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Direct signature of an evolving gravitational potential from the cosmic microwave background
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We show that a time dependent gravitational potential can be directly detected from cosmic microwave
background~CMB! anisotropies. The signature can be measured by cross-correlating the CMB with the
projected density field reconstructed from weak lensing distortions of the CMB itself. The cross-correlation
gives a signal whenever there is a time dependent gravitational potential. This method traces dark matter
directly and has a well defined redshift distribution of mass producing the lensing, thereby avoiding the
problems plaguing other proposed cross-correlations. We show that both the Microwave Anisotropy Probe
~MAP! and Planck satellites will be able to probe this effect for observationally relevant curvature and
cosmological constant models, which will provide additional constraints on the cosmological parameters.
@S0556-2821~99!00216-7#

PACS number~s!: 98.80.Es, 95.85.Nv, 98.35.Ce, 98.70.Vc
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It is widely accepted that cosmic microwave backgrou
~CMB! anisotropies offer a unique enviroment to study c
mological models. The anisotropies were generated predo
nantly during recombination at redshiftz;1100, when the
universe was still in a linear regime and the physics, at
eV energy scale, was simple. This allows one to make rob
predictions for various cosmological models, which can
compared to an increasing number of observations. H
ever, some degeneracies between cosmological param
remain even for future satellite missions, and these are b
further expanded as new parameters are being introduced@1#.
The degeneracies are particularly severe between var
components affecting the expansion of the universe, suc
curvature, cosmological constant or any other term with
more general equation of state@2#. Other cosmological test
must therefore be used to break these degeneracies.

It has been pointed out that in a universe where the ma
density does not equal the critical density the gravitatio
potential changes with time, which produces a signific
component of the CMB on large scales@3#. This effect is
generated at late times, and since the gravitational pote
is related to the density field through Poisson’s equation,
effect can also be looked for by cross-correlating the CM
with another tracer of the density field@4#. Unfortunately, no
clean density map out to high redshift exists on large sca
The x-ray background has been suggested as a pos
tracer of large scale structure out toz;324, but the uncer-
tainties associated with the redshift distribution of t
sources, the relation between x-ray light and underly
mass, and the Poisson fluctuations from the nearby sou
make this test inconclusive@5,6#.

Recently we developed a method to reconstruct the p
jected density field out to recombination directly from t
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CMB anisotropies@7#. The method is based on the gravit
tional lensing effect, which distorts the pattern of the CM
anisotropies@8#. Although the signal to noise for individua
structures from such a reconstruction is small, averag
over independent patches of CMB reduces the noise and
tracts the signal in a statistical sense. We were able to s
that this allows one to extract the power spectrum of den
perturbations with high accuracy over two orders of mag
tude in scale@9#.

In the present paper we use the reconstructed proje
density field to cross-correlate with the CMB itself. If the
is a component of the CMB from the time evolving gravit
tional potential, then it should correlate with the project
density field. Most of the signature comes from large angu
scales, so we first generalize the method developed in@7#
from the small scale limit to all sky. Because the small sc
CMB anisotropies were generated uniquely during recom
nation, the weighting of density perturbations as a funct
of redshift in the projection is well defined. Moreover, th
gravitational lensing effect depends on the dark matter
tribution in the universe, so no assumption of how lig
traces mass is necessary. This avoids the shortcoming
cross-correlations with x-ray and other tracers of large sc
structure mentioned in@4#. In addition, the projected densit
field is sensitive to the matter distribution out to a very hi
redshift and allows one to test the models where the t
dependent potential is generating anisotropies at higher
shifts, such as in the curvature dominated models@6,10#.
Here we compute the expected signal to noise of future C
missions for cosmological constant and curvature domina
models, using both Microwave Anisotropy Probe~MAP! and
Planck satellite characteristics. Although we limit ourselv
to these two families of models, we note that other mod
such as those with more general equation of state, would
produce a signature that one could look for.

