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Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion
fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-
Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of
exact solutions are found that represent inhomogeneous generalizations of the Bianchi,tgosiblogy.

The asymptotic behavior of the solutions is investigated and further applications are briefly discussed.
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[. INTRODUCTION study a wide class of “Einstein-Rosen” string cosmologies
with non-trivial dilaton and two-form potential. Einstein-

An important lesson of nonlinear dynamical systemsRosen metrics are interesting for a number of reagéhs
theory is that solutions originating from different regions of (For reviews see, e.d.7,8].) Spatial homogeneity is broken
state space cafend often dp have qualitatively different along one direction and they admit an Abelian isometry
modes of behavior. In this sense, the initial conditions begroup, G,, that acts on two-dimensional spacelike orbits.
come an important ingredient in determining the dynamicalThey represent a natural generalization of the spatially ho-
evolution of the system. This then raises the question of hownogeneous Bianchi cosmologi¢8,10]. Density perturba-
one determines the set of initial conditions that gives rise tdgions in the early universe can be analyzed with these back-
a particular dynamical mode of behavior. The answer to thigrounds and the propagation and collision of gravitational
question requires a full understanding of the underlying dyplane waves on homogeneous space-times can also be stud-
namics which, in the case of general relativity or stringied within this contex{11-14. Finally, it has been conjec-
theory, is extremely difficult to establish, given the high de-tured thatG, metrics represent a leading-order approxima-
gree of nonlinearity and complexity involved in these theo-tion to more general solutions near the singulafit].
ries. There is also the added difficulty that, despite recent There has also been an interesting recent development
progress in our understanding of M theory, a definitive non-within string cosmology, namely thgre-big bangscenario
perturbative formulation of quantum gravity still remains to [16], according to which the rapid increase of the string cou-
be developedsee, e.g., Ref.1] for recent reviews pling drives an accelerated, inflationary expansion. The cen-

This question is particularly relevant in cosmological tral postulate of this scenario is that the initial state of the
studies of string or M theory. The low-energy effective ac-universe is in the perturbative regime of small coupling and
tion of the Neveu-Schwarz—Neveu-SchwardNS-NS  curvature. This leads to an inflationary phase for sufficiently
bosonic sector of string theory contains a multiplet of masshomogeneous initial conditiorid7,18. At present, the ques-
less fields{g,,.#.B,.} [2]. The vacuum expectation value tion of whether in general large spatial inhomogeneities have
of the dilaton, ¢, determines the strin¢gravitationa) cou-  a significant effect on the naturalness of such initial data is
pling, gz=e?, the gravitational field is determined by the unresolved.
metric,g,,,, andB,,, is an antisymmetric, two-form poten- Recently, Barrow and KunZd 9] studied a class of inho-
tial. To date, attention has focused on the spatially homogemogeneous generalizations of Bianchi type | string cosmolo-
neous, orthogonal models, where the dilaton field is constargies and Feinstein, Lazkoz and Vazquez-M$26] derived
on the surfaces of homogenefty—5]. However, these mod- an inhomogeneous model by applying duality transforma-
els apply on scales just below the string scale, and it is preions on the locally rotationally symmetridRS) Bianchi
cisely this region where spatial inhomogeneities may be imtype IX cosmology. In this paper we consider iGg inho-
portant. mogeneous generalizations of the Bianchi typg Miverse,

A study of inhomogeneous string cosmologies is thereforavhereh<0 is the group parameter. This Bianchi model is
necessary if further progress is to be made in addressing thiBteresting because it has a non-zero measure in the space of
guestion of whether our universe arose out of generic initiahomogeneous initial data and includes the Bianchi type Il as
conditions. The purpose of the present paper is to derive ana special caseh= —1) [21]. Furthermore, the most general

spatially homogeneous solutions of tliene-loop string
equations of motion are the Bianchi types Il and, Vivhere

*Electronic address: dominic@maths.qmw.ac.uk h={0,—1/2,—2} [19]. It can be shown that these models
"Electronic address: wtpfexxa@Ig.ehu.es contain the maximum number of eight free parameters.
*Electronic address: jel@astr.cpes.susx.ac.uk We employ non-compact, global symmetries of the field
$Electronic address: reza@maths.gmw.ac.uk equations to generate inhomogeneous solutions with a non-
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trivial two-form potential. When the metric admits two com- \yhere'e#"*~ is the covariantly constant four-forfizs]. The
muting spacelike Killing vectors, there exists an infinite- fie|d equations can then be derived from the dual action
dimensional symmetry on the space of solutions that may be
identified infinitesimally with the O(2,2) current algebra S:f d4X\/—_§
[22,23. This symmetry reduces to the Geroch group, corre-
sponding to the SL(R) current algebra, when the dilaton
and two-form potential are trividl24]. The global SL(R)
“ S duality” [25] and O(2,2R) “T duality” [26] are con-
tained within this symmetry Application of both these sym-
metries leads to new, inequivalent solutions.

