T .
T T3 T % B0 @i i 2p0 00 RIS (D),
or, equivalently, o B kikl— % k25
0® mr)iJ:_SﬂsPcrithdm<% S
15 (3.13
bd=—y+-——, bS=0. (3.12)
3 (1+w) It follows that
Initially, we assume thag=£=0. The second term in Eq. —V2(h— ) =K(¢p— ) =240 sqnH?S  (3.14

(3.10 arises from the shift in time of the surface of constant
density relative to the surfaces of constant cosmic time foand
Newtonian gauge. Since the wavelengths of interest at this
point lie far beyond the Hubble length, we have ignored

perturbations in the velocity of the radiation fluid. We as- Y+ 2HY+HP+ (2H+H?) d+ = V(p— )
sume that K»)<1 and that only the growing mode is rel- 3
evant. ~
= —3H’QsgnK S—3(4+ D). (3.19

The perfect fluid analogue of the above is as follows. For
temperature§ >T,;, the universe is filled with a single per- _
fect fluid, which atT =T instantaneously splits into several Initially, far outside the horizonS=S=0. It follows thatS
uncoupled perfect fluid components, labeled by ( =0(1)-(k#)?- ¢ on superhorizon scales.
=1,...N). In this case the matching condition &(1+w) The evolution of the gravitational potentials after the ra-
=0al(1+w,) for all A and all velocities may be neglected. diation epoch may be computed by solving E¢3.12,
While the Lagrangian formalism developed in this paper(3.14), and (3.15 combined with the initial conditions$
rather than the more familiar Eulerian formalism could be—g—q, y=y, ., b{S = — (5/3)init » andy=0. For a non-

used to describe this perfect fluid situation, for non-Abelianapejian string network stretched by the Hubble flow, the
strings, and similarly any solid with harmonic resistance t0g,q|ution of the scale factor is given bs(7)=a] coshy
shear, the more general Lagrangian description is required._l] whereQ,.=secl 7/2], just as for a hyperbolic universe
We now consider the subsequent evolution given thesgiih cpm.
initial conditions. In _the situations of interest thg golid dark  agg practical matter, it is better to use synchronous gauge
matter component is formed well before radiation-matter, eyglve the perturbations because synchronous gauge is
equallty and solid dark matter component contributes neglipatier behaved on superhorizon scales. In Newtonian gauge
gibly to the matter density of the universe compared to othef,e gensity and velocity perturbations on superhorizon scales
components uqt|l well into the matter dominated epoch. . are not small. This results from the warping of surfaces of
Assuming either complete matter or complete radiation,onstant cosmic time required to make the spatial part of the
domination g|ve§6=—2¢=—21,//_ on superhorizon scales. metric conformally flat. As a consequence using the con-
Consequentlyb{Y) = —(3/2)ys during radiation domination  straint equations to determine the Newtonian potentials and
on the scales of interest. During the matter-radiation transitheir time derivatives involves delicate cancellations between
tion ¢ drops by a factor 0f9/10) while b$;? does not change; large quantities, cancellations that become increasingly deli-
therefore, during matter domination on superhorizon scalegsate as one passes to earlier times. Synchronous gauge, on
b{Y = —(5/3)y. the other hand, is more robust. For the adiabatic growing
To follow the evolution of the perturbations through the mode synchronous gaugwith the amplitude of the gauge
transition from matter to solid dark matter domination, it is modes set to zejaapidly approaches a comoving, constant
convenient to define the variab®= (V- £). The equation of density gauge as one passes to superhorizon scales. With the
motion becomes convention(Ref. [26])
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ds?=—dp?+a?(p)

A A p - .
8ij+h(k, n)kik; OWv),0= a(SE)\)(l—TS)gfv),

gy P -
dxdx, 316 Wiz a<3fx> (—4ﬂs)[g§}j’)—g}}{>+h§j")—b§j\’)]. (3.21

N

at early times during the radiation epoch on superhorizon
scales one has~O(k?%?) and 6~ O(k*#4) for all compo-
nents contributing to the stress-energy anrdO(k?7?), and Primordial tensor perturbations, such as those generated
the only appreciable perturbation ig~O(1). For thesolid  during inflation, are influenced by the solid dark matter com-
dark matter for initial conditions on superhorizon scales it isponent.

