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On the realization of assisted inflation
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We consider conditions necessary for a successful implementation of the so-called assisted inflation. We
generalize the applicability of assisted inflation beyond exponential potentials as originally proposed to include
standard chaotit\ ¢* or m?$?) models as well. We also demonstrate that in a purely four-dimensional theory,
unless the assisted sector is in fact decoupled, the additional fields of the assisted sector actually impede
inflation. As a specific example of an assisted sector, we consider a five-dimensional Kaluz&Klgmodel
for which the extra dimension may be somewhat or much larger than the inverse Planck scale. In this case, the
assisted sectdicoming from a KK compactificationeliminates the need for a fine-tuned quartic coupling to
drive chaotic inflation. This is a general result of models with one or more “large” extra dimensions.
[S0556-282199)05014-§

PACS numbs(s): 98.80.Cq, 04.50:h

[. INTRODUCTION could drive power-law inflation with a net pow&r=Xp;

sufficient to solve the cosmological problems, even if each of
the fields¢; alone are not capable of doing so. Furthermore,

Yhe spectral index of density fluctuations is also brought

One of the long standing problems in inflationary model
building is the apparent necessity of some fine-tuned co

plings or massetsee Refl1] for reviews. Barring an alter- closer to the scale invariant spectrunpifis replaced byp.

native to standard inflation, either a model predicting the_l_he dvnamics of this tvpe of “assisted” model was dis-
presence of small couplings, or a more innovative model| ussegin Ref[8] yp

. : C
which does not require them must be constructed. Develop- Here, we will show that the assisted paradigm can easily
Il?e extended to other types of inflationary models such as the

ments such as the pre-big-bang mofiz] go a long way
towards this goal, but issues such as the graceful exit Stlchaotic models mentioned above. We will also show that the

require resolutior}3].

The simplest inflationary scenarios are by far the chaoti
inflation models[4] involving a single scalar field. For ex-
ample, a potential of the fornd(¢) =\ ¢* will produce suf-
ficient inflation if the initial background field value is
¢> few Mp. However, in order to obtain the correct mag-

nitude for density fluctuations, one must require that the

vacuum energy density during the last50 e-foldings of
inflation be of ordeN~ (10 GeV)* or A~ 10 *2 Similarly
chaotic models based on potentials of the foi¢)
=m?¢? requirem~10 °Mp in order to satisfy the Cosmic
Background ExplorefCOBE) constraint.

It is well known that power-law expansig] rather than
exponential expansion may be sufficient to resolve the sta
dard cosmological problems associated with inflation an

that such solutions can be generated by exponential potelﬁ)

tials [5,6]. For example, a potential of the fornu(¢)

=e M, leads to power-law expansion with the cosmologi-

cal scale factor growing a&(t)~tP with p=2/\?. Further-

more, density fluctuations are no longer scale invariant bu

scale ag (5p/p) (k)|>~k"~ ! with n=1—2/(p—1). To ob-
tain,n=1, one requirep to be large.

Recently, it was noticefi7] that a system of several scalar
fields each with a potential

éamsatz(l) of effectively decoupled scalar fields is absolutely
hecessary for assistance to work. For example, the cale of
scalar fields each with a potential defined fy=p, would
lead top=Np for self-coupled fields, while it would lead to
P=p/N for a system of fields which were cross coupled.
Such a situation would undermine the benefits of assisted
nflation.

Although the identity of these multiple fields was not
specified in Ref[7], one possible source for the necessary
multiplicity is a theory with an extra compact dimension.
The Kaluza-Klein reduction of a scalar field in five dimen-
sions, will result in a spectrum of states with masseg/L?
qvhereL is the size of the compact extra dimension LIf

M ,;1, there may be many nearly massless “copies” of the

riginal scalar field which may serve to assist inflation. We

find that, although the resulting system of scalar fields pro-
duced from the Kaluza-KleifKK) reduction may be heavily
cross coupled, it can eliminate the usual fine-tuning associ-
?ted with chaotic inflation driven by a quartic coupling and
achieves the goals of assisted inflation.

Il. ASSISTED INFLATION AND DECOUPLED FIELDS

Assisted inflation as described in Ref$,8] relies on the

2 premise that there exist a set Nf scalar fields each with
V=V, exp( - \/:qﬁi) (1) potential given by Eq(1). The Lagrangian for the system is
Pi given by
N1
. . o .
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Each field¢; satisfies its equation of motion same basic idea expounded in R¢f58] carries over very
simply to chaotic inflation based on a quartic potential.
i

b+ 3H b = — avi 3 While X, must still be of order 10%2, the fundamental cou-
bi bi ") () U _
de; pling in the theoryn, can now be much larger N is large.
Note, however, that the additional scalar fields do not affect

where the Hubble parameter is given by the quadratic version of chaotic inflation whatsoever.

N

1.
3H2= 21 [§¢i2+vi (4) Ill. GENERAL THEORIES WITH CROSS COUPLINGS

The success of the assisted paradigm demonstrated in the
(We are working in units such thatz8M2=1) In Refs. section above, is directly related to the absence of cross-

[7,8] it was shown that this system has a late-time attractofOUPling terms between different scalar fields. As soon as the
solution described by a single rescaled scalar fig multiple self-interacting scalar fields are substituted with

~ 5 . y L~ , cross-coupled fields, the assistance method ceases to work.
=(P/py) ¢1 with potential V=(p/py)V;. The resulting

To see that this is the case, it is reasonable to consider gen-

power-law expansion of the Universe is simgR(t)~t"  eral field theories of multiple scalar fields of the form
(provided that each of thp;>1/3).

