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Kaon B parameter with the Wilson quark action using chiral Ward identities
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A lattice QCD calculation of the kaonB parameterBK is carried out with the Wilson quark action in the
quenched approximation atb56/g255.9– 6.5. The mixing problem of theDs52 four-quark operators is
solved nonperturbatively with full use of chiral Ward identities employing four external quarks with an equal
off-shell momentum in the Landau gauge. This method, without invoking any effective theory, enables us to
construct the weak four-quark operators exhibiting good chiral behavior. Our results forBK with the nonper-
turbative mixing coefficients show small scaling violation beyond the lattice cutoffa21;2.5 GeV. Our esti-
mate concludesBK(NDR,2 GeV)50.69(7) ata2152.7– 4.3 GeV, which agrees with the value obtained with
the Kogut-Susskind quark action. For comparison we also calculateBK with one-loop perturbative mixing
coefficients. While this yields incorrect values at finite lattice spacing, a linear extrapolation to the continuum
limit as a function ofa leads to a result consistent with those obtained with the Ward identity method.
@S0556-2821~99!05913-5#

PACS number~s!: 12.38.Gc, 11.15.Ha, 13.75.Jz
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I. INTRODUCTION

The kaonB parameter defined as a ratio

BK5
^K̄0us̄gm~12g5!d• s̄gm~12g5!duK0&

~8/3!^K̄0us̄gmg5du0&^0us̄gmg5duK0&
~1!

is one of the fundamental weak matrix elements which h
to be determined theoretically for deducing theCP violation
phase of the Cabibbo-Kobayashi-Maskawa matrix from
periments. Lattice QCD calculation is expected to evalu
BK precisely incorporating the long-distance effects of QC
Much effort has been devoted over the years to this purp
using both the Wilson and the Kogut-Susskind~KS! quark
actions. Successful calculations ofBK have been achieved s
far with the KS quark action, taking advantage of the corr
chiral behavior of the matrix element ensured by U~1! chiral
symmetry@1,2#, while studies with the Wilson quark actio
are rather stagnant. There are two purposes for us to tr
advance the calculations ofBK with the Wilson action. One
of them is to verify the consistency between the Wilson a
the KS results, which would give full credit to the lattic
QCD calculation. The other is an application to the hea
light system for which the interpretation of flavor quantu
numbers with the KS action is difficult.

*On leave from Institute of Particle and Nuclear Studies, H
Energy Accelerator Research Organization~KEK!, Tsukuba,
Ibaraki 305-0801, Japan.
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An annoying defect of the Wilson quark action is explic
breaking of chiral symmetry at finite lattice spacing. For t
calculation ofBK the problem appears as a nontrivial mixin
of the weakDs52 four-quark operator of purely left hande
chirality with those of mixed left-right chirality. Early stud
ies showed that the mixing problem is not adequately trea
by perturbation theory, leading to an ‘‘incorrect answer’’ f
the matrix element@3#. Most calculations ofBK have then
tried to solve the mixing problem nonperturbatively with th
aid of chiral perturbation theory@4,5#, and have succeeded i
giving reasonable estimates forBK . This method, however
is not promising from a point of view to control systemat
errors, since it contains large uncertainties from higher or
effects of chiral perturbation theory which survive even
the continuum limit.

An essential step toward a precise determination ofBK is
to control the operator mixing nonperturbatively without r
sort to any effective theories. The failure of the perturbat
approach suggests that higher order corrections in term
the coupling constant might be large in the mixing coe
cients. Presence of large corrections in powers of the lat
spacinga in the mixing coefficients is also a possibility. I
order to deal with this problem, the Rome group has p
posed the method of nonperturbative renormalization~NPR!
@6#. Numerical results based on this approach show an
provement of the chiral behavior of theDs52 operator@7#.

In this paper we propose an alternative nonperturba
method to solve the operator mixing problem which is bas
on the use of chiral Ward identities@8#. This method fully
incorporates the chiral properties of the Wilson action e
plicitly. We also reexamine the question if perturbative m
©1999 The American Physical Society11-1
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ing coefficients lead to erroneous results forBK in the con-
tinuum limit. Our simulations have been made with
quenched QCD atb55.9–6.5 keeping the physical spati
size approximately constant at 2.4 fm. The chief findings
our calculation have already been presented in Ref.@9# and
we give in this article a detailed description of the impleme
tation of our method and the results of our analyses.

This paper is organized as follows. In Sec. II we descr
the formalism of our nonperturbative method to determ
the mixing coefficients for four-quark operators based on
use of chiral Ward identities. The perturbative expressi
for the overall renormalization factors are also given. In S
III we present our data sets and give a description of
calculational procedure forBK . Results for the mixing coef-
ficients are given in Sec. IV, where we compare our res
with those for the NPR method. The overall renormalizat
factors determined by the NPR method are compared w
those obtained by the perturbative one in Sec. V. In Sec
we examine the chiral properties of the four-quark opera
constructed with the Ward identity method. The final resu
for BK are presented in Sec. VII. Through Secs. IV–VII w
also present results with the perturbative method for co
parative purposes. Our conclusions are summarized in
VIII.

II. FORMULATION OF THE METHOD

A. Determination of the mixing coefficients

We first derive the generic form of the chiral Ward ide
tities in a standard manner@8#. The Wilson quark action is
defined by

SW52
1

2 (
x,m

@c̄~x!~12gm!Um~x!c~x1m̂ !

