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Inhomogeneous Einstein-Rosen string cosmology
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Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion
fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-
Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of
exact solutions are found that represent inhomogeneous generalizations of the Bianchi type VIh cosmology.
The asymptotic behavior of the solutions is investigated and further applications are briefly discussed.
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I. INTRODUCTION

An important lesson of nonlinear dynamical syste
theory is that solutions originating from different regions
state space can~and often do! have qualitatively different
modes of behavior. In this sense, the initial conditions
come an important ingredient in determining the dynami
evolution of the system. This then raises the question of h
one determines the set of initial conditions that gives rise
a particular dynamical mode of behavior. The answer to
question requires a full understanding of the underlying
namics which, in the case of general relativity or stri
theory, is extremely difficult to establish, given the high d
gree of nonlinearity and complexity involved in these the
ries. There is also the added difficulty that, despite rec
progress in our understanding of M theory, a definitive no
perturbative formulation of quantum gravity still remains
be developed~see, e.g., Ref.@1# for recent reviews!.

This question is particularly relevant in cosmologic
studies of string or M theory. The low-energy effective a
tion of the Neveu-Schwarz–Neveu-Schwarz~NS-NS!
bosonic sector of string theory contains a multiplet of ma
less fields$gmn ,f,Bmn% @2#. The vacuum expectation valu
of the dilaton,f, determines the string~gravitational! cou-
pling, gs

2[ef, the gravitational field is determined by th
metric, gmn , andBmn is an antisymmetric, two-form poten
tial. To date, attention has focused on the spatially homo
neous, orthogonal models, where the dilaton field is cons
on the surfaces of homogeneity@3–5#. However, these mod
els apply on scales just below the string scale, and it is p
cisely this region where spatial inhomogeneities may be
portant.

A study of inhomogeneous string cosmologies is theref
necessary if further progress is to be made in addressing
question of whether our universe arose out of generic in
conditions. The purpose of the present paper is to derive
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study a wide class of ‘‘Einstein-Rosen’’ string cosmologi
with non-trivial dilaton and two-form potential. Einstein
Rosen metrics are interesting for a number of reasons@6#.
~For reviews see, e.g.,@7,8#.! Spatial homogeneity is broke
along one direction and they admit an Abelian isome
group, G2, that acts on two-dimensional spacelike orbi
They represent a natural generalization of the spatially
mogeneous Bianchi cosmologies@9,10#. Density perturba-
tions in the early universe can be analyzed with these ba
grounds and the propagation and collision of gravitatio
plane waves on homogeneous space-times can also be
ied within this context@11–14#. Finally, it has been conjec
tured thatG2 metrics represent a leading-order approxim
tion to more general solutions near the singularity@15#.

There has also been an interesting recent developm
within string cosmology, namely thepre-big bangscenario
@16#, according to which the rapid increase of the string co
pling drives an accelerated, inflationary expansion. The c
tral postulate of this scenario is that the initial state of t
universe is in the perturbative regime of small coupling a
curvature. This leads to an inflationary phase for sufficien
homogeneous initial conditions@17,18#. At present, the ques
tion of whether in general large spatial inhomogeneities h
a significant effect on the naturalness of such initial data
unresolved.

Recently, Barrow and Kunze@19# studied a class of inho
mogeneous generalizations of Bianchi type I string cosmo
gies and Feinstein, Lazkoz and Vazquez-Mozo@20# derived
an inhomogeneous model by applying duality transform
tions on the locally rotationally symmetric~LRS! Bianchi
type IX cosmology. In this paper we consider theG2 inho-
mogeneous generalizations of the Bianchi type VIh universe,
whereh,0 is the group parameter. This Bianchi model
interesting because it has a non-zero measure in the spa
homogeneous initial data and includes the Bianchi type III
a special case (h521) @21#. Furthermore, the most gener
spatially homogeneous solutions of the~one-loop! string
equations of motion are the Bianchi types III and VIh , where
h5$0,21/2,22% @19#. It can be shown that these mode
contain the maximum number of eight free parameters.

We employ non-compact, global symmetries of the fie
equations to generate inhomogeneous solutions with a n
©1999 The American Physical Society03-1
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CLANCY, FEINSTEIN, LIDSEY, AND TAVAKOL PHYSICAL REVIEW D 60 043503
trivial two-form potential. When the metric admits two com
muting spacelike Killing vectors, there exists an infinit
dimensional symmetry on the space of solutions that may
identified infinitesimally with the O(2,2) current algeb
@22,23#. This symmetry reduces to the Geroch group, cor
sponding to the SL(2,R) current algebra, when the dilato
and two-form potential are trivial@24#. The global SL(2,R)
‘‘ S duality’’ @25# and O(2,2;R) ‘‘ T duality’’ @26# are con-
tained within this symmetry.1 Application of both these sym
metries leads to new, inequivalent solutions.

