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A class of generalized nonminimal coupling theories is investigated, in search of scaling attractors able to
provide an accelerated expansion at the present time. Solutions are found in the strong coupling regime and
when the coupling function and the potential verify a simple relation. In such cases, which include power law
and exponential functions, the dynamics is independent of the exact form of the coupling and the potential. The
constraint from the time variability dB, however, limits the fraction of energy in the scalar field to less than
4% of the total energy density, and excludes accelerated solutions at the pf86666-282(199)01414-9

PACS numbd(s): 98.80.Cq

l. INTRODUCTION f($)R. 1)

A great (_Jleal of effort hz?\s bee_n devoted_in_ recent times tg- instance, Refd.14—17 adoptedf~ ¢? discussing the
the dynamics of scalar fields in the radiation and mattel,,qe| in the context of inflation. In Ref18] several attrac-
d0m|r_1ated eras. The mot|vat!ons are manlfold_: first, severa),, scaling solutions in the matter dominated regime with
theories of fundamental physics predict the existence of scgsower-law and exponential potential have been found. Other
lar fields [1-3]; second, a slowly rolling scalar field may forms of f(4) have been considerddee e.g.[19]).
mimic the behavior of a cosmological constant at the present A common feature of all these investigations, perhaps ob-
time, in agreement with a popular model of structure forma-iously, is the choice of specific potentials and coupling
tion and with the observation of an accelerated space expafunctions. The purpose of this paper is to show that it is
sion [1,4,5]; third, the scalar field may alleviate the con- possible to find attractor solutions in NMC models in which
straints on a true cosmological constdi; fourth, the both the couplingf(¢) and the potentiaV/(¢) are left un-
additional source of fluctuations produced by the scalar fielépecified, and only their relation matters. In other words, we
may give new observable effects on the cosmic microwavevill find a class of models in which the dynamics of the
background and on structure formatigh7,9]. system is independent of the coupling and of the potential,

So far, most work focused on fields with minimal cou- and depends only on their relation. In particular, we will find
pling to gravity[1,2,4,5,9,1Q In this case, the dynamics in a attractor solutions for all models for which we can wiig)]
homogeneous and isotropic space-time is completely deter-
mined once one specifies the matter fluid equation of state V(gp)=Af(H)M. 2
and the field potential. For the former, the obvious choices of

interest are the equation of state of a relativistic fluid and ofrpis relation holds, for instance, when bothand f are
a pressureless one. For the latter, although there are no OBOWer-IaW, or exponential, but is also valid for much more
servations or fundamental principles to guide our investigacompncated functions, like products of power law and expo-
tion, potentials such as power laws, exponential and a hangrential. In the limit of strong coupling, the dynamics of the
ful of other cases have been selected, based either afbsmological solution will be shown to depend essentially
simplicity or on some particle physics model. Among theonly onM and on the fluid matter equation of state.
infinite solutions of the system of equations, the attractor After performing a conformal rescaling of the metric, the
solutions are of course of the greatest interest. Among th&IMC system is written as a scalar field in pure general rela-
attractors, those which have a power-law behavior, denotetivity with an exponential potential and an extra coupling to
also as scaling solutions, are particularly simple to find andhe ordinary mattetsee e.g.[21], in which however only the
to study. Consequently, the study of the scalar field dynamicsasef~ ¢ has been discussedrhis system shows a sur-
has focused on the searchsufaling attractors To be inter-  prisingly rich phase space structure, with four different at-
esting for cosmological purposes, these attractor solutiongactors. Two of these are qualitatively similar to the attrac-
must also lead to an energy density in the scalar field whictors found in the system without extra coupling. The other
is a non-negligible fraction of the total energy density. Fi-two however are new, and have not been previously identi-
nally, if we want to explain recent observations of the large-fied. Although we derived this system from a class of NMC
scale geometry of the space-tiigl,12], the scalar factor theories, we remark that it is interesting on its own, and
has to be accelerated at the present. many cosmological properties of its trajectories have yet to
In minimal coupling theories the Lagrangian is the sum ofbe worked out. Here we study it mainly to constrain the
the Einstein-Hilbert gravity Lagrangian and of the scalarNMC model, and find that the constraint on the variability of
field sector. The nonminimal couplindNMC) adds a new the gravitational constant rules out this class of models as an
term which, in its simplest form, may be written &er a  explanation for the accelerated expansion rate of the Uni-
more general form that includes derivatives see RES)) verse.
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In the next section we work out the field equations. In 2w=logf, (13
Sec. lll we find and discuss the attractor solutions, in Sec. IV
we discuss their cosmological properties, and in the finalt follows that the equations in the rescaled metisome-
section we draw the conclusion and point to new developtimes called Einstein frame, while the old metric is the Jor-

