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AdS-CFT string duality and conformal gauge theories
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Compactification of type II1B superstring on an AgSS®/T" background leads t8 U(N) gauge field theories
with prescribed matter representations. In the 't Hooft limit of lakgguch theories are conformally finite. For
finite N and broken supersymmetrVi=0) | derive the constraints to be two-loop conformal and examine the
consequences for a wide choiceldfand its embedding CC3(DS%). [S0556-282199)50214-7

PACS numbgs): 11.25.Sq, 11.15.Me, 11.15.Pg, 11.25.Mj

INTRODUCTION dimensional orbifold can be more general e.g. fARkY
spaces considered ji4].

Recently the relationship of string theory to gauge theory The number of unbroken symmetries has been studied in
received stimulus from the conjecture by Maldacghi(re-  e.g.[15,16 with the result that i CSU(2) there remains
lated earlier papers af@-5]) stemming from string duality A=2 supersymmetry; if that is not satisfied HuC SU(3)
which makes in its strongest form the assertion that the inthere remains\V=1 supersymmetry; finally if even that is
formation contained in superstring theory is encoded in aot satisfied one is left withV=0 or no supersymmetry.
four-dimensional gauge field theory including its non- This last case is of most interest here.
perturbative sector. This has been vigorously pursued by It has been demonstrated that the laiddimit of the
many authors, especially Wittd®—8]. A brief review is in  resultant gauge theory coincides with that of ikfe4 case.

[9]. Such arguments have been made both using string theory

This relationship appears ironic when one recalls that th¢17] and directly at the field theory levé¢l8]. In the latter
earliest string theories, the dual resonance models for strongase the proof involves a monodromy of the representation
interactions, were abandoned in favor of 8(3) gauge for the groupl.
theory 25 years ago. String theory has generally been re- For finite N, however, there is no argument that the result-
garded as much more general than gauge field theory bant gauge theory is conformal, especially fot=0 where
cause of its far richer structure; however, that perception wathere are no non-renormalization theorems.
based on perturbative arguments, and the new developments Nevertheless, if there does exist a conformal gauge theory
of Maldaceneet al. are essentially non-perturbative. in four dimensions with\VV/=0, it would be so tightly con-

The idea is to consided coincident D3-branes with four- strained as to be possibly unique and would be of interest
dimensional world volume theories having superconformakspecially if it could contain the standa®lU(3)x SU(2)
symmetry. This is conjecturgd] to be duallweak coupling  xU(1) model with its peculiar representations for the
related to strong couplingo type 1IB superstring theory in a quarks and leptons.
spacetime with geometry A¢gSS°. The world volume The representations which occur in the resultAft2
theory is in this case aW=4 supersymmetric Yang-Mills gauge theories from the orbifold construction have been
theory with gauge grou@U(N). Originally it is U(N) but  studied using quiver diagram{d5]. | will find that these

this is broken taSU(N). diagrams, while convenient for the cas&s1 need aug-
The radii of the Ad$ and S are equal and both given by mentation for the cas&/=0.

R=\, where\ is the 't Hooft parametef10] A =g2,N To specify the potentially conformal gauge theory | need

(92u=Js, the string coupling constanandl2=a' the uni-  to state how the group' is embedded irC3. Let the three

versal Regge slope. The string tensiormis (27a’) 1. complex coordinates of* be denoted byX=(Xy,X,,Xs).

The V=4 SU(N) gauge theory has been known to be The action ofZ, is the specified by
ultraviolet finite for many yeargl1]. This is true not only for

H—WO, the conformal limit of Maldacena, but also for finite X (a®1Xy, a®2X5, a?3Xs) (1)
BREAKING SUPERSYMMETRIES where a=exp(2mi/p) and the three integersa,

) . s ) =(a;,a,,a3) specify the embedding.
By factoring out a discrete group in S°/I" it is possible In order to ensure an/=0 result, | must insist thal is

to break some or all of theV=4 supersymmetries. The not contained irSU(3) by the requirement that
isometry ofS® is SO(6)~SU(4) which may be identified
with the R-parity of the /=4 conformal gauge theory. The
spinors are in thd and the scalars are in tiéeof this SU(4).

| shall here consider only Abelian groups=Z2,, although
non-AbelianI” are worth further studysee e.g[12,13)). | For any giverp, there is a finitev(p) number satisfying Eq.
am considering only AdS< S°/T", although the second five- (2). We shall indicate later how to enumerate the$p).

a;ra,*az#0 (mod p. 2

0556-2821/99/6(%)/0419013)/$15.00 60 041901-1 ©1999 The American Physical Society



RAPID COMMUNICATIONS

PAUL H. FRAMPTON PHYSICAL REVIEW D 60 041901
MATTER REPRESENTATIONS 5
2=y 0
Because the discrete groudp leads to the identification 9 (4m)*| 3 2

of p points inC?® and theN coinciding D3-branes converge
on all p copies, the gauge group becon®d(N)P. The sur-
viving states are invariant under the product of a gauge trans-
formation and aZ, transformation defined as in Eql)