This paper is organized as follows. In Sec. I, we derive dsﬁ=T1aﬁ(xy)dx“dxﬁ+3/ab(xy)dxadxb, (2.6
inhomogeneouss, string cosmologies from a general class
of Einstein-Rosen models where the two-form potential iswhere all components are taken to be independent of the
trivial. Two families of solutions representing inhomoge- spatial coordinates®=(x,y). The two commuting, space-
neous generalizations of the Bianchi type, \liniverse are |ike Killing vectors ares/dx andd/dy andh,,, represents the
found in Sec. Il by directly solving the field equations. The |ongitudinal component of the metric. The metric on the sur-
asymptotic behavior of such models is studied in Sec. Ivfaces of transitivity is denoted By., and the gradienk,

We conclude with a discussion in Sec. V. =d,,(dety,p) "2 determines the local behavior of the model.
Solutions represent cylindrical and plane gravitational waves
if K, is globally spacelike or null, respective]y,11]. Cos-

A. String effective action mological models arise whef,, is timelike or when the sign
K, K* changeq9].

The longitudinal metric is conformally flat and the line
element may therefore be written in the form

ds?=e'(—d&2+d7?) + y,pdx2dxP, 2.7

~ 1 2 1 ~
R—E(V¢)2—§ez¢(VU)2, (2.9

where o may be interpreted as a pseudo-scalar “axion”
field.

The generalized Einstein-Ros&), metric is defined in
the Einstein frame by the line elemdi, 7]

Il. EINSTEIN-ROSEN STRING COSMOLOGY

Fundamental strings sweep geodesic surfaces with respe%ft
to the string-frame metrig,,, . The four-dimensional, string
effective action for the NS-NS fields is given by

S= f d*xy—ge ?

1 JTA2N
1_2HMV)\H )

R+ (V¢)*—
where f=1(¢£,z) determines the longitudinal part of the
gravitational field. The corresponding line element in the

whereH ,,,=d,B,,; is the field strength of the two-form String frame is given by

potential. In general, the effective action will also include ds2=e?" 1 (—d&2+d ) + T ,,dx3dxP, (2.9

moduli and vector fields arising from the compactification

from higher dimensions. The action is also expected to inwhere the transverse metrt,,=e%y,, has determinanf

clude a potential term,V(¢), arising from the non- =def ,,. We assume throughout this work that all massless

perturbative sector of the theory, however, the form of such gields are independent of the coordinax8sThus, the metric

potential is as yet unknown. These additional terms are ne2.g) also represents @, model.

glected in what follows. A considerable simplification occurs in the field equations
In order to take advantage of the highly developed framewhen the transverse metric is diagonal and separable. In this

work of general relativity and its many known exact solu- case, the Einstein and string frame metrics may be written in

tions, it is often more convenient to work in the Einsteinthe form

frame, where the dilaton field is minimally coupled to grav- _

ity. This is achieved by making the conformal transformation ds;=e'(—dg>+dZ’) +¢(ePdx e Pdy?) (2.9

9.,=€ %g,,. (22 and

(2.9

—efté_ g2 d2 b(aPdx2 4 a—Pdy2
Action (2.1) then takes the form ds§ e~ demHdz) + fef(efdx +e dy),(210)

4/'““1“21724)'““‘)\ ;
S=| d*xV—g|R—- §(V¢) - Ee H o HA™ | respectively, wher@=p(¢&,z) represents the transverse part
of the gravitational field. In this case, the volume of the
(2.3 . . ' .
transverse space in the string frame is determined by
In four dimensions the field strength of the two-form poten- =22, (2.12)
tial is dual to a one-form:
H“VK:EW“eN’?Ka, (2.4 In some settings, it proves convenient to define new vari-

ables
z=e %cosh2t)

We refer to the groups SL(R) and O(2,2R) as theS and gzefzzsinr-(zt), (212
T-duality groups, respectively, although at the non-perturbative
level the dualities are the discrete subgroups SIX2nd 0(2,2Z).  which transform the metri€2.9) to
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ds2=4e"(—dt?+dz?)+ e ??sinh(2t)(ePdx?+ e Pdy?),
(2.13

whereh=f—-4Z7.

In the present context, an inhomogeneous string cosmo
ogy is parametrized by the massless degrees of freedo
19u0,9.B,,}. A vacuum solution to Einstein gravity may
then be represented bjg,,,0,0f and a solution with a
trivial two-form potential by{g,,,¢,0;. We refer to this
latter class of solution as “dilaton-vacuum” solutions. In
general, the one-loop field equations of motion &y back-
grounds derived from the actioi®.1) and(2.5) are difficult
to solve. In view of this, we employ the non-compact, global

symmetries that arise when the metric admits two Abelian
isometries to generate a wide class of inhomogeneous string

cosmologies with a non-trivial two-form potential from
dilaton-vacuum solutions.

