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Scaling solutions in general nonminimal coupling theories

Luca Amendola
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~Received 22 February 1999; published 29 June 1999!

A class of generalized nonminimal coupling theories is investigated, in search of scaling attractors able to
provide an accelerated expansion at the present time. Solutions are found in the strong coupling regime and
when the coupling function and the potential verify a simple relation. In such cases, which include power law
and exponential functions, the dynamics is independent of the exact form of the coupling and the potential. The
constraint from the time variability ofG, however, limits the fraction of energy in the scalar field to less than
4% of the total energy density, and excludes accelerated solutions at the present.@S0556-2821~99!01414-9#
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I. INTRODUCTION

A great deal of effort has been devoted in recent times
the dynamics of scalar fields in the radiation and ma
dominated eras. The motivations are manifold: first, sev
theories of fundamental physics predict the existence of
lar fields @1–3#; second, a slowly rolling scalar field ma
mimic the behavior of a cosmological constant at the pres
time, in agreement with a popular model of structure form
tion and with the observation of an accelerated space ex
sion @1,4,5#; third, the scalar field may alleviate the co
straints on a true cosmological constant@6#; fourth, the
additional source of fluctuations produced by the scalar fi
may give new observable effects on the cosmic microw
background and on structure formation@2,7,8#.

So far, most work focused on fields with minimal co
pling to gravity@1,2,4,5,9,10#. In this case, the dynamics in
homogeneous and isotropic space-time is completely de
mined once one specifies the matter fluid equation of s
and the field potential. For the former, the obvious choices
interest are the equation of state of a relativistic fluid and
a pressureless one. For the latter, although there are no
servations or fundamental principles to guide our investi
tion, potentials such as power laws, exponential and a ha
ful of other cases have been selected, based eithe
simplicity or on some particle physics model. Among t
infinite solutions of the system of equations, the attrac
solutions are of course of the greatest interest. Among
attractors, those which have a power-law behavior, deno
also as scaling solutions, are particularly simple to find a
to study. Consequently, the study of the scalar field dynam
has focused on the search ofscaling attractors. To be inter-
esting for cosmological purposes, these attractor solut
must also lead to an energy density in the scalar field wh
is a non-negligible fraction of the total energy density. F
nally, if we want to explain recent observations of the larg
scale geometry of the space-time@11,12#, the scalar factor
has to be accelerated at the present.

In minimal coupling theories the Lagrangian is the sum
the Einstein-Hilbert gravity Lagrangian and of the sca
field sector. The nonminimal coupling~NMC! adds a new
term which, in its simplest form, may be written as~for a
more general form that includes derivatives see Ref.@13#!
0556-2821/99/60~4!/043501~8!/$15.00 60 0435
to
r
al
a-

nt
-
n-

ld
e

r-
te
f
f
b-
-
d-
on

r
e
d

d
s

ns
h

-
-

f
r

f ~f!R. ~1!

For instance, Refs.@14–17# adoptedf ;f2 discussing the
model in the context of inflation. In Ref.@18# several attrac-
tor scaling solutions in the matter dominated regime w
power-law and exponential potential have been found. Ot
forms of f (f) have been considered~see e.g.,@19#!.

A common feature of all these investigations, perhaps
viously, is the choice of specific potentials and coupli
functions. The purpose of this paper is to show that it
possible to find attractor solutions in NMC models in whi
both the couplingf (f) and the potentialV(f) are left un-
specified, and only their relation matters. In other words,
will find a class of models in which the dynamics of th
system is independent of the coupling and of the poten
and depends only on their relation. In particular, we will fin
attractor solutions for all models for which we can write@20#

V~f!5A f~f!M. ~2!

This relation holds, for instance, when bothV and f are
power-law, or exponential, but is also valid for much mo
complicated functions, like products of power law and exp
nential. In the limit of strong coupling, the dynamics of th
cosmological solution will be shown to depend essentia
only on M and on the fluid matter equation of state.