C. Tensor perturbations

an adequate approximation to sef=&=0 and bj The linearized Einstein equation for thensorsector is
=6n(k,n)(@i@j—§)5ij. The Newtonian potentials may be 1
calculated from the synchronous variables according to az[l'rii(jT)JrZHhi(jT)—Vzﬁi(jT)]:(SwG)@i(jT). (3.22
¢:i[(H+ 6;;)+H(h+6%/)] The tensorstress-energy from the solid dark matter compo-
2k? ' nent is given by
M 0{7' =~ 47igpe QT —1T(n=0),  (3.23
y=n—52(h+6m). (3.17)
which may be inserted into E¢3.20) to obtain
B. Vector perturbations ﬁi(jT)_'—ZHhi(jT)_Vzﬁi(jT)_" 127Lstde2hTij _hTij(nZO)
For completeness in this subsection we give the evolution =0. (3.29

equations for the vector sector. Although for each wave . _

numberk the solid dark matter component has two dynami-Physically, the response of the solid dark matter component
cal vector degrees of freedom, for the usual inflationary modcontributes a mass term to the gravity waves.

els combined with a solid dark matter component these vec-

tor modes are not excited. As before, on the initial surface at IV. IMPLICATIONS FOR THE CMB ANISOTROPY

T=T,, the solid dark matter component inherits as its intrin- We now explore the conseauences of a solid dark matter
sic metric the metric on this surface induced by the space- P 4

time metric, but if thehi(jv)zo, it follows thatbi(jv):o_ Simi- component for the predicted CMB anisotropy. Thealar

X i . contribution is given by the Sachs-Wolfe formula
larly, on this surface on superhorizon scafg¥=&Y)=0.

We also have the gauge conditit§”’ =0. AT b &) — 1 )
For the CDM the equation of motion for tivectormodes T (6.4)= 3 b1, 0.4.m15)
is
70 Y I
(V) v Lo hw f 7](% %) @5
Vcdm—i_,HVcdm:EV'lf_l . (3.18 s r=mn9—7

o ) Expanding the CMB anisotropy into spherical harmonics
Similarly, for the twovectormodes of the solid dark matter

component, the equations of motion are AT
T (0.6)= 2 amYim(6,9), (4.2

(1=F){EV + (1 +MHEY)
one obtains the following expression for the expected multi-

=20{V?§V'+v.hV - v.pV}. (319  pole moment variance:
The Einstein equations for thesctor sector are * 1 .
a CI=<|aIm|2>=f0 dkp(k)[gq)(ms;k)h(kﬁs)
1
V,-h{Y)'=(8wG Veam + 057, " : : 2
a2 Vi i =@mG)peanVedmi” + Ooi] +f "y k(W (n k) +D(nk} . (43
Ms

%[ﬁ?-")+27-[1'1-(~\’)]:(8776)®-(-v)_ (320  HereP(k) is the primordial power spectrum, which we set to
a“— ! ! P(k)=<1/k, indicating a featureless, scale-invariant,

Harrison-Zeldovich primordial spectrum. Here the functions
Finally, we have the equations WV (n,k) and ®(#,k) indicate the time dependence of the
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growing modes of wave numbé&rof ¢ and ¢, respectively, 3f ' '
and are normalized to unity ag—O0. -
On small angular scaled #£30), the solid dark matter

component does not play a significant role in determining the
CMB anisotropy because on these scales the anisotropy is :
almost exclusively determined by what happens at the sur-
face of last scatter whef) ;4 is negligible, and the contri- .
bution of the integrated Sachs-Wolfe term on these scales is ]
negligible. On larger angular scales, however, the contribu- | 7
tion through the integrated Sachs-Wolfe term of the decay of C 1
the gravitational potential contributes significantly to the \
low-l moments, and since the details of how the potential . ]
decays depend on the dynamics of the smooth component, r

one expects the dynamics of the solid dark matter component 55 53 o T T e T es T o
to play an important role in determining these CMB mo- (&) Conformal Time ()
ments. R — R —