B. O(2,2) symmetry

The global O(2,2) symmetry applies when there exist two o 5 )
Abelian isometries and the only non-trivial component of the dss=e' " ¢(—d&2+d2) +

two-form potential isB,, = B,y(£,2) [26]. This symmetry is

manifest in the string frame and generates fractional linear
transformations on the two-form potential and the compo-

nents of the transverse metrif,,. When the transverse
metric is non-diagonal, the four degrees of freedom
{Byy . I'ap} parametrize the O(2,2)0(2)x O(2)] cosef 26].
The isomorphism O(2,2) SL(2R) X SL(2R) then implies
that these may be arranged in terms of two complex coordi

nates[27]
r r
7=+ N (2.14
Fyy Fyy
p=B,y+i\T. (2.15

Suppose the metri@.10 represents a vacuum or dilaton-
vacuum solution for some appropriate form of the dilaton,
d=¢p(&,2). An O(2,2) transformation is then generated in
terms of the two SL(R) transformations:

—_ap+b — 01

P—Cp—+d, T=T (2.16

— a'r+b"  —

=——— p=p, (217
c'r+d

where ad—bc=1 and a’d’—b’c’=1. Under a general
0(2,2) transformation, the dilaton transforms to

112
r

. (2.18

and the longitudinal part of the string frame metric remains

invariant, i.e.,

(2.19
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Since the transformation®.17) leave the two-form po-
tential invariant, Eq.2.16 must be employed to generate
such a field from a dilaton-vacuum seed solution. Applying
Eq. (2.16 implies that
|-

— r
m
=) (2.20
(d2+¢c?T)?
— acl'+bd
Bxy_ C2F+d2 ’ (22],)
_ e?
ef= ——, 2.2
d?+c2r (222

where the last transformation follows from Ed2.11) and
(2.20. The dual metrics in the string and Einstein frames are
then given by

e
(ePdx?+e Pdy?)

(2.23

d2+ 2229

and

dso=e'(d?+c?£%e?%)(— dg?+ d2?) + £(ePdXP+ e Pdy?),
(2.24

respectively. We remark that the transverse metric in the

Einstein frame,y,,, is invariant under the transformations
(2.16. Whend=0 andc=1, the volume of the transverse
space in the string frame, as given by E220), is inverted.
The transformations(2.16 therefore represent a “T-
duality.”

C. SL(2,R) symmetry

The global SL(ZR) symmetry of the string effective ac-
tion (2.1) becomes manifest in the Einstein frame. The action
(2.5 may be written as a non-linear sigma-model, where the
dilaton and axion fields parametrize the SIRRU(1) coset
[25]. The effective action is therefore invariant under global
SL(2R) transformations. These act non-linearly on the com-
plex scalar fieldy=o+ie~ ¢ such that the transformed field
is given by

Ax+B
Cx+D’

(2.2

where{A,B,C,D} are real numbers satisfyilgD—BC=1.

The Einstein frame metric transforms as a singlet under this
SL(2R) transformation and the dual string frame metric is
therefore given by

d2=e? ¢d<2.

For the special case wher€?=1 and o=-D/C, the
SL(2R) transformation(2.25 yields ¢= — ¢, which corre-

(2.26
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Sponds to an inversion of the String Coup"ag: gs_l The which the general solution is known. A number of cosmo-

transformationg2.25 therefore represent a strong or weak-logically relevant solutions satisfying different boundary
coupling “S-duality.” conditions have been considered previoy3l,29. An im-

Starting witho'= 0, a solution with non-trivial axion field Portant feature of these equations is that they are linear,

lution of the generic forn{2.9) by applying Eq.(2.25. The  Superpositions of known solutions. _
dual solutions are given by Here we consider a linear superposition of solutions of the

form:
ds2=e?*f(—d&2+d2) + £e?(ePdx®+ e Pdy?)

2.2 z o
_ (2.29 p=k|n(§)—mcosh1(g +61J' [c1(2)Io(1€)
e?=C?%e %+ D%? (2.29 0
- +¢2(2)No(1€) ] dI (3.9
— ACe ?+BDe’ (2.29
7 C2e %+D2%? ' E: o
¢=aIn(§)— B cosh z +52f [c3(2)Io(1€)
To summarize thus far, we have seen how two inequiva- 0
lent classes of inhomogeneous string cosmologies with a +ca(2)No(16)]dI, (3.6)

non-trivial two-form potential can be derived from a given
dilaton-vacuum solution, by employing the non-compact
global SL(2R) and O(2,2) symmetries of the model. The
dual solutions may be referred to as “dilaton-axion” cos-
mologies. In all cases, they are parametrized in terms of th
functions{f,p, ¢} that define the seed dilaton-vacuum solu-