As we will now demonstrate, the basic idea behind as- N1 m?
sisted inflation can be applied more generally than the case -L£=2 (5(3¢i)2+ 7¢i2
of exponential potentials. We can consider a general field =1
theory of multiple, self-interacting scalar fields of the form

+ VI ’ (9)

where the potential may contain not only self-interaction

N (g e \ \ terms, like the theory in Sec. I, but also cross-coupling
o Z(0d) 2+ — b2\ + 28 434 o4 pal terms between different fields. Specifically, we study the fol-

£ Zl [2( $)H 5 ¢ .21 {3! RTRY lowing three cases.
(5) (A) We start by considering the following simple theory

) _ ) ) of coupled scalar fields with cubic and quartic interaction
The equation of motion for each field; derived from the tems:

variation of the above Lagrangian has the form
4

A N 3 g N
Visgr| 2 o) | 24 (10

F the ab tion. it is obvi that th ; In this form, the invariance of the theory under the change
rom ﬂ\? a OV? e?u% lon, 1 IISdO V|(|)usf_ Ig € Sys erln C?n{biH@ is obvious which leads to identical equations of mo-
sists ofN completely decoupled scalar fields or equivalently o, for each of the different scalar fields

of N copies of the same field. As a result, the Lagrangian can
be written as

Vb=t T 7. ©

3

N 2 \ N
2 ¢>k) +§(k21 ¢k> SGED

) Vii=m’g;+ %
_yll 2, M 5 A3 o3 Moy
—L=N §(3¢1) to bt gt _ _ _ _ .
: : By subtracting the equations of motion of two arbitrary fields
1 m2 it i ¢; and ¢;, we can easily see that the solutigp= ¢; is the
= T (D) 2+ — P24 234 DA e 7)  unique late-time attractor of the system. As a result, the La-
5 (08)7+ 9%+ 37 ¢+ 17 6%, 7) _ _
: : grangian can be written as

where 1 m? A A
—L=N|5(962)%+ 5 6F |+ 57 (Nby) >+ 5 (Ny)*
=N¢;, X _Ms it _Ns (8) - ~
¢ 1, A3 N’ 47N 1 m2~2 A3 Ny,
=5 (9)%+ 5 B+ 57 6%+ 7%, (12

Notice that the above field redefinitidamade to rewrite the

Lagrangian in terms of a field with a canonical kinetic term where

results in a scalar field with an unchanged mass. The result-

ing theory describes a single scalar field with the same type d=IN;, N3=N3N¥2 X, =N,N2 (13

of self-interactions compared to the fields in the original

theory. However, these self-interactions are considerablyVe notice that, when we allow cross-coupling terms between
weaker since both of the coupling constants now scale witldifferent fields to be present in the theory, we obtain a result
the number of scalar fieldd. As a result, as the number of for the effective potential which is radically different from
scalar fields that we include in the theory becomes larger, ththe one we found in the case of self-interacting fields in Sec.
effective coupling constants naturally become smaller andl. The presence of these cross-coupling terms drives the
the corresponding fine-tuning becomes milder. Thus theffective potential, or the coupling constants, in the opposite
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direction from that desired: the renormalized, single scalatf we subtract the equations of motion of the fields and
field ¢ is more strongly coupled than the original scalar . We can easily conclude that, once again, the unique late-

fields ¢; with the coupling parameteﬂsg and)\4 increasing time attractor of the theory has all of the fields equal. By

with the number of scalar fields that we include in the theory.

As a result, the necessary fine-tuning of the coupling con-

stants becomes now much more severe. —L=N
(B) A slightly different version of the above coupled sca-

making use of this result, the Lagrangian may be written as

1 m?
§(3¢1)2+7¢§

lar field theory can be formulated in the following way. Con- N3 3 3
sider +37[(1=Ca)N1+Cs(Ny)"]
. Na 4 24 (1 e N+ ca(Ng))
4 4 1
—L= El[ (9 >2+—¢. 213 2 g3y ¢>f‘] 41 !
1 . m.
N NoAge =5 (9¢)°+ 5 ¢*
+ > 3,3¢¢J¢k > #‘l&iﬁbjd’kd’l- 2 2
ijxk=1 3! ijki=1 4!

(14) + §?¢>3[1+c3(N2— 1)]

In the last two terms, the indices, {,k) and (,j,k,I) are not Nan

allowed to all take on the same value and, as a result, these + E¢4[1+C4(N3_1)]’ a7
terms describe only cross couplings between different fields. :

The above formulation, i.e., the introduction of the param-ywhere

etersc; andc, in the cubic and quartic interaction terms,

respectively, allows us to turn off the cross couplings be- ~ N3~ Mg
tween the scalar fields while keeping the self-interactions in $=No1, No=— N M= (18
the theory.
We can rewrite the above Lagrangian in the following If we choosec;=c,=0, then, we recover the theory of
way: self-interacting scalar fields that was discussed in Sec. Il and

for which the assistance effect worked perfectly leading to an
N extremely weakly coupled scalar field theory. If, on the other
E {3' H3+ ? ¢>i4] hand, we choose;=c,=1, then, we go back to the cagk)
= : studied above, where the potential increases rapidly with the
numberN of scalar fields. A third possibility arises when the
} parameterg; adopt some intermediate values. For example,
if, for large N, c3~1/N? and c,~1/N3, the coefficients of

N

—L= _21[ a¢>2+—¢.

s 0] S

the renormalized cubic and quartic terms that appear inside
the brackets are aP(1) and the desired behavi(t8) of the

coupling parameters; is ensured. One could argue that the

(2 ¢.) 2 i

N ) result of this analysis is to transfer the fine-tuning from the
_ 2 [E((MJ')Z*‘ m- ¢z] coupling constants to the parameteys Indeed, it shows the
= ' ! degree to which the cross couplings must be fine-tuned for
N 3 assistance to work.
E gb-) } (C) Finally, we consider a theory oN scalar fields
|
=1

