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Direct signature of an evolving gravitational potential from the cosmic microwave background
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We show that a time dependent gravitational potential can be directly detected from cosmic microwave
background(CMB) anisotropies. The signature can be measured by cross-correlating the CMB with the
projected density field reconstructed from weak lensing distortions of the CMB itself. The cross-correlation
gives a signal whenever there is a time dependent gravitational potential. This method traces dark matter
directly and has a well defined redshift distribution of mass producing the lensing, thereby avoiding the
problems plaguing other proposed cross-correlations. We show that both the Microwave Anisotropy Probe
(MAP) and Planck satellites will be able to probe this effect for observationally relevant curvature and
cosmological constant models, which will provide additional constraints on the cosmological parameters.
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PACS numbgs): 98.80.Es, 95.85.Nv, 98.35.Ce, 98.70.Vc

It is widely accepted that cosmic microwave backgroundCMB anisotropieq§7]. The method is based on the gravita-
(CMB) anisotropies offer a unique enviroment to study cos-tional lensing effect, which distorts the pattern of the CMB
mological models. The anisotropies were generated predom@nisotropieg8]. Although the signal to noise for individual
nantly during recombination at redshift-1100, when the Structures from such a reconstruction is small, averaging

universe was still in a linear regime and the physics, at th@Ver indepe_nden_t patche; (.)f CMB reduces the noise and ex-
acts the signal in a statistical sense. We were able to show

eV energy scale, was simple. This allows one to make robu%‘L . .
9y b at this allows one to extract the power spectrum of density

predictions for various cosmological models, which can be . . . .
: : : erturbations with high accuracy over two orders of magni-
compared to an increasing number of observations. How{?ude in scald9]

ever, some degeneracies b.etwe'en. cosmological paramgtersm the present paper we use the reconstructed projected
remain even for future satellite missions, and these are beingg sty field to cross-correlate with the CMB itself. If there
further expanded as new parameters are being introdd¢ed s 5 component of the CMB from the time evolving gravita-
The degeneracies are particularly severe between varioygna| potential, then it should correlate with the projected
components affecting the expansion of the universe, such afensity field. Most of the signature comes from large angular
CUrVature, Cosm0|oglcal constant or any other term with a\gca|es7 so we first genera”ze the method deve'ope[(y]in
more general equation of stgt2|. Other cosmological tests from the small scale limit to all sky. Because the small scale
must therefore be used to break these degeneracies. CMB anisotropies were generated uniquely during recombi-
It has been pointed out that in a universe where the mattafation, the weighting of density perturbations as a function
density does not equal the critical density the gravitationabf redshift in the projection is well defined. Moreover, the
potential changes with time, which produces a significangravitational lensing effect depends on the dark matter dis-
component of the CMB on large scalf3]. This effect is tribution in the universe, so no assumption of how light
generated at late times, and since the gravitational potentiflaces mass is necessary. This avoids the shortcomings of
is related to the density field through Poisson’s equation, theross-correlations with x-ray and other tracers of large scale
effect can also be looked for by cross-correlating the CMBstructure mentioned if4]. In addition, the projected density
with another tracer of the density fidld]. Unfortunately, no field is sensitive to the matter distribution out to a very high
clean density map out to high redshift exists on large scalegedshift and allows one to test the models where the time
The x-ray background has been suggested as a possibglependent potential is generating anisotropies at higher red-
tracer of large scale structure outae- 3—4, but the uncer-  shifts, such as in the curvature dominated modéld.0].
tainties associated with the redshift distribution of theHere we compute the expected signal to noise of future CMB
sources, the relation between x-ray light and underlyingnissions for cosmological constant and curvature dominated
mass, and the Poisson fluctuations from the nearby source®odels, using both Microwave Anisotropy Prod¢AP) and
make this test inconclusivié,6]. Planck satellite characteristics. Although we limit ourselves
Recently we developed a method to reconstruct the proto these two families of models, we note that other models,

jected density field out to recombination directly from the such as those with more general equation of state, would also
produce a signature that one could look for.

