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On the realization of assisted inflation
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We consider conditions necessary for a successful implementation of the so-called assisted inflation. We
generalize the applicability of assisted inflation beyond exponential potentials as originally proposed to include
standard chaotic~lf4 or m2f2! models as well. We also demonstrate that in a purely four-dimensional theory,
unless the assisted sector is in fact decoupled, the additional fields of the assisted sector actually impede
inflation. As a specific example of an assisted sector, we consider a five-dimensional Kaluza-Klein~KK ! model
for which the extra dimension may be somewhat or much larger than the inverse Planck scale. In this case, the
assisted sector~coming from a KK compactification! eliminates the need for a fine-tuned quartic coupling to
drive chaotic inflation. This is a general result of models with one or more ‘‘large’’ extra dimensions.
@S0556-2821~99!05014-6#

PACS number~s!: 98.80.Cq, 04.50.1h
e
o

th
de
lo

st

ot
-

s
g-
th

ta
n
te

gi

b

ar

of
re,
ght

s-

sily
the

the
ly
of

d.
ted

ot
ry

n.
n-

he
e

ro-

oci-
nd

s

I. INTRODUCTION

One of the long standing problems in inflationary mod
building is the apparent necessity of some fine-tuned c
plings or masses~see Ref.@1# for reviews!. Barring an alter-
native to standard inflation, either a model predicting
presence of small couplings, or a more innovative mo
which does not require them must be constructed. Deve
ments such as the pre-big-bang model@2# go a long way
towards this goal, but issues such as the graceful exit
require resolution@3#.

The simplest inflationary scenarios are by far the cha
inflation models@4# involving a single scalar field. For ex
ample, a potential of the formV(f)5lf4 will produce suf-
ficient inflation if the initial background field value i
f. few M P . However, in order to obtain the correct ma
nitude for density fluctuations, one must require that
vacuum energy density during the last;50 e-foldings of
inflation be of orderV;(1016GeV)4 or l;10212. Similarly
chaotic models based on potentials of the formV(f)
5m2f2 requirem;1025M P in order to satisfy the Cosmic
Background Explorer~COBE! constraint.

It is well known that power-law expansion@5# rather than
exponential expansion may be sufficient to resolve the s
dard cosmological problems associated with inflation a
that such solutions can be generated by exponential po
tials @5,6#. For example, a potential of the formV(f)
5e2lf, leads to power-law expansion with the cosmolo
cal scale factor growing asR(t);tp with p52/l2. Further-
more, density fluctuations are no longer scale invariant
scale asu (dr/r) (k)u2;kn21 with n5122/(p21). To ob-
tain, n.1, one requiresp to be large.

Recently, it was noticed@7# that a system of several scal
fields each with a potential

Vi5V0 expS 2A2

pi
f i D ~1!
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could drive power-law inflation with a net powerp̃5(pi
sufficient to solve the cosmological problems, even if each
the fieldsf i alone are not capable of doing so. Furthermo
the spectral index of density fluctuations is also brou
closer to the scale invariant spectrum ifp is replaced byp̃.
The dynamics of this type of ‘‘assisted’’ model was di
cussed in Ref.@8#.

Here, we will show that the assisted paradigm can ea
be extended to other types of inflationary models such as
chaotic models mentioned above. We will also show that
ansatz~1! of effectively decoupled scalar fields is absolute
necessary for assistance to work. For example, the caseN
scalar fields each with a potential defined bypi5p, would
lead top̃5Np for self-coupled fields, while it would lead to
p̃5p/N for a system of fields which were cross couple
Such a situation would undermine the benefits of assis
inflation.

Although the identity of these multiple fields was n
specified in Ref.@7#, one possible source for the necessa
multiplicity is a theory with an extra compact dimensio
The Kaluza-Klein reduction of a scalar field in five dime
sions, will result in a spectrum of states with masses}n2/L2

where L is the size of the compact extra dimension. IfL
@M P

21 , there may be many nearly massless ‘‘copies’’ of t
original scalar field which may serve to assist inflation. W
find that, although the resulting system of scalar fields p
duced from the Kaluza-Klein~KK ! reduction may be heavily
cross coupled, it can eliminate the usual fine-tuning ass
ated with chaotic inflation driven by a quartic coupling a
achieves the goals of assisted inflation.

II. ASSISTED INFLATION AND DECOUPLED FIELDS

Assisted inflation as described in Refs.@7,8# relies on the
premise that there exist a set ofN scalar fields each with
potential given by Eq.~1!. The Lagrangian for the system i
given by

2L5(
i 51

N H 1

2
~]f i !

21Vi J . ~2!
©1999 The American Physical Society02-1
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Each fieldf i satisfies its equation of motion

f̈ i13Hḟ i52
dVi

df i
, ~3!

where the Hubble parameter is given by

3H25(
i 51

N H 1

2
ḟ i

21Vi J . ~4!

~We are working in units such that 8p/M P
2 51.! In Refs.

@7,8# it was shown that this system has a late-time attrac
solution described by a single rescaled scalar fieldf̃2

5( p̃/p1)f1
2 with potential Ṽ5( p̃/p1)V1 . The resulting

power-law expansion of the Universe is simplyR(t);t p̃

~provided that each of thepi.1/3!.
As we will now demonstrate, the basic idea behind

sisted inflation can be applied more generally than the c
of exponential potentials. We can consider a general fi
theory of multiple, self-interacting scalar fields of the form

2L5(
i 51

N H 1

2
~]f i !

21
m2

2
f i

2J 1(
i 51

N H l3

3!
f i

31
l4

4!
f i

4J .

~5!

The equation of motion for each fieldf i derived from the
variation of the above Lagrangian has the form

¹2f i5m2f i1
l3

2
f i

21
l4

6
f i

3 . ~6!

From the above equation, it is obvious that the system c
sists ofN completely decoupled scalar fields or equivalen
of N copies of the same field. As a result, the Lagrangian
be written as

2L5N H 1

2
~]f1!21

m2

2
f1

21
l3

3!
f1

31
l4

4!
f1

4J
5

1

2
~]f̃ !21

m2

2
f̃21

l̃3

3!
f̃31

l̃4

4!
f̃4, ~7!

where

f̃5AN f1 , l̃35
l3

AN
, l̃45

l4

N
. ~8!