+ 3! coupled to each other through an exponential potential

N
2 (1-c9) 3, ¢+ ¢

N 1 N >
(15 —Ezzl §(3¢i)2+voiﬂl ex;{ - \[Ed)i). (19

This is similar to the potential considered by Liddleal.[7]
and, then, the equation of motion for each figl has the  with the sum of exponentials replaced by a product. In the
form case of the summation, thHe scalar fields do not interact

with each other and the unique late-time attractor has all

N
Ag
a1 (1mc) 2 dite,
4. i=1

N 2 fields equal. As discussed in the Introduction, this solution
2, _ .2 N3 5 . .
Vig=m’¢;+ — (1—c3)¢j +c5 2 leads to a power law expansion which can solve the standard
2 = inflationary problems with a relatively flat spectrum of den-
N N 3 sity fluctuations.
o4 (l—c4)¢>j3+c4 > ¢ ) } (16) In our case, however, the scalar fields are coupled to each
i=1 other. The equation of motion for the fielt takes the form
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2 o N G,s. This action can be brought into the Einstein frame by
V2gi=— \/%VO ex;{ — \[521 b - (200 the conformal transformatioG,,,=e" ’g,, to give
The right-hand-side of the above equation is the same for Se=— lf d*xg{ R+ §((97)2+ esyl F2.t. (29
every field ¢;. As a result, the unique late-time attractor, 2 2 4

which has all the fields equal, is still valid even in this case o _ . .
where the fields are coupled. Now, the Lagrangian can be Let us further suppose that the original five-dimensional

written as theory contains an additional massless scalar figlevith

action
N 12
—L= E(O"¢1)2+V0 exl{ - \/%Ndﬁ)
Sf—fdwﬁ%eﬁ%w%@n (26)
1 . 2.
=—(9¢)?+V exp(—\/; ) 21
2( ¢) 0 p ¢ @y where the indice#\,B={t,x,X»,X3,z}. We can Fourier ex-
where now pand¢ alongz as
~ P $(x,2)= o(X) + (X, 2)
=Ny, B=1. 22 .
= (X)) + b (x)el (NTL) z g% (g~ (nm/L) z ,
As a result, ifp, in the original theory, was not large enough Po(X) ngl [a(x) ¥ (%) |
to support inflation, the situation is worsened simcé di- 27)
vided by the number of scalar fields that are present in the
theory.

In each of the cases studied above, it is evident that thahere &, is the five-dimensional field that depends only on
presence of interaction terms between the scalar fields of th%oncompac(; co_ordmates. di . d . h
theory undermines the benefits of assistance and impedes the YPON reducing to four dimensions, and performing the

successful implementation of inflation. While the cases wes@me conformal transformation, the acti@®) becomes
studied are certainly simplified, we expect the general result ’

to hold, namely, in a theory with multiple scalar fields, as- s,—— | d*\g i
sistance requires the abserfoe near absengef cross cou- b Xvg &5
-3y 2
IV. FIELD THEORIES WITH MULTIPLE SCALAR + L2 e |¢“| H' (28)
FIELDS

2

nw
d, Tl TAM bn
plings between the scalar fields.
2.2

where we have defined the four-dimensional scalar figld

. Given_the po_tential utility of ha_lving several or many = 2L . In what follows, we will assume that the dilaton-
fields which are in some sense copies of each other, we NOW & field yis fixed[9], and ignore the role of the KK gauge

look at a possible source for these fields in theories WithfieIdA . Although we have written the action in terms of an

extra spatial dimensions. It is well known that the Kaluza’infiniteﬂsum the momentum alorg p,, should be limited

Klein reduction of a theory leads to the existence of many. v in t’hat case. we should onIZ'consider fields up to

new fields which appear as zero-modes in the final four'ny—Ni.LM I For’(wL*«M ) t%ere may be mar?y

. . . . -~ N=N=<LMg/7. 5),
g:mzzz:gﬂg: t?s\(/)igtiol:noarl zﬁﬁgpg’tﬁg?zﬁfr a simple fIVefields which can in principle assist inflation. Such theories
9 are, to say the least, of wide interest at the moni2@t (see

M3 also Ref[11], and references thergin

Sg= _f d®x /GS{_SRSJv (23 ~ Letus now consider the following fi.ve—dimer.lsional scalar
167 field, self-interacting through a quartic potential, as a con-

. i . . crete example:
whereM5 is the five-dimensional Planck mass. Upon com-

pactification along dimension of circumferenck,2we ob- 1 N
tain _£5D=§§A<2’5A<}5+ YTIYIR.

4!M5¢4' (29
%=—%fd&ﬁiw 2

1
e 24 _ - : o
4 KK] % The kinetic term for the five-dimensional fielfl can be ex-

panded as in Eq.28). Similarly, the substitution of the ex-
whereM2=2LM2, v is the scalar associated with the 5-5 pansion(27) in the potential gives rise to numerous interac-
component of the metricef”=Gsg) and Fy is the field tion terms between the Kaluza-Klein scalar fields. Then, the
strength of the Kaluza-Klein gauge field associated withfour-dimensional Lagrangian can be written as
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1 o n2 2 Making this substitution forY, the first two equations of
—£4D:§dﬂ¢0aﬂ¢o+ Z (5M¢nﬁ'“d): + Iz bndr motion reduce to
n=1
Mo 2% * V2¢0:§¢8+§¢0X2(1+K2%
+ 47 ¢O+ 12(1’0;1 ¢n¢n 6 2
- V2X = m2X+ §¢3x+ éx3(1+,<2). (35)
1200 2 ($nbichn it bn bk bnnid 2 4
o As long as the mass term is negligible compared to the cubic
+n g’=1 (Adndkdi bpsir1 4 Dh Dk B Dt term, i.e., whemm®<\ /2,

bo=0gX (36)