This paper is organized as follows. In Sec. II, we der
inhomogeneousG2 string cosmologies from a general cla
of Einstein-Rosen models where the two-form potentia
trivial. Two families of solutions representing inhomog
neous generalizations of the Bianchi type VIh universe are
found in Sec. III by directly solving the field equations. Th
asymptotic behavior of such models is studied in Sec.
We conclude with a discussion in Sec. V.

II. EINSTEIN-ROSEN STRING COSMOLOGY

A. String effective action

Fundamental strings sweep geodesic surfaces with res
to the string-frame metric,gmn . The four-dimensional, string
effective action for the NS-NS fields is given by

S5E d4xA2ge2fFR1~¹f!22
1

12
HmnlHmnlG ,

~2.1!

whereHmnl[] [mBnl] is the field strength of the two-form
potential. In general, the effective action will also inclu
moduli and vector fields arising from the compactificati
from higher dimensions. The action is also expected to
clude a potential term,V(f), arising from the non-
perturbative sector of the theory, however, the form of suc
potential is as yet unknown. These additional terms are
glected in what follows.

In order to take advantage of the highly developed fram
work of general relativity and its many known exact so
tions, it is often more convenient to work in the Einste
frame, where the dilaton field is minimally coupled to gra
ity. This is achieved by making the conformal transformati

g̃mn5e2fgmn . ~2.2!

Action ~2.1! then takes the form

S5E d4xA2g̃F R̃2
1

2
~¹̃f!22

1

12
e22fH̃mnlH̃mnlG .

~2.3!

In four dimensions the field strength of the two-form pote
tial is dual to a one-form:

H̃mnl5 ẽmnlke2f¹̃ks, ~2.4!

1We refer to the groups SL(2,R) and O(2,2;R) as theS- and
T-duality groups, respectively, although at the non-perturba
level the dualities are the discrete subgroups SL(2,Z) and O(2,2;Z).
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whereẽmnlk is the covariantly constant four-form@25#. The
field equations can then be derived from the dual action

S5E d4xA2g̃F R̃2
1

2
~¹̃f!22

1

2
e2f~¹̃s!2G , ~2.5!

where s may be interpreted as a pseudo-scalar ‘‘axio
field.

The generalized Einstein-RosenG2 metric is defined in
the Einstein frame by the line element@6,7#

dse
25h̃ab~xg!dxadxb1g̃ab~xg!dxadxb, ~2.6!

where all components are taken to be independent of
spatial coordinatesxa5(x,y). The two commuting, space
like Killing vectors are]/]x and]/]y andh̃ab represents the
longitudinal component of the metric. The metric on the s
faces of transitivity is denoted byg̃ab and the gradientKm

[]m(detg̃ab)
1/2 determines the local behavior of the mode

Solutions represent cylindrical and plane gravitational wa
if Km is globally spacelike or null, respectively@7,11#. Cos-
mological models arise whenKm is timelike or when the sign
of KmKm changes@9#.

The longitudinal metric is conformally flat and the lin
element may therefore be written in the form

dse
25ef~2dj21dz2!1g̃abdxadxb, ~2.7!

where f 5 f (j,z) determines the longitudinal part of th
gravitational field. The corresponding line element in t
string frame is given by

dss
25ef1 f~2dj21dz2!1Gabdxadxb, ~2.8!

where the transverse metricGab[efg̃ab has determinantG
[detGab . We assume throughout this work that all massle
fields are independent of the coordinatesxa. Thus, the metric
~2.8! also represents aG2 model.

A considerable simplification occurs in the field equatio
when the transverse metric is diagonal and separable. In
case, the Einstein and string frame metrics may be writte
the form

dse
25ef~2dj21dz2!1j~epdx21e2pdy2! ~2.9!

and

dss
25ef 1f~2dj21dz2!1jef~epdx21e2pdy2!,

~2.10!

respectively, wherep5p(j,z) represents the transverse pa
of the gravitational field. In this case, the volume of t
transverse space in the string frame is determined by

G5j2e2f. ~2.11!

In some settings, it proves convenient to define new v
ables

z[e22Zcosh~2t !
~2.12!j[e22Zsinh~2t !,

which transform the metric~2.9! to
e

3-2
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INHOMOGENEOUS EINSTEIN-ROSEN STRING COSMOLOGY PHYSICAL REVIEW D60 043503
dse
254eh~2dt21dZ2!1e22Zsinh~2t !~epdx21e2pdy2!,

~2.13!

whereh[ f 24Z.
In the present context, an inhomogeneous string cosm

ogy is parametrized by the massless degrees of free
$gmn ,f,Bmn%. A vacuum solution to Einstein gravity ma
then be represented by$gmn ,0,0% and a solution with a
trivial two-form potential by$gmn ,f,0%. We refer to this
latter class of solution as ‘‘dilaton-vacuum’’ solutions.
general, the one-loop field equations of motion forG2 back-
grounds derived from the actions~2.1! and~2.5! are difficult
to solve. In view of this, we employ the non-compact, glob
symmetries that arise when the metric admits two Abel
isometries to generate a wide class of inhomogeneous s
cosmologies with a non-trivial two-form potential from
dilaton-vacuum solutions.