ments. dan frame are
Il. FIELD EQUATIONS G..= KZ[F2(¢)KM(¢)+g,we*““’V(tﬁ)+e’4“’TW(m)%,l4)
Consider the Lagrangian of an NMC scalar field plus a
perfect fluid matter componenkf=8=M ;2) where
— 2 2 1 f! 2
Ltot_L(¢aR)+2K L¢+2K Lmatteri (3) |:2(¢):?_|_ E , (15)
L(¢.R)=—f(H)R, 4

where c?=2«?/3 and where the prime denotes derivation

1 with respect togp. We can then define a new canonical field
Ls=5b.ud* V(). (5)

, , _ Y= f doF(¢), (16)
Contrary to the usual notation, we found it convenient to
include into f(¢) the constant that produces the Einstein-a new potential
Hilbert term, so that ouf is 1+ k2&f(¢) in the notation of, P
e.g., Ref.[14-17). We will always assumd>0, since it V()
acts as an effective gravitational constant: U()= W a7

¢

Gerr=(22f) 71 (6)
and a new matter tensor

The Einstein equations are ~ e
1 TMV(m)Ee wTMV(m)' (18
G.=L& 59u(L=LRR) =0, UL rF (L R)ips Finally, all these definitions lead to the canonical equations
in the new metrimf]#,,

+ k2T gy + 7T ; @)

pv(m)

Gv=r[Tuuy+ Ty (19

whereL r denotes herelL/dR, and where the scalar field The new matter energy-momentum tensor can be written as
energy-momentum tensor is .

T*(my=diag pe™ 4, —pe 4, —pe 4, —pe 4

1
T )= PP 0™ 59ub,a®“+ 90V (P), 8 =diag p*,— p*,—p*,—p*). (20

As a last step, we rewrite the new metric in the Friedmannian

and the fluid tensor is form

T,uv(m):(p—'_p)u,uuv_g,uvp- (9) ’é =d|ag(1 _52_52 _'5_2) (21)
Mmv ’ ’ ’

Now, under the conformal transformation .
where the old time and the old scale factor are

a,uU: ezwg/uﬂ (10) ~
t=f e~ dt, (22)
the following transformationgsee e.g.[23-25) occur: the
kinetic term and
1 « — o003
K,uv(qf)):d),,u(b,y_ Eg,uvgb,a(b' (11) a=e a. (23)

The equation of motion for the fields are obtained as the

remains invaried K ,,=K ,,); the potential termg,,V(¢$)  covariant conservation laws of the energy tensors. In the old
become®2“g,,V(¢); and the perfect fluid tensor becomes frame they read
_ ’ ' 2_
T , 287210-'- , . (12) D¢+V +f'R/2k —0,
pr(m) pr(m) | (24)
Putting Tt =0.
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The transformation to the new frame is performed according df

to the rules cy= J + =logf, (33
R=e*(R— 69aﬁw,aw,5+ 60 w), where the integration constant can be absorbed into a redefi-

- . (25  nition of . It follows that the conformal functiow equals

O=e*(0-29"%w V). cyl2. Therefore, once we have the dynamicsyofin the

transformed metric, we can write down the solution in terms

of the original metric without having to specifi( ), pro-

vided we express also the potent\d{ ) as a function of

f( ). With the assumptio(81) we getW ,=c in the system

(26)—(29), so that putting

From now on, we omit all the tildes, until we return to the
original quantities. Finally, the full set of equations in the
Friedmann metric read

. - 1
g+ 3HY+U =5 W ,(p* —3p%), (26) B=4-3w

. 1 . the first two equations become
p*+3H(p"™ +p*)=— S W yih(p* —3p%), q

. 1
@7 d3HY+U =5 CBp",

1.
3H?= | p* + SIP+U (29) | - (39
p* +3Hwp* = — ECBI/I[)*.