'where{a, 8,k,m} and{e,,e,} are constants], andN, are
zero-order Bessel functions of the first and second kind and
'([ahe coefficientx; = c;(z) are defined by

tions. c1(z)=C,coglz)+D,sin(lz) 3.7
Thus, the asymptotic behavior of these models can be _

investigated directly once the seed solution has been speci- C2(2)=F, coglz) + G, sin(1z) (3.9

fied. We therefore proceed in the following section to derive

two classes of inhomogeneous dilaton-vacuum cosmologies cs(z)=H, coglz) +L, sin(Iz) (3.9

that may be viewed as generalizations of the homogeneous

Bianchi type V}, universe. ca(2)=U, codlz)+V, sin(l2), (3.10

IIl. INHOMOGENEOUS DILATON-VACUUM

COSMOLOGY
A. Cosmological field equations

When the two-form potential vanishes, acti@®5) re-
duces to that for a massless, minimally coupled scalar fiel
For the metric(2.9) the field equations then take the form
[28]

g(p2+p/2+¢2+¢/2)

f=—2—§+§ (31)
f'=&pp'+de), (3.2
. 1.
p+ Ep—p”=0, (3.3
N
o+ E¢>—¢>”=0, (3.9

in which overdots(primes denote differentiation with re-
spect to the timelike variablé (spacelike variable). Equa-
tions (3.3) and (3.4) are the integrability conditions for the
system(3.1) and (3.2). The field equation$3.1)—(3.4) are
invariant under the simultaneous interchampge ¢. Indeed,
the wave equation.3) and(3.4) are formally equivalent to

whereC,, D, etc., are arbitrary constants for each value of
I. In both Egs.(3.5 and (3.6), the last term represents the
most generaseparablesolution to Eqs(3.3) and(3.4). The
remaining two terms represent other, in general inhomoge-
eous, solutioné.The importance of these other solutions is
hat they include a number of spatially homogeneous Bianchi
models as special cases. The Bianchi models admit a three-
dimensional group of isometrie§;, that acts simply transi-
tively on three-dimensional spacelike orb[t0]. The Gy
contains an Abelian subgroup, for the types I-VI}, and
the LRS types VIII and IX[9,30]. CertainG, models may
therefore be viewed as inhomogeneous generalizations of
these Bianchi cosmologies. In particular, for solutions of the
form (3.5—(3.10, one has the following sub-classes of so-
lutions:

(1) The class withe; = e,=m= B8=0 corresponds to the
homogeneous orthogonal Bianchi type | models containing a
stiff perfect fluid[31]. They reduce to the Kasner solution in
the vacuum limit @¢=0) [32].

(2) The class withm=8=0, e;=€,=1 corresponds to
an inhomogeneous generalisation of the Bianchi | models.
Charach and Malin first considered solutions similar to these

2The first term is also present in the third term and is therefore not

the cylindrically symmetric wave equation in flat space, fora different solution. It is separated out for later consideration.
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by imposing a three-torus topology on the spatial sections We first integrated E(.3.1) to deduce an expression fbr
[28]. This effectively converts the integral ovérinto an  containing an unknown function of integratiég(z). In each
infinite sum, which also has the consequence of simplifyingof the cases we considered, it was found that BR) was
the solution of the remaining field equations forAdams then trivially satisfied for constarit (z). We now proceed to
et al. [12] further considered the vacuum casg=0). present the two classes of solutions, together with their ho-
(3) The class withe;=€,=0, subject to the constraint mogeneous limits.
B?—a?+m?—k?*-3=0, wherek=(—h)"*2 In general,
these models represent tilted stiff perfect fluid Bianchi type
VI,, cosmologieg33], since the fluid velocity vector associ-
ated with the dilaton field is not orthogonal to the group The homogeneous limit of these solutions is determined
orbits (surfaces of homogenejtyThey reduce to the Bianchi by specifyinge;=¢e,=0 in Egs.(3.5 and(3.6) [33]. Equa-
type Il and V models wherk?=1 andk=0, respectively tion (3.1) can then be integrated to yield the longitudinal
[34]. In the vacuum limit ¢=8=0), the solution reduces to component of the gravitational field in the met(®.9):
the Ellis-MacCallum type \{] cosmology[35]. 1
(4) The class withe; = e,=0 corresponds to the inhomo- _ 2 20 12 2
geneous generalizations of the Bianchi type Ill, V ang, VI "™ Cot Z(a T BT KM= 1)In(E)
models first considered by Wainwrigét al.[33]. In general,

B. Homogeneous solutions

howevei, these models_ suffer from gpa(_:elike singularities _ E(ﬁ2+m2)|n(zz—§2)—(a,8+km)cosh1(3),
and their status as physical cosmologies is unceffdin 2 &
An alternative way of considering inhomogeneous gener- (3.12

alizations of the Bianchi type Ill, V and }{Imodels is to

specify e;=¢e,=1 and impose the constraint . ) ) ]
whereC; is an arbitrary constant of integration and the con-

s a5 o straint equation(3.11) applies. In terms of the variables
B°—a*+m—k—3=0. (B.1D  (2.12 this component is given by

Vacuum solutions of this type were considered by Adams 1

et al.[13], who concluded that the inhomogeneous structure hhom=C1+ = (a?+ B2+ k?+m?—1)In sinh(2t)

of the initial cosmic singularity could evolve into gravita- 2

tional_ waves prppagating over a h_o_mogeneo_us backgr(_)und at +(km+ aB)In tanht (3.13

late times. In view of the ambiguities associated with inter-

preting the Wainwrighet al. [33] solutions in a cosmologi-

cal context, our primary interest in the present paper is in thign Eq. (2.13. The transverse component of the metric and
new class of models. We also remark that a subset of inhdhe dilaton field respectively take the following forms:
mogeneous Bianchi | modelgem 2) is also included within

this class since these latter models correspond to the particu-
lar solutionB=m=0.

