RAPID COMMUNICATIONS

PHYSICAL REVIEW D, VOLUME 60, 041301

Spinodal inflation
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Out-of-equilibrium, non-perturbative, quantum effects significantly modify the standard picture of inflation
in a wide class of models including new, natural, and hybrid inflation. We find that the quantum evolution of
a single real inflaton field may be modeled by a classical theotwohomogeneous scalar fields. We briefly
discuss the important observational consequences that are expected td 3€8§46-282(199)50314-1

PACS numbds): 98.80.Cq

The advent of inflatiof1,2] is one of the most significant small quantum corrections remaining]. This effective
advances in our understanding of cosmology and the earlffeld, together with the original zero momentum mode, are
universe in the past twenty years. It not only provides athe two fields that can be used to describe the quantum non-
solution to a number of shortcomings of the standard modegquilibrium evolution of the full system.
of cosmology, but also provides the favored mechanism for The resulting phenomenology is rich and complex. Ob-
the production of the primordial density perturbations whichservables depend not only on the parameters of the inflation-
have been observed in the cosmic microwave backgroun@’y theory, but also on the initial conditions. Furthermore,
and from which the large scale structure of our universeobservables may take on values in the complete quantum
formed. theory that are not allowed according to the simple classical

While there are any number of models of inflation, as aanalyses.
paradigm, it remains remarkably simple. Even the simplest We work in a spatially flat Friedmann-Robertson-Walker
of scalar field theory models, with appropriately chosen pabniverse with metric
rameters and initial states, are successful in producing a uni- .
verse consistent with present observation. Furthermore, it has ds’=dt*—a’(t)dx?, (1)
been thought that the inflaton may be treated as a purely ) i )
classicalfield evolving in aclassicaleffective potential, with ~and we take the inflaton to be a real scalar field with La-
guantum mechanics only entering in the formation of pri-grangian
mordial density perturbations from vacuum fluctuatip8f
and in the uncertainty in the inflaton initial condition.

Here we show that quantum effects can have far furthe(N will be interested in th in which th tential |
ranging effects than previously thought. Potentials with spin- e € Intereste € case ch the potential 1S

odal instabilities, i.e., potentialy/(®) for which V' () even in® with a negative squared mass, such that there is a

; al maximum a=0.
changes sign, such as those used for spontaneous symmel9§|t is convenient to break up the fiel into its expectation

breaking, demonstrate a phenonmenon which we s value, defined within the closed time path formalism, and

odal inflation fluctuati bout that value-
In spinodal inflation, the out-of-equilibrium, non- uctuations about that vajue.

perturbative, quantum physics significantly modifies the evo- - - -
lution of the inflaton. The result is that the evolution of a real P =) +¢(x),  SH=(P(X1)).

inflaton field may in fact be accurately modeled not by one, R

but by two coupled classical fields. To do this, we need toBy definition(y(x,t))=0, while ¢ depends only on time as
use the closed time path formalism of non-equilibrium quan-& consequence of space translation invariance.

tum field theory to study the time evolution of a real inflaton By imposing the Hartree factorization, we arrive at the
[4]. The spinodal instabilities give rise to behavior which following equations of motion for the inflatdi8]:

cannot be treated in the context of ordinary perturbation )

theory. We therefore turn to the self-consistent Hartree ap- LA w1 o\ (2n+ 1)
proximation[5], while the gravitational evolution is included ¢+35¢+sz ol (P)"V (¢)=0, @

by means of the semi-classical approximati@]. These '
mean field theory approximations are intended as a first step

L=3VED(X)V,®(x)— V[D(X)].

: , =

toward understanding the full non-perturbative dynamics of d_ EE k_ 1 2\ny/(2n+2) _

the system. de2 33 dt+a2 +,1Zo 2nn! (o () |Tk=0,
Using these techniques, we will see that the long- (3)

wavelength fluctuations assemble themselves into an effec-
tive homogeneouglassical field with only perturbatively —where
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5"V(¢) . . k?
The two-point fluctuation{%) is determined from the mode where H2~87GyK/3. The solutions to this equation are
functionsfy: Bessel functions:
d3k k
2\ £12. 4 ~ 302 +
<¢> J2(27T)3| kl ( ) fk a Aka<aH0 Bk‘va aHO },
For a(ty)=1, the initial conditions on the mode functions 2
are 9 + a (11
v=\/71t—%
4 HS
1 . . .
fk(to)=\/——, fu(to)=(—a(to) —iwfi(to), (5  with a~e"o. For small argument)_,(k/aHy)~a”. As a
@k result, those modes whose physical wavelength is greater
with than the horizon scale witkia<<H, grow exponentially at a
rate given by ¢—3/2)H,; this is the spinodal instability.