—2H=r*(p* +p* +¢?), (29 N _ _
The condition(31) holds true in several cases. For in-

where stance, it is verified for largeh by any functionf (¢) which
grows faster than quadratically, that is ummf(¢)/¢zﬁ>00.
In the often-studied quadratic cades 1+ «k?£¢?, for large
¢ we can putf ()= k242 Then, instead of Eq31), one
hasf’? =4«?¢f, and all that changes is that in E2) and
As already remarked in the Introduction, the systé)—  Eq.(33) c? is replaced byc?/(1+ 1/6¢). In this case, all the
(29), here derived from an NMC model, is interesting on itsresults found below beconexact The weak coupling limit
own. Indeed, we can regard either the Jordan or the Einsteil which k?£¢%<1, i.e.,é<(«?¢?) "1, on the other hand, is
frame as the physical one. In the former case, we have texcluded in the present analysis. We could then label our
express the solutions of the above system back in the originglase as thetrong couplingimit. In fact, it is easily seen that
frame, and study its cosmological consequences in the origit corresponds to the limit in which the Lagrangian can be
nal frame, as we will do below. In the latter case, the soluapproximated as- f(¢)R—2«x?V(¢), neglecting the kinetic
tions of the system are the physical solutions, and their propterm %(f,‘“d,u. Notice however that this does not imply that
erties can be directly compared to observations. In particulathe scalar field kinetic terms in the field equations are negli-
the constraints from the variability &, which we will find  gible, because the nonminimal coupling itself introduces
to limit heavily the cosmological viability of our solutions, other kinetic terms.

apply only assuming the physical frame to be the original Now, as anticipated, suppose we can writ4¢)

!

f
W=log f(¢), W’“’:E' (30

Jordan one. =Af(¢)M. The potential becomes then
IIl. SOLUTIONS Af(p)V
U(y)= (¢>)2 =Ae s, (35)
The full dynamics of the syster26)—(29) is specified by f(®)

the potentiall and by the equation of stafe=(w—1)p. In
the following we consider only &w=2. To write down the Where
potentialU (), we have first to find the relation between

and ¢. This is where the possibility of a dynamics indepen-

dent of the potential and of the coupling function arises. |
fact, if we assume thdR0]

u=M-2. (36)

Mherefore, the potential can be written as an exponential,
whatever the shape &f and off, provided that the condition

£12 .02f (31) (31) and the relatior(2) are fulfilled. The sign ofu selects
’ the direction in which the fields, and thus the variablé
then we can simplify Eq(15): rolls. If u>0, ¢ rolls toward —o°, so thatf—0, and the

effective gravitational constari@.;; increases with time. In
5 "\2 the opposite casgy <0, we have thaG.¢; decreases in the
F(¢)= cfl - (32 future. We emphasize that ff(¢) is quadratic, then all re-
sults below remain valid provide@. is replaced byu,
It follows = ul(1+1/6§)2 and B by B,= B/(1+ 1/6&)Y2
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The scalar field dynamics in NMC theories is then re- TABLE I. The critical points for the general cag#0.
duced to the scalar field dynamics in pure general relativity
with an exponential potential and with a scalar field/matter X y Q, p Wy,
coupling. In the radiation case in whiet=4/3, we haves

2\1/2 2 2
=0, and the source terms decouple. The decoupling occurs wi3 (1) 1 ! Sl 2w /3
also when we can neglect the matter energy derQity b — 3w .19 9 i(lJr ﬁ) 18w
= k?p* /3H? with respect to the scalar field energy density 2utB T g2 (B+2up)2 W 2u g
Q,. In these cases, the problem is identical to that already B 0 B \? 62—w) 2
solved in, e.g., Ref§2,9,10,22. The case3+#0 has already ¢ 53w (ﬁw) R
been discussed by Wetterich [ia1], where some of its at- B+9(2-w)w
tractors have been identified. Here we extend the analysis % 1 0 1 173 2
the full classification of critical points and attractd¢fsding €  +1 0 1 173 2

two new attractonsand express the solutions in terms of the
old frame. We keegB as an independent parameter as long

as possible, and proceed to replacing it by3w only in the coordinates ag,,Y,), one in which the fractions of energy

graphics, in order to narrow the parameter space to two didensity in the matter and in the field are both nonzéae

mensions, namely and x. The formulas apply however to beledb), one dominated by the matter field)( and finally
the more general case, unless otherwise specified. two dominated by the kinetic energy of the scalar field, of