After performing a conformal rescaling of the metric, th
NMC system is written as a scalar field in pure general re
tivity with an exponential potential and an extra coupling
the ordinary matter~see e.g.,@21#, in which however only the
casef ;f2 has been discussed!. This system shows a sur
prisingly rich phase space structure, with four different
tractors. Two of these are qualitatively similar to the attra
tors found in the system without extra coupling. The oth
two however are new, and have not been previously ide
fied. Although we derived this system from a class of NM
theories, we remark that it is interesting on its own, a
many cosmological properties of its trajectories have ye
be worked out. Here we study it mainly to constrain t
NMC model, and find that the constraint on the variability
the gravitational constant rules out this class of models a
explanation for the accelerated expansion rate of the U
verse.
©1999 The American Physical Society01-1
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In the next section we work out the field equations.
Sec. III we find and discuss the attractor solutions, in Sec
we discuss their cosmological properties, and in the fi
section we draw the conclusion and point to new devel
ments.

II. FIELD EQUATIONS

Consider the Lagrangian of an NMC scalar field plus
perfect fluid matter component (k2[8pM p

22)

Ltot5L~f,R!12k2Lf12k2Lmatter, ~3!

L~f,R!52 f ~f!R, ~4!

Lf5
1

2
f ,mf ,m2V~f!. ~5!

Contrary to the usual notation, we found it convenient
include into f (f) the constant that produces the Einste
Hilbert term, so that ourf is 11k2j f (f) in the notation of,
e.g., Ref.@14–17#!. We will always assumef .0, since it
acts as an effective gravitational constant:

Ge f f5~2k2f !21. ~6!

The Einstein equations are

Gmn5L ,R
21F1

2
gmn~L2L ,RR!2gmnhL ,R1~L ,R! ;mn

1k2Tmn(f)1k2Tmn(m)G , ~7!

whereL ,R denotes heredL/dR, and where the scalar fiel
energy-momentum tensor is

Tmn(f)5f ,mf ,n2
1

2
gmyf ,af ,a1gmyV~f!, ~8!

and the fluid tensor is

Tmn(m)5~r1p!umun2gmnp. ~9!

Now, under the conformal transformation

g̃my5e2vgmy , ~10!

the following transformations~see e.g.,@23–25#! occur: the
kinetic term

Kmn(f)5f ,mf ,n2
1

2
gmyf ,af ,a ~11!

remains invaried (Kmn5K̃mn); the potential termgmyV(f)
becomese22vg̃myV(f); and the perfect fluid tensor becom

Tmn(m)5e22vT̃mn(m) . ~12!

Putting
04350
V
l
-

-

2v5 log f , ~13!

it follows that the equations in the rescaled metric~some-
times called Einstein frame, while the old metric is the J
dan frame! are

G̃mn5k2@F2~f!K̃mn(f)1g̃mye
24vV~f!1e24vT̃mn(m)#,

~14!

where

F2~f!5
1

f
1S f 8

c f D
2

, ~15!

where c252k2/3 and where the prime denotes derivati
with respect tof. We can then define a new canonical fie

c[E dfF~f!, ~16!

a new potential

U~c![
V~f!

f ~f!2
, ~17!

and a new matter tensor

T̃mn~m!
* [e24vT̃mn(m) . ~18!

Finally, all these definitions lead to the canonical equatio
in the new metricg̃mn

G̃mn5k2@ T̃mn(c)1T̃mn~m!
* #. ~19!

The new matter energy-momentum tensor can be written

T̃m(m)* n 5diag~re24v,2pe24v,2pe24v,2pe24v!

5diag~r* ,2p* ,2p* ,2p* !. ~20!

As a last step, we rewrite the new metric in the Friedmann
form

g̃mn5diag~1,2ã22ã2,2ã2!, ~21!

where the old time and the old scale factor are

t5E e2v( t̃ )d t̃, ~22!

and

a5e2v( t̃ )ã. ~23!

The equation of motion for the fields are obtained as
covariant conservation laws of the energy tensors. In the
frame they read

hf1V81 f 8R/2k250,
~24!

Tmn(f)
;m 50.
1-2
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The transformation to the new frame is performed accord
to the rules

R5e2v~R̃26g̃abv ,av ,b16h̃v!,
~25!

h5e2v~h̃22g̃abv ,a¹b!.

From now on, we omit all the tildes, until we return to th
original quantities. Finally, the full set of equations in th
Friedmann metric read

c̈13Hċ1U ,c5
1

2
W,c~r* 23p* !, ~26!

ṙ* 13H~r* 1p* !52
1

2
W,cċ~r* 23p* !,

~27!

3H25k2S r* 1
1

2
ċ21U D , ~28!

22Ḣ5k2~r* 1p* 1ċ2!, ~29!

where

W5 log f ~f!, W,c5
f 8

f F
. ~30!