B. O„2,2… symmetry

The global O(2,2) symmetry applies when there exist t
Abelian isometries and the only non-trivial component of t
two-form potential isBxy5Bxy(j,z) @26#. This symmetry is
manifest in the string frame and generates fractional lin
transformations on the two-form potential and the com
nents of the transverse metric,Gab . When the transverse
metric is non-diagonal, the four degrees of freedo
$Bxy ,Gab% parametrize the O(2,2)/@O(2)3O(2)# coset@26#.
The isomorphism O(2,2)5SL(2,R)3SL(2,R) then implies
that these may be arranged in terms of two complex coo
nates@27#

t[
Gxy

Gyy
1 i

AG

Gyy
~2.14!

r[Bxy1 iAG. ~2.15!

Suppose the metric~2.10! represents a vacuum or dilaton
vacuum solution for some appropriate form of the dilato
f5f(j,z). An O(2,2) transformation is then generated
terms of the two SL(2,R) transformations:

r̄5
ar1b

cr1d
, t̄5t ~2.16!

t̄5
a8t1b8

c8t1d8
, r̄5r, ~2.17!

where ad2bc51 and a8d82b8c851. Under a genera
O(2,2) transformation, the dilaton transforms to

ef̄5efS Ḡ

G
D 1/2

~2.18!

and the longitudinal part of the string frame metric rema
invariant, i.e.,

f̄ 5 f 1f2f̄. ~2.19!
04350
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Since the transformations~2.17! leave the two-form po-
tential invariant, Eq.~2.16! must be employed to genera
such a field from a dilaton-vacuum seed solution. Applyi
Eq. ~2.16! implies that

Ḡ5
G

~d21c2G!2
, ~2.20!

B̄xy5
acG1bd

c2G1d2
, ~2.21!

ef̄5
ef

d21c2G
, ~2.22!

where the last transformation follows from Eqs.~2.11! and
~2.20!. The dual metrics in the string and Einstein frames
then given by

ds̄s
25ef 1f~2dj21dz2!1

jef

d21c2j2e2f
~epdx21e2pdy2!

~2.23!

and

ds̄e
25ef~d21c2j2e2f!~2dj21dz2!1j~epdx21e2pdy2!,

~2.24!

respectively. We remark that the transverse metric in
Einstein frame,g̃ab , is invariant under the transformation
~2.16!. Whend50 andc51, the volume of the transvers
space in the string frame, as given by Eq.~2.20!, is inverted.
The transformations~2.16! therefore represent a ‘‘T-
duality.’’

C. SL„2,R… symmetry

The global SL(2,R) symmetry of the string effective ac
tion ~2.1! becomes manifest in the Einstein frame. The act
~2.5! may be written as a non-linear sigma-model, where
dilaton and axion fields parametrize the SL(2,R)/U(1) coset
@25#. The effective action is therefore invariant under glob
SL(2,R) transformations. These act non-linearly on the co
plex scalar fieldx[s1 ie2f such that the transformed fiel
is given by

x̄5
Ax1B

Cx1D
, ~2.25!

where$A,B,C,D% are real numbers satisfyingAD2BC51.
The Einstein frame metric transforms as a singlet under
SL(2,R) transformation and the dual string frame metric
therefore given by

ds̄s
25ef̄2fdss

2 . ~2.26!

For the special case whereC251 and s52D/C, the
SL(2,R) transformation~2.25! yields f̄52f, which corre-
3-3
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sponds to an inversion of the string couplingḡs5gs
21. The

transformations~2.25! therefore represent a strong or wea
coupling ‘‘S-duality.’’

Starting withs50, a solution with non-trivial axion field
may be generated directly from a given dilaton-vacuum
lution of the generic form~2.9! by applying Eq.~2.25!. The
dual solutions are given by

ds̄s
25ef̄1 f~2dj21dz2!1jef̄~epdx21e2pdy2!

~2.27!

ef̄5C2e2f1D2ef ~2.28!

s̄5
ACe2f1BDef

C2e2f1D2ef
. ~2.29!

To summarize thus far, we have seen how two inequi
lent classes of inhomogeneous string cosmologies wit
non-trivial two-form potential can be derived from a give
dilaton-vacuum solution, by employing the non-compa
global SL(2,R) and O(2,2) symmetries of the model. Th
dual solutions may be referred to as ‘‘dilaton-axion’’ co
mologies. In all cases, they are parametrized in terms of
functions$ f ,p,f% that define the seed dilaton-vacuum so
tions.

Thus, the asymptotic behavior of these models can
investigated directly once the seed solution has been sp
fied. We therefore proceed in the following section to der
two classes of inhomogeneous dilaton-vacuum cosmolo
that may be viewed as generalizations of the homogene
Bianchi type VIh universe.