Notice that the above field redefinition~made to rewrite the
Lagrangian in terms of a field with a canonical kinetic ter!
results in a scalar field with an unchanged mass. The re
ing theory describes a single scalar field with the same t
of self-interactions compared to the fields in the origin
theory. However, these self-interactions are considera
weaker since both of the coupling constants now scale w
the number of scalar fieldsN. As a result, as the number o
scalar fields that we include in the theory becomes larger,
effective coupling constants naturally become smaller
the corresponding fine-tuning becomes milder. Thus
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same basic idea expounded in Refs.@7,8# carries over very
simply to chaotic inflation based on a quartic potenti
While l̃4 must still be of order 10212, the fundamental cou-
pling in the theoryl4 can now be much larger ifN is large.
Note, however, that the additional scalar fields do not aff
the quadratic version of chaotic inflation whatsoever.

III. GENERAL THEORIES WITH CROSS COUPLINGS

The success of the assisted paradigm demonstrated in
section above, is directly related to the absence of cro
coupling terms between different scalar fields. As soon as
multiple self-interacting scalar fields are substituted w
cross-coupled fields, the assistance method ceases to w
To see that this is the case, it is reasonable to consider
eral field theories of multiple scalar fields of the form

2L5(
i 51

N H 1

2
~]f i !

21
m2

2
f i

2J 1VI , ~9!

where the potential may contain not only self-interacti
terms, like the theory in Sec. II, but also cross-coupli
terms between different fields. Specifically, we study the f
lowing three cases.

~A! We start by considering the following simple theo
of coupled scalar fields with cubic and quartic interacti
terms:

VI5
l3

3! S (i 51

N

f i D 3

1
l4

4! S (i 51

N

f i D 4

. ~10!

In this form, the invariance of the theory under the chan
f i↔f j is obvious which leads to identical equations of m
tion for each of the different scalar fields

¹2f i5m2f i1
l3

2 S (
k51

N

fkD 2

1
l4

6 S (
k51

N

fkD 3

. ~11!

By subtracting the equations of motion of two arbitrary fiel
f i andf j , we can easily see that the solutionf i5f j is the
unique late-time attractor of the system. As a result, the
grangian can be written as

2L5NF1

2
~]f1!21

m2

2
f1

2G1
l3

3!
~Nf1!31

l4

4!
~Nf1!4

5
1

2
~]f̃ !21

m2

2
f̃21

l̃3

3!
f̃31

l̃4

4!
f̃4, ~12!

where

f̃5AN f1 , l̃35l3N3/2, l̃45l4N2. ~13!

We notice that, when we allow cross-coupling terms betwe
different fields to be present in the theory, we obtain a res
for the effective potential which is radically different from
the one we found in the case of self-interacting fields in S
II. The presence of these cross-coupling terms drives
effective potential, or the coupling constants, in the oppo
2-2
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direction from that desired: the renormalized, single sca
field f̃ is more strongly coupled than the original sca
fields f i with the coupling parametersl̃3 and l̃4 increasing
with the number of scalar fields that we include in the theo
As a result, the necessary fine-tuning of the coupling c
stants becomes now much more severe.

~B! A slightly different version of the above coupled sc
lar field theory can be formulated in the following way. Co
sider

2L5(
i 51

N H 1

2
~]f i !

21
m2

2
f i

2J 1(
i 51

N H l3

3!
f i

31
l4

4!
f i

4J
1 (

i , j ,k51

N
l3c3

3!
f if jfk1 (

i , j ,k,l 51

N
l4c4

4!
f if jfkf l .

~14!

In the last two terms, the indices (i , j ,k) and (i , j ,k,l ) are not
allowed to all take on the same value and, as a result, th
terms describe only cross couplings between different fie
The above formulation, i.e., the introduction of the para
etersc3 and c4 in the cubic and quartic interaction term
respectively, allows us to turn off the cross couplings b
tween the scalar fields while keeping the self-interactions
the theory.

We can rewrite the above Lagrangian in the followi
way:

2L5(
i 51

N H 1

2
~]f i !

21
m2

2
f i

2J 1(
i 51

N H l3

3!
f i

31
l4

4!
f i

4J
1

l3c3

3! F S (
i 51

N

f i D 3

2(
i 51

N

f i
3G

1
l4c4

4! F S (
i 51

N

f i D 4

2(
i 51

N

f i
4G

5(
i 51

N H 1

2
~]f i !

21
m2

2
f i

2J
1

l3

3! F ~12c3!(
i 51

N

f i
31c3S (

i 51

N

f i D 3G
1

l4

4! F ~12c4!(
i 51

N

f i
41c4S (

i 51

N

f i D 4 G ~15!

and, then, the equation of motion for each fieldf j has the
form

¹2f j5m2f j1
l3

2 F ~12c3!f j
21c3S (

i 51

N

f i D 2G
1

l4

6 F ~12c4!f j
31c4S (

i 51

N

f i D 3G . ~16!
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If we subtract the equations of motion of the fieldsf j and
fk , we can easily conclude that, once again, the unique l
time attractor of the theory has all of the fields equal.
making use of this result, the Lagrangian may be written

2L5NF1

2
~]f1!21

m2

2
f1

2G
1

l3

3!
@~12c3!Nf1

31c3~Nf1!3#

1
l4

4!
@~12c4!Nf1

41c4~Nf1!4#

5
1

2
~]f̃ !21

m2

2
f̃2

1
l̃3

3!
f̃3@11c3~N221!#

1
l̃4

4!
f̃4@11c4 ~N321!#, ~17!

where

f̃5AN f1 , l̃35
l3

AN
, l̃45

l4

N
. ~18!