, (300 s also a solution, provided that

+6hn il Phik—i(=1)

in terms of the four-dimensional fieldb> and the four- q2=§(1+;<2). (37
dimensional coupling\=X/(2LM5). Note that in the last 4

term in the last equation we include only the terms for whichy, yis case, the kinetic part of the Lagrangian can be written
n+k—1=1. It is also important to note that the four-

dimensional(dimensionlesscoupling is now reduced rela-
tive to the original five-dimensional coupling by an

amount 2 Mg=N.
It will be useful to begin the analysis of this system by

1 2 1 2 1 2
_Ekinzz(a¢0) + E(t”() + E(ﬂY)

first simplifying to a restricted set of fields. Thus, in the 1 2 K?
lowest order approximation, we may assume that, apart from =5 (9¢0)7| 1+ (39
the field ¢, only ¢, and ¢7 are present in the theory and
set all the other Kaluza-Klein fields equal to zero. By makingand by using the constrai87), we obtain
use of the definitions
L= 2= (532 39
X4iY , 2 - kin—§§(3¢o) —E(ﬁfﬁ) , (39
h1= v m =12 (31
2 where we have implemented the field redefinition
the effective Lagrangian takes the form 5 7
) p= \[g $o (40)

L =5(a¢ )2+ E(aX)2+ 1((9\()2+ m—(x2+ Y?)
2277 T2 2 2 - -
in order to map the system of the three real, scalar fields to a
theory of a single scalar field. Next, we look at the quartic

+ % ¢g+ %¢g(x2+y2) + %S(XZJr Y22, (32 potential which now takes the form

ot ; PR 7\47‘222)‘22235)‘4
The variation of this Lagrangian with respectdg, X andY V= dot+ 7 do (XT+Y) + = (X+Y) =5 — ¢y
: ’ X 41 4 16 3 4!
leads to the following equations of motion:

N A ==V, (41
V2po= 5 do+ 5 bo (X2+Y?), !
whereV is the quartic potential of the renormalized scalar
V2X = m2X + £¢2X+ EX(X2+Y2) field é. As a result, the presence of the two Kaluza-Klein
2707 4 ' fields X andY have raised the value of the effective potential

by a factor of 15/7 and so, the fine tuning of the coupling

o N o N o constant\ has worsened. Note that this result does not de-
VoY=m7Y+ 2 oY+ 4Y(X +Y9). (33 pend on the substitutiof34) and holds even if we sef
=0.
Obviously, the latter two equations are the same, and so we Before we tackle the more general case, it will still be
can set useful to consider the next-to-lowest order where we allow
¢, and ¢3 , apart fromeg, ¢,, and ¢7 , to be present in
Y= «kX. (349  the theory. In a similar way, we set
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Xi+iYy Xo+iY,
1= ’ 2= ’ (42)
V2 V2
and define
5 G 5 472
m=1z, M=z (43)

Once again the system can be simplified. In this case, the
choice X,=0 corresponds to a special solution of the five
field system as long a¥7=Y2. Then, the remaining equa-

tions of motion are given by

V2 :5¢3+ iqﬁ (2X2+Y2)+AX YiYlo, (44
0 6 0 2 0 1 2 ‘/2 17172,

V2Y;=miY;+ i 51+ A bo(X1Y2)
2 V2

A 2, 2
+ > Y1(X{+Y35), (45)
2 2 Ao A
VEYo,=m3Y,+ 5 doYot v bo(X1Y1)
A 2, 2
+ 2 Yo(4X1+Y35). (46)

If we further assume, as before, that the massgsand

m3 are small compared th¢3/2 and neglect them, the an-

satz
bo=0Xy, (47)

is indeed a solution of the systefd4)—(46). Rearranging
equationg44),(45) and (45),(46), we obtain the constraints

Y,=pY;

3v2p(1—9%)—293+3q=0, (48)

2v2q(1—p?) —p3+2p=0, (49

PHYSICAL REVIEW D 60 043502

By settingX,=0 and using the proportionality relations
that hold between the remaining four scalar fields, the kinetic
Lagrangian takes the form

1 2, 1 2, 1 2, 1 2
_Ekinzi(ﬁd’o) +§(‘9x1) +§(5Y1) +§(¢9Y2)

1 2+p? 1 .
_ = 2 L 2
where
- 2+ p?
d=do\/ 1+ B (59

In the same way, the effective potential can be written as

N~ 6(2+p% 122p 3
— 4 2 4
Ver=77 ¢ P T +2—q4(4+8p +p7)
24+p?\ 2
x| 1+ e (56)

Substituting the values of the parametgrandp from solu-
tions (50)—(53), we obtain the final results for the value of
the effective potential

(A): Veg=1.51V, (57)
(B): V=3.48V, (58)
(C): Veg=1.75V, (59
(D): Veg=1.2V, (60)

where the renormalization of the scalar fi€lsb) has been
taken into account. According to the above results, there is

one solution that multiplies the one-field-potentialby a

numerical coefficient 3.48, which can be compared to the
lowest order solution where the potential was multiplied by
15/7=2.14. In this case the fine-tuning is further aggravated.
However, there are three additional solutions that multiply

respectively. The above system of algebraic equations can hge potential by coefficients which, although larger than
solved numerically leading to the following pairs of values ynity, are smaller than the first one. Thus, there is the hope

for the proportionality coefficientq and p:

(A): q—2.22, p——0.0911, (50)
(B): q—1.07, p—1.13, (51)
(C): q—0.956, p— —3.07, (52)
(D): q—0.722, p— —0.695. (53)

that as we add more and more extra fields these coefficients
become smaller. Recall, that our goal is to ease the original
fine-tuning problem associated witin this cas¢ a simple

N¢* chaotic inflationary model. Furthermore, foN
~2LMs>1, the four-dimensional coupling is~X/N and

will be small providedA~1 andN=10" or equivalently,
Ms=<10 ®Mp. Therefore, so long as the potential does not
grow asN, there will be a viable solution for the assisted
paradigm.