III. INHOMOGENEOUS DILATON-VACUUM
COSMOLOGY

A. Cosmological field equations

When the two-form potential vanishes, action~2.5! re-
duces to that for a massless, minimally coupled scalar fi
For the metric~2.9! the field equations then take the for
@28#

ḟ 52
1

2j
1

j

2
~ ṗ21p821ḟ21f82! ~3.1!

f 85j~ ṗp81ḟf8!, ~3.2!

p̈1
1

j
ṗ2p950, ~3.3!

f̈1
1

j
ḟ2f950, ~3.4!

in which overdots~primes! denote differentiation with re-
spect to the timelike variablej ~spacelike variablez). Equa-
tions ~3.3! and ~3.4! are the integrability conditions for th
system~3.1! and ~3.2!. The field equations~3.1!–~3.4! are
invariant under the simultaneous interchangep↔f. Indeed,
the wave equations~3.3! and~3.4! are formally equivalent to
the cylindrically symmetric wave equation in flat space,
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which the general solution is known. A number of cosm
logically relevant solutions satisfying different bounda
conditions have been considered previously@7,8,29#. An im-
portant feature of these equations is that they are lin
which implies that new solutions may be constructed fro
superpositions of known solutions.

Here we consider a linear superposition of solutions of
form:

p5k ln~j!2m cosh21S z

j D1e1E
0

`

@c1~z!J0~ l j!

1c2~z!N0~ l j!# dl ~3.5!

f5a ln~j!2b cosh21S z

j D1e2E
0

`

@c3~z!J0~ l j!

1c4~z!N0~ l j!# dl, ~3.6!

where$a,b,k,m% and $e1 ,e2% are constants,J0 andN0 are
zero-order Bessel functions of the first and second kind
the coefficientsci5ci(z) are defined by

c1~z!5Cl cos~ lz!1Dl sin~ lz! ~3.7!

c2~z!5Fl cos~ lz!1Gl sin~ lz! ~3.8!

c3~z!5Hl cos~ lz!1Ll sin~ lz! ~3.9!

c4~z!5Ul cos~ lz!1Vl sin~ lz!, ~3.10!

whereCl , Dl , etc., are arbitrary constants for each value
l. In both Eqs.~3.5! and ~3.6!, the last term represents th
most generalseparablesolution to Eqs.~3.3! and ~3.4!. The
remaining two terms represent other, in general inhomo
neous, solutions.2 The importance of these other solutions
that they include a number of spatially homogeneous Bian
models as special cases. The Bianchi models admit a th
dimensional group of isometries,G3, that acts simply transi-
tively on three-dimensional spacelike orbits@10#. The G3
contains an Abelian subgroupG2 for the types I–VIIh and
the LRS types VIII and IX@9,30#. CertainG2 models may
therefore be viewed as inhomogeneous generalization
these Bianchi cosmologies. In particular, for solutions of
form ~3.5!–~3.10!, one has the following sub-classes of s
lutions:

~1! The class withe15e25m5b50 corresponds to the
homogeneous orthogonal Bianchi type I models containin
stiff perfect fluid@31#. They reduce to the Kasner solution
the vacuum limit (a50) @32#.

~2! The class withm5b50, e15e251 corresponds to
an inhomogeneous generalisation of the Bianchi I mod
Charach and Malin first considered solutions similar to th

2The first term is also present in the third term and is therefore
a different solution. It is separated out for later consideration.
3-4
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INHOMOGENEOUS EINSTEIN-ROSEN STRING COSMOLOGY PHYSICAL REVIEW D60 043503
by imposing a three-torus topology on the spatial secti
@28#. This effectively converts the integral overl into an
infinite sum, which also has the consequence of simplify
the solution of the remaining field equations forf. Adams
et al. @12# further considered the vacuum case (f50).

~3! The class withe15e250, subject to the constrain
b22a21m22k22350, where k[(2h)21/2. In general,
these models represent tilted stiff perfect fluid Bianchi ty
VIh cosmologies@33#, since the fluid velocity vector assoc
ated with the dilaton field is not orthogonal to the gro
orbits ~surfaces of homogeneity!. They reduce to the Bianch
type III and V models whenk251 andk50, respectively
@34#. In the vacuum limit (a5b50), the solution reduces to
the Ellis-MacCallum type VIh cosmology@35#.

~4! The class withe15e250 corresponds to the inhomo
geneous generalizations of the Bianchi type III, V and Vh
models first considered by Wainwrightet al. @33#. In general,
however, these models suffer from spacelike singulari
and their status as physical cosmologies is uncertain@7#.

An alternative way of considering inhomogeneous gen
alizations of the Bianchi type III, V and VIh models is to
specifye15e251 and impose the constraint

b22a21m22k22350. ~3.11!

Vacuum solutions of this type were considered by Ada
et al. @13#, who concluded that the inhomogeneous struct
of the initial cosmic singularity could evolve into gravita
tional waves propagating over a homogeneous backgroun
late times. In view of the ambiguities associated with int
preting the Wainwrightet al. @33# solutions in a cosmologi-
cal context, our primary interest in the present paper is in
new class of models. We also remark that a subset of in
mogeneous Bianchi I models~item 2! is also included within
this class since these latter models correspond to the par
lar solutionb5m50.

