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Spinodal inflation
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Out-of-equilibrium, non-perturbative, quantum effects significantly modify the standard picture of inflation
in a wide class of models including new, natural, and hybrid inflation. We find that the quantum evolution of
a single real inflaton field may be modeled by a classical theory oftwo homogeneous scalar fields. We briefly
discuss the important observational consequences that are expected to result.@S0556-2821~99!50314-7#

PACS number~s!: 98.80.Cq
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The advent of inflation@1,2# is one of the most significan
advances in our understanding of cosmology and the e
universe in the past twenty years. It not only provides
solution to a number of shortcomings of the standard mo
of cosmology, but also provides the favored mechanism
the production of the primordial density perturbations wh
have been observed in the cosmic microwave backgro
and from which the large scale structure of our unive
formed.

While there are any number of models of inflation, as
paradigm, it remains remarkably simple. Even the simp
of scalar field theory models, with appropriately chosen
rameters and initial states, are successful in producing a
verse consistent with present observation. Furthermore, it
been thought that the inflaton may be treated as a pu
classicalfield evolving in aclassicaleffective potential, with
quantum mechanics only entering in the formation of p
mordial density perturbations from vacuum fluctuations@3#,
and in the uncertainty in the inflaton initial condition.

Here we show that quantum effects can have far furt
ranging effects than previously thought. Potentials with sp
odal instabilities, i.e., potentialsV(F) for which V9(F)
changes sign, such as those used for spontaneous sym
breaking, demonstrate a phenonmenon which we callspin-
odal inflation.

In spinodal inflation, the out-of-equilibrium, non
perturbative, quantum physics significantly modifies the e
lution of the inflaton. The result is that the evolution of a re
inflaton field may in fact be accurately modeled not by o
but by two coupled classical fields. To do this, we need
use the closed time path formalism of non-equilibrium qu
tum field theory to study the time evolution of a real inflat
@4#. The spinodal instabilities give rise to behavior whi
cannot be treated in the context of ordinary perturbat
theory. We therefore turn to the self-consistent Hartree
proximation@5#, while the gravitational evolution is include
by means of the semi-classical approximation@6#. These
mean field theory approximations are intended as a first
toward understanding the full non-perturbative dynamics
the system.

Using these techniques, we will see that the lon
wavelength fluctuations assemble themselves into an e
tive homogeneousclassical field with only perturbatively
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small quantum corrections remaining@7#. This effective
field, together with the original zero momentum mode, a
the two fields that can be used to describe the quantum n
equilibrium evolution of the full system.

The resulting phenomenology is rich and complex. O
servables depend not only on the parameters of the inflat
ary theory, but also on the initial conditions. Furthermo
observables may take on values in the complete quan
theory that are not allowed according to the simple class
analyses.

We work in a spatially flat Friedmann-Robertson-Walk
universe with metric

ds25dt22a2~ t !dxW2, ~1!

and we take the inflaton to be a real scalar field with L
grangian

L5 1
2 ¹mF~x!¹mF~x!2V@F~x!#.

We will be interested in the case in which the potential
even inF with a negative squared mass, such that there
local maximum atF50.

It is convenient to break up the fieldF into its expectation
value, defined within the closed time path formalism, a
fluctuations about that value:

F~xW ,t !5f~ t !1c~xW ,t !, f~ t ![^F~xW ,t !&.

By definition ^c(xW ,t)&50, while f depends only on time a
a consequence of space translation invariance.

By imposing the Hartree factorization, we arrive at t
following equations of motion for the inflaton@8#:

f̈13
ȧ

a
ḟ1 (

n50

`
1

2nn!
^c2&nV(2n11)~f!50, ~2!

S d2

dt2
13

ȧ

a

d

dt
1

k2

a2
1 (

n50

`
1

2nn!
^c2&nV(2n12)~f!D f k50,

~3!

where
©1999 The American Physical Society01-1
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V(n)[
dnV~f!

dfn
.

The two-point fluctuation̂c2& is determined from the mod
functions f k :

^c2&5E d3k

2~2p!3
u f ku2. ~4!

For a(t0)51, the initial conditions on the mode function
are

f k~ t0!5
1

Avk

, ḟ k~ t0!5„2ȧ~ t0!2 ivk…f k~ t0!, ~5!

with

vk
2[k21 (

n50

`
1

2nn!
^c2~ t0!&nV(2n12)

„f~ t0!…2
R~ t0!

6
.

R(t0) is the initial Ricci scalar. For smallk, we modify vk
either by means of a quench or by explicit deformation
that the frequencies are real. The exact choice correspon
different initial vacuum states and has little effect on t
results@7,9#.

The gravitational dynamics are determined by the se
classical Einstein equation@6#. For a minimally coupled in-
flaton, we have:

ȧ2

a2
5

8pGN

3 S 1

2
ḟ21

1

2
^ċ2&1

1

2a2
^~¹W c!2&

1 (
n50

`
1

2nn!
^c2&nV(2n)~f!D , ~6!

whereGN is Newton’s gravitational constant, and

^ċ2~ t !&[E d3k

2~2p!3
u ḟ ku2, ~7!