As already remarked in the Introduction, the system~26!–
~29!, here derived from an NMC model, is interesting on
own. Indeed, we can regard either the Jordan or the Eins
frame as the physical one. In the former case, we hav
express the solutions of the above system back in the orig
frame, and study its cosmological consequences in the o
nal frame, as we will do below. In the latter case, the so
tions of the system are the physical solutions, and their pr
erties can be directly compared to observations. In particu
the constraints from the variability ofG, which we will find
to limit heavily the cosmological viability of our solutions
apply only assuming the physical frame to be the origi
Jordan one.

III. SOLUTIONS

The full dynamics of the system~26!–~29! is specified by
the potentialU and by the equation of statep5(w21)r. In
the following we consider only 0<w<2. To write down the
potentialU(c), we have first to find the relation betweenc
andf. This is where the possibility of a dynamics indepe
dent of the potential and of the coupling function arises.
fact, if we assume that@20#

f 82 @c2f , ~31!

then we can simplify Eq.~15!:

F2~f!5S f 8

c f D
2

. ~32!

It follows
04350
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cc5E d f

f
5 log f , ~33!

where the integration constant can be absorbed into a re
nition of c. It follows that the conformal functionv equals
cc/2. Therefore, once we have the dynamics ofc in the
transformed metric, we can write down the solution in ter
of the original metric without having to specifyf (f), pro-
vided we express also the potentialV(f) as a function of
f (f). With the assumption~31! we getW,c5c in the system
~26!–~29!, so that putting

b5423w,

the first two equations become

c̈13Hċ1U ,c5
1

2
cbr* ,

~34!

ṙ* 13Hwr* 52
1

2
cbċr* .

The condition~31! holds true in several cases. For in
stance, it is verified for largef by any functionf (f) which
grows faster than quadratically, that is limf→` f (f)/f2→`.
In the often-studied quadratic case,f 511k2jf2, for large
f we can putf (f)5k2jf2. Then, instead of Eq.~31!, one
hasf 82 54k2j f , and all that changes is that in Eq.~32! and
Eq. ~33! c2 is replaced byc2/(111/6j). In this case, all the
results found below becomeexact. The weak coupling limit
in which k2jf2!1, i.e.,j!(k2f2)21, on the other hand, is
excluded in the present analysis. We could then label
case as thestrong couplinglimit. In fact, it is easily seen tha
it corresponds to the limit in which the Lagrangian can
approximated as2 f (f)R22k2V(f), neglecting the kinetic
term 1

2 f ,mf ,m. Notice however that this does not imply th
the scalar field kinetic terms in the field equations are ne
gible, because the nonminimal coupling itself introduc
other kinetic terms.

Now, as anticipated, suppose we can writeV(f)
5A f(f)M. The potential becomes then

U~c!5
A f~f!M

f ~f!2
5AeA2/3mkc, ~35!

where

m[M22. ~36!

Therefore, the potential can be written as an exponen
whatever the shape ofV and off, provided that the condition
~31! and the relation~2! are fulfilled. The sign ofm selects
the direction in which the fieldc, and thus the variablef,
rolls. If m.0, c rolls toward2`, so thatf→0, and the
effective gravitational constantGe f f increases with time. In
the opposite case,m,0, we have thatGe f f decreases in the
future. We emphasize that iff (f) is quadratic, then all re-
sults below remain valid providedm is replaced bymq
5m/(111/6j)1/2 andb by bq5b/(111/6j)1/2.
1-3
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The scalar field dynamics in NMC theories is then
duced to the scalar field dynamics in pure general relati
with an exponential potential and with a scalar field/mat
coupling. In the radiation case in whichw54/3, we haveb
50, and the source terms decouple. The decoupling oc
also when we can neglect the matter energy densityVr*
5k2r* /3H2 with respect to the scalar field energy dens
Vc . In these cases, the problem is identical to that alre
solved in, e.g., Refs.@2,9,10,22#. The casebÞ0 has already
been discussed by Wetterich in@21#, where some of its at-
tractors have been identified. Here we extend the analys
the full classification of critical points and attractors~finding
two new attractors! and express the solutions in terms of t
old frame. We keepb as an independent parameter as lo
as possible, and proceed to replacing it by 423w only in the
graphics, in order to narrow the parameter space to two
mensions, namelyw andm. The formulas apply however to
the more general case, unless otherwise specified.