If we choosec35c450, then, we recover the theory o
self-interacting scalar fields that was discussed in Sec. II
for which the assistance effect worked perfectly leading to
extremely weakly coupled scalar field theory. If, on the oth
hand, we choosec35c451, then, we go back to the case~A!
studied above, where the potential increases rapidly with
numberN of scalar fields. A third possibility arises when th
parametersci adopt some intermediate values. For examp
if, for large N, c3;1/N2 and c4;1/N3, the coefficients of
the renormalized cubic and quartic terms that appear in
the brackets are ofO~1! and the desired behavior~18! of the
coupling parametersl̃ i is ensured. One could argue that th
result of this analysis is to transfer the fine-tuning from t
coupling constants to the parametersci . Indeed, it shows the
degree to which the cross couplings must be fine-tuned
assistance to work.

~C! Finally, we consider a theory ofN scalar fields
coupled to each other through an exponential potential

2L5(
i 51

N
1

2
~]f i !

21V0)
i 51

N

expS 2A2

p
f i D . ~19!

This is similar to the potential considered by Liddleet al. @7#
with the sum of exponentials replaced by a product. In
case of the summation, theN scalar fields do not interac
with each other and the unique late-time attractor has
fields equal. As discussed in the Introduction, this solut
leads to a power law expansion which can solve the stand
inflationary problems with a relatively flat spectrum of de
sity fluctuations.

In our case, however, the scalar fields are coupled to e
other. The equation of motion for the fieldf i takes the form
2-3
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¹2f i52A2

p
V0 expS 2A2

p (
k51

N

fkD . ~20!

The right-hand-side of the above equation is the same
every field f i . As a result, the unique late-time attracto
which has all the fields equal, is still valid even in this ca
where the fields are coupled. Now, the Lagrangian can
written as

2L5
N

2
~]f1!21V0 expS 2A12

p
Nf1D

5
1

2
~]f̃ !21V0 expS 2A2

p̃
f̃ D , ~21!

where now

f̃5ANf1 , p̃5
p

N
. ~22!

As a result, ifp, in the original theory, was not large enoug
to support inflation, the situation is worsened sincep is di-
vided by the number of scalar fields that are present in
theory.

In each of the cases studied above, it is evident that
presence of interaction terms between the scalar fields o
theory undermines the benefits of assistance and impede
successful implementation of inflation. While the cases
studied are certainly simplified, we expect the general re
to hold, namely, in a theory with multiple scalar fields, a
sistance requires the absence~or near absence! of cross cou-
plings between the scalar fields.

IV. FIELD THEORIES WITH MULTIPLE SCALAR
FIELDS

Given the potential utility of having several or man
fields which are in some sense copies of each other, we
look at a possible source for these fields in theories w
extra spatial dimensions. It is well known that the Kaluz
Klein reduction of a theory leads to the existence of ma
new fields which appear as zero-modes in the final fo
dimensional theory. For example, consider a simple fi
dimensional gravitational action of the form

SG52E d5xAG5H M5
3

16p
R5J , ~23!

whereM5 is the five-dimensional Planck mass. Upon co
pactification along dimension of circumference 2L, we ob-
tain

SG52
1

2 E d4xAG4egH R41e2g
1

4
FKK

2 J , ~24!

whereM P
2 52LM5

3 , g is the scalar associated with the 5
component of the metric (e2g5G55) and FKK is the field
strength of the Kaluza-Klein gauge field associated w
04350
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Gm5 . This action can be brought into the Einstein frame
the conformal transformationG4mn5e2ggmn to give

SG52
1

2 E d4xAgH R1
3

2
~]g!21e3g

1

4
FKK

2 J . ~25!

Let us further suppose that the original five-dimensio
theory contains an additional massless scalar fieldf̂ with
action

Sf52E d5xAG5$G5
AB]Af̂]Bf̂%, ~26!

where the indicesA,B5$t,x1 ,x2 ,x3 ,z%. We can Fourier ex-
pandf̂ alongz as

f̂~x,z!5f̂0~x!1f̂z~x,z!

5f̂0~x!1 (
n51

`

@f̂n~x!ei ~np/L ! z1f̂n* ~x!e2 i ~np/L ! z#,

~27!

wheref̂0 is the five-dimensional field that depends only
noncompact coordinates.

Upon reducing to four dimensions, and performing t
same conformal transformation, the action~26! becomes

Sf52E d4xAgH (
n50

` FUS ]m1 i
np

L
AmDfnU2

1
n2p2

L2 e23gufnu2G J , ~28!

where we have defined the four-dimensional scalar fieldf

5A2Lf̂. In what follows, we will assume that the dilaton
like field g is fixed @9#, and ignore the role of the KK gaug
field Am . Although we have written the action in terms of a
infinite sum, the momentum alongz, pz , should be limited
by M5 . In that case, we should only consider fields up
n5N&LM5 /p. For (pL21!M5), there may be many
fields which can in principle assist inflation. Such theor
are, to say the least, of wide interest at the moment@10# ~see
also Ref.@11#, and references therein!.

Let us now consider the following five-dimensional sca
field, self-interacting through a quartic potential, as a co
crete example:

2L5D5
1

2
]Af̂]Af̂1

l̂

4!M5
f̂4. ~29!

The kinetic term for the five-dimensional fieldf̂ can be ex-
panded as in Eq.~28!. Similarly, the substitution of the ex
pansion~27! in the potential gives rise to numerous intera
tion terms between the Kaluza-Klein scalar fields. Then,
four-dimensional Lagrangian can be written as
2-4
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2L4D5
1

2
]mf0]mf01 (

n51

` S ]mfn]mfn* 1
n2p2

L2 fnfn* D
1

l

4! Ff0
4112f0

2(
n51

`

fnfn*

112f0 (
n,k51

`

~fnfkfn1k* 1fn* fk* fn1k!

1 (
n,k,l 51

`

~4fnfkf lfn1k1 l* 14fn* fk* f l* fn1k1 l

16fnfkf l* fn1k2 l ~>1!
* !G , ~30!

in terms of the four-dimensional fieldf and the four-
dimensional couplingl5l̂/(2LM5). Note that in the last
term in the last equation we include only the terms for wh
n1k2 l>1. It is also important to note that the fou
dimensional~dimensionless! coupling is now reduced rela
tive to the original five-dimensional couplingl̂ by an
amount 2LM5.N.