The remaining field equations~3.1! and~3.2! for the lon-
gitudinal metric functionf may now be solved in principle by
substituting in the derivatives of Eqs.~3.5! and ~3.6!. How-
ever, solving Eq.~3.1! is non-trivial, because the right-hand
side contains integrals overl that originate from the integra
wave-train terms of Eqs.~3.5! and~3.6!. Unfortunately, these
can not be expressed in a closed form and some simplify
assumptions must therefore be made in order to proceed
lytically.

In view of this, we consider two separate schemes. In
first, we restrict the analysis to a single mode,l, which could
be viewed as dominating over all the other modes. T
choice of one mode allows the integrals overl to be
dropped.3 In the second case, we assume the amplitude
each of the modes in Eqs.~3.5! and ~3.6! are equal, i.e., we
specifyCl5C, Dl5D, etc.

3Particular solutions of the field equations that consist of supe
sitions of two or more modes may also be found by employin
discrete summation overl in place of the integral in Eqs.~3.5! and
~3.6!.
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We first integrated Eq.~3.1! to deduce an expression forf
containing an unknown function of integrationf 1(z). In each
of the cases we considered, it was found that Eq.~3.2! was
then trivially satisfied for constantf 1(z). We now proceed to
present the two classes of solutions, together with their
mogeneous limits.

B. Homogeneous solutions

The homogeneous limit of these solutions is determin
by specifyinge15e250 in Eqs.~3.5! and ~3.6! @33#. Equa-
tion ~3.1! can then be integrated to yield the longitudin
component of the gravitational field in the metric~2.9!:

f hom5C11
1

2
~a21b21k21m221!ln~j!

2
1

2
~b21m2!ln~z22j2!2~ab1km!cosh21S z

j D ,

~3.12!

whereC1 is an arbitrary constant of integration and the co
straint equation~3.11! applies. In terms of the variable
~2.12! this component is given by

hhom5C11
1

2
~a21b21k21m221!ln sinh~2t !

1~km1ab!ln tanht ~3.13!

in Eq. ~2.13!. The transverse component of the metric a
the dilaton field respectively take the following forms:

phom522kZ1k ln sinh~2t !1m ln tanht ~3.14!

fhom522aZ1a ln sinh~2t !1b ln tanht. ~3.15!

The hypersurfacest5constant represent the surfaces of h
mogeneity. Since foraÞ0, the dilaton field depends on th
spatial variable,Z, the fluid velocity as measured byum
5f ,m /(2f ,nf ,n)1/2 is not orthogonal to the group orbits
Thus, this solution may be interpreted as a tilted stiff flu
type VIh solution.

C. Single-mode solutions

After restricting the analysis to a single mode,l, the inte-
gral of Eq.~3.1! is readily found. The resulting solution ma
be expressed in terms of its homogeneous, gravitatio
wave and scalar wave components:

f 5 f hom1 f gw1 f sw , ~3.16!

where the homogeneous component,f hom, is given by Eq.
~3.12!, the gravitational wave component is given by

o-
a

3-5
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f gw51
j2

4
„@c18J0~ l j!1c28N0~ l j!#21@c18J1~ l j!1c28N1~ l j!#2

…1
l 2

4
j2
„@c1J0~ l j!1c2N0~ l j!#21@c1J1~ l j!1c2N1~ l j!#2

…

2
l

2
j@c1J0~ l j!1c2N0~ l j!#@c1J1~ l j!1c2N1~ l j!#1k„c1J0~ l j!1c2N0~ l j!…2mlzc1E J1~ l j!

Az22j2
dj

2mlzc2E N1~ l j!

Az22j2
dj2mc18E jJ0~ l j!

Az22j2
dj2mc28E jN0~ l j!

Az22j2
dj ~3.17!
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and the scalar-wave componentf sw is determined by making
the substitutions

k→a, m→b, c1~z!→c3~z!, c2~z!→c4~z!
~3.18!

in Eq. ~3.17!. The gravitational and scalar wave compone
encode all the inhomogeneous contributions to the longitu
nal component of the gravitational field. The integrals in t
expressions forf gw and f sw can actually be performed, pro
vided the integrand is first expressed as a series. The res
a series which reduces to a closed form expression in
asymptotic late-time limit.

D. Equal-amplitude solutions

When all the modes in the integral wave-trains of E
~3.5! and ~3.6! have equal weighting, we may employ th
identities

E
0

`

J0~ l j! f ~ lz! dl5H 1

Az22j2
if f ~ lz!5sin~ lz!,

0 if f ~ lz!5cos~ lz!,
~3.19!

E
0

`

N0~ l j! f ~ lz! dl

55
2

p

cosh21~z/j!

Az22j2
if f ~ lz!5sin~ lz!,

21

Az22j2
if f ~ lz!5cos~ lz!,

~3.20!

in order to integrate Eq.~3.1!. To avoid unnecessary compl
cations, we further restrict our attention to the class of so
tions where the contributions from the Neumann functio
vanish (c25c450).4 The transverse component of the gra
tational field and the dilaton are then given by

p5k ln~j!2m cosh21S z

j D1
F

Az22j2
~3.21!