The remaining field equation8.1) and(3.2) for the lon-
gitudinal metric functiorf may now be solved in principle by Grhom=—2aZ+ aInsinh(2t) + BIntanht.  (3.15
substituting in the derivatives of Eq8.5 and(3.6). How-
ever, solving Eq(3.1) is non-trivial, because the right-hand-
side contains integrals ovéthat originate from the integral The hypersurfaces=constant represent the surfaces of ho-
wave-train terms of Eq$3.5) and(3.6). Unfortunately, these mogeneity. Since forr#0, the dilaton field depends on the
can not be expressed in a closed form and some simplifyin§Patial variable,Z, the fluid velocity as measured hy,
assumptions must therefore be made in order to proceed ana-®,./(— #,,¢"*)*? is not orthogonal to the group orbits.
lytically. Thus, this solution may be interpreted as a tilted stiff fluid

In view of this, we consider two separate schemes. In théype VI, solution.
first, we restrict the analysis to a single motjeyhich could
be viewed as dominating over all the other modes. The
choice of one mode allows the integrals overto be
dropped® In the second case, we assume the amplitudes of After restricting the analysis to a single modgthe inte-
each of the modes in Eq€3.5) and(3.6) are equal, i.e., we gral of Eq.(3.1) is readily found. The resulting solution may
specifyC,=C, D,=D, etc. be expressed in terms of its homogeneous, gravitational

wave and scalar wave components:

Phom= —2kZ+kInsinh(2t) + mIntanht  (3.14)

C. Single-mode solutions

f:fhom+fgw+fswa (3.16
SParticular solutions of the field equations that consist of superpo-
sitions of two or more modes may also be found by employing a
discrete summation ovérin place of the integral in Eq¢3.5) and ~ where the homogeneous compondn,,, is given by Eq.
(3.6). (3.12, the gravitational wave component is given by
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2 |2
fguw=+ %([01300 &)+ CoNo(16)12+[c131(16) +¢N, (1619 + Zéz([clJoU &) +CNo(16)17+[c131(16) +coN1(16)1%)

| J1(1¢)
— 5 &lc1do(18) +CaNo(1€) JLe1d1(16) +CoN1 (1€) ]+ k(Cydo(1€) + c2No(1 ) — leClJ \/le(Tizdf
N, (1€) , [ €30(16) , [ €No(18)
-mlzg mdf_mq mdg—mcz \/rgzdg (3.19
|
and the scalar-wave compondy}, is determined by making 2 M
the substitutions ¢=aln(¢)—Bcosh't : + Nt
k—a, m—pB, cy(2)—C3(2), Cy(2)—Cu(2) (3.22

(3.18

in Eq. (3.17). The gravitational and scalar wave componentg€SPectively, wher& andM are arbitrary constants. The lon-
encode all the inhomogeneous contributions to the longitudigitudinal component of the gravitational fieldmay now be
nal component of the gravitational field. The integrals in thedétérmined by substituting Eqe3.21) and (3.22 into Egs.
expressions fof 4, andfs,, can actually be performed, pro- (3.1) and(3.2) and integrating. One finds that
vided the integrand is first expressed as a series. The result is
a serietstyvr;iih tr_edU(l:_es_tto a closed form expression in the P F2+M?2 24 mF+gM N kKF+aM
asymptotic late-time limit. = z .

P T e

(3.23

D. Equal-amplitude solutions

When all the modes in the integral wave-trains of Egs.
(3.5 and (3.6) have equal weighting, we may employ the
identities

In terms of the variables defined in E®.12), it is given by

1
1 h:hh0m+(kF+aM)eZZ+(mF+,BM)eZZCOSP(2t)+Z(FZ
% > if f(lz)=sin(1z),
| s tiza-{ 7 FM2)eZsinR(2t), (3.24
0 if f(lz)=coglz),
(3.19 where hyom, is given by Eq.(3.13. The transverse compo-
fw nent and dilaton are given by

No(1&) f(12) dl
0

p=—2kZ+kInsinh(2t)+mIntanht+Fe?? (3.25

2 cosh Y(z/¢) _
————— if f(lz)=sin(lz),
RNy = ¢=—2aZ+ aInsinh(2t)+ B Intanht+ M e??
— . (3.20 (3.26
— if f(lz)=coglz),
z°—¢ when expressed in terms of these variables.
in order to integrate Eq3.1). To avoid unnecessary compli-
cations, we further restrict our attention to the class of solu- IV. ASYMPTOTIC BEHAVIOR
tions where the contributions from the Neumann functions ) ) ) )
vanish €,=c,=0) The transverse component of the gravi- In thls sectlon.we consider some aspects of the_asymp_totlc
tational field and the dilaton are then given by behavior of the inhomogeneous string cosmologies derived

above. The axion field in the dual solutiq®.27)—(2.29
tends to a constant value in the limits— + «. It is therefore