It will be useful to begin the analysis of this system
first simplifying to a restricted set of fields. Thus, in th
lowest order approximation, we may assume that, apart f
the fieldf0 , only f1 andf1* are present in the theory an
set all the other Kaluza-Klein fields equal to zero. By maki
use of the definitions

f15
X1 iY

&
, m25

p2

L2 , ~31!

the effective Lagrangian takes the form

2Leff5
1

2
~]f0!21

1

2
~]X!21

1

2
~]Y!21

m2

2
~X21Y2!

1
l

4!
f0

41
l

4
f0

2~X21Y2!1
l

16
~X21Y2!2. ~32!

The variation of this Lagrangian with respect tof0 , X andY
leads to the following equations of motion:

¹2f05
l

6
f0

31
l

2
f0 ~X21Y2!,

¹2X5m2X1
l

2
f0

2X1
l

4
X~X21Y2!,

¹2Y5m2Y1
l

2
f0

2 Y1
l

4
Y~X21Y2!. ~33!

Obviously, the latter two equations are the same, and so
can set

Y5kX. ~34!
04350
m

e

Making this substitution forY, the first two equations of
motion reduce to

¹2f05
l

6
f0

31
l

2
f0X2~11k2!,

¹2X5m2X1
l

2
f0

2X1
l

4
X3~11k2!. ~35!

As long as the mass term is negligible compared to the cu
term, i.e., whenm2!l f0

2/2,

f05qX ~36!

is also a solution, provided that

q25
3

4
~11k2!. ~37!

In this case, the kinetic part of the Lagrangian can be writ
as

2Lkin5
1

2
~]f0!21

1

2
~]X!21

1

2
~]Y!2

5
1

2
~]f0!2S 11

11k2

q2 D ~38!

and by using the constraint~37!, we obtain

2Lkin5
1

2

7

3
~]f0!25

1

2
~]f̃ !2, ~39!

where we have implemented the field redefinition

f̃5A7

3
f0 ~40!

in order to map the system of the three real, scalar fields
theory of a single scalar field. Next, we look at the quar
potential which now takes the form

Veff5
l

4!
f0

41
l

4
f0

2 ~X21Y2!1
l

16
~X21Y2!25

35

3

l

4!
f0

4

5
15

7
Ṽ, ~41!

where Ṽ is the quartic potential of the renormalized sca
field f̃. As a result, the presence of the two Kaluza-Kle
fieldsX andY have raised the value of the effective potent
by a factor of 15/7 and so, the fine tuning of the coupli
constantl has worsened. Note that this result does not
pend on the substitution~34! and holds even if we setY
50.

Before we tackle the more general case, it will still b
useful to consider the next-to-lowest order where we all
f2 and f2* , apart fromf0 , f1 , andf1* , to be present in
the theory. In a similar way, we set
2-5
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f15
X11 iY1

&
, f25

X21 iY2

&
, ~42!

and define

m1
25

p2

L2 , m2
25

4p2

L2 . ~43!

Once again the system can be simplified. In this case,
choice X250 corresponds to a special solution of the fi
field system as long asX1

25Y1
2. Then, the remaining equa

tions of motion are given by

¹2f05
l

6
f0

31
l

2
f0~2X1

21Y2
2!1

l

&
X1Y1Y2 , ~44!

¹2Y15m1
2Y11

l

2
f0

2Y11
l

&
f0~X1Y2!

1
l

2
Y1~X1

21Y2
2!, ~45!

¹2Y25m2
2Y21

l

2
f0

2Y21
l

&
f0~X1Y1!

1
l

4
Y2~4X1

21Y2
2!. ~46!

If we further assume, as before, that the massesm1
2 and

m2
2 are small compared tolf0

2/2 and neglect them, the an
satz

f05qX1 , Y25pY1 ~47!

is indeed a solution of the system~44!–~46!. Rearranging
equations~44!,~45! and ~45!,~46!, we obtain the constraints

3&p~12q2!22q313q50, ~48!

2&q~12p2!2p312p50, ~49!

respectively. The above system of algebraic equations ca
solved numerically leading to the following pairs of valu
for the proportionality coefficientsq andp:

~A!: q→2.22, p→20.911, ~50!

~B!: q→1.07, p→1.13, ~51!

~C!: q→0.956, p→23.07, ~52!

~D!: q→0.722, p→20.695. ~53!

The above set of solutions are supplemented by anothe
where the signs ofq andp are opposite. But, as we will see
both the potential and the kinetic terms are invariant un
the simultaneous changeq→2q and p→2p and so, we
may ignore the second set of solutions.
04350
e

be
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r

By settingX250 and using the proportionality relation
that hold between the remaining four scalar fields, the kine
Lagrangian takes the form

2Lkin5
1

2
~]f0!21

1

2
~]X1!21

1

2
~]Y1!21

1

2
~]Y2!2

5
1

2
~]f0!2S 11

21p2

q2 D5
1

2
~]f̃ !2, ~54!

where

f̃5f0A11
21p2

q2 . ~55!

In the same way, the effective potential can be written a

Veff5
l

4!
f̃4H 11

6~21p2!

q2 1
12&p

q3 1
3

2q4 ~418p21p4!J
3S 11

21p2

q2 D 22

. ~56!

Substituting the values of the parametersq andp from solu-
tions ~50!–~53!, we obtain the final results for the value o
the effective potential

~A!: Veff51.51Ṽ, ~57!

~B!: Veff53.48Ṽ, ~58!

~C!: Veff51.75Ṽ, ~59!