Following Copelandet al. @10# we define

x5
kċ

A6H
, y5

kAU

A3H
, ~37!

and introduce the independent variablea5 log a(t). Notice
that x2 and y2 give the fraction of total energy density ca
ried by the scalar field kinetic and potential energy, resp
tively. Then, we can rewrite the system~26!–~29! as

x8523x13xFx21
1

2
w~12x22y2!G2my2

1
1

2
b~12x22y2!,

~38!

y85mxy13yFx21
1

2
w~12x22y2!G ,

where the prime is hered/da. The system is invariant unde
the change of sign ofy and ofa. Since it is also limited by
the conditionr* .0 to the circlex21y2<1, we may study
only the unitary semicircle of positivey. The critical points,
those that verifyx85y850, are scaling solutions, on whic
the scalar field equation of state is

wc5
2x2

x21y2
5const, ~39!

the scalar field total energy density isVc5x21y2, and the
scale factor is

a;tp, p5
2

3w F w

w1Vc~wc2w!G ~40!

~the slopep is not to be confused with the pressure!.
Copelandet al. @10# have shown that the system~38! with

b50 and an exponential potential has up to five critic
points, that can be classified according to the dominant
ergy density: one dominated by the scalar field total ene
density~let us label this point as solutiona and refer to its
04350
-
y
r

rs

y

to

g

i-

c-

l
n-
y

coordinates asxa ,ya), one in which the fractions of energ
density in the matter and in the field are both nonzero~la-
beledb), one dominated by the matter field (c), and finally
two dominated by the kinetic energy of the scalar field,
which one atx521 (d) and one atx511 (e).

The critical points on which the matter field becomes ne
ligible reduce to theb50 case: therefore, the solutionsa, d,
ande remain the same also forbÞ0. The pointsb andc are
instead modified. The solutionc is no longer matter domi-
nated: rather, the scalar field kinetic energy and the ma
energy take up a constant fraction of the total energy. I
matter dominated era~MDE!, the scalar field kinetic energy
amounts toVc51/9. The critical points in the general cas
bÞ0 are listed in Table I, where we putg(b,w,m)[b2

12bm118w.
Although the number and position of the critical points

affected only quantitatively by the extra coupling, their s
bility properties are modified in a more radical way. In pa
ticular, while forb50 only the pointsa andb can be attrac-
tors, here we show that alsoc andd may be stable. Only the
point e remains always unstable.

The stability analysis is performed as usual by lineari
tion around the critical points. The parametric regions
which the real part of both eigenvalues of the linearizat
matrix is negative are regions of stability. To simplify th
discussion, we only consider the crucial property of stabi
versus instability, paying no attention to the topography
the critical point~whether it is a knot, spiral, or saddle!. In
the following, we say that an attractor exists if it lies in th
region 0<x21y2<1. The parameter spaces are plotted
Fig. 1.

Point a. The solutiona exists form2,9, and is an attrac-
tor only for m2,m,m1 where

m65
1

4
~2b6Ab2172w! ~41!

~e.g.,m2522.39 andm151.89 forw51). On this attractor
we havewc52m2/9 and

pa53/m2, ~42!

inflationary if umu,A3.
Point b. The attractorb exists and is stable in the regio

delimited bym,m2 andm.m1 and the two branches of th
curve

TABLE I. The critical points for the general caseb5” 0.

x y Vc p wc

a 2m/3 (12xa
2)1/2 1 3/m2 2m2/9

b 2
3w

2m1b 2xbS g

9w2
21D1/2

g

~b12m!2

2

3w S 11
b

2m D 18w2

g

c
b

623w

0 S b

623wD2
6~22w!

b219~22w!w

2

d 21 0 1 1/3 2
e 11 0 1 1/3 2
1-4
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SCALING SOLUTIONS IN GENERAL NONMINIMAL . . . PHYSICAL REVIEW D60 043501
FIG. 1. Regions of existence and stability in the parameter sp
w,m. In all panels, the eigenvalues of the linearization mat
change sign across the thick lines. The color code is as follo
white regions indicate that the critical point does not exist; lig
gray regions, the point is unstable; dark gray regions, the poin
stable. The dotted lines are atw54/3 andw55/3 and are usefu
landmarks in the parameter space. From top to bottom, param
spaces of the critical pointsa,b,c andd.
04350
m052
1

2b
~b2118w29w2!. ~43!