Following Copelancet al.[10] we define which one ax=—1 (d) and one ak=+1 (e).
The critical points on which the matter field becomes neg-

Kk kU ligible reduce to the3=0 case: therefore, the solutioasd,
= , =—, (377  anderemain the same also f@+ 0. The pointsh andc are
JeH V3H instead modified. The solution is no longer matter domi-

. . . . nated: rather, the scalar field kinetic energy and the matter
and introduce the independent variahie- log a(t). Notice energy take up a constant fraction of the total energy. In a

2 2 qi i i .
triheadt éy?ﬂgyscg:;? f}QE fli?riltci)cn :r:dto;ilteenr][glggn%?gilti/eg?)rec[natter dominated erédMDE), the scalar field kinetic energy
tively. Then, we can rewrite the systef@6)—(29) as amounts tof) ,=1/9. The critical points in the general case

B+0 are listed in Table I, where we pwai(8,w,u)= >

1 +2Bu+18w.

X2+ Ew(l—xz—yz)} —py? Although the number and position of the critical points is
affected only quantitatively by the extra coupling, their sta-

x'=—3x+3X

1 bility properties are modified in a more radical way. In par-
+ E,B(l—xz—yz), ticular, while for 3=0 only the pointsa andb can be attrac-
tors, here we show that alscandd may be stable. Only the
1 (38) point e remains always unstable.
X2+ —W(l—xz—yz)}, The stability analysis is performed as usual by lineariza-
2 tion around the critical points. The parametric regions in
which the real part of both eigenvalues of the linearization
matrix is negative are regions of stability. To simplify the
discussion, we only consider the crucial property of stability
versus instability, paying no attention to the topography of
the critical point(whether it is a knot, spiral, or saddldn
the following, we say that an attractor exists if it lies in the
region O<x’+y?<1. The parameter spaces are plotted in

y' = uxy+3y

where the prime is heré¢/da. The system is invariant under
the change of sign of and of @. Since it is also limited by
the conditionp* >0 to the circlex?+y?<1, we may study
only the unitary semicircle of positive The critical points,
those that verifyx’ =y’=0, are scaling solutions, on which
the scalar field equation of state is

2X2 Flg 1.
Wy =——— =const, (39 Point a The solutiona exists foru?<9, and is an attrac-
X“+y tor only for u_<u<u., where
the scalar field total energy density @,=x*+y?, and the 1
scale factor is pe=7(=B* VB2 +72w) (41)
a~tP, p= 2 L} 400 (e.g.u_=-2.39 andu,=1.89 forw=1). On this attractor
3w w+Q y(wy,—w) we havew,=2u?%/9 and

(the slopep is not to be confused with the pressure Pa=3/u?, (42)
Copelanckt al.[10] have shown that the syste®8) with

B=0 and an exponential potential has up to five criticalinflationary if |u|< /3.

points, that can be classified according to the dominant en- Point b The attractob exists and is stable in the region

ergy density: one dominated by the scalar field total energylelimited byu<u_ andu>u, and the two branches of the

density (let us label this point as solutiom and refer to its  curve
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8 1
. . o= — ﬁ( B>+ 18w —9w?). (43)
4 L —
2 /unstable/‘/ The scale factor slope on the attractor is
3 o0 stable
_2 ) :i(1+ ﬁ) (44
y unstable b 3w 21““
: and, for 3=4-— 3w, is inflationary within the two branches
0 0.5 1 1.5 2 of the curve
w
8
i 4—3w
: Point b m=g s, (45
af stable
? / < It is remarkable that the inflationary region for the point
2 o0 includes values smaller tham~0.91, and thereforexcludes
-2} the MDE equation of statev=1. This conclusion is not
» Stable changed by replacing and,Blwith thgir counterpartg., and
By in the case of a quadratic couplirfige).
ot Point ¢ This point exists fow<5/3, and is stable below
£ =i : o = the I0\_Ner branch and above the upper branchugf The
@) w slope is
" Point ¢ . \abk C:M,
5 B?+9(2—w)w
2.5
& unstabl; \ and it is never accelerated ff=4—3w. The pointc shares
with b the property that matter and scalar field have both a
-2.5 nonvanishing fraction of the energy density.
" Point d This point exists for all values of the parameters,
stable and if B=4— 3w is stable forw>5/3 andu.>3. Its slope is
-7.5 alwayspy=1/3.
3 055 1 1.5 3 Point e This point exists and is unstable for all values of
w the parameters iB=4—3w.
s The complex structure of the parameter space is summa-
Point d : rized in Fig. 2. Notice that(1) for each value of the param-
. unstable | stable etersw, u there is one and only one attract¢2) for w=1
2.5 : the pointsa,b or c can be stable, depending @n (3) these
: solutions are inflationary in the shaded region, &hdonly
= 0 unstable | Unstable the pointa can be accelerated fov=1 or larger. In Fig. 3
2.5 ’ we present four phase spaces displaying in turn the four pos-
sible attractors. The parameters correspond to the points
~ marked with stars in Fig. 2. As already remarked, attraators
-7.5 andd have not been previously noticed. Also, it is important
. oS : -y . to remark that the attractors are not only locally stable, but
(b) w extend their basin of attraction to all of the phase space. That