To reconstruct the projected density field we consider
symmetric tensor of products of temperature derivativ
transverse to directionn̂ @7#,
©1999 The American Physical Society04-1
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Hab5
1

sS
T:aT:b , ~1!

whereT:a , T:b are covariant derivatives ofT with respect to
the coordinate basis in the tangent space of directionn̂, here
defined with polar coordinates (u,f), andgab is the metric
on the sphere. We definesS so that in the absence of lensin
the average over the CMB̂Hab&CMB5 1

2 gab . The tensor can
be decomposed into the trace and traceless compone
Hab5 1

2 (12S)gab2H̃ab . From the traceless tensorH̃ab one
may define two rotationally invariant quantities

E5 1

2
¹22H̃ab

:a:b , B5
1

2
¹22H̃ab

:a:cec
a , ~2!

whereec
a is the completely antisymmetric~Levi-Civita! ten-

sor and¹22 is the inverse Laplacian on the sphere.
In the presence of lensing the average ofHab becomes@7#

^Hab&CMB5S 1

2
2k Dgab2gab , ~3!

wherek andgab are the convergence and shear compone
of the symmetric shear tensorFab , defined as the covarian
derivative of the displacement field on the sphere@12#, which
encodes the information on the gravitational lensing effe
All rotationally invariant quantities can be decomposed o
sphere into spherical harmonics,X(n̂)5( lmaX,lmYlm(n̂),
whereX stands forT, k, S, E or B. From Eq.~3! we find
^aS,lm&5MSlak,lm , with MSl52. The multipole moments o
the scalar fieldE average tô aE,lm&5M Elak,lm , whereM El
52(l 12)(l 21)/l ( l 11) @12#, while the average of the
pseudoscalar fieldB identically vanishes in the large sca
limit, ^aB,lm&50, because the gravitational potential fro
which shear is generated is invariant under the parity tra
formation. Convergencek can thus be reconstructed in tw
independent ways fromS andE, while the third quantityB
serves as a check for possible systematics. Note that s
convergence is expressed as a quadratic quantity inT, its
cross-correlation withT gives a nonvanishing third momen
This means it can also be looked for using the bispectr
which is a method independently proposed by@11#.

Convergence can be written as a projection of the gra
tational potential@14# k5*0

x0g(x,x0)¹2f(x)dx. Herex0 is
the comoving radial coordinate at recombination andg is the
radial window, defined asg(x,x0)5r (x)r (x02x)/r (x0),
which is a bell shaped curve symmetric aroundx/2 and van-
ishing at 0 andx0. Herer (x) is the comoving angular diam
eter distance, defined asK21/2sinK1/2x, x, (2K)21/2sinh
(2K)1/2x for K.0, K50, K,0, respectively, whereK is
the curvature. Curvature can be expressed using the pre
density parameterV0 and the present Hubble parameterH0

as K5(V021)H0
2. In generalV0 consists of both matte

contributionVm and cosmological constant termVl .

The angular power spectra are defined asCl
XX851/(2l

11)(maX,lm* aX8,lm . Their ensemble averages are given
@13#
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XX85~4p!2E b2dbP~b!DXl~b,t0!DX8 l~b,t0!

~4!

DXl~b,t0!5E
0

t0
dtFb

l ~t02t!SX~b,t!,

where Fb
l (x) are the ultraspherical Bessel functions a

P(b) is the primordial power spectrum. Equation~4! only
applies to flat and open universes, whereas for the clo
universe the eigenvalues of the Laplacian are discrete, so
integral over b is replaced with a sum overK21/2b
53,4,5 . . . . The source for temperature anisotropiesST is
a combination of several terms. These can be decompo
into effects generated during recombination, which consis
Sachs-Wolfe term, Doppler term, intrinsic anisotropy te
and anisotropic stress term, and the late time effect gener
by the time dependent gravitational potential@so-called inte-
grated Sachs-Wolfe term~ISW!#. The latter term, while only
important for low multipole moments, is the relevant one f
our study. The full form ofST can be found in@13#. The
source for convergence isSk5gk2f, wherek25b22K. The
key to our method is that the same large scale structures
generate ISW also contribute tok. The two fields are thus
correlated on large scales where ISW contributes. Note
most of the information onk is coming from the small scale
CMB, which is predominantly generated atz;1100. The
fact that there may be a contribution to CMB from ISW
low z is limited to low l only and does not significantly affec
the conclusions here, derived by ignoring this effect. It
also useful to define the correlation coefficient Corrl