The above set of solutions are supplemented by another set One could argue that the above results for the effective
where the signs off andp are opposite. But, as we will see, potential hold only for the special solutiof7) supple-
both the potential and the kinetic terms are invariant undemented by the relation¥,=0 and szYf that we have

the simultaneous changg— —q and p— —p and so, we
may ignore the second set of solutions.

considered. For this reason, we studied some additional spe-
cial solutions of the equations of motion, namely,
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do=0Xy, Xo=pX;, Y;=Y,=0, (61) It is to be understood that the fields denoted by index com-
binations such as+k+I| andn+k—1 are to be included
bo=0qY1, Xo=pY;, X;=Y,=0. (62)  only if they are=1 and<2N.

Although the substitution of complex fields by an equiva-
Under a numerical renormalization of the proportionality co-l€nt number of real fields simplifies the theory, it does not

efficients, i.e., allow us to study the effect from the addition of a large
number of extra scalar fields on the effective potential by

[ P using the method described above. The appearance of new

q— iE’ p— E (63 cross-coupling terms as we increase the order of the theory

makes the analytical formulation of the problem extremely

tedious and the determination of the result for the effective

the above solutions, substituted in the equations of mOtiO'botential impossible even through numerical methods.
lead to the same constraint48),(49) for the coefficientsj As an alternative approach to the problem, we construct

andp and the same resul(§7)—(60) for the effective poten- e functiong,, ; — ¢, out of the difference of two consecu-

tial. As in the lowest order, the effective potential seems 19;e Kajuza-Klein fields and it is easy to show that it satisfies
depend merely on the number of the real scalar fields ing,q following equation:

cluded in the theory and not on their “flavor,” i.e., if they
come from the real or imaginary parts of the complex \
Kaluza-Klein fields or from an arbitrary combination of V2(¢n+1—¢n):§¢§(¢n+1—¢n)
them.
Indeed, the invariance of the effective potential under the N 2N
selection of different special solutions exists, as long as these +——0 >, {20 Drsnsi— Prsn)
solutions are characterized by the same number of real fields V2 k=1
and lead to the same number of constraints on the propor- + il P
tionality coefficients involved. As we mentioned above, the K Pn+l-k Pk
result is always independent of the origin of these real fields. 2N
We may, then, conclude, that the real and imaginary parts of > (qskqs,[(qskﬂmﬂ— bDrsien)
N Kaluza-Klein complex fields, that come from the compac- 4=
tification of the fifth dimension, constitute equivalent degrees 1
of freedom contributing equally to the final number dfl 2 + §(¢n+l,k,|—¢n,k,,)
degrees of freedom. This result allows us to substitute\the

complex Kaluza-Klein fields with ® real fields. Then, the 3
Lagrangian(30) reduces to + 7 (Pnrrrk T Drrk-1)
(A T L N B W 1
—Lap=5(0¢0)*+ 2 15 (90> + Sz 601 + 77 o +7(bein-1 de-n) [ (67)

2N The right-hand-side of the above equation, which is propor-

\ 2N
+ P02 at o do 2 badudbnik tional to the first derivative of the effective potential with
n=1 2vV2  nk=1 . .
respect to the fieldp,,,— ¢,, has a minimum whenp,
2N 3 approaches botlp,_; and ¢, , at late times. As a result,
+ I E ¢>n¢>k¢,( Drnskit 2 ¢n+k|) (64) one of the possible late-time attractors of the theory has all of
nkil=1 the extra fields equal. By setting;= ¢,=""-= oy, the
calculation of the effective potential in the presence bf 2
extra scalar fields in the theory can be easily conducted.
However, the above argument suffers from two major
N o5 A 5 loopholes: first, the attractor that has all of the Kaluza-Klein
VZo= g %ot §¢°n§1 Pnt Enél bbbk fields equal is only one of the possible late-time attractors
(65) and may be not the one chosen by the system and, second,
the condition¢,,_ 1= ¢,= ¢,.1 cannot be fulfilled for the

with equations of motion given by

2N 2N

N N 2N “boundary fields” ¢, and ¢,y . In the casen=1, the field
V2, =m2d,+ = pop,+ —— 2 (2¢ ¢,—1 does not exist by construction and the same holds for
monEn 270NN o T kPl én1 When n=2N. Both of the above problems can be
oN eliminated by imposing the periodic conditiapi,y .= ¢;
+ )+ ﬁ S ol & when 2N real Kaluza-Klein fields are present in the theory.
K=k T g gy | TR Pheln Then, the “boundaries” are removed and we can define both

$n_1 and e, 1 for every field¢, . Moreover, we may prove
N Eq& N §¢> N Eqﬁ (66 that after the imposition of the periodic condition, the attrac-
Unokol T g Wikl T g Vktlmn tor that has all of the fields equal is the unique late-time
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attractor of the system. For this purpose, we are going teuming that we have®—1 equal scalar fields and the field
make use of the induction method. We start with the casep,, the Lagrangiari64) takes the form

with two real Kaluza-Klein fields for which the Lagrangian
(64) becomes 1 (2N—1) 1 N,
_£4D:§(f7¢o)z+ T(ﬂ¢1)2+ 5(079521\1)24’ a0 b0

1 , 1 , 1 , N,
_£4D:§(5¢0) +§(€9</>1) +§(¢9¢2) + 1% A
' + 7 Bl (2N=1)p1+ ¢iy]
A
+ 7 b1+ 43) \
- _ _ 3
+ 5 bol2@2N-1)(N-1)¢]

by B3t D)+ (B4 Bt 66267,
2v2 PTE 4T e + dan[3(2N=1) $i+ B}

(68) 7\ 5 )

+ 25 14@2N=DI(N=1)¢1+ ¢1on]