To illustrate the effect of a solid dark matter component, - 1
we compare the evolution of the gravitational potentials and C ]
the large-angle CMB moments for the following nine cosmo- i ]
logical models, some with a solid dark matter component 2
and others included for purposes of comparison. r

(0). A flatQ ,=1 universe.In this critical universe filled
with cold dark matter the gravitational potentialsand
remain constant at late times, so there is no integrated Sachs-
Wolfe contribution. i

(1). A hyperbolicQ,,=0.3 universe.The scale factor
a(n) for this hyperbolic universe with no dark matter other
than a subcritical cold dark matter component evolves ex-

actly as the scale factor for the string dominated universe. ol .. . « . . . | L L
0.2 0.4 0.6 0.8 1.0

>

However, the negative spatial curvature and differing decay (p)”° ' Conformal Time (n)
of the gravitational potential at late times leads to a different
shape for the low-CMB moments. FIG. 1. Panelga) and(b) show the evolution of the potentiads

(2). A flatQ,,= 0.3 string dominated universén this flat and ¢, respectively for vanishing wave number as a function of
universe with a subcritical density of cold dark matter andconformal time for models1), (28—(2c), (38—(3c), and (4). All
the remainder in a network of frustrated non-Abelian stringsthe potentials are normalized to unity at vanishing conformal time.
the physical density in the solid string network componentLrhe curves for each successive model have been displaced upward
scales ap.>a~ 2, becoming the dominant form of matter at by 0.1.
late times. The behavior of the solid string component de-
pends on the strength of the resistance to pure ShgaWWe  the horizontal axis indicates conformal time, normalized so

consider the following three subcases. that »=1 today. Models(1), (2a—(2¢), (3a—(3¢), (4) are
(2a) cs=0, cy,=1/2. (us=1/24). indicated, with no offset for modéll) and offsets increasing
(2b) cs=1NWV3, cy=1NM2. (us=1/12). by 0.1 for each successive model, introduced to separate the
(2¢) cs=1, cy=1. (us=1/6). curves in the plot. Although modeld) and (2a—(2c) have

(3). A flat Q,,=0.3 domain wall dominated universén  the same evolution of the scale factor, the evolution of the
this flat cosmological model a network of frustrated domainpotential is different at later times. The fact thatand
walls formed in a late-time phase transition gives a densityevolve differently is due to the presence of large anisotropic
that scales aps=1/a. As for the string-dominated universe, stresses. In the domain wall dominated models the decay of

we consider three subcases. the Newtonian potential is much greater than in the hyper-
(3a) cs=0, cy=1M2. (ns=1/24). bolic or A models leading to a significantly larger integrated
(3b) cs=1W3, cy=V3/2. (us=3/48). Sachs-Wolfe contribution to the CMB moments.
(3¢) cs=2/3, cy=1. (us=1/12). Figure 2 shows the CMB moments for these models from
(4). A flatQ,,=0.3 A-dominated universeThis flat uni- =2 throughl =30 normalized so thatz, agrees for all the

verse with a cosmological constant may be interpreted as models. The vertical axis ig -1 (I + 1) with offsets increas-
degenerate case of a solid dark matter component in whicimg by of 0.2. The shapes of the CMB moments were com-
T— 1. puted with a method that does not take into account the
Figures 1a) and 1b) indicate the evolution of the gravi- effects producing the beginning of the rise toward the Dop-
tational potentials and ¢, respectively, in the limik—0 pler peak toward increasinfy In other words,|(I+1)c,
(i.e., on superhorizon scalefor the various models. The would be constant for a flat CDM universe when in fact there
potentials have been normalized to unity at early times andés a 40% rise in this quantity bl=30. Therefore, only the
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D T e e . evolve, and to do this more than merely specifying
] =(p/p) is required. For an equation of state with negative
1 pressure, to posit a perfect fluid is not allowed, because the
sk _ sound speed on short wavelengths would be imaginary, indi-
r 3 cating instabilities whose growth rate diverges as the wave-

3 length approaches zero. In SDM a sufficiently large shear
i¥_ﬁ modulus removes this instability. In the slowly rolling field
r 1 models the instability is lacking for an entirely different rea-

son: there is an inertia associated with changing the stress-
energy.