(3.21 dynamically negligible in these limits. Equatid@.28 im-

VZ' - ¢ plies that for all solutions generated by the SIRPtransfor-
mation(2.25, there exists a lower bound on the value of the
dilaton field if C andD are non-zero. This implies the exis-

“The solution may also be found for the case when the Neumantence of alower (non-vanishing bound on the string cou-
functions are included. pling which, in the context of M theory, in turn implies the

: +

p=KkIn(¢)—mcosh?!
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existence of a lower bound on the radius of the eleventh M

dimensior, Ry, sinceR ;e [1,36]. p=~aIn(é)+ —=— (4.5
In the class of dual solution@.23), it follows from Eq. rARS

(2.2 that the two-form potential tends to a constant in the

limits whereI'—0 andI’—, i.e., when the volume of the 1o, (F2+M?)&?
transverse space measured in the string frame becomes van- f~ 5(01 +B°+k*+m*—1)In(¢) + NP2
ishingly small or arbitrarily large. Thus, the two-form poten- (=& (4.6)

tial effectively decouples from the field equations in these
limits. The limiting behavior of the dilaton field in the dual
solution follows from Eq.(2.22. In particular, when'—0
gnddaﬁo, the dila_ton asymptotically tgnds to t_he form it has reached in a finité-time alongany curve.

in the seed solutlo(upio a constant linear shiftThe same In the limitt— 0, the corresponding limiting forms of the
conclusion applies fol". In this limit, therefore, the dual metric components and dilaton field are

cosmology asymptotes to the original seed, dilaton-vacuum

We note that, in view of Eq(2.12, the singularity az= ¢
only corresponds tog,z) —(,«) and therefore cannot be

solution. In the opposite limit, wherE diverges, the dual p~—2kZ+ (k+m)int+Fe?? 4.7
cosmology asymptotes to the solution that is derived by
specifyingd=0 in Eq.(2.16). b~—2aZ+(a+B)Int+Me? 4.8

The above discussion applies to any class of string cos-
mologies derived with the symmetry transformations dis- 1
cussed in Sec. Il. To illustrate this further, we consider the h~ =[a?+ B?+k?®+m?+2(km+ aB) — 1]In(t)
asymptotic behavior of the string cosmologi@s23 derived 2
from the equal-amplitude dilaton-vacuum, seed solution (K MF+(a+ B)M1e2Z 4.9
(3204323, [(k+m)F+(at+p)M]e?. 4.9
We Irecalllthatdinlde;]ermri]ning thfe asymptotic behavior of g jimits of the determinarif are deduced by substituting
cosmological models the choice of time gauge is importante, (2 19 and Ea.(4.2) or (4.8) into Eq. (2.1
Since the models considered here may be viewed as descriEE:1 (212 0.4.2 or (4.8 a.-(212:
ing inhomogeneous waves propagating over homogeneous T(t—+w)~exg4(a+1)(t—2)+2Me??] (4.10
Bianchi backgrounds, a reasonable measure of early and late
times is provided by in the coordinate chaft,Z,x,y}. As _ B 27
we shall see, the asymptotic behavior in the limits of small F(t—0)~4exqg—4(1+a)Z+2Me
and larget corresponds to eithdf—0 or o in the solution +2(1+ a+B)Int]. (4.12)
(2.23. This implies that the class of string cosmologies

(2.23 asymptotes between two dilaton-vacuum solutions;The behavior of the dilaton field in the limit where the de-

where the two-form is dynamically negligible. In effect, this terminant diverges is most readily determined by substituting
field induces the transition between the two dilaton—vacuurqzq_ (2.1 into Eq. (2.22. We find thatd~—¢—21In¢

limits. A similar conclusion holds for the dual solution —2Inc. This is interesting, because for fini Eq. (4.2)

(2.27. L —
In the limit, t— + o0, the relevant terms in the asymptotic implies that<;/><_xa In¢ for t—e, For e>1, the_re_fore,dw
forms of Egs.(3.22), (3.22 and(3.24 are —¢ z_;md, in this sense, the strongly coupled limit (_)f _the dual
solution may be viewed as the weakly coupled limit of the
97 seed solution, and vice versa.
p~2k(t—2)+Fe (4.) In taking the early or late time limits of an inhomoge-
neous cosmological model, one has to take account of both
Pp~2a(t—2Z)+M e?* (4.2)  direction and time. Here, we have inhomogeneity in the
Z-direction only. The question that then arises is whether the
Z-dependent terms in the above expressions dominate over
h~(a?+ B2+ K2+ m?— 1)t + i(F2+M2)e4(Z+t)_ the t-dependent ones. For any finiig the time-dependent