is, any possible initial condition leads to the attractor.

FIG. 1. Regions of existence and stability in the parameter space
w,u. In all panels, the eigenvalues of the linearization matrix
change sign across the thick lines. The color code is as follows:
white regions indicate that the critical point does not exist; light

IV. BACK TO THE JORDAN FRAME

gray regions, the point is unstable; dark gray regions, the point is Here we leave the dynamical analysis of the system in the

stable. The dotted lines are at=4/3 andw=5/3 and are useful

rescaled frame and get back to the original one. What do the

landmarks in the parameter space. From top to bottom, parametéitractors look like in the Jordan frame?
spaces of the critical points,b,c andd.

Reintroducing the tildes, we have along the attractors
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Attractor a

N
4

(]
*

=2
bl

Attractor b

0 0.5 1 1.5 2
w

FIG. 2. Regions of stability in the parameter spaces. Each region
is labelled by the critical point that is stable in that region. The gray >
area indicates where the attractor is accelerated. The stars mark the
values of the parameters for which we display in the next plot the
phase space.

3

e

andb (from now on, quantities without tildes are expressed (a)
in the original metri¢

2 - Attractor ¢
cy=— —log|t/ 7 p| (46)
)7
(for u#0), where -
X
ol V2Auc-2. 47
Yab
On the attractors andd, for whichy=0, —~, and the /
X

conformal transformation cannot be performed. Sigcés
proportional to lodf, the attractore andd lead to an effec- Attractor d
tive gravitational constant that is either zero or infinite, and
are therefore to be rejected as possible solutions in the Jordan
frame. Of course, trajectories that have not already reached
the attractor cannot be excluded, but these are not scaling .
solutions, and will not be further considered in this paper.

From Eq.(46) it follows (neglecting the subscripts

N
)

e?o=(t/7)" 2. (48)

e

. . b
From the latter expression we can evaluate the relation be- (®)
tween the old and new time and scale factor, given by Egs. FIG. 3. Phase spaces for various values of the parameters, cor-

(22) and (23). We obtain(for w#0,—1) responding to the points marked as stars in Fig. 2. The phase space
_ is contained in the positive unitary semicircle. While the phase
t~tH/1tm space of attractora and b are qualitatively similar to those dis-

(49) played in Copelan@t al.[10], the phase space of attractarandd
awt*1/(1+ﬂ)a(t)_ have no counterpart fg8=0.

As can be seen, fop— o the old and new metric coin- On the attractoa, pa=3/u?, which is inflationary(both in
cide; in this limit the scalar field vanishes on the attractorthe original and in the rescaled framié u?<3, that is 2
and the system reduces to the pure perfect fluid Friedmana J3<M<2+/3, we have

case.
It follows that in the original variables the scale factor is plL= pt3 (51)
again a power law & w(l+p)’
o' . 1+up Consider now some special cases. I f>—1 the scale
a~th, p= 1+u (50 factor follows apolelike inflation, a~(t0—t)pé with nega-
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tive exponent. For=0 (i.e., V~f?), the old and new met- ) . 2
ric coincide(up to a constant the field freezes to a constant |G/IG|=|f/f|= 1+
and its energy drives a de Sitter expansion. The system re-

duces asymptotically to pure general relativity with a CosmO'Comparing with the observational constraidG/G|

logical constant. Finally, fop=—1 (i.e., V~f), the scale <al0 % yr !, and assuming~10 Gyr, we obtain the
factor is power law accelerated in the new frame, but Mapsndition ' '

again to a de Sitter expansion in the original framef i$
quadratic ing, then the inflationary condition on the solution 2
a reads ,u,>a -1. (55