4The solution may also be found for the case when the Neum
functions are included.
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f5a ln~j!2b cosh21S z

j D1
M

Az22j2
,

~3.22!

respectively, whereF andM are arbitrary constants. The lon
gitudinal component of the gravitational field,f, may now be
determined by substituting Eqs.~3.21! and ~3.22! into Eqs.
~3.1! and ~3.2! and integrating. One finds that

f 5 f hom1
F21M2

4~z22j2!2
j21

mF1bM

z22j2
z1

kF1aM

Az22j2
.

~3.23!

In terms of the variables defined in Eq.~2.12!, it is given by

h5hhom1~kF1aM !e2Z1~mF1bM !e2Zcosh~2t !1
1

4
~F2

1M2!e4Zsinh2~2t !, ~3.24!

wherehhom is given by Eq.~3.13!. The transverse compo
nent and dilaton are given by

p522kZ1k ln sinh~2t !1m ln tanht1Fe2Z ~3.25!

f522aZ1a ln sinh~2t !1b ln tanht1Me2Z

~3.26!

when expressed in terms of these variables.

IV. ASYMPTOTIC BEHAVIOR

In this section we consider some aspects of the asymp
behavior of the inhomogeneous string cosmologies deri
above. The axion field in the dual solution~2.27!–~2.29!
tends to a constant value in the limitsf→6`. It is therefore
dynamically negligible in these limits. Equation~2.28! im-
plies that for all solutions generated by the SL(2,R) transfor-
mation~2.25!, there exists a lower bound on the value of t
dilaton field if C andD are non-zero. This implies the exis
tence of alower ~non-vanishing! bound on the string cou
pling which, in the context of M theory, in turn implies th
n
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existence of a lower bound on the radius of the eleve
dimension,5 R11, sinceR 11}ef/3 @1,36#.

In the class of dual solutions~2.23!, it follows from Eq.
~2.21! that the two-form potential tends to a constant in t
limits whereG→0 andG→`, i.e., when the volume of the
transverse space measured in the string frame becomes
ishingly small or arbitrarily large. Thus, the two-form pote
tial effectively decouples from the field equations in the
limits. The limiting behavior of the dilaton field in the dua
solution follows from Eq.~2.22!. In particular, whenG→0
anddÞ0, the dilaton asymptotically tends to the form it h
in the seed solution~up to a constant linear shift!. The same
conclusion applies forḠ. In this limit, therefore, the dua
cosmology asymptotes to the original seed, dilaton-vacu
solution. In the opposite limit, whereG diverges, the dua
cosmology asymptotes to the solution that is derived
specifyingd50 in Eq. ~2.16!.

The above discussion applies to any class of string c
mologies derived with the symmetry transformations d
cussed in Sec. II. To illustrate this further, we consider
asymptotic behavior of the string cosmologies~2.23! derived
from the equal-amplitude dilaton-vacuum, seed solut
~3.21!–~3.23!.

We recall that in determining the asymptotic behavior
cosmological models the choice of time gauge is importa
Since the models considered here may be viewed as des
ing inhomogeneous waves propagating over homogene
Bianchi backgrounds, a reasonable measure of early and
times is provided byt in the coordinate chart$t,Z,x,y%. As
we shall see, the asymptotic behavior in the limits of sm
and larget corresponds to eitherG→0 or ` in the solution
~2.23!. This implies that the class of string cosmologi
~2.23! asymptotes between two dilaton-vacuum solutio
where the two-form is dynamically negligible. In effect, th
field induces the transition between the two dilaton-vacu
limits. A similar conclusion holds for the dual solutio
~2.27!.

In the limit, t→1`, the relevant terms in the asymptot
forms of Eqs.~3.21!, ~3.22! and ~3.24! are

p'2k~ t2Z!1F e2Z ~4.1!

f'2a~ t2Z!1M e2Z ~4.2!

h'~a21b21k21m221!t1
1

16
~F21M2!e4(Z1t).

~4.3!

In terms of the coordinate pair$j,z%, this implies that

p'k ln~j!1
F

Az22j2
~4.4!

5We are assuming implicitly that the extra six spatial dimensio
are fixed.
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f'a ln~j!1
M

Az22j2
~4.5!

f '
1

2
~a21b21k21m221!ln~j!1

~F21M2!j2

4~z22j2!2
.

~4.6!

We note that, in view of Eq.~2.12!, the singularity atz5j
only corresponds to (j,z)→(`,`) and therefore cannot b
reached in a finitet-time alongany curve.

In the limit t→0, the corresponding limiting forms of th
metric components and dilaton field are

p'22kZ1~k1m!ln t1Fe2Z ~4.7!

f'22aZ1~a1b!ln t1Me2Z ~4.8!

h'
1

2
@a21b21k21m212~km1ab!21# ln~ t !

1@~k1m!F1~a1b!M #e2Z. ~4.9!