~D!: Veff51.29Ṽ, ~60!

where the renormalization of the scalar field~55! has been
taken into account. According to the above results, ther
one solution that multiplies the one-field-potentialṼ by a
numerical coefficient 3.48, which can be compared to
lowest order solution where the potential was multiplied
15/7.2.14. In this case the fine-tuning is further aggravat
However, there are three additional solutions that multi
the potential by coefficients which, although larger th
unity, are smaller than the first one. Thus, there is the h
that as we add more and more extra fields these coeffici
become smaller. Recall, that our goal is to ease the orig
fine-tuning problem associated with~in this case! a simple
lf4 chaotic inflationary model. Furthermore, forN
;2LM5@1, the four-dimensional coupling isl;l̂/N and
will be small provided,l̂;1 andN*1012 or equivalently,
M5&1026M P . Therefore, so long as the potential does n
grow asN, there will be a viable solution for the assiste
paradigm.

One could argue that the above results for the effec
potential hold only for the special solution~47! supple-
mented by the relationsX250 and X1

25Y1
2 that we have

considered. For this reason, we studied some additional
cial solutions of the equations of motion, namely,
2-6
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f05qX1 , X25pX1 , Y15Y250, ~61!

f05qY1 , X25pY1 , X15Y250. ~62!

Under a numerical renormalization of the proportionality c
efficients, i.e.,

q→6
q̃

&
, p→ p̃

&
, ~63!

the above solutions, substituted in the equations of mot
lead to the same constraints~48!,~49! for the coefficientsq̃
andp̃ and the same results~57!–~60! for the effective poten-
tial. As in the lowest order, the effective potential seems
depend merely on the number of the real scalar fields
cluded in the theory and not on their ‘‘flavor,’’ i.e., if the
come from the real or imaginary parts of the compl
Kaluza-Klein fields or from an arbitrary combination o
them.

Indeed, the invariance of the effective potential under
selection of different special solutions exists, as long as th
solutions are characterized by the same number of real fi
and lead to the same number of constraints on the pro
tionality coefficients involved. As we mentioned above, t
result is always independent of the origin of these real fie
We may, then, conclude, that the real and imaginary part
N Kaluza-Klein complex fields, that come from the compa
tification of the fifth dimension, constitute equivalent degre
of freedom contributing equally to the final number of 2N
degrees of freedom. This result allows us to substitute thN
complex Kaluza-Klein fields with 2N real fields. Then, the
Lagrangian~30! reduces to

2L4D5
1

2
~]f0!21 (

n51

2N H 1

2
~]fn!21

n2p2

2L2 fn
2J 1

l

4!
f0

4

1
l

4
f0

2(
n51

2N

fn
21

l

2&
f0 (

n,k51

2N

fnfkfn1k

1
l

12 (
n,k,l 51

2N

fnfkf l S fn1k1 l1
3

4
fn1k2 l D ~64!

with equations of motion given by

¹2f05
l

6
f0

31
l

2
f0(

n51

2N

fn
21

l

2&
(

n,k51

2N

fnfkfn1k ,

~65!

¹2fn5mn
2fn1

l

2
f0

2fn1
l

2&
f0(

k51

2N

~2fkfk1n

1fkfn2k!1
l

4 (
k,l 51

2N H fkf l S fk1 l 1n

1
1

3
fn2k2 l1

3

4
fn1k2 l1

1

4
fk1 l 2nD J . ~66!
04350
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It is to be understood that the fields denoted by index co
binations such asn1k1 l and n1k2 l are to be included
only if they are>1 and<2N.

Although the substitution of complex fields by an equiv
lent number of real fields simplifies the theory, it does n
allow us to study the effect from the addition of a larg
number of extra scalar fields on the effective potential
using the method described above. The appearance of
cross-coupling terms as we increase the order of the the
makes the analytical formulation of the problem extrem
tedious and the determination of the result for the effect
potential impossible even through numerical methods.

As an alternative approach to the problem, we constr
the functionfn112fn out of the difference of two consecu
tive Kaluza-Klein fields and it is easy to show that it satisfi
the following equation:

¹2~fn112fn!5
l

2
f0

2~fn112fn!

1
l

2&
f0(

k51

2N

$2fk~fk1n112fk1n!

1fk~fn112k2fn2k!%

1
l

4 (
k,l 51

2N H fkf lF ~fk1 l 1n112fk1 l 1n!

1
1

3
~fn112k2 l2fn2k2 l !

1
3

4
~fn111k2 l2fn1k2 l !

1
1

4
~fk1 l 2n212fk1 l 2n!G J . ~67!

The right-hand-side of the above equation, which is prop
tional to the first derivative of the effective potential wit
respect to the fieldfn112fn , has a minimum whenfn
approaches bothfn21 and fn11 at late times. As a result
one of the possible late-time attractors of the theory has a
the extra fields equal. By settingf15f25¯5f2N , the
calculation of the effective potential in the presence of 2N
extra scalar fields in the theory can be easily conducted.

However, the above argument suffers from two ma
loopholes: first, the attractor that has all of the Kaluza-Kle
fields equal is only one of the possible late-time attract
and may be not the one chosen by the system and, sec
the conditionfn215fn5fn11 cannot be fulfilled for the
‘‘boundary fields’’ f1 andf2N . In the casen51, the field
fn21 does not exist by construction and the same holds
fn11 when n52N. Both of the above problems can b
eliminated by imposing the periodic conditionf2N1 i5f i
when 2N real Kaluza-Klein fields are present in the theor
Then, the ‘‘boundaries’’ are removed and we can define b
fn21 andfn11 for every fieldfn . Moreover, we may prove
that, after the imposition of the periodic condition, the attra
tor that has all of the fields equal is the unique late-tim
2-7
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attractor of the system. For this purpose, we are going
make use of the induction method. We start with the c
with two real Kaluza-Klein fields for which the Lagrangia
~64! becomes

2L4D5
1

2
~]f0!21

1

2
~]f1!21

1

2
~]f2!21

l

4!
f0

4

1
l

4
f0

2~f1
21f2

2!

1
l

2&
f0 f2~3f1

21f2
2!1

7l

48
~f1

41f2
416f1

2f2
2!.

~68!

Note that, strictly speaking, the above Lagrangian sho
follow from Eq. ~30! in the next-to-lowest order considere
above if we putY15Y250. However, this is not exactly th
case: due to the boundary condition imposed, there areaddi-
tional terms present in the Lagrangian which modify the c
efficients of the cross-coupling terms while leaving th
structure unchanged. The equations of motion of the fie
f1 andf2 , then, have the form

¹2f15
l

2
f0

2f11
3l

&
f0f1f21

7l

12
f1~f1

213f2
2!,

~69!