- K

20
4C,(F)+ gcz(G)}Sz(F)

above. 1 2kY4(F)
For the scalars, it then follows that the scalars fall into the _[2C2(3)+ §C2(G) S+ ———| (1D
representations 9
HereC,,S, are the quadratic Casimir and Dynkin index re-
E (N, N..) 3) spectively for the representations indicatedjs 1/2, 1 for
m bitia, Weyl and Dirac fermions respectively, products like

C,(R)S,(R) imply a sum over irreducible representations

Fora,#0 these are bi-fundamentals and &y=0 complex and finally the Yukawa term is included naturally in the two-
adjoints. If we focus on on&U(N) the only non-singlet 100P term (unlike in [19]) because here the Yukawa cou-
representationgthe same will be true for the fermionare ~ Plings are proportional to the gauge coupling. The crucial
fundamentals, anti-fundamentals and adjoints. These repr@uantity Y4(F) is defined in terms of the Yukawa matrix

sentations also follow from the Douglas-Moore quiver dia-Yij #i{#; ¢ by

gram.
For the fermions we must consider the transformation of a Y4(F)=Tr(Ca(F)Y2Y'?). (12)

4-spinor by making four combinations, (1<A<4) of the ) . .

a - Looking first at A=4, the values are easily seen to

w C,(G)=N,S,(F)=4N,S,(S)=6N  while C,(F)S,(F)
=4N? and C,(S)S,(S)=6N2. Finally Y,(F)=24g°N?. It

Ar=(aitaptag)/2 “) follows from Eq.(10) and Eq.(11) the B4=0 for N=4 at
two loops, as is well knowhl1]. However, the situation for
Ar=(ay—ap—ay)/2 (5)  AN=0 is much more complicated.
At one-loop level forA’=0 the evaluation o) is the
Az=(—a;ta,—az)/2 (6) same term-by-term as fo¥=4. This is already i20-22
for the one-loop level and since the one-loBgunction is
Ay=(—a;—a,+az)/2. @ purely leading-order irN it conforms to the general argu-

ments of[17,18.

At two-loop order | must examine the non-leading terms

Again the surviving states are invariant under a product of 1N in Eq. (11). The first, third and fifth terms are always
the Z, and gauge transformations. This leads to the fermion, . <26 for V=0 as f'or N=4, respectively 3M2/3

representation — AON2/3— 2N2= — 4N2.
To evaluate the second, fourth and sixth terms | find it
2 (N, N; a) ) necessary to distinguish special cases. Substituting in Eg.
1PN+ A

(12), 1 find that 8{”) is non-vanishing except in a subset of
cases. Explicit examples are provided in subsequent article

which can, if required, be deduced frontdifferent quiver ~ [23].
diagram.
DIRECTIONS

TWO-LOOP B-FUNCTIONS A subsequent question to be addressed is what happens at
three-loop and even higher orders. Also one must consider
the running of the Yukawa and quartic Higgs self-couplings
due to a possible non-vanishing of th@iffunctions gy and

.= g+ g@ ) By - It.is planned to _publish a more complete analysis el_se-

9= Pg g where; | conclude this proposal with comments and possible
future directions.

with Often low-energy supersymmetry is adopted in order to
solve the hierarchy problem of the Planck or grand unified
theory (GUT) scale to the weak scale. This hierarchy is

| may take the detailed formula for the gauge coupling
B-function B4 from [19]. The two leading orders are

3

,Bgl)z _ 9 5 l—lCZ(G) — fKSZ(F) — ESZ(S) (100  theory-generated and one may instead be agnostic about
(4m)?L 3 3 6 physics at=1000 TeV scale where there is no real informa-
tion. For example, recent ideas about extra Kaluza-Klein di-
and mensions at reduced scales é2/1—27] avoid the hierarchy
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altogether and remove the main motivation for low-energyrelevant conformal theory. If so, this could shed light on the

supersymmetry. In the present case of a conformal theongutstanding questiongamilies, CP violation, etc) posed by

the couplings become constant beyond the onset of confothe standard model.

mality. The GUT scale and its concomitant hierarchy are We are hoping for a fixed manifoldine, plang...) in

thereby obviated. which B4 v 4 vanishes for a continuous range of couplings
The possible role of anV=0, d=4 conformal gauge but only future calculations will distinguish such a fixed

theory may be put in context by imagining the level of skep-manifold from a fixed point at which conformality is valid.

ticism to infinite renormalization of QED in 194@&nd later The existence of a fixed point would, in any case, be suffi-

of the standard modgif the example of 11] had been found cient to apply our conformality constraints.

four decades earlier.

The exciting possibility is that the standard model is part ACKNOWLEDGMENTS
of such anAV/=0 conformal gauge theory. The mass scales
Agecp and My, would arise from necessarily non- | wish to acknowledge useful discussions with J. Lykken,

perturbative effects, and gravity would be accommodated.R. Morrison and S. Trivedi. This work was supported in
through the holographic principlg§28,6]. Using AdS/ part by the US Department of Energy under Grant No. DE-
conformal field theory(CFT) duality could help identify the FG02-97ER-41036.
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