16 terms eventually dominate as-{0,}. A possible ambigu-
(4.3 ity in the limit arises, however, if we alloi(t)—c suffi-
ciently fast relative to thé-dependent terms.
In terms of the coordinate pajg,z}, this implies that It is helpful to consider the simple set of straight lings
={Z=pt+«k |p, ke R}, as probes with which to study the
asymptotic behavidt In this case, it follows from Eq4.10

p~kIn(&)+ (4.4  that

F

5The precise form of these curves is not important, their utility
SWe are assuming implicitly that the extra six spatial dimensionsderives from the fact that they may be employed to probe the three
are fixed. dynamically important cases(t) — + o, Z(t) =finite.
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exd4(1+a)(t—2)] if p=<0 string backgrounds constructed from the gauged Wess-
27 , (4.12  Zumino-Witten (WZW) models admit two Abelian
exg2Me“ ] if p>0
p—=% isometries. Hence, given our current knowledge of string

The sign ofp determines the term that dominates in Eq,C0SMology and conformal field theory, ti@, Einstein-
(4.12, with p>0 (p<0) corresponding to motion in the Rosen cosmologies derived within the context of the low
positive (negative Z-direction while p=0 corresponds to energy effective action represent a set of models that is
moving alongZ = const trajectories. Thus, fgr<0, I'—o closely related to many exact string solutions in four dimen-
for a>—1, whileT'—o for M>0 andp>0. On the other Sions. In this sense, it is of primary importance to understand
hand, the determinant becomes vanishingly smadl<f—1 the dynamical behavior of these solutions. In particular, one
andp=<0 or if M<0 andp>0. question that arises is whether tf3g solutions to the low

In the early time limit,Z— x=constant for the paths we energy string equations of motion discussed in this work
are considering. Ed4.11) then implies thal oct?(**@*A) |t asymptote towards known WZW models in the early- or late-
follows thatI'—0 if a+B>—1 andl'—« if a+8<—1. time limits.
The limiting forms of the dilaton and the transverse and lon-  Since our solutions are valid in the weak coupling regime,
gitudinal components of the metric are determined by allowthey should correctly represent the asymptotic states of per-
ing Z— « in Egs.(4.7—(4.9). Transforming to the synchro- turbatively exact string cosmological models at future, or

['(t—o)~

nous frame by defining past, timelike infinity. On the other hand, in the strong cou-
t pling regime, i.e., near the big-bang singularity, one expects

TEJ dt’eht)r2 (4.13 that higher-order corrections to the perturbative theory, as

well as non-perturbative string effects, should become in-

creasingly important. Hence, in this regime the qualitative
behavior of these solutions may deviate somewhat from that
of solutions derived from the full M or string theory. How-
ever, there are reasons to believe tf¥gt solutions should
nevertheless provide a generic description of cosmological
models in the vicinity of a singularity. A major incentive for
this comes from the long standing conjecture of Belinski and
¢ Khalatnikov[38—40. This states that on the approach to the

{k,m,a, 8} andA, depend onx. This solution represents an cosmological singularity, the gengralized Einstein.-Rogen
inhomogeneous generalization of the Kasner-Belinskii-Melics may play the role of the I_eadmgjorde_r approximation
Khalatnikov(KBK) solution[38], in the sense that at eazh to thegen_eralsolutlon of conventional E_|nste|n gravity. It is _
parametrized here by the constanthe universe describes a therefore _|m'portant to study the behavior of these models in
particular KBK solution. thet—0 limit as well. .

Thus, the determinant of the transverse space in the strin _In_ add_mon such solutions provide a us_efu_l framewor_k
frame vanishes or diverges in the early and late time limits. ithin which to study a number of other topics in early uni-

The precise behavior depends on the constants that arise Ygrse string cosmology. In particular, they serve as a theo-

the seed dilaton-vacuum solution. These constants are art{f—atical setting for investigating the pre-big bang inflationary

trary modulo the constraint equatid8.11). In both limits, scenarig 16]. In the context of this scenario, one is usually

the two-form potential asymptotes to a constant value andnterested in solutions where both the curvature and effective

the dilaton field tends to its original form whdh—0. string coupling(the dilaton diverge ast—0. So, from Eq.
(4.9), it follows that one needa+ <0 in order to satisfy

the requirements for pre-big bang inflation in the string cos-

V. CONCLUSION AND DISCUSSION mologies generated from the equal-amplitude, dilaton-

In this paper we have employed the global symmetries o¥acuum so.IuFions.. These splutions possess a Kasner-like
the string effective action to derive two families of inhomo- €&y time limit which under time reversal makes them com-
geneous string cosmologies from a generalized Einsteirf-’at'b_le with pre-b|g bang |nfl_at|0n. I—_|owever, in ord_er for th_e
Rosen metric admitting an Abelian group of isometri@s, mfla_tlon to end, th|s_ scenario requires a mechanlsm for in-
The solutions were parametrized in terms of the metric funcducing & graceful exit into the standard, post-big bang phase.
tions of the seed solution. Thus, the qualitative behavior of\t Présent, this problem is unresolved and it is possible that
these models can be determined directly from the asymptotifl’® inhomogeneous singularity may pose a further complica-
form of the original metric. Inhomogeneous generalizationdion in addressing the exit problem. It would be interesting to
of the Bianchi type V{| string cosmologies containing a non- consider the homqgenlzanon of the universe within the con-
trivial dilaton and two-form potential were derived. In gen- {€Xt Of these solutions. _ ,
eral, these fields induce inhomogeneities that may be viewed 1N€ initial conditions for the pre-big bang scenario are
as scalar and gravitational waves propagating over a homo-
geneous background.