¹2f25
l

2
f0

2f21
3l

2&
f0~f1

21f2
2!

1
7l

12
f2~f2

213f1
2!. ~70!

Subtracting the above equations, we obtain the result

¹2~f22f1!5
l

2
f0

2~f22f1!1
3l

2&
f0~f22f1!2

1
7l

12
~f22f1!3

5
l

2
cS f0

21
3

&
f0c1

7

6
c2D . ~71!

The right-hand-side of the above equation is the first der
tive of the effective potential with respect to the fieldc
5f22f1 . It is obvious that the choicec50 minimizes the
potential. Actually, this is the only minimum of the potenti
since the expression inside the brackets does not have
real solutions.

Next, we assume that the only minimum of the effecti
potential, when 2N21 scalar fields are included in th
theory, corresponds tof15f25¯5f2N21 . We will show
that if we add one more fieldf2N the aforementioned late
time attractor expands in order to includef2N , too. So, as-
04350
to
e

ld
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suming that we have 2N21 equal scalar fields and the fiel
f2N , the Lagrangian~64! takes the form

2L4D5
1

2
~]f0!21

~2N21!

2
~]f1!21

1

2
~]f2N!21

l

4!
f0

4

1
l

4
f0

2@~2N21!f1
21f2N

2 #

1
l

2&
f0$2~2N21!~N21!f1

3

1f2N@3~2N21!f1
21f2N

2 #%

1
7l

48
$4~2N21!@~N21!f1

21f1f2N#2

1@~2N21!f1
21f2N

2 #2%. ~72!

Now, the equations of motion of the fieldsf1 andf2N take
the form

¹2f15
l

2
f0

2f11
3l

&
f0@~N21!f1

21f1f2N#

1
7l

12
$@4~N21!21~2N21!#f1

316~N21!f1
2f2N

13f1f2N
2 %, ~73!

¹2f2N5
l

2
f0

2f2N1
3l

2&
f0@~2N21!f1

21f2N
2 #

1
7l

12
@2~2N21!~N21!f1

313~2N21!

3f1
2f2N1f2N

3 #, ~74!

while the equation of motion of the fieldc5f2N2f1 is
found to be

¹2~f2N2f1!5
l

2
f0

2~f2N2f1!1
3l

2&
f0~f2N2f1!2

1
7l

12
~f2N2f1!3. ~75!

The above equation is identical with Eq.~71! and, as a result
the effective potential has a unique minimum atc50. Ac-
cording to the above result, the only late-time attractor
the system of 2N Kaluza-Klein scalar fields corresponds
f15f25¯5f2N215f2N .

Now, we proceed to calculate the kinetic term and t
effective potential of the system. By using the late-time
tractor of equal fields in the case of 2N scalar fields, the
kinetic part of the Lagrangian~64! takes the form
2-8
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2L4D5
1

2
~]f0!21

~2N!

2
~]f1!2

5
1

2
~]f0!2S 11

2N

q2 D5
1

2
~]f̃ !2, ~76!

where we have assumed the proportionality relationf0
5q f1 and renormalized the scalar fieldf0 . Then, the ef-
fective potential reduces to

Veff5
l

4!
f0

41
l

4
~2N! f0

2f1
21

l

2&
~2N!2f0f1

3

1
7l

48
~2N!3f1

4

5ṼS 11
12N

q2 1
24&N2

q3 1
28N3

q4 D S 11
2N

q2 D 22

,

~77!

whereṼ is the quartic potential of the renormalized fieldf̃.
According to the above result, the effective potential depe
on two parameters: the numberN of Kaluza-Klein fields that
we include in the theory and the proportionality coefficie
q. This coefficient, although a number, may itself depend
N changing radically the picture for the behavior of the
fective potential. So, in order to draw consistent conclusio
we reconsider the equations of motion of the fieldsf0 and
f1 ,

¹2f05
l

6
f0

31
l

2
~2N!f0f1

21
l

2&
~2N!2f1

3, ~78!

¹2f15
l

2
f0

2f11
3l

2&
~2N!f0f1

21
7l

12
~2N!2f1

3. ~79!

By making use of the relationf05qf1 and rearranging ac
it

04350
s

t
n
-
s,

cordingly the above equations, we obtain the following co
straint for the proportionality coefficient:

q3

3
1

3&

2
Nq21S 7N2

3
2NDq2

2N2

&
50. ~80!

This algebraic equation has the solutions

q152N&, q2,35
27N6A49N2124N

2&
. ~81!

When each one of the above values is substituted in
expression~77!, the potential exhibits a different behavio
Analytically we find the following.

~i! q5q1 . In this case, we obtain

Veff5ṼS N

N11D . ~82!

For N52, this givesVeff5
2
3 Ṽ. However, in the limit N

→`, the effective potential asymptotically tends toṼ. Note
that the imposition of the periodic boundary condition d
mands the existence of two boundaries soN>2. When, at
the next-to-lowest order, we studied the caseN52, we did
not obtain any solution with the coefficient that multipliesṼ
being smaller that unity. This means that the above solu
owes its existence to the imposition of the periodic condit
on the Kaluza-Klein fields~for N52! and it may not consti-
tute a generic solution of the original theory. However, f
largeN, we expect this behavior to approximate the soluti
of the original Lagrangian. In particular, this is exactly th
type of solution we were searching for. Namely, at largeN,
the potential of the late-time attractor fields does not dep
on N relative to the original four-dimensional potentia
Therefore, for largeN, chaotic inflation is realized in four-
dimensions with a quartic five-dimensional couplingl̂;1,
and we have an explicit example of assisted inflation.

~ii ! q5q2 . Then, we have
Veff5Ṽ
2@36011904N12401N22~1561343N!A49N2124N#

~20149N27A49N2124N!2
. ~83!
he

ncy
v-

e-
Then,

For N52: Veff.16.5Ṽ, ~84!