Physically, how the instability is avoided in SDM and in
quintessence is manifested by the following qualitative dif-
1 ferences.(1) SDM, unlike quintessence and most types of
o ' — o o 3'0 dark matter, generates anisotropic stres&@sSDM has vec-

L tor modes with nonvanishing sound spe).The resistance
to pure shear in SDM gives the graviton a mass, changing
the gravity wave contribution to the CMB on large angular
scales.

We finally offer the following more technical remarks
comparing SDM to other possible sources of negative pres-

relative differences in shape are significant. A more detailec?;urel d:cussed n th? I|tgra}ture. b ded
study of these models using a Boltzman code will be pre- (1) A pure cosmological constant may be regarded as a

sented in a forthcoming paper. degenerate case of_ the acti@?3) with p(g(1),9(2).9(s)) Set
to (A/8m) \/g_ab This degenerate case greatly enlarges the
reparametrization invariance of E¢(R.3). Becausep=—p
exactly, the smooth dark matter stress-energy no longer
In this paper we have deve'oped a continuum forma”snﬁingles out a SpeCial time direction, and Consequently for this
for describing the dynamics of a “solid dark mattef3DM)  Special case general reparametrizations thatyreadt are
component and shown how cosmological perturbationgllowed.
evolve with such a component included. The advantages of (2) If ©=0, Eq.(2.3) becomes a Lagrangian description
positing an SDM component are as fo”o\@) Itis possib|e of a perfeCt fluid. In this SpeCial situation the Lagrangian
to reconcile a Spat|a||y flat Cosmok)gy with the numerousdescription is much more cumbersome than the Eulerian de-
measurements of) indicating a low value because most Scription, especially with general relativity taken into ac-
methods of measurinf) are sensitive only to matter that is count. Whenu#0, however, an Eulerian description is no
clustered(e.g., on scales comparable to the size of galaxyonger possible. Ifu=0 andp=wp wherew<0 andw#
clusters or smallerand the SDM remains unclustered, ex- —1, the sound speed becomes imaginary, indicating an in-
cept on the very largest scales comparable in size to ougtability, most severe on the smallest scales. Without resis-
present horizon(2) SDM can provide the negative pressure tance against pure shear, the solid dark matter component
suggested by the recent SNla observations at high red_shiM[OU|d be similarly unstable. However, for the non-Abelian
thus explaining the lower than expected apparent luminosistrings and domain wall networks is sufficiently large to
ties of the distant supernovae. Supernova observations c&tabilize the medium, as evidenced by all sound speeds being
potentially constrain the equation of state, thus distinguishreal.
ing a SDM-dominated universe from a cosmological con- (3) Quintessence differs in that the medium has an inter-
stant dominated universé3) With SDM it is not necessary Nal scalar degree of freedom. One could in fact write down a
to posit a new, surprisingly small energy scale. SDM frommore general action for a low-energy description that com-
string or domain wall networks results from new physics atbines quintessence with the continuous medium:
higher energy scales. SDM thus avoids the fine tuning diffi-
culties of a straightoutA term or of the “quintessence”
models with an extremely slowly evolving scalar field that

gives the same qualitative effect As _ _J j 3
Introducing an equation of state with negative pressure is S dt | o he(ga) 92 931 9)

a delicate matter. If one wishes to consider perturbations to X X 1
homogeneity and isotropy, considerations of general covari- % A /—G _+f A5G =1 (D)2
ance and causality prohibit one from introducing a smooth BYgt ot W|2 (D)
background component that does not cluster inadnhoc 9 2

way. Since locally it is impossible to determine what the —Cs(#,9(1),92),9(3) (Dy¢) 1= V[ ].
“unperturbed” background solution in the absence of per-

turbations would have been, a “smooth component” must be
introduced in a manner that specifies how perturbationBecause the stress-energy of the medium breaks Lorentz in-

TTTTT

~

Le(L+1)xe(L)

TTTTTTTT

o
&)
o
o

FIG. 2. CMB multipole momentd-he CMB multipole moments
are plotted for model$l), (2a—(2c¢), (38—(3c), and (4) with suc-
cessive curves displaced upward by Q.2+ 1)c, is plotted and the
curves are normalized to unity bt 30.

V. DISCUSSION

(5.9
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