^„¹W c~ t !…2&[E d3k

2~2p!3
k2u f ku2. ~8!

In what follows, we assume that each of these integrals
been regulated either because the theory is a low en
effective theory with a definite cutoff or because the div
gences have been absorbed into a renormalization of the
rameters of the theory@7,10#.

We now describe zero mode assembly@7#. We write the
potentialV(F) as

V~F!5K2
1

2
m2F21

l

4!
F41•••, ~9!

where the constantK is chosen such that the potential is ze
in the true vacuum. Initially, the fluctuations^c2& are small,
so for f initial!m/Al, the mode functions evolve as
04130
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f̈ k13H0 ḟ k1S k2

a2
2m2D f k50, ~10!

where H0
2.8pGNK/3. The solutions to this equation ar

Bessel functions:

f k'a23/2FAkJnS k

aH0
D1BkJ2nS k

aH0
D G ,

n5A9

4
1

m2

H0
2
, ~11!

with a'eH0t. For small argument,J2n(k/aH0);an. As a
result, those modes whose physical wavelength is gre
than the horizon scale withk/a,H0 grow exponentially at a
rate given by (n23/2)H0; this is the spinodal instability.
After a few e-folds of inflation, the integral~4! becomes
dominated by long wavelength modes, which are the m
unstable ones, so that we may replace the quantity^c2(t)&1/2

by an effectively homogeneousand classical zero mod
s(t). Furthermore, the gravitational evolution may be wr
ten in terms ofs with the replacementŝċ2&→ṡ2 and

^(¹W c)2&/a2→0. Both of these replacements are justifi
once a fewe-folds of inflation have passed@7#.

Finally, we arrive at the following system of equations f
f ands:

f̈13
ȧ

a
ḟ1 (

n50

`
1

2nn!
s2nV(2n11)~f!50, ~12!

s̈13
ȧ

a
ṡ1 (

n50

`
1

2nn!
s2n11V(2n12)~f!50, ~13!

while

ȧ2

a2
5

8pGN

3 S 1

2
ḟ21

1

2
ṡ21 (

n50

`
s2n

2nn!
V(2n)~f!D . ~14!

Corrections to these effective classical equations due
modes which have not yet crossed the horizon will be p
turbatively small@7#.

Examination of the Eqs.~12!–~14! reveals an amazing
result. After a fewe-folds of inflation, the full quantum evo-
lution of spinodal models of inflation for a real scalar infl
ton may be modeled by a classical system of two homo
neous fields with potential

V~f,s!5 (
n50

`
1

2nn!
s2nV(2n)~f!. ~15!

We emphasize that the two-field reassembled sys
arises from the Hartreedynamicsobtained by solving Eqs
~2!, ~3!, ~6!, together with the initial conditions in Eq.~5!.

There are several important notes to make regarding
result. First, the initial value ofs is not a free parameter
1-2
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rather, it is determined dynamically through the assem
process. By completing the full quantum evolution of^c2&
until assembly is evident and then extrapolating back to
initial time, we can show numerically that the effective in
tial value of s is s(t0)5F(H0)H0/2p, whereF(H0) is a
number of order 1@7#. Because the effective initial value o
s is fixed by the dynamics, there is a clear separation i
two regimes, depending upon the initial value off. The first
is the classical regime for whichf(t0)@H0/2p; here the
dynamics will follow the usual classical dynamics for th
original potentialV(f). However, there exists a second r
gime with f(t0),H0/2p for which the quantum evolution
modeled by thes field will have a significant influence on
the dynamics.

Second, while the dynamics described by the poten
~15! looks like that of a two field model of inflation, this i
only true in terms of the homogeneous dynamics; since thf
and s fields are in fact just two aspects of thesamescalar
field, the computation of the primordial power spectrum
these theories somewhat more subtle.

Now we turn to an example. Consider a spontaneou
brokenlF4 theory with a potential

V~F!5
3m4

2l
2

1

2
m2F21

l

4!
F4. ~16!

This potential vanishes at its minima atF56A6m2/l. Of
particular importance to us is the location of the spinodal l
separating the region of spinodal instability from stabili
This runs fromF52A2m2/l to F51A2m2/l. In the large
N case treated in@7#, the presence of Goldstone mod
makes the spinodal line run along theminimaof the poten-
tial.

If we evolve Eqs.~2!, ~3!, ~6! in time, we arrive at the
results in Fig. 1.