Note that, strictly speaking, the above Lagrangian should

follow from Eg. (30) in the next-to-lowest order considered +[(2N—1) 2+ 2417} (72

above if we puty;=Y,=0. However, this is not exactly the

case: due to the boundary condition imposed, theraddé

tional terms present in the Lagrangian which modify the co-

efficients of the cross-coupling terms while leaving their

structure unchanged. The equations of motion of the fields

¢, and ¢,, then, have the form N 3\
N Vigr=5 $5nt — Sl (N 1)1+ b1oa]

Now, the equations of motion of the fields, and ¢, take
the form

V2= 2 42 +3A¢¢¢+—7A¢(¢2+3¢Z> 7
= — e L] )\
AR Res S S + 5 {[4N=1)%+(2N-1)]$i+6(N-1) i

(69)
+3¢1 50}, (73)
24 _ E 2 3_)‘ 2 2
Ve, > bopot+ bo( D1+ b5)
2v2 A 3\
V2hon=7 dadant —— dol (2N—1) pi+ p3y]
o 5 5 2 2V)
+ E¢2(¢2+3¢1)- (70

7\
+ —[2(2N—1)(N-1)¢3+3(2N—1)
Subtracting the above equations, we obtain the result 12 !

N s X ¢l dant din], (74
VA(r= 1) = 5 bo(d2— b1+ —— dolbo— 1)’ , | , | _
2v2 while the equation of motion of the fieldr= ¢,n— P, is
7\ found to be
3
+35(d2 ¢0)
2 _ A 2 3\ 2
A 3 7 \Y (¢2N_¢1)—§¢o(¢2N_¢1)+ Ed’o(d’m‘d’l)
=5¥ ¢3+—¢ow+5¢2). (7D
V2 N\
+ E(({{)ZN_ $1)>. (75)

The right-hand-side of the above equation is the first deriva-
tive of the effective potential with respect to the fiejd
= ¢,— ¢4 . It is obvious that the choicg=0 minimizes the The above equation is identical with Eq1) and, as a result,
potential. Actually, this is the only minimum of the potential the effective potential has a unique minimumg¢at 0. Ac-
since the expression inside the brackets does not have awrprding to the above result, the only late-time attractor for
real solutions. the system of Rl Kaluza-Klein scalar fields corresponds to
Next, we assume that the only minimum of the effective¢,=¢,=" = ¢n_1= don -
potential, when RI—1 scalar fields are included in the  Now, we proceed to calculate the kinetic term and the
theory, corresponds t@,= ¢,=---= ¢pon_1. We will show effective potential of the system. By using the late-time at-
that if we add one more fielgh,y the aforementioned late- tractor of equal fields in the case oN2scalar fields, the
time attractor expands in order to incluggy, too. So, as- kinetic part of the Lagrangiaf64) takes the form
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1 2N
_/34025((9(1’0)2"‘ %(5@1)2

12N 1
—E(tﬁﬁo) 1+EZ —5(0@ , (76)

where we have assumed the proportionality relatipg

=(q ¢, and renormalized the scalar fieltl. Then, the ef-
fective potential reduces to

Ver= g+ (2N) g22+ 2 (2N) 2 t?
eff 4| 0 4 0%¥1 2‘/2 0%¥1

7\
3,4
+ 25 (2N

12N 24/2N?

=V 1+ + +28N3>(1+ ZN)_Z
qZ q3 q4 qZ ’

(77

whereV is the quartic potential of the renormalized fiejd

PHYSICAL REVIEW D60 043502

cordingly the above equations, we obtain the following con-
straint for the proportionality coefficient:

q3+3‘sz 2+ N N 2|\IZ—O 80
3 Nat g oNjem =0 (@0
This algebraic equation has the solutions
— 7N+ 49N+ 24N
di=—Nv2, Q3= o . (8Y

When each one of the above values is substituted in the
expression(77), the potential exhibits a different behavior.
Analytically we find the following.

(i) g=q. In this case, we obtain

Ver=ViNT1

. (82

For N=2, this givesveﬁ=§V However, in the limitN
— o, the effective potential asymptotically tends\to Note

According to the above result, the effective potential dependghat the imposition of the periodic boundary condition de-

on two parameters: the numhbdrof Kaluza-Klein fields that

mands the existence of two boundariesNss2. When, at

we include in the theory and the proportionality coefficientthe next-to-lowest order, we studied the case 2, we did

q. This coefficient, although a number, may itself depend oot ,pain any solution with the coefficient that multipliés
N changing radically the picture for the behavior of the ef-p,aing smaller that unity. This means that the above solution

fective potential. So, in order to draw consistent conclusions

we reconsider the equations of motion of the fielflsand

¢lr
A A A
Vio=g b0t 5 (2N)dodi+ —— (2N)*41, (78)

) _)\ 2 3)\ 2 7)\ 243
v ¢1—§¢o¢1+ E(ZN)¢O¢1+E(2N) ¢1 (79

By making use of the relatioshy=q¢, and rearranging ac-

< 2[360+ 190N+ 240IN*— (156+ 343N) yAIN*+ 24N]

owes its existence to the imposition of the periodic condition
on the Kaluza-Klein field¢for N=2) and it may not consti-
tute a generic solution of the original theory. However, for
largeN, we expect this behavior to approximate the solution
of the original Lagrangian. In particular, this is exactly the
type of solution we were searching for. Namely, at laikge
the potential of the late-time attractor fields does not depend
on N relative to the original four-dimensional potential.
Therefore, for largeN, chaotic inflation is realized in four-
dimensions with a quartic five-dimensional coupling-1,
and we have an explicit example of assisted inflation.