1 ) - R(to) After a few efolds of inflation, the integral4) becomes
—_ (to))"VEE2)(h(tg))— 5 dominated by long wavelength modes, which are the most
2'n! unstable ones, so that we may replace the quafityt))/

by an effectively homogeneousand classical zero mode

either by means of a quench or by explicit deformation so‘f(t)'_ Furthermore, the gravitational evoluti_on may be writ-
that the frequencies are real. The exact choice corresponds#®@n in terms ofo with the replacementgy”)—o* and
different initial vacuum states and has little effect on the((V)?)/a®>—0. Both of these replacements are justified
results[7,9]. once a fewe-folds of inflation have passdd].

The gravitational dynamics are determined by the semi- Finally, we arrive at the following system of equations for
classical Einstein equatidi]. For a minimally coupled in- ¢ ando:
flaton, we have:

wi=k?+ ngo

R(tp) is the initial Ricci scalar. For smak, we modify w

: LA o 1
a2 B 87Gy[ 1. X 1 . ) 1 G2 ¢+35¢+ nZo o 0'2nv(2n+l)(¢)zo1 (12
23 (2% +§<¢>+2—az<( %) -
* T 2n+1y/(2n+2)
+ 2 <w2>nv(2n)(¢)) (6) 0+350_+r120 ﬁ‘f \ (¢)=0, (13
A=0 2"n! ' - :
whereGy is Newton’s gravitational constant, and while
~2 *© 2n
) d®k . a® 8wGy(1l., 1., o (2n)
<¢2(t)>5f 2(277)3|fk|21 @) 23 2¢> + 50 +n§::0 o ViE(e) | (14
d3k Corrections to these effective classical equations due to
V(1)) = k2|, |2, 8 modes which have not yet crossed the horizon will be per-
((V(1))?) Sk ®) :
2(2) turbatively small[7].

Examination of the Eqs(12)—(14) reveals an amazing

In what folllows, wehassume that iaCthf these inltegrals hagsult. After a fewe-folds of inflation, the full quantum evo-
been regulated either because the theory is a low energ tion of spinodal models of inflation for a real scalar infla-

effective theory with a definite cutoff or because the diver-,j may be modeled by a classical system of two homoge-
gences have been absorbed into a renormalization of the pgazq s fields with potential

rameters of the theory7,10].
We now describe zero mode assemply. We write the

potential V(®P) as V(¢,o)= z‘o

1 2ny /(2n)

S 7VEN(B). (15
— 1 22 A 4

V(q))_K_E/“‘ @ +Eq) T ©) We emphasize that the two-field reassembled system
arises from the Hartredynamicsobtained by solving Egs.
where the constark is chosen such that the potential is zero (2), (3), (6), together with the initial conditions in Ed5).
in the true vacuum. Initially, the fluctuatiofg/®) are small, There are several important notes to make regarding this
S0 for ¢iniiar<m/ N, the mode functions evolve as result. First, the initial value ofr is not a free parameter;
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rather, it is determined dynamically through the assembly 1.2

process. By completing the full quantum evolution(gf) — MM,
until assembly is evident and then extrapolating back to the9-8 - —=- EmA) <y (>
initial time, we can show numerically that the effective ini- ST T
tial value of o is o(tg) =F(Hg)Ho/27, where F(Hy) is a 04 - / ]
number of order 17]. Because the effective initial value of /
o is fixed by the dynamics, there is a clear separation into%%;; 100.0 g 200.0
two regimes, depending upon the initial valuedfThe first . .
is the classical regime for whickp(tg)>Hq/27; here the 1 T\ ]
dynamics will follow the usual classical dynamics for the 08 1
original potentialV(¢). However, there exists a second re- 98 | — H(t)/m ]
gime with ¢(ty) <Hy/27 for which the quantum evolution 04 1
modeled by ther field will have a significant influence on 9.2 | ]
the dynamics. 0 100 200

Second, while the dynamics described by the potentialsg , ,
(15) looks like that of a two field model of inflation, this is
only true in terms of the homogeneous dynamics; sincefthe 100 | .
and o fields are in fact just two aspects of tsamescalar
field, the computation of the primordial power spectrum in 50 — mHY .
these theories somewhat more subtle.

Now we turn to an example. Consider a spontaneously 00 e 200 :

broken\x ®* theory with a potential mt

4

3m* 1 , , N,
V(¢)=K—§m o} +mq) . (16)

FIG. 1. Typical evolution of the zero modg, the two-point
fluctuation( %), and the expansion raté=a/a in the A ®* theory.
Also plotted is 1H to show explicitly the late time matter domi-

This potential vanishes at its minima &=+ 6mZ/x. Of  nated evolution. Here(to) =0.2Ho/2m, Ho/m=1, andx =8