The ‘‘Hartreeized’’ potential generated by the growth
quantum fluctuations is

VHartree~f,s!5V~f!2
l

4
~fspinodal

2 2f2!s21
l

8
s4,

~17!

wherefspinodal5A2m2/l.
The initial conditions were chosen to be representat

while limiting the duration of inflation to a level appropria
to numerical computation. We see that there are two in
tionary stages. The first is driven by the vacuum energy
f;0. The fluctuations then grow and end that period
inflation. However, once the fluctuations have grown la
enough, the second period of inflation ensues. Comparing
value of the Hubble parameterH in both phases, we see th
the system now behaves as if the order parameter was s
near thespinodalvalue for the original potentialV(f)! In
fact, the dynamics is found to obey the following sum ru
during this second inflationary phase:

^c2&5H fspinodal
2 2f2 if ufu<fspinodal,

0 otherwise.
~18!
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The dynamics is qualitatively the same for larger values
H0 /m, with each stage of inflation lasting, respective
longer. In terms of the effective classical theory determin
by the potential in Eq.~17!, the sum rule~18! corresponds to
minimizing VHartree(f,s) with respect tos: ]sVHartree(s,f)
50. Oncef reaches the spinodal, the minimizing conditio
is that the fluctuations vanish and thatf evolves to the mini-
mum of thetree-levelpotential. In fact, this is what the dy
namics shows. Note that the sum rule is reminiscent of
behavior of the magnetization in a Heisenberg ferromag
as a function of temperature.

The number ofe-folds of the second phase of inflation
determined by the amount of time it takesf to reach
fspinodal; in the extreme case thatf is fixed at 0, this phase
never ends.

It is a worthwhile exercise to compare this behavior to t
behavior found in the largeN approximation. There, zero
mode assembly also occurred, but the effective zero m
just evolved along theclassical potential to the tree-leve
minimum; there was no second inflationary phase. We wo
argue that we are seeing the same behavior in both cases
only difference being that the existence of Goldstone mo
in the largeN case makes the spinodal run along the mini
of the tree-level potential. Thus, the reassembled zero m
doesin fact go to the spinodal line. However, in largeN that
is just the line of minima and since the potential is chosen
be zero at the minima, there is no vacuum energy left
drive a second inflationary phase.

An alternative way to interpret what we are seeing here
that while field fluctuations grow, they are producing pa

FIG. 1. Typical evolution of the zero modef, the two-point

fluctuation^c2&, and the expansion rateH[ȧ/a in thelF4 theory.
Also plotted is 1/H to show explicitly the late time matter domi
nated evolution. Here,f(t0)50.2H0 /2p, H0 /m51, andl58p2

310214.
1-3
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ticles whose effect is to modify the background in which t
field is evolving. These particles are produced copiou
enough to survive the exponential redshift during the in
tionary phase. The ‘‘potential’’ that the zero mode will fo
low is now one that must be computed in the presence of
bath of produced particles. Once the zero mode crosses
spinodal line, however, particle production ends and th
effect is obliterated by redshifting, thus allowing the ze
mode to find the minimum of the tree-level potential.

Finally, we address the issue of metric perturbations
spinodally unstable theories. There are two aspects of
evolution which will result in departures from the conve
tional wisdom for this class of models. First is the two sta
nature of the evolution which may result in a deviation fro
scale invariance and a kink in the power specturm@11#. Sec-
ond is the effective two field dynamics in which the ze
mode slowly evolves to the spinodal line and triggers the
of inflation. This is reminiscent of hybrid inflation mode
and may have similar consequences, such as the produ
of a blue tilt to the power spectrum@12#. Any of these pos-
sibilities will have significant consequences for the reco
struction program@13#. A proper study using the gauge in
variant formalism@3# is in progress@14#.

Related to this issue is the effect of gravitational inhom
geneities on the long wavelength scales, properly treated
ing the techniques developed by Abramo, Brandenber
and Mukhanov@17#, which could have a significant influenc
on the dynamics.

In this work, we have made heavy use of the Hart
approximation. It is reasonable to ask whether this appro
er
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mation captures the essential physics of the situation. F
we should note that, unlike the largeN case, the Hartree
approximation is atruncation of the theory that is uncon
trolled in the sense that we do not have a way to go syst
atically beyond it. There is some hope that the 2PI formali
of Cornwall, Jackiw and Tomboulis@15# could be used to a
least try to estimate the diagrams omitted in the Hartree tr
cation @14#.

However, we should be heartened by the fact that
Hartree approximationdoesrecognize the importance of th
spinodal line. As shown by Weinberg and Wu@16#, the ex-
istence of the spinodal line is correlated both with the no
convexity as well as with the imaginary part of the one-lo
effective potential. This imaginary part corresponds to
decay rate of a state prepared so that the zero mode is lo
ized near the top of the potential. Thus, spinodal models
inherentlydynamical and cannot be treated within the co
fines of the effective potential approximation. What the H
tree approximation provides us with is a way to deal w
spinodal dynamics beyond perturbation theory.

The result is a dynamical evolution in which non
perturbativequantumfluctuations play a primary role in the
evolution of the inflaton field, the gravitational backgroun
and the production of primordial metric perturbations.
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