For N@2: Veff.ṼH 7N1
18

7
1OS 1

ND J ~85!

which clearly shows that the potential tends to increase w
 h

the number of scalar fields that we include in the theory. T
above solution corresponds to the results~41! and ~58! de-
rived in the lowest (N51) and next-to-lowest order (N
52), respectively. Both these solutions showed a tende
to increase with the number of Kaluza-Klein fields, a beha
ior which obviously survived after the imposition of the p
riodic condition. Of course this solution has exactly theN
dependence that prohibits an assisted solution.

~iii ! q5q3 . In this case,
2-9
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Veff5Ṽ
2@364011904N12401N21~1561343N!A49N2124N#

~20149N17A49N2124N!2
. ~86!
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For N52: Veff.1.04Ṽ, ~87!

For N@2: Veff.ṼH 11
32

343N
2

368

16807N2 1OS 1

ND 3J .

~88!

In this case, the largest value that the potential takes on
responds toN52 and, as we add more and more sca
fields, it asymptotically tends toṼ with the multiplication
coefficient being always larger than unity. This solution
the analogue of the solutions~57!, ~59!, and~60! derived in
the next-to-lowest order approximation. By making use
the periodic condition, we managed to include a large nu
ber of scalar fields in our model and found that these coe
cients decrease with the number of fields, as we expected
in the case withq5q1 , this class of solutions also allows fo
chaotic inflation withl̂;1 through assistance.

Although the large number of fields has managed to
move the fine-tuning problems, it is necessary to verify t
the initial conditions for inflation to occur are indeed fu
filled. In four dimensions, we normally assumeṼ(f̃)
;M P

4 , which for l!1, corresponds tof̃@M P . If these
conditions are translated into our five dimensional quantit
then we would findf̂;M P

1/2M5 andV̂;M P
2 M5

3@M5
5 . With-

out a better understanding of the dynamics of the fi
dimensional theory, we should instead insist thatV̂(f̂)
;M5

5. This condition, then, becomes

Ṽ~f̃ !52LV̂~f̂ !;M P
2 M5

2,M P
4 ~89!

since N52LM55M P
2 /M5

2@1. The requirement that th
four-dimensional coupling constant should be ofO(10212)
imposes the following condition on the five-dimension
coupling and the four- and five-dimensional Planck mass

l̂S M5

M P
D 2

;10212. ~90!

By appropriately choosing the values of the above quantit
the required value ofl is naturally obtained. However, th
initial condition for inflationf̃>M P puts a constraint on the
smallest possible value of the ratioM5 /M P : when the above
condition is combined with the expression~89! for the four-
dimensional potential, one findsM5>1026M P . Then, even
if l̂ is as large as ofO~1!, we can still obtainl;10212. The
problems encountered whenM5!M P have recently been
discussed@12,13#. However, forM5;1023M P as in many
models of string unification@14#, we would haveN;106,
04350
r-
r

f
-
-

As

-
t

s,

-

l

s,

and an initial value ofl̂;1026 would be brought down to
the correct four dimensional coupling.

There is one more issue which must be addressed. In
section, we have discussed the conditions leading to in
tion, and the attractor solution of the equations of motion.
doing so, we have neglected the KK mass terms, which
valid so long asm2,lf0

2. At the onset of inflation, this
condition is obeyed by all of the KK fields only if the max
mum mass we are considering~which corresponds to theNth
state and has mass;M5! satisfiesM5

2,lf0
2;l1/2M PM5 ,

or M5&1026M P . This means that only for the margina
value of M5.1026M P all of the KK fields can be consid
ered effectively massless while forM5.1023M P we can
ignore the masses only for those fields withm2,1023M5

2.

Moreover, as the fieldf̃ moves toward the minimum of the
potential,f0 becomes smaller as well and, gradually, mo
and more fields cease to satisfy our assumption on
masses of the fieldsf i . The equations of motion of thes
massive fields are dominated by their mass terms with
only late-time attractor being the trivial one. As a resu
these fields get decoupled from the rest of the system wi
time scale inversely proportional to their mass: the m
massive they are, the faster they decouple. At the end of
day, whenf̃ finally reaches the minimum of the potential, a
of the massive KK fields have decoupled and only the ma
less ~by construction! KK zero-mode,f0 , has remained
playing the role of the inflatonf̃. However, this behavior
does not affect the resolution of the fine-tuning problem
the least. As the number of KK fields, that can be conside
massless, decreases, the solutionq5q1 gradually disappears
while the other two solutions,q5q2 and q5q3 , tend to
become identical resulting in an effective potential which
again independent of the numberN. As a result, the resolu
tion of the fine-tuning problem holds at all times: from th
onset of inflation, when all or part of the KK fields can b
considered massless and contribute to the inflaton, unti
final stages, when all the KK fields have decoupled.

It appears that the compactification of a large extra
mension can lead to assistance effects enhancing the p
abilities for inflation not only in the case of power-law po
tentials but in the case of exponential potentials as well.
an illuminating example, we consider the following five
dimensional scalar field theory:

2L5D5
1

2
]Af̂]Af̂1V̂0 expS 2A2

p̂

f̂

M5
3/2D , ~91!

whereV̂0 and p̂ are constants. As in the case of the quar
potential, the five-dimensional fieldf̂ ~which is perhaps a
modulus field from the compactification of additional dime
sions in the theory! can be Fourier expanded along the co
2-10
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pact coordinatez. When the expansion~27! is substituted in
the above Lagrangian, we obtain a scalar field theory
scribed by Eq.~19!, interacting, through an exponential p
tential. Even in terms of five-dimensional quantities, th
theory is ladened with interactions since the potential of
ery field multiplies the potential of every other field. Whe
the integration over the compact coordinate is conducted
expect an effective, heavily interacting, four-dimension
scalar theory to arise. However, the form of the poten
makes the integration overz extremely difficult. Neverthe-
less, we can still make some qualitative arguments on
assistance effect that follows from compactification. In ter
of four-dimensional quantities, the above Lagrangian can
written as

2Leff5
1

2
]mf̃]mf̃1Ṽ0 expS 2A2

p̃
f̃ D , ~92!

where now

f̃5A2Lf̂5AN
f̂

M5
, Ṽ052LV̂05N

V̂0

M5
, p̃5Np̂.