The scale factor slope on the attractor is

pb5
2

3w S 11
b

2m D ~44!

and, forb5423w, is inflationary within the two branche
of the curve

m i5
423w

3w22
. ~45!

It is remarkable that the inflationary region for the pointb
includes values smaller thanw'0.91, and thereforeexcludes
the MDE equation of statew51. This conclusion is not
changed by replacingm andb with their counterpartsmq and
bq in the case of a quadratic couplingf (f).

Point c. This point exists forw,5/3, and is stable below
the lower branch and above the upper branch ofm0. The
slope is

pc5
6~22w!

b219~22w!w
,

and it is never accelerated ifb5423w. The pointc shares
with b the property that matter and scalar field have bot
nonvanishing fraction of the energy density.

Point d. This point exists for all values of the paramete
and if b5423w is stable forw.5/3 andm.3. Its slope is
alwayspd51/3.

Point e. This point exists and is unstable for all values
the parameters ifb5423w.

The complex structure of the parameter space is sum
rized in Fig. 2. Notice that,~1! for each value of the param
etersw,m there is one and only one attractor,~2! for w51
the pointsa,b or c can be stable, depending onm, ~3! these
solutions are inflationary in the shaded region, and~4! only
the pointa can be accelerated forw51 or larger. In Fig. 3
we present four phase spaces displaying in turn the four p
sible attractors. The parameters correspond to the po
marked with stars in Fig. 2. As already remarked, attractoc
andd have not been previously noticed. Also, it is importa
to remark that the attractors are not only locally stable,
extend their basin of attraction to all of the phase space. T
is, any possible initial condition leads to the attractor.

IV. BACK TO THE JORDAN FRAME

Here we leave the dynamical analysis of the system in
rescaled frame and get back to the original one. What do
attractors look like in the Jordan frame?

Reintroducing the tildes, we have along the attractora

ce

s:
t
is

ter
1-5
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LUCA AMENDOLA PHYSICAL REVIEW D 60 043501
andb ~from now on, quantities without tildes are express
in the original metric!

cc52
2

m
logu t̃ /ta,bu ~46!

~for mÞ0), where

ta,b
215A2Amc

xa,b

ya,b
. ~47!

On the attractorsc andd, for which y50, c→`, and the
conformal transformation cannot be performed. Sincec is
proportional to logf, the attractorsc andd lead to an effec-
tive gravitational constant that is either zero or infinite, a
are therefore to be rejected as possible solutions in the Jo
frame. Of course, trajectories that have not already reac
the attractor cannot be excluded, but these are not sca
solutions, and will not be further considered in this pape

From Eq.~46! it follows ~neglecting the subscripts!

e2v5~ t̃ /t!22/m. ~48!

From the latter expression we can evaluate the relation
tween the old and new time and scale factor, given by E
~22! and ~23!. We obtain~for mÞ0,21)

t̃;tm/11m,
~49!

ã;t21/(11m)a~ t !.

As can be seen, form→6` the old and new metric coin
cide; in this limit the scalar field vanishes on the attract
and the system reduces to the pure perfect fluid Friedm
case.

It follows that in the original variables the scale factor
again a power law

a;tp8, p85
11mp

11m
. ~50!

FIG. 2. Regions of stability in the parameter spaces. Each re
is labelled by the critical point that is stable in that region. The g
area indicates where the attractor is accelerated. The stars ma
values of the parameters for which we display in the next plot
phase space.
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On the attractora, pa53/m2, which is inflationary~both in
the original and in the rescaled frame! if m2,3, that is 2
2A3,M,21A3, we have

pa85
m13

m~11m!
. ~51!

Consider now some special cases. If 0.m.21 the scale

factor follows apolelike inflation, a;(t02t)pa8 with nega-

n
y
the
e

FIG. 3. Phase spaces for various values of the parameters,
responding to the points marked as stars in Fig. 2. The phase s
is contained in the positive unitary semicircle. While the pha
space of attractorsa and b are qualitatively similar to those dis
played in Copelandet al. @10#, the phase space of attractorsc andd
have no counterpart forb50.
1-6
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tive exponent. Form50 ~i.e., V; f 2), the old and new met-
ric coincide~up to a constant!, the field freezes to a constan
and its energy drives a de Sitter expansion. The system
duces asymptotically to pure general relativity with a cosm
logical constant. Finally, form521 ~i.e., V; f ), the scale
factor is power law accelerated in the new frame, but m
again to a de Sitter expansion in the original frame. Iff is
quadratic inf, then the inflationary condition on the solutio
a reads

m2,3~111/6j!. ~52!