The limits of the determinantG are deduced by substitutin
Eq. ~2.12! and Eq.~4.2! or ~4.8! into Eq. ~2.11!:

G~ t→1`!'exp@4~a11!~ t2Z!12Me2Z# ~4.10!

G~ t→0!'4 exp@24~11a!Z12Me2Z

12~11a1b!ln t#. ~4.11!

The behavior of the dilaton field in the limit where the d
terminant diverges is most readily determined by substitut
Eq. ~2.11! into Eq. ~2.22!. We find that f̄'2f22 lnj
22 lnc. This is interesting, because for finiteZ, Eq. ~4.2!
implies thatf}a ln j for t→`. For a@1, therefore,f̄'
2f and, in this sense, the strongly coupled limit of the du
solution may be viewed as the weakly coupled limit of t
seed solution, and vice versa.

In taking the early or late time limits of an inhomoge
neous cosmological model, one has to take account of b
direction and time. Here, we have inhomogeneity in t
Z-direction only. The question that then arises is whether
Z-dependent terms in the above expressions dominate
the t-dependent ones. For any finiteZ, the time-dependen
terms eventually dominate ast→$0,̀ %. A possible ambigu-
ity in the limit arises, however, if we allowZ(t)→` suffi-
ciently fast relative to thet-dependent terms.

It is helpful to consider the simple set of straight linesV
5$Z5rt1k ur, kPR%, as probes with which to study th
asymptotic behavior.6 In this case, it follows from Eq.~4.10!
that

s

6The precise form of these curves is not important, their util
derives from the fact that they may be employed to probe the th
dynamically important casesZ(t)→6`, Z(t)5finite.
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G~ t→`!'H exp@4~11a!~ t2Z!# if r<0

exp@2Me2Z # if r.0.
~4.12!

The sign of r determines the term that dominates in E
~4.12!, with r.0 (r,0) corresponding to motion in th
positive ~negative! Z-direction while r50 corresponds to
moving alongZ5const trajectories. Thus, forr<0, G→`
for a.21, while G→` for M.0 andr.0. On the other
hand, the determinant becomes vanishingly small ifa,21
andr<0 or if M,0 andr.0.

In the early time limit,Z→k5constant for the paths w
are considering. Eq.~4.11! then implies thatG}t2(11a1b). It
follows thatG→0 if a1b.21 andG→` if a1b,21.
The limiting forms of the dilaton and the transverse and lo
gitudinal components of the metric are determined by allo
ing Z→k in Eqs.~4.7!–~4.9!. Transforming to the synchro
nous frame by defining

t[E t

dt8eh(t8)/2 ~4.13!

then implies that, for both seed and dual solutions, theG2
line-element~2.6! in either the Einstein or string frame
qualitatively takes the form

ds252dt21A1~k!ta1dx21A2~k!ta2dy21A3~k!ta3dz2,
~4.14!

where the constantsai can be expressed in terms
$k,m,a,b% andAi depend onk. This solution represents a
inhomogeneous generalization of the Kasner-Belins
Khalatnikov~KBK ! solution@38#, in the sense that at eachZ,
parametrized here by the constantk, the universe describes
particular KBK solution.

Thus, the determinant of the transverse space in the s
frame vanishes or diverges in the early and late time lim
The precise behavior depends on the constants that ari
the seed dilaton-vacuum solution. These constants are
trary modulo the constraint equation~3.11!. In both limits,
the two-form potential asymptotes to a constant value
the dilaton field tends to its original form whenG→0.

V. CONCLUSION AND DISCUSSION

In this paper we have employed the global symmetries
the string effective action to derive two families of inhom
geneous string cosmologies from a generalized Einst
Rosen metric admitting an Abelian group of isometries,G2.
The solutions were parametrized in terms of the metric fu
tions of the seed solution. Thus, the qualitative behavior
these models can be determined directly from the asymp
form of the original metric. Inhomogeneous generalizatio
of the Bianchi type VIh string cosmologies containing a non
trivial dilaton and two-form potential were derived. In ge
eral, these fields induce inhomogeneities that may be vie
as scalar and gravitational waves propagating over a ho
geneous background.

One of the main applications of Einstein-Rosen mod
arises because many of the non-perturbativelyexactsuper-
04350
.

-
-

i-

ng
.
in

bi-

d

f

n-

-
f

tic
s

ed
o-

s

string backgrounds constructed from the gauged We
Zumino-Witten ~WZW! models admit two Abelian
isometries.7 Hence, given our current knowledge of strin
cosmology and conformal field theory, theG2 Einstein-
Rosen cosmologies derived within the context of the l
energy effective action represent a set of models tha
closely related to many exact string solutions in four dime
sions. In this sense, it is of primary importance to underst
the dynamical behavior of these solutions. In particular, o
question that arises is whether theG2 solutions to the low
energy string equations of motion discussed in this w
asymptote towards known WZW models in the early- or la
time limits.