~93!

As it is well known, a four-dimensional theory of the form
given above leads to a power-law expansion of the Unive
R(t);t p̃. After compactification, the parameterp̂ has been
multiplied by the number of massive KK fields that a
present in the theory and, as a result, for sufficiently largeN,
the four-dimensional theory will produce inflation even if th
five-dimensional theory with the parameterp̂ was not able
to. Finally, it is worth noting that the above dependence
the field f̃ and the parametersṼ0 and p̃ on the number of
multiple fieldsN was also derived in Ref.@7# although the
origin of the fields was not specified. Here, we argue that
compactification of a five-dimensional theory with an exp
nential potential could provide us with both the necess
multiplicity of scalar fields and the desired dependence of
parameters of the theory on the number of fields.

We summarize the results of this section: The Kalu
Klein compactification of the fifth dimension of a five
dimensional theory of a single, self-interacting scalar fi
leads to the appearance of a large number of Kaluza-K
scalar fields in the four-dimensional effective theory. A fe
ture of this effective theory is the presence of a complica
web of interaction terms between the scalar fields of
theory. Once the late-time attractor of the system is de
mined, this field theory of multiple scalar fields can
mapped to a theory of a single, self-interacting scalar fieldf̃.
The presence of the interaction terms drives the effec
potential towards two different directions: in one case, it
creases with the number of extra scalar fields that are pre
in the theory while, in the second case, is starts with a va
slightly smaller or larger than the value of the one-field-se
interaction potentialṼ but asymptotically tends back toṼ.
At the end of the analysis, the renormalized scalar fieldf̃
turns out to be much more (q5q2) or equally strongly
coupled (q5q1,3) compared to the initial four-dimensiona
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Kaluza-Klein fields. As a result, the renormalized coupli
l̃, defined asl multiplied by the expressions in brackets
Eqs. ~82!, ~85!, and ~88!, takes on a value which is muc
larger (q5q2) or almost the same (q5q1,3) compared to the
value of the initial four-dimensional couplingl. However, in
the latter cases,l̃ is suppressed by the number of sca
fields relative to the original couplingl̂ of the five-
dimensional scalar field. This a concrete example of assi
inflation.

V. CONCLUSIONS

In this paper, we have dealt with the problem of fin
tuned coupling constants in the framework of field theor
that involve self-coupled or interacting scalar fields. Th
problem inevitably arises when we consider the possibility
the creation of an inflationary epoch in our universe a
demand an agreement between the theoretical predict
and the experimental~COBE! data on density fluctuations.

We have demonstrated by considering some general
theories of multiple scalar fields in four dimensions that t
idea of assisted inflation based on exponential potentials@7#
can be easily extended in the case of power-law potentials
this case, the presence of multiple scalar fields leads
renormalized theory of a single scalar field which is cons
erably less strongly coupled than the original fields of t
theory. The renormalized coupling constants scale with
number of fieldsN which permits the creation of an infla
tionary period without severe fine-tuning. However, the
fectiveness of assistance depends strongly on the interac
between the scalar fields of the theory. If the multiple sca
fields are assumed to be only self-coupled, both power-
inflation based on exponential potentials as well as cha
inflation works well with only mild or no fine-tuning at al
depending on the number of fieldsN that we include in the
theory. If, on the other hand, we allow cross-coupling ter
between different scalar fields, the assistance method br
down leading to a much more strongly coupled theory.

As a concrete example of a field theory with multip
scalar fields, we considered a single, self-interacting sc
field living in five dimensions with a quartic potential.~Other
recent constructions for inflationary models involving a lar
extra dimension can be found in Refs.@11–13,15–17#.! As-
suming that the fifth dimension is compactified along a cir
and applying a Kaluza-Klein reduction of the five
dimensional field, we obtained a four-dimensional, effect
theory with the necessary multiplicity of scalar fields fu
filled by the presence of the Kaluza-Klein modes. The res
ing potential contains a complex network of cross-coupl
terms. As suggested by our previous results, these interac
terms are expended to hinder inflation. In terms of fo
dimensional quantities, this is indeed the case. Once
theory of multiple Kaluza-Klein fields is mapped to a theo
of a single, renormalized scalar field, we found three diff
ent solutions for the corresponding effective potential:
first one follows a behavior similar to the one derived in t
purely four-dimensional case and drives the potential, a
thus the renormalized coupling constant, to large values
2-11
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creasing with the number of scalar fields; the other two
lutions start with a value for the effective potential which
slightly smaller or larger than the value of the one-fie
potentialṼ but asymptotically tends toṼ as we increase the
number of fields. In both cases, the desired behavior of
effective potential is not achieved and the renormalized s
lar field is either more or equally strongly coupled than t
original four-dimensional Kaluza-Klein fields. Consequent
the necessary fine-tuning of the renormalized quartic c
pling constantl̃ becomes more severe or at best remains
same compared to that ofl, a result which is attributed to th
presence of interaction terms between the Kaluza-K
fields of the theory. However, the theory of the renormaliz
scalar field does indeed get assisted although via a diffe
path. The four-dimensional coupling constantl of the
Kaluza-Klein fields is determined by the five-dimension
one, l̂, divided by the number of the Kaluza-Klein mode
As a result,l and thusl̃, in the case of the latter two solu
y
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tions, is suppressed by the number of scalar fields that
present in the theory relative to the original coupling co
stant l̂ of the five-dimensional theory. By choosing appr
priate values of the five-dimensional Planck massM5 and
the five-dimensional coupling constantl̂, we are able to
naturally obtain a four-dimensional, self-interacted sca
theory with l;O(10212) ~in agreement with COBE data!
without the need of any fine-tuning. Moreover, our results
not depend on the number of massive KK fields that cont
ute to the inflaton field and, as a result, the resolution of
fine-tuning problem holds from the onset of inflation until i
final stages.
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