One of the main applications of Einstein-Rosen models See, for instance, Ref37] for a review of the gauged WZW
arises because many of the non-perturbativedgctsuper-  models.

then implies that, for both seed and dual solutions, @&e
line-element(2.6) in either the Einstein or string frames
qualitatively takes the form

ds?=—d 7+ A (k) T1dx2+ Ay( k) rP2d y? + Az(k) 3d 7,
(4.19

where the constant®; can be expressed in terms o
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based on the assumption that both the curvature and couplirplution with a different spacetime interpretati¢22,45|.

are sufficiently small enough to ensure that the universe is iWhen the axion field is trivial, the symmetry reduces to the
the perturbative regime. An important question in connectiorsimultaneous interchange— ¢ in Egs.(3.1)—(3.4). In par-

with this scenario is the naturalness of these initial conditiongicular, the negatively curved Friedmann-Robertson-Walker
[41]. An attempt has recently been made to address thistring cosmology[4] may be generated in this way from a
question by conjecturing that the past attractor of the inflavacuum Bianchi type V moddK5]. A third class of inho-
tionary solution is likely to be that of the Milne universe Mogeneous string solutions with a non-trivial two-form po-
[17]. If true, this would go some way towards establishingtent'a| may therefore be found by app!ymg' this discrete sym-
the “naturalness” of the scenario. More general initial statesMetry 0 theG, backgrounds derived in this work. _
were also recently considerdd8,47. The solutions dis- The G, backgrounds we have discussed are parametrized

cussed above possess a range of possible late time limifdy non-trivial fields from the NS-NS sector of the string

which in general are not Milne-like. This suggests that thiseffective action. This sector is common to all five perturba-

class of models is not generally compatible with the conjec Ve String effective actions and the solutions may therefore
ture of Ref.[17]. be viewed as truncated solutions of both the heterotic and
Furthermore, there exists a lower bound on the string couyP€ !l theories. The type IIB theory also has a non-trivial
pling for models generated by the SLR}, transformation ~@mond-RamondRR) sector, consisting of an additional
axion field and a two-form potenti@R]. These fields differ

(2.25 and this has implications for the range of initial values )

that such a parameter can take. This in turn leads to an uppdPm those of the NS-NS sector in that they do not couple

limit on the amount of inflation that can occur before higher-diréctly to the dilaton field in the effective actidi36,4d.

order effects become significatl]. There are further symmetry transformations tha_t can be ap-
glled to generate a non-trivial RR sector from a given NS-NS

The solution generating techniques discussed in Sec. ;
can be incorporated into more general algorithms. Althoug ackg_rour_1c[47]. Our solutlons_ there_,-fo_re represent seeds _for
vestigating the role of RR fields in inhomogeneous string

the models presented in this paper break spatial homogenei . , SR
along one direction, they still exhibit a certain degree ofc0SMologies. To date, such fields have only been studied in
symmetry and it is important to develop further techniques"Jln homogeneous setting.
that lead to more general solutions. Recently, by extending a
previous method43], an algorithm was presented that gen-
erates inhomogeneo,; scalar field cosmologies exhibiting We thank W. B. Bonnor, M. A. H. MacCallum, and M. A.
a single isometry from matter filed and vacuugy back-  Vazquez-Mozo for helpful comments and discussions. The
groundg[44]. Such models break homogeneity in two spatialauthors would particularly like to acknowledge the influence
directions. The discussion of R¢#i4] was placed within the of the work of Chaim Charach on their research, who died in
context of Einstein gravity and it would be interesting to March 1999, during the period of the production of this pa-
adapt this algorithm to string cosmology. In principle, a fam-per. D.C. was supported by the Particle Physics and As-
ily of inhomogeneouss, string cosmologies could then be tronomy Research CoundiPPARQ, A.F. was supported by
generated from th&, solutions discussed in Sec. II. Spanish Science Ministry Grant 172.310-0250/96, J.E.L. was
The string effective action exhibits a further discrete sym-supported by the Royal Society and R.T. benefited from
metry when there exits &, isometry[22]. This “mirror” PPARC UK Grant No. L39094. D.C. thanks the theoretical
symmetry interchanges the transverse metric degrees of frephysics department at the University of ®afasco for hos-
dom with the dilaton and axion fields and leads to a newpitality.
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