To reconstruct the projected density field we consider the
*Electronic address: uros@feynman.princeton.edu symmetric tensor of products of temperature derivatives

"Electronic address: matiasz@ias.edu transverse to direction [7],
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1 )
Hap=-TaT, (1) Ci% =(4m)? f BZdBP(B)Axi(B,70)Ax1 (B, 7o)

_ o . 4
whereT.,, T., are covariant derivatives df with respect to
the coordinate basis in the tangent space of directidmere
defined with polar coordinate®(¢), andg,, is the metric
on the sphere. We defings so that in the absence of lensing where CDL;(x) are the ultraspherical Bessel functions and
the average over the CM@.,)cvs=3Jap- The tensor can  P(B) is the primordial power spectrum. Equatiéf) only
be decomposed into the trace and traceless component agplies to flat and open universes, whereas for the closed
Hap=3(1—S)gap— Hap. From the traceless tenshf,, one  universe the eigenvalues of the Laplacian are discrete, so the

Axi(B,m0)= JOTOqu’lg(To_T)Sx(ﬁ:T),

may define two rotationally invariant quantities integral over 8 is replaced with a sum oveK %3
=3,4,5... . The source for temperature anisotrofgess
1_ ~ab 1 _ oz ncoa a combination of several terms. These can be decomposed
=5V Hap . B=5V THypec, (20 into effects generated during recombination, which consist of

Sachs-Wolfe term, Doppler term, intrinsic anisotropy term
where€? is the completely antisymmetrit.evi-Civita) ten- and anisotropic stress term, and the late time effect generated
sor andCV‘Z is the inverse Laplacian on the sphere. by the time dependent gravitational potenisb-called inte-

In the presence of lensing the averagéaf, become$7] grated Sachs-Wolfe teridSW)]. The latter term, while only
important for low multipole moments, is the relevant one for

1 our study. The full form ofS; can be found in13]. The
(Hap)cmp= (E - K) Gab— Yab» (3)  source for convergence & = gk?¢, wherek?= 82— K. The
key to our method is that the same large scale structures that

generate ISW also contribute t@ The two fields are thus
correlated on large scales where ISW contributes. Note that
most of the information o is coming from the small scale
CMB, which is predominantly generated at-1100. The
fact that there may be a contribution to CMB from ISW at
qow zis limited to lowl only and does not significantly affect
the conclusions here, derived by ignoring this effect. It is
also useful to define the correlation coefficient ¢6rr
=C/*/(C]TCr*)Y2 which is the relevant quantity for the
estimation of how strong the correlation is.

Using the above expressions one can comgifté, C/“

wherex andy,, are the convergence and shear component
of the symmetric shear tensdr,,,, defined as the covariant
derivative of the displacement field on the spHer2|, which
encodes the information on the gravitational lensing effect
All rotationally invariant quantities can be decomposed on
sphere into spherical harmonic¥(n)= = nax imYim(N),
where X stands forT, «, S, £ or B. From Eq.(3) we find
(agim)=Mga, m, With M g=2. The multipole moments of
the scalar field€ average tqag|,)=Mga, m, WhereMg
=2(1+2)(1—=1)/1(1+1) [12], while the average of the

pseudoscalar field® identically vanishes in the large scale dCTx f logical model. W ‘ d .
limit, (az;m)=0, because the gravitational potential from anl II (Ithgny cosmologica drT;.O de. € per cf)rtrge nhumeri-
which shear is generated is invariant under the parity transzd! caicuia 'Oni using iaf'mo r: e KKverS|on ot hMBFA,ST
formation. Convergence can thus be reconstructed in two c04€[15]. We have verified thaCi™ agrees with previous
independent ways frons and &, while the third quantity3 calculatlo_ns which were done in the small ;cale |.I["ﬁll4],. as
serves as a check for possible systematics. Note that sindell s with the alternaztlve all-sky expressions giveplig].
convergence is expressed as a quadratic quantif, iits The results for (Coﬁ“) are shown in Fig. 1 for a represen-
This means it can also be looked for using the bispectrumlogical constant model is substantial only for very lownd
which is a method independently proposed[ig]. rapidly drops on smaller scales. In a curvature dominated

Convergence can be written as a projection of the gra\,imodel with the samé) ,, the correlation coefficient is larger

: . . to start with and also drops less rapidly withThis indicates
tational potentia 14] k= °g(x,xo) V24(x)dx. Herex, is P pialy

the comovina radial coordinate at recombination aris the that one will be able to set stronger limits on curvature than
. oving ) 9 on a cosmological constant, which is confirmed below with a
radial window, defined agj(x,xo)=r(x)r(xo—x)/r (xo).