(i) g=q,. Then, we have

eff ™

(20+ 49N —

Then,

For N=2: V4=16.5V, (84)

- 18
For N>2: V=V 7N+7+(’)

1
oo

(83

7JAINZ+ 24N)? '

the number of scalar fields that we include in the theory. The
above solution corresponds to the res#$) and (58) de-
rived in the lowest =1) and next-to-lowest orderN
=2), respectively. Both these solutions showed a tendency
to increase with the number of Kaluza-Klein fields, a behav-
ior which obviously survived after the imposition of the pe-
riodic condition. Of course this solution has exactly the
dependence that prohibits an assisted solution.

which clearly shows that the potential tends to increase with (iii) q=q3. In this case,
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_  2[3640+ 1904 +240IN*+ (156+ 343N) y4IN*+ 24N] @6
of (20+ 49N+ 7\JAONZ+ 24N)2 '
|
Now, and an initial value of\~10° would be brought down to
_ the correct four dimensional coupling.

For N=2: Vg =1.04/, (87 There is one more issue which must be addressed. In this
section, we have discussed the conditions leading to infla-
- 32 368 1\3 tion, and the attractor solution of the equations of motion. In
For N>20 Ver=V1 1+ 225~ Teson2 TOI N [ doing so, we have neglected the KK mass terms, which is

(88) valid so long asm2<)\¢§. At the onset of inflation, this

condition is obeyed by all of the KK fields only if the maxi-

In this case, the largest value that the potential takes on cofum mass we are considerifighich c,;orresgonds to thieth
responds toN=2 and, as we add more and more scalarstate and has massMs) satisfiesME<\ ¢5~\"’MpMs,

fields, it asymptotically tends t&¥ with the multiplication

coefficient being always larger than unity. This solution isvValue ofMs=10"

the analogue of the solutior{§7), (59), and(60) derived in

or Mg=10 ®M;. This means that only for the marginal
5Mp all of the KK fields can be consid-
ered effectively massless while fols=10"3Mp we can

the next-to-lowest order approximation. By making use ofignore the masses only for those fields witf< 10~ M2,

the periodic condition, we managed to include a large numMoreover, as the field> moves toward the minimum of the
ber of scalar fields in our model and found that these coeffipotential, ¢, becomes smaller as well and, gradually, more
cients decrease with the number of fields, as we expected. Agnd more fields cease to satisfy our assumption on the

in the case witlg=q4, this class of solutions also allows for
chaotic inflation with\ ~1 through assistance.

masses of the fieldg;. The equations of motion of these
massive fields are dominated by their mass terms with the

Although the large number of fields has managed to reonly late-time attractor being the trivial one. As a result,
move the fine-tuning problems, it is necessary to verify thathese fields get decoupled from the rest of the system with a

the initial conditions for inflation to occur are indeed ful-
filled. In four dimensions, we normally assumé(¢)
~M3, which for A<1, corresponds tah>Mp. If these
conditions are translated into our five dimensional quantitie
then we would findp~ME?M 5 andV~M3M3>MZ . With-
out a better understanding of the dynamics of the five
dimensional theory, we should instead insist thétd)
~M2. This condition, then, becomes
V() =2LV(p)~MEME<M} (89)
since N=2LMs=M3/M2>1. The requirement that the
four-dimensional coupling constant should be®@§10 9
imposes the following condition on the five-dimensional
coupling and the four- and five-dimensional Planck mass
N
Mp

2
) ~10 %2 (90)

time scale inversely proportional to their mass: the more
massive they are, the faster they decouple. At the end of the

day, When?z) finally reaches the minimum of the potential, all
of the massive KK fields have decoupled and only the mass-

less (by construction KK zero-mode, ¢py, has remained

playing the role of the inflatory. However, this behavior
does not affect the resolution of the fine-tuning problem in
the least. As the number of KK fields, that can be considered
massless, decreases, the solutieng, gradually disappears
while the other two solutionsg=q, and q=qz, tend to
become identical resulting in an effective potential which is
again independent of the numhkiér As a result, the resolu-
tion of the fine-tuning problem holds at all times: from the
onset of inflation, when all or part of the KK fields can be
considered massless and contribute to the inflaton, until its
final stages, when all the KK fields have decoupled.

It appears that the compactification of a large extra di-
mension can lead to assistance effects enhancing the prob-
abilities for inflation not only in the case of power-law po-
tentials but in the case of exponential potentials as well. As

By appropriately choosing the values of the above quantitie! illuminating example, we consider the following five-

the required value ok is naturally obtained. However, the

initial condition for inflationg=M p puts a constraint on the
smallest possible value of the ratibs /M p : when the above
condition is combined with the expressi@) for the four-
dimensional potential, one findds=10 °Mp. Then, even
if X\ is as large as of)(1), we can still obtail\~10~12 The
problems encountered wheds<Mp have recently been
discussed12,13. However, forMs~10 3M; as in many
models of string unificatioi14], we would haveN~ 10°,

dimensional scalar field theory:
1o opm o 2 ¢
_£5D:§‘9A¢"9 d+Voexp — 5@2 , (91

where\70 andp are constants. As in the case of the quartic
potential, the five-dimensional fielgp (which is perhaps a

modulus field from the compactification of additional dimen-
sions in the theorycan be Fourier expanded along the com-
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pact coordinate. When the expansiofR7) is substituted in  Kaluza-Klein fields. As a result, the renormalized coupling

the above Lagrangian, we obtain a scalar field theory dex, defined as\ multiplied by the expressions in brackets in
scribed by Eq(19), interacting, through an exponential po- Egs. (82), (85), and (88), takes on a value which is much
tential. Even in terms of five-dimensional quantities, this|arger @=0,) or almost the samey=q;  compared to the
theory is ladened with interactions since the potential of evyg|ue of the initial four-dimensional codplir?g However, in

ery field multiplies the potential of every other field. When the latter cases is suppressed by the number of scalar
the integration over the compact coordinate is conducted, w '

expect an effective, heavily interacting, four—dimensionalﬁ‘_elds r_elatlve to the orlg_mal coupling. of the f|ve-_
scalar theory to arise. However, the form of the potemiaplmepsmnal scalar field. This a concrete example of assisted
makes the integration over extremely difficult. Neverthe- INfation.
less, we can still make some qualitative arguments on the
assistance effect that follows from compactification. In terms

of four-dimensional quantities, the above Lagrangian can be

written as In this paper, we have dealt with the problem of fine-
1 5 tuned coupling constants in the framework of field theories
s e S v N that involve self-coupled or interacting scalar fields. This
Leit= 2 Iudd"$tVo exp( \[T) ¢) ' (92) problem inevitably arises when we consider the possibility of
the creation of an inflationary epoch in our universe and
where now demand an agreement between the theoretical predictions
and the experimentdCOBE) data on density fluctuations.