(54)

—| =

p?<3(1+ 1/68). (52 Current constraint$see e.g.[27]) give a~0.1 or smaller.
_ This impliesu>20, too large for the attracta@ to exist. A
On the attractob, on the other hand, putting,=2/(3W")  similar problem arises ifis quadratic. Along the attracta
with w' =w(1+ B/2u) ~* we obtain the energy density in the scalar field is a constant fraction of
the total energy. In MDEand for3=4—3w=1) this is

. 3w +2u £3
P W (1) %9 _oren (56
?(1+2p)°
Notice thatp,—2/3w for u— *o, as expected. Since the
property of being accelerated is conformally invarigfar ~ The constraint55) gives
positive definite conformal factorsgoing back to the old
frame does not change qualitatively the attractors found so ,=0.035, (57)

. - ) =2 . . . .
far. Also, it is not difficult to check tha ,» = x“p*/3H"and  \yhich confines the scalar field contribution to that of a minor
1, are invariant under conformal transformation, so thalcomponent. This constraint is three or four times stronger

Q,=0Q,. . ) than that imposed by the nucleosynthd&kon a minimally
It can be shown that the choise~ ™ is the only one that coupled field.

allows scaling attractors in both the old and the new metric.
Other choices are possible that allow scaling solutions either
in the old or in the new metric: for instanc€~ f2(log f)M
gives scaling attractors in the new metric but not in the old
one. In this paper we have investigated a large class of NMC
models in the limit of strong coupling with a perfect fluid
V. COSMOLOGICAL PROPERTIES matter component, searching for attractors that might pro-
vide a decaying cosmological constant. These models in-
Once we have the analytical expression of the attractorsslude all the cases in which the potentiél¢) is a power of
we must consider whether they are viable as cosmologicahe coupling functionf(¢), regardless of their functional
solutions. The attractor solutioa is inflationary (acceler-  form. We have shown the following.
ated and the scalar field is asymptotically the dominating (1) The NMC system can be reduced to a scalar field with
component. As such, it may match the observations of a@n exponential potential, a minimal coupling to gravity, and
accelerated expansion; for instance, the valye<0.4 sug-  an extra coupling to the matter.

VI. CONCLUSIONS

gested in Ref[26] implies (2) For each pair of the parametessu there is one out
of four possible scaling attractors: oreg,scalar field domi-
M~0.7 or 3.3. nated and possibly accelerated; ore, decelerated ifw

=0.91 and with constant ratio of scalar field total energy to
On the other hand, sinc@,—1, in order to allow for a matter; oneg, always decelerated and with constant ratio of
substantial fraction in the ordinary matter component at thescalar field kinetic energy to matter; and finally odealso
present, the attractor does not have to be already reached.always decelerated, and dominated by the field kinetic en-
The solutionb has some drawbacks. First, it is not accel-ergy.
erated at all fow=1; second, the constraints from nucleo- (3) Attractorsc andd are acceptable only in the rescaled
synthesis do not allow a large fraction of energy density inframe; in the original frame they lead to a gravitational con-
the scalar field, so that it cannot provide closure energystant either vanishing or infinite.
However, as argued if2], models which reach this attractor ~ (4) This choiceV~ fM is the only choiceg(in the strong
compare favorably with observations of large scale structurecoupling regimefor which there is a scaling attractor both in
and may have a simple interpretation in terms of fundamenthe original and in the rescaled metric.
tal physics. (5) The constraint on the time variability @ rules out
Both solutionsa and b are heavily constrained by the the accelerated models, and only allows a very small fraction
upper limits on the variability of the gravitational constant. of the energy density to be in the NMC scalar field.
We have Clearly, this analysis is not yet conclusive. Viable solu-

043501-7



LUCA AMENDOLA PHYSICAL REVIEW D 60 043501

tions might exist for which one or more of the following is construction do not add much to the minimally coupled
true: (a) the attractors are not yet reachdt) V does not model.

equalfM: (c) the strong coupling regime does not apply. For

instance, assumin=1+ x%£¢?, and in the limit of weak ACKNOWLEDGMENTS

coupling, the|G/G| bound can be satisfied for small and | am indebted to Carlo Baccigalupi, Francesca Perrotta,
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