Tk

5Cl
Tk/(Cl

TTCl
kk)1/2, which is the relevant quantity for the

estimation of how strong the correlation is.
Using the above expressions one can computeCl

TT , Cl
kk

andCl
Tk for any cosmological model. We performed nume

cal calculations using a modified version of theCMBFAST

code @15#. We have verified thatCl
kk agrees with previous

calculations which were done in the small scale limit@14#, as
well as with the alternative all-sky expressions given in@12#.
The results for (Corrl

Tk)2 are shown in Fig. 1 for a represen
tative set of models. The correlation coefficient in a cosm
logical constant model is substantial only for very lowl and
rapidly drops on smaller scales. In a curvature domina
model with the sameVm the correlation coefficient is large
to start with and also drops less rapidly withl. This indicates
that one will be able to set stronger limits on curvature th
on a cosmological constant, which is confirmed below with
more detailed analysis. The reason is that in a cosmolog
constant model, gravitational potential changes only at
times (z*1 for reasonable values ofVm), while in a curva-
ture dominated model the potential changes also at hig
redshift. This leads to two effects. First, in a cosmologic
constant model ISW is comparable to other terms only
the lowest multipoles, while in a curvature model ISW dom
nates up to higherl @10#. Secondly, the windowg peaks at
relatively high redshiftz;3 and so is able to pick up corre
lations with ISW from an open universe better than that fro
a cosmological constant universe. We have also calcula
the correlation coefficient for a flat model. It is small for a
4-2
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l, (Corrl
Tk)2,1023, demonstrating that correlations wit

fluctuations generated at recombination are negligible
the cross-correlation is sensitive to the time dependent gr
tational potential only.

We now address the question of signal detectability w
future CMB missions. We continue to work in multipo
moment space and assume we have an all-sky expan
which allows us to decouple differentm and l multipole mo-
ments. Given two random fieldsT andW ~whereW stands
for S or E), we want to develop a test that maximizes t
signal in the presence of correlations against the null hyp
esis that there are no correlations. The term that quant
the correlations is the product between the two fieldsXlm

W

5Tlm* Wlm @here and below, average with the complex co
jugate (Tlm* Wlm1TlmWlm* )/2 is implied#. Its expectation
value under the null hypothesis of pure noise is^Xlm

W &050,
because the function entering this expression is a three-p
function of T, which vanishes both for intrinsic fluctuation
and for detector noise under the Gaussian assumption.
alternative hypothesis is that of pure signal which giv
^Xlm
W &15^Tlm* Wlm&5MWlCl

Tk . The variance under the nu
hypothesis is

^Xlm
WXlm

W8&02^Xlm
W &0^Xlm

W8&0

5~Cl
TT1Nl

TT!~MWlMW8 lCl
kk1Nl

WW8!, ~5!

whereNl
TT andNl

WW8 are the noise power spectra for CM
anisotropies,S, E or their cross-term, respectively.

Both S andE contribute information. If they are uncorre
lated then the information contents can be added indep

dently, otherwise the covariance matrix Cov(Xlm
WXlm

W8) has to
be diagonalized first. The CMB termCl

TT1Nl
TT is the same

FIG. 1. Square of correlation coefficient (Corrl
Tk)2 as a function

of l is shown for openVm50.2 andVm50.4 models~upper and
lower dashed curves! and for flat cosmological constantVm50.2
andVm50.4 models~upper and lower solid curves!.
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for all matrix elements and can be computed using MAP a
Planck noise characteristics. For these CMB missions de
tor noise on large scales will be negligible, henceNl

TT

!Cl
TT . The dominant sources of noise inS or E on large

scales are the CMB anisotropies. The noise terms invo
integrals over the CMB power spectrum and can be co
puted numerically using the expressions given in@7#. The
results are shown in Fig. 2 both for MAP and Planck. Th
show that on large scales the CMB noise power spectrum
approximately white noise shape,Nl

WW;const. At low l
Nl
EE;Nl

SS/2@Nl
ES ,Cl

kk . Therefore, noise dominates over th
signal and the latter can only be extracted in a statist
sense by averaging over multipole moments. Because
off-diagonal term^Elm* Slm&0 is much smaller than the two
diagonal terms, the covariance matrix is nearly diagonal
the information fromS and E can be added independentl
with E contributing twice as much of information asS. Note
also that Planck has a factor of 5 better sensitivity than MA

We now want to combine the signal to noise from diffe
ent multipole moments to maximize the overall signal
noise. To do this we add up the products weighted with so
yet to be determined weightsa l , X5(m,la lXlm . Since the
moments are uncorrelated the expectation value and vari
are

^X&15(
l

~2l 11!a lMW,lCl
Tk ,

~6!