V. CONCLUSIONS

~ - b - - Vo . We have demonstrated by considering some general field
$=\2L¢= \/NM_S Vo=2LVo= NM_5’ P=Np. theories of multiple scalar fields in four dimensions that the
(93)  idea of assisted inflation based on exponential poteritrdls
can be easily extended in the case of power-law potentials. In
As it is well known, a four-dimensional theory of the form this case, the presence of multiple scalar fields leads to a
given above leads to a power-law expansion of the Universeenormalized theory of a single scalar field which is consid-
R(t)~tP. After compactification, the parametprhas been erably less strongly coupled than the original fields of the
multiplied by the number of massive KK fields that are theory. The renormalized coupling constants scale with the
present in the theory and, as a result, for sufficiently laige number of fieldsN which permits the creation of an infla-
the four-dimensional theory will produce inflation even if the tionary period without severe fine-tuning. However, the ef-
five-dimensional theory with the parameferwas not able fectiveness of assistance depends strongly on the interactions
to. Finally, it is worth noting that the above dependence 01t_)etween the scalar fields of the theory. If the multiple scalar
the field  and the parametefé, andP on the number of fi€lds are assumed to be only self-coupled, both power-law
multiple fieldsN was also derived in Ref7] although the inflation based on exponential potentials as well as chaotic

origin of the fields was not specified. Here, we argue that thénflation' works well with only mild or no fin.e-tuning. at all
compactification of a five-dimensional theory with an expo-d€Pending on the number of fiells that we include in the

nential potential could provide us with both the necessany€0ry- If, on the other hand, we allow cross-coupling terms
multiplicity of scalar fields and the desired dependence of th etween different scalar fields, the assistance method breaks

parameters of the theory on the number of fields. down leading to a much more strc_mgly coupled.theory._

We summarize the results of this section: The Kaluza- S a concrete exaf“p'e of a'fleld theor'y with .multlple
Klein compactification of the fifth dimension of a five- scalar fields, we considered a single, self-interacting scalar
dimensional theory of a single, self-interacting scalar fieldfi€!d iving in five dimensions with a quartic potenti&Dther
leads to the appearance of a large number of Kaluza-Kleif€Ccent constructions for |nflat|0|jary models involving a large
scalar fields in the four-dimensional effective theory. A fea-€Xtra dimension can be found in Refd1-13,15-1F) As-
ture of this effective theory is the presence of a complicatea;umlng tha; the fifth d|men5|on. IS compagtlfled along a (_:|rcle
web of interaction terms between the scalar fields of théd a@pplying a Kaluza-Klein reduction of the five-

theory. Once the late-time attractor of the system is detergimensional field, we obtained a four-dimensional, effective
mined, this field theory of multiple scalar fields can be theory with the necessary multiplicity of scalar fields ful-

mapped to a theory of a single, self-interacting scalar ﬁeld filled by the presence of the Kaluza-Klein modes. The result-

; . . . ing potential contains a complex network of cross-couplin
The presence of the interaction terms drives the effectiv 9p b pling

tential t ds two diff t directions: i i ferms. As suggested by our previous results, these interaction
potential towards two difterent direéctions. in one case, it o g 50 expended to hinder inflation. In terms of four-

creases with the number of extra scalar fields that are presefi . ansional quantities, this is indeed the case. Once the

'r;. t?ﬁl theor;l/l Wh'lel’ n thethsec?r?d ce}se, '? tsk;[arts W'ft.h Ig ValllfJ eory of multiple Kaluza-Klein fields is mapped to a theory
slightly smaller or farger than the vaiue of the one-lield-sell-¢ 5 single, renormalized scalar field, we found three differ-

interaction potentiaV but asymptotically tends back 8. ent solutions for the corresponding effective potential: the
At the end of the analysis, the renormalized scalar figld first one follows a behavior similar to the one derived in the
turns out to be much moreqE&q,) or equally strongly purely four-dimensional case and drives the potential, and
coupled =0, 3 compared to the initial four-dimensional thus the renormalized coupling constant, to large values in-
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creasing with the number of scalar fields; the other two sotions, is suppressed by the number of scalar fields that are
lutions start with a value for the effective potential which is present in the theory relative to the original coupling con-
slightly smaller or larger than the value of the one-field-stant\ of the five-dimensional theory. By choosing appro-
potentialV but asymptotically tends t¥ as we increase the priate values of the five-dimensional Planck mass and
number of fields. In both cases, the desired behavior of thehe five-dimensional coupling constaht we are able to
effective potential is not achieved and the renormalized sCanaturally obtain a four-dimensional, self-interacted scalar
lar field is either more or equally strongly coupled than thetheory with A ~O(1079) (in agreement with COBE data
original four-dimensional Kaluza-Klein fields. Consequently, without the need of any fine-tuning. Moreover, our results do
the necessary fine-tuning of the renormalized quartic counot depend on the number of massive KK fields that contrib-
pling constani becomes more severe or at best remains thaete to the inflaton field and, as a result, the resolution of the
same compared to that f a result which is attributed to the fine-tuning problem holds from the onset of inflation until its
presence of interaction terms between the Kaluza-Kleirfinal stages.

fields of the theory. However, the theory of the renormalized,

scalar field does indeed get assisted although via a different ACKNOWLEDGMENTS
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