—14
particular importance to us is the location of the spinodal ling*10

separating the region of spinodal instability from stability. o o

This runs from® = — \2m2/\ to ® = + y2m?2/x. In the large The dynamics is qualitatively the same for larger values of
N case treated if7], the presence of Goldstone modesHo/m, with each stage of inflation lasting, respectively,
makes the spinodal line run along thénimaof the poten- longer. In terms of the effective classical theory determined

tial. by the potential in Eq(17), the sum rulg18) corresponds to
If we evolve Egs.(2), (3), (6) in time, we arrive at the MINIMIZiNg Vijaed ¢, 0) With respect tao d,Viared 0, ¢)

results in Fig. 1. =0. Once¢ reaches the spinodal, the minimizing condition
The “Hartreeized” potential generated by the growth of is that the fluctuations vanish and thatevolves to the mini-

quantum fluctuations is mum of thetree-levelpotential. In fact, this is what the dy-

namics shows. Note that the sum rule is reminiscent of the
\ \ behavior of the magnetization in a Heisenberg ferromagnet
Viyartred ¢,0) =V () — Z((ﬁgpmodar d? o+ gcr“, as a function of temperature.
17) The number of-folds of the second phase of inflation is
determined by the amount of time it takes to reach
where dpinoda J2m?n, dspinodar IN the extreme case that is fixed at 0, this phase
The initial conditions were chosen to be representativef1e\/e.r ends. : . : .
while limiting the duration of inflation to a level appropriate Itis a Worthwmle exercise to compare t_h|s behavior to the
behavior found in the larg® approximation. There, zero

to numerical computation. We see that there are two infla- ode assemblv also occurred. but the effective zero mode
tionary stages. The first is driven by the vacuum energy a" Y L :
just evolved along thelassical potential to the tree-level

¢~0. The fluctuations then grow and end that period Ofminimum' there was no second inflationary phase. We would
inflation. However, once the fluctuations have grown large ' yp .

enough, the second period of inflation ensues. Comparing tHa gue _that We are seeing the same behavior in both cases, the
value of the Hubble parameterin both phases, we see that only difference being that the existence of Goldstone modes

the system now behaves as if the order parameter was stull the largeN case makgs the spinodal run along the minima
. - . Of the tree-level potential. Thus, the reassembled zero mode
near thespinodalvalue for the original potential/(¢)! In

fact, the dynamics is found to obey the following sum rule.do.eSIn fact. goto th'e.spmodal I.'ne' However, In Igrglahat
during this second inflationary phase: is just the line of minima and since the potential is chosen to
be zero at the minima, there is no vacuum energy left to

2 P drive a second inflationary phase.
Pspinodar” ¢ If |bl= Pspinoda (18) An alternative way to interpret what we are seeing here is
0 otherwise. that while field fluctuations grow, they are producing par-

(P?)=
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ticles whose effect is to modify the background in which themation captures the essential physics of the situation. First,
field is evolving. These particles are produced copiouslywe should note that, unlike the lardé case, the Hartree
enough to survive the exponential redshift during the infla-approximation is aruncation of the theory that is uncon-
tionary phase. The “potential” that the zero mode will fol- trolled in the sense that we do not have a way to go system-
low is now one that must be computed in the presence of thgtically beyond it. There is some hope that the 2P| formalism
bath of produced particles. Once the zero mode crosses thf Cornwall, Jackiw and Tomboulid5] could be used to at
spinodal line, however, particle production ends and theileast try to estimate the diagrams omitted in the Hartree trun-
effect is obliterated by redshifting, thus allowing the Zer0 cation[14].
mode to find the minimum of the tree-level potential. ~ ovever, we should be heartened by the fact that the
Finally, we address the issue of metric perturbations i, ee approximatiodoesrecognize the importance of the
spinodally unstable theories. There are two aspects of thgpinodal line. As shown by Weinberg and W8], the ex-

ﬁgﬁgtﬁg c\il\clxmcporv?rl]lisrej;gsIgfdn?gggzrelzsirz:)ir: t:]heet\fvgn;/tznéistence of the spinodal line is correlated both with the non-
. ) C S 9 convexity as well as with the imaginary part of the one-loop
nature of the evolution which may result in a deviation from

scale invariance and a kink in the power spect{iti. Sec- effective potential. This imaginary part corresponds to the

ond is the effective two field dynamics in which the zero _decay rate of a state prepared so that the zero mode is local-

mode slowly evolves to the spinodal line and triggers the en('jzed near the top of the potential. Thus, spinodal models are
. Owly evolv the sp and tngg inherentlydynamical and cannot be treated within the con-
of inflation. This is reminiscent of hybrid inflation models

> fines of the effective potential approximation. What the Har-
and may have similar consequences, such as the producti

. e approximation provides us with is a way to deal with
of a blue tilt to the power spectrufi2]. Any of these pos- spinodal dynamics beyond perturbation theory.

T e e g o The resul is & ynamical evlution n whih non-
variant formalism{3] i's in progresg14] perturpatwequan.tumﬂuctqatlons play a primary role in the

Related to this issue is the effect 0]; gravitational inhomo_evolutlon of the inflaton field, the gravitational background,

" and the production of primordial metric perturbations.

geneities on the long wavelength scales, properly treated us-
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