which is a bell shaped curve symmetric arouyd and van- more detailed analysi_s. The reason is that in a cosmological
ishing at 0 andyo. Herer (x) is the comoving angular diam- qonstant model, gravitational potential cha_ng_es only at late
9 o X,l,zs. 12 gang ~1i2g times =1 for reasonable values 6i,,), while in a curva-
eter distance, defined ds K™% x. (=K) inh ture dominated model the potential changes also at higher
redshift. This leads to two effects. First, in a cosmological
Hnstant model ISW is comparable to other terms only for
the lowest multipoles, while in a curvature model ISW domi-
nates up to higher [10]. Secondly, the windovg peaks at
relatively high redshifz~3 and so is able to pick up corre-

density parametef), and the present Hubble parametty
as K=(Qy—1)H3. In generalQ, consists of both matter
contribution(),,, and cosmological constant terfh, .

The angular power spectra are definedCe)pg(': 1/(2l lations with ISW from an open universe better than that from
+1)2nax maxm- Their ensemble averages are given bya cosmological constant universe. We have also calculated
[13] the correlation coefficient for a flat model. It is small for all
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FIG. 1. Square of correlation coefficient (CB? as a function FIG. 2. Power spectra for noig¢’® (long dasheg] N£¢ (short

of | is shown for oper),,=0.2 andQ,=0.4 models(upper and  dashedi N (dotted, both for Planck(lower curve$ and MAP
lower dashed curvesand for flat cosmological constafi,,,=0.2 (upper curvesfor a cosmological constant model wih,,=0.3.
and Q) ,,=0.4 models(upper and lower solid curvis Also shown is the power spectrum of convergen€“4(solid) for
the same model, normalized tg;=1.

[, (Corr|TK)2< 103, demonstrating that correlations with

fluctuations generated at recombination are negligible antbr all matrix elements and can be computed using MAP and
the cross-correlation is sensitive to the time dependent gravRlanck noise characteristics. For these CMB missions detec-
tational potential only. tor noise on large scales will be negligible, henig’

We now address the question of signal detectability With<C|TT, The dominant sources of noise &or £ on large
future CMB missions. We continue to work in multipole scales are the CMB anisotropies. The noise terms involve
moment space and assume we have an all-sky expansioftegrals over the CMB power spectrum and can be com-
which allows us to decouple different andl multipole mo- puted numerically using the expressions giver[7h The
ments. Given two random fields and )V (where)V stands  results are shown in Fig. 2 both for MAP and Planck. They
for S or &), we want to develop a test that maximizes theshow that on large scales the CMB noise power spectrum has
signal in the presence of correlations against the null hypothapproximately white noise shap#l"”Y~const. At low |
esis that there are no correlations. The term that quantifieﬁlff~ NSS/2s>NES .« . Therefore, noise dominates over the
the correlations is the product between the two fieXg§  signal and the latter can only be extracted in a statistical
=TimWim [here and below, average with the complex con-sense by averaging over multipole moments. Because the
jugate (T Wim+TimWii)/2 is implied. Its expectation off-diagonal term(&, Sim)o is much smaller than the two
value under the null hypothesis of pure noise{)@fﬁ}ozo, diagonal terms, the covariance matrix is nearly diagonal and
because the function entering this expression is a three-poittie information fromS and £ can be added independently,
function of T, which vanishes both for intrinsic fluctuations with £ contributing twice as much of information & Note
and for detector noise under the Gaussian assumption. Thaso that Planck has a factor of 5 better sensitivity than MAP.
alternative hypothesis is that of pure signal which gives We now want to combine the signal to noise from differ-
(XIw) 1 =(TEWim)=M,,yC. The variance under the null ent multipole moments to maximize the overall signal to

hypothesis is noise. To do this we add up the products weighted with some
yet to be determined weightg;, X=2, ¢, X|,. Since the
XXV 0= (XY o (XYY moments are uncorrelated the expectation value and variance
are

=(CIT+N (M My CEH NV, (5)