On the attractorb, on the other hand, puttingpb52/(3w8)
with w85w(11b/2m)21 we obtain

pb85
3w812m

3w8~11m!
. ~53!

Notice thatpb8→2/3w for m→6`, as expected. Since th
property of being accelerated is conformally invariant~for
positive definite conformal factors!, going back to the old
frame does not change qualitatively the attractors found
far. Also, it is not difficult to check thatVr* 5k2r* /3H̃2 and
Vc are invariant under conformal transformation, so th
Vc5Vf .

It can be shown that the choiceV; f M is the only one that
allows scaling attractors in both the old and the new met
Other choices are possible that allow scaling solutions ei
in the old or in the new metric: for instance,V; f 2(log f)M

gives scaling attractors in the new metric but not in the
one.

V. COSMOLOGICAL PROPERTIES

Once we have the analytical expression of the attract
we must consider whether they are viable as cosmolog
solutions. The attractor solutiona is inflationary ~acceler-
ated! and the scalar field is asymptotically the dominati
component. As such, it may match the observations of
accelerated expansion; for instance, the valuewc'0.4 sug-
gested in Ref.@26# implies

M'0.7 or 3.3.

On the other hand, sinceVf→1, in order to allow for a
substantial fraction in the ordinary matter component at
present, the attractor does not have to be already reach

The solutionb has some drawbacks. First, it is not acc
erated at all forw51; second, the constraints from nucle
synthesis do not allow a large fraction of energy density
the scalar field, so that it cannot provide closure ener
However, as argued in@2#, models which reach this attracto
compare favorably with observations of large scale struct
and may have a simple interpretation in terms of fundam
tal physics.

Both solutionsa and b are heavily constrained by th
upper limits on the variability of the gravitational constan
We have
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uĠ/Gu5u ḟ / f u5
2

u11mu
1

t
. ~54!

Comparing with the observational constraintuĠ/Gu
,a10210 yr21, and assumingt'10 Gyr, we obtain the
condition

m.
2

a
21. ~55!

Current constraints~see e.g.,@27#! give a'0.1 or smaller.
This impliesm.20, too large for the attractora to exist. A
similar problem arises iff is quadratic. Along the attractorb,
the energy density in the scalar field is a constant fraction
the total energy. In MDE~and forb5423w51) this is

Vf5
1912m

~112m!2
. ~56!

The constraint~55! gives

Vf<0.035, ~57!

which confines the scalar field contribution to that of a min
component. This constraint is three or four times stron
than that imposed by the nucleosynthesis@2# on a minimally
coupled field.

VI. CONCLUSIONS

In this paper we have investigated a large class of NM
models in the limit of strong coupling with a perfect flui
matter component, searching for attractors that might p
vide a decaying cosmological constant. These models
clude all the cases in which the potentialV(f) is a power of
the coupling functionf (f), regardless of their functiona
form. We have shown the following.

~1! The NMC system can be reduced to a scalar field w
an exponential potential, a minimal coupling to gravity, a
an extra coupling to the matter.

~2! For each pair of the parametersw,m there is one out
of four possible scaling attractors: one,a, scalar field domi-
nated and possibly accelerated; one,b, decelerated ifw
>0.91 and with constant ratio of scalar field total energy
matter; one,c, always decelerated and with constant ratio
scalar field kinetic energy to matter; and finally one,d, also
always decelerated, and dominated by the field kinetic
ergy.

~3! Attractorsc andd are acceptable only in the rescale
frame; in the original frame they lead to a gravitational co
stant either vanishing or infinite.

~4! This choiceV; f M is the only choice~in the strong
coupling regime! for which there is a scaling attractor both
the original and in the rescaled metric.

~5! The constraint on the time variability ofG rules out
the accelerated models, and only allows a very small frac
of the energy density to be in the NMC scalar field.

Clearly, this analysis is not yet conclusive. Viable so
1-7
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tions might exist for which one or more of the following
true: ~a! the attractors are not yet reached;~b! V does not
equalf M; ~c! the strong coupling regime does not apply. F
instance, assumingf 511k2jf2, and in the limit of weak
coupling, theuĠ/Gu bound can be satisfied for smallj, and
the solutions are cosmologically acceptable, although
ev

et

04350
r

y

construction do not add much to the minimally coupl
model.
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