^X2&05(
l

~2l 11!a l
2~Cl

TT1Nl
TT!

3~MWl
2 Cl

kk1Nl
WW!,

FIG. 2. Power spectra for noiseNl
SS ~long dashed!, Nl

EE ~short
dashed!, Nl

ES ~dotted!, both for Planck~lower curves! and MAP
~upper curves! for a cosmological constant model withVm50.3.
Also shown is the power spectrum of convergence 4Cl

kk ~solid! for
the same model, normalized tos851.
4-3
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while the null hypothesis mean remains^X&050. We want
to maximizeS/N5(^X&12^X&0)/(^X2&0)1/2 with respect to
a l . Taking derivatives with respect toa l and setting the
expression to 0 we finda l5Cl

Tk/(Cl
TT1Nl

TT)(MWl
2 Cl

kk

1Nl
WW). The overall signal to noise is, combining the info

mation fromS andE,

S

N
5F f sky(

l
(W5E,S

~2l 11!~Corrl
Tk!2

S 11
Nl

TT

Cl
TTD S 11

Nl
WW

MWl
2 Cl

kkD G
1/2

,

~7!

where we have insertedf sky to account for the fact that th
effective number of multipoles will be smaller if only som
fraction of the sky is measured. If the correlation is unity a
noise is negligible, then each multipole moment contribu
one degree of freedom and the signal to noise isNdof

1/2 , where
Ndof is the number of degrees of freedom. Decorrelat
and/or noise decrease the effective number of degree
freedom.

Using the above expressions we findS/N58 for an Vm
50.4 open model andS/N513 for anVm50.2 open model,
both for Planck noise and beam properties usingf sky50.7.
This is a very strong signal indeed, corresponding to 8s and
13s, respectively. Corresponding numbers for MAP are
and 7. Both MAP and Planck will thus be able to usefu
constrain open models withVm,0.4, which spans the rang
of currently favored values ofVm . If S/N is high as in the
case of Planck satellite then one may combine the dat
constrain more than one parameter. For example, instea
compressing the information into a single number with, e
S/N58 one can estimate four independent bands of cro
correlation power spectrum withS/N54 each, each of
which still gives a strong detection. For cosmological co
stant models the numbers are somewhat lower, Planck gi
S/N53 and 6 forVm50.4 andVm50.2, respectively, while
the corresponding MAP numbers are 1 and 2. A posit
.

n.

et

on
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detection in these models can therefore only be obtained
Planck, unlessVm is very low. One can use the absence
presence of the cross-correlation to place constraints on
models. Any detection of the signal with MAP will, for ex
ample, be more easily explained in terms of curvature m
els than with cosmological constant models, while abse
of the signal in Planck will certainly rule out all curvatur
models of interest, as well as putting strong constraints
cosmological constant models. Within the context of mo
specific models, such as the family of cold dark mat
~CDM! models, one can use the cross-correlation to br
the degeneracies present when only the CMB power sp
trum constraints are used. The well-known degeneracy
tween curvature and cosmological constant can for exam
be broken using this cross-correlation. Note that the theo
ical limit for signal to noise can be obtained by assumingk
is perfectly known, and is given byS/N5( l(2l 1
1)(Corrl

Tk)2. This givesS/N about a factor of 2 higher than
our results for Planck above.

Finally, the signal should be consistent with zero for theB
field, in the large scale limit. Any evidence against th
would be a sign of a systematic effect present in the d
This test provides a useful overall check of the method. A
other useful test would be cross-correlatingE andS with the
polarization CMB map. Since ISW does not contribute to t
latter the result should again be consistent with zero and
detected signal would likely be a sign of a systematic effe
The straightforward interpretation and many consisten
checks make the method proposed here one of the m
promising ways to determine cosmological parameters,
should provide further incentive for high sensitivity all-sk
CMB experiments.
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