: X)1=2 (21+1)a;My,C~,
whereN" andN/""" are the noise power spectra for CMB X1 Z( JarMyiC

anisotropiesS, £ or their cross-term, respectively. (6)
Both § and € contribute information. If they are uncorre- ) o TT . TT

lated then the information contents can be added indepen- (X >0:§|: (21+ 1) (G + N )

dently, otherwise the covariance matrix Cm‘/ﬁﬁxm has to T

be diagonalized first. The CMB ter@ '+ N/ ' is the same X (M G+ N7,
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while the null hypothesis mean remai(X),=0. We want detection in these models can therefore only be obtained with
to maximize S/N= ((X);—(X)o)/({X?)o)? with respect to  Planck, unlesg), is very low. One can use the absence or
a,. Taking derivatives with respect ta, and setting the presence of the cross-correlation to place constraints on the
expression to 0 we finda,=C/“/(C/ "+ N,TT)(M%,,C{"‘ models. Any detection of the signal with MAP will, for ex-

+ N|WW). The overall signal to noise is, combining the infor- ample, be more easily gxplalned in terms of curvature mod-
mation fromsS and & els than_ with _cosmologlcal constant models, while absence

’ of the signal in Planck will certainly rule out all curvature

112 models of interest, as well as putting strong constraints on

Tr\2
(21+1)(Corq 7) cosmological constant models. Within the context of more

S
N = fsky§|: 2

W=ESs NS T NV ’ specific models, such as the family of cold dark matter
1+ || 1+ —— (CDM) models, one can use the cross-correlation to break
C MinCi the degeneracies present when only the CMB power spec-

(7) " trum constraints are used. The well-known degeneracy be-

where we have insertefl, to account for the fact that the tween curvature ar_1d cosmological constant can for example
effective number of multigoles will be smaller if only some be broken using this cross-correlation. Note that the theoret-

fraction of the sky is measured. If the correlation is unity angic@! limit for signal to noise can be obtained by_assuming
noise is negligible, then each multipole moment contributes® perfTeKctzly known, and is given byS/N=Z,(2l+
one degree of freedom and the signal to noismtlié, where 1)(Corr “)“. This givesS/N about a factor of 2 higher than
Ny is the number of degrees of freedom. Decorrelation®Ur results for Planck above.

and/or noise decrease the effective number of degrees of Finally, the signal should be consistent with zero for the
freedom. ield, in the large scale limit. Any evidence against that

Using the above expressions we fistN=8 for anQ,, wo.uld be a si.gn of a systematic effect present in the data.
=0.4 open model an8/N =13 for an(),,=0.2 open model, This test provides a useful overall check. of the mgthod. An-
both for Planck noise and beam properties usigg=0.7. other_ US?fUI test would b_e cross-correlattﬁgndSv_vlth the
This is a very strong signal indeed, corresponding doeid polarization CMB map. S|n<_:e ISW do_es not c_ontrlbute to the
130, respectively. Corresponding numbers for MAP are Séatter the r(_asult should again be co_nS|stent with Zero and any
and 7. Both MAP and Planck will thus be able to usefully detected .S|gnal wouldlhkely be asign of a systematic effect.
constrain open models with . < 0.4, which spans the range The straightforward interpretation and many consistency
of currently favored values d),,. If S/N is high as in the checks make the method proposed here one of the more

case of Planck satellite then one may combine the data tBromllglng vvgysfto l;jetermlne_ co?morll(_)grl]cal p"*_r?‘r_”emlrls’ka”d
constrain more than one parameter. For example, instead ould provide further incentive for high sensitivity all-sky
compressing the information into a single number with, e.g., MB experiments.

S/IN=8 one can estimate four independent bands of cross- U.S. and M.Z. would like to thank the Observatoire de
correlation power spectrum witls/N=4 each, each of Strasbourg and MPA, Garching, respectively, for hospitality
which still gives a strong detection. For cosmological con-during their visits. M.Z. is supported by NASA through
stant models the numbers are somewhat lower, Planck givingubble grant HF-01116.01-98A from STScl, operated by
S/IN=3 and 6 for(},,=0.4 and(),,= 0.2, respectively, while AURA, Inc. under NASA contract NAS5-26555. U.S. is sup-
the corresponding MAP numbers are 1 and 2. A positiveported in part by NASA grant NAG5-8084.
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