Since our solutions are valid in the weak coupling regim
they should correctly represent the asymptotic states of
turbatively exact string cosmological models at future,
past, timelike infinity. On the other hand, in the strong co
pling regime, i.e., near the big-bang singularity, one expe
that higher-order corrections to the perturbative theory,
well as non-perturbative string effects, should become
creasingly important. Hence, in this regime the qualitat
behavior of these solutions may deviate somewhat from
of solutions derived from the full M or string theory. How
ever, there are reasons to believe thatG2 solutions should
nevertheless provide a generic description of cosmolog
models in the vicinity of a singularity. A major incentive fo
this comes from the long standing conjecture of Belinski a
Khalatnikov@38–40#. This states that on the approach to t
cosmological singularity, the generalized Einstein-Ros
metrics may play the role of the leading-order approximat
to thegeneralsolution of conventional Einstein gravity. It i
therefore important to study the behavior of these model
the t→0 limit as well.

In addition such solutions provide a useful framewo
within which to study a number of other topics in early un
verse string cosmology. In particular, they serve as a th
retical setting for investigating the pre-big bang inflationa
scenario@16#. In the context of this scenario, one is usua
interested in solutions where both the curvature and effec
string coupling~the dilaton! diverge ast→0. So, from Eq.
~4.8!, it follows that one needsa1b,0 in order to satisfy
the requirements for pre-big bang inflation in the string c
mologies generated from the equal-amplitude, dilato
vacuum solutions. These solutions possess a Kasner
early time limit which under time reversal makes them co
patible with pre-big bang inflation. However, in order for th
inflation to end, this scenario requires a mechanism for
ducing a graceful exit into the standard, post-big bang ph
At present, this problem is unresolved and it is possible t
the inhomogeneous singularity may pose a further compl
tion in addressing the exit problem. It would be interesting
consider the homogenization of the universe within the c
text of these solutions.

The initial conditions for the pre-big bang scenario a

7See, for instance, Ref.@37# for a review of the gauged WZW
models.
3-8
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based on the assumption that both the curvature and cou
are sufficiently small enough to ensure that the universe i
the perturbative regime. An important question in connect
with this scenario is the naturalness of these initial conditi
@41#. An attempt has recently been made to address
question by conjecturing that the past attractor of the in
tionary solution is likely to be that of the Milne univers
@17#. If true, this would go some way towards establishi
the ‘‘naturalness’’ of the scenario. More general initial sta
were also recently considered@18,42#. The solutions dis-
cussed above possess a range of possible late time li
which in general are not Milne-like. This suggests that t
class of models is not generally compatible with the conj
ture of Ref.@17#.

Furthermore, there exists a lower bound on the string c
pling for models generated by the SL(2,R) transformation
~2.25! and this has implications for the range of initial valu
that such a parameter can take. This in turn leads to an u
limit on the amount of inflation that can occur before high
order effects become significant@41#.

The solution generating techniques discussed in Sec
can be incorporated into more general algorithms. Althou
the models presented in this paper break spatial homoge
along one direction, they still exhibit a certain degree
symmetry and it is important to develop further techniqu
that lead to more general solutions. Recently, by extendin
previous method@43#, an algorithm was presented that ge
erates inhomogeneousG1 scalar field cosmologies exhibitin
a single isometry from matter filled and vacuumG2 back-
grounds@44#. Such models break homogeneity in two spat
directions. The discussion of Ref.@44# was placed within the
context of Einstein gravity and it would be interesting
adapt this algorithm to string cosmology. In principle, a fa
ily of inhomogeneousG1 string cosmologies could then b
generated from theG2 solutions discussed in Sec. II.

The string effective action exhibits a further discrete sy
metry when there exits aG2 isometry @22#. This ‘‘mirror’’
symmetry interchanges the transverse metric degrees of
dom with the dilaton and axion fields and leads to a n
’’
ng
-

7
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solution with a different spacetime interpretation@22,45#.
When the axion field is trivial, the symmetry reduces to t
simultaneous interchangep↔f in Eqs. ~3.1!–~3.4!. In par-
ticular, the negatively curved Friedmann-Robertson-Wal
string cosmology@4# may be generated in this way from
vacuum Bianchi type V model@45#. A third class of inho-
mogeneous string solutions with a non-trivial two-form p
tential may therefore be found by applying this discrete sy
metry to theG2 backgrounds derived in this work.

The G2 backgrounds we have discussed are parametr
by non-trivial fields from the NS-NS sector of the strin
effective action. This sector is common to all five perturb
tive string effective actions and the solutions may theref
be viewed as truncated solutions of both the heterotic
type II theories. The type IIB theory also has a non-triv
Ramond-Ramond~RR! sector, consisting of an additiona
axion field and a two-form potential@2#. These fields differ
from those of the NS-NS sector in that they do not cou
directly to the dilaton field in the effective action@36,46#.
There are further symmetry transformations that can be
plied to generate a non-trivial RR sector from a given NS-
background@47#. Our solutions therefore represent seeds
investigating the role of RR fields in inhomogeneous str
cosmologies. To date, such fields have only been studie
an homogeneous setting.
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