1c̄~x1m̂ !~11gm!Um
† ~x!c~x!#

1(
x

c̄~x!~m014!c~x!, ~2!

where c5(u,d,s) represents the up, down, and stran
quark fields. The conventional hopping parameter is given

K5
1

2m018
. ~3!

Under the flavor SU~3! chiral variation defined by

dac~x!5 i
la

2
g5c~x!, ~4!

dac̄~x!5c̄~x!i
la

2
g5 , ~5!

with la (a51, . . . ,8) the flavor matrices normalized a
Tr(lalb)52dab, the naive Ward identity that follows from
the Noether procedure takes the form
03451
f
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^¹mAm
ext,a~x!O~x1 , . . . ,xn!&52m0^Pa~x!O~x1 , . . . ,xn!&

1^Xa~x!O~x1 , . . . ,xn!&

1 i ^daO~x1 , . . . ,xn!&, ~6!

where the pseudoscalar densityPa, the extended axial vecto
currentAm

ext,a and its divergence are defined by

Pa~x!5c̄~x!
la

2
g5c~x!, ~7!

Am
ext,a~x!5

1

2 F c̄~x!
la

2
gmg5Um~x!c~x1m̂ !1c̄~x1m̂ !

3
la

2
gmg5Um

† ~x!c~x!G , ~8!

¹mAm
ext,a~x!5(

m
@Am

ext,a~x!2Am
ext,a~x2m̂ !#, ~9!

and theXa term is given by

Xa~x!52
1

2 (
m

F c̄~x!
la

2
g5Um~x!c~x1m̂ !1c̄~x1m̂ !

3
la

2
g5Um

† ~x!c~x!1~x→x2m̂ !G
18c̄~x!

la

2
g5c~x!. ~10!

The Xa term mixes withPa and ¹mAm
a under renormaliza-

tion. Thus we write

Xa~x!5X̄a~x!22dm0Pa~x!2~ZA
ext,a21!¹mAm

ext,a~x!,
~11!

whereX̄a(x) should satisfy the following.
~i! On-shell matrix elements vanish in the continuu

limit:

^auX̄a~x!ub&5O~a!. ~12!

~ii ! Off-shell Green functions have only contact terms
to terms ofO(a):

^X̄a~x!O~x1 , . . . ,xn!&5(
i

d~x2xi !^O i8
a~x1 , . . . ,xn!&

1O~a!. ~13!

Defining the renormalized axial vector current by

Âm
ext,a~x!5ZA

extAm
ext,a~x! ~14!

and the renormalized quark mass by

m5m02dm0 , ~15!

the Ward identity takes the following form:
1-2
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^¹mÂm
ext,a~x!O~x1 , . . . ,xn!&52m^Pa~x!O~x1 , . . . ,xn!&

1^X̄a~x!O~x1 , . . . ,xn!&

1 i ^daO~x1 , . . . ,xn!&.

~16!

For finite quark masses it is also useful to take a fo
dimensional sum overx, which gives

2m(
x

^Pa~x!O~x1 , . . . ,xn!&1(
x

^X̄a~x!O~x1 , . . . ,xn!&

1(
x

i ^daO~x1 , . . . ,xn!&50. ~17!

We note thatX̄a(x) in Eqs. ~16! and ~17! generates only
contact terms up to terms ofO(a).

Let us consider a set of weak operators in the continu

$Oi} which closes under flavor chiral rotationsdaÔi

5 ic i j
a Ôj . These operators are given by linear combinatio

of a set of lattice local operators$Oa% asÔi5(aZiaOa . We
choose the mixing coefficientsZia such that the Green func

tions of $Ôi% with quarks in the external states satisfy t
chiral Ward identity toO(a). This identity is obtained from
Eq. ~17!:

22rmZA
ext(

x
K Pa~x!Ôi~0!)

k
c̃~pk!L

1ci j
a K Ôj~0!)

k
c̃~pk!L

2 i(
l

K Ôi~0!)
kÞ l

c̃~pk!d
ac̃~pl !L 1O~a!50,

~18!

wherepk is the momentum of the external quark. We no
that the first term in Eq.~18! comes from the chiral variation
of the Wilson quark action and the third represents the ch
rotation of the external fields. Since the identity~18! is linear
in the renormalization constants, the overall renormalizat
factor cannot be fixed. Furthermore, with quarks in the
ternal states, calculations have to be made in some fi
gauge, e.g., the Landau gauge.

The O(a) term is governed by the typical QCD sca
LQCD at low external quark momenta, while powers ofpka
become the dominant source of cutoff effects as mome
increase. To be able to impose the Ward identity toO(a),
we need to restrict the external momenta by the condi
pk!1/a for large momenta. On the other hand, no su
bounds exist for small momenta for the validity of the ide
tity itself as long asLQCDa!1.

The parameterrm5(m02dm0)/ZA
ext in Eq. ~18! is deter-

mined from the PCAC~partial conservation of axial vecto
current! relation obtained from an application of the Wa
identity ~16! for O5Pb(y) @10#:
03451
-

m
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-

^¹mAm
ext,a~x!Pb~y!&

52rm^Pa~x!Pb~y!&2d~x2y!

3
1

ZA
extK c̄~y!F1

3
dab11dabc

lc

2 Gc~y!L 1O~a!.

~19!

For the determination ofZA
ext we employ another Ward iden

tity

22rmZA
ext(

x
^Pa~x!Am

b ~y!Vn
c~z!&

51 i f abd
ZV

ZA
^Vm

d ~y!Vn
c~z!&1 i f acd

ZA

ZV
^Am

b ~y!An
d~z!&

1O~a!, ~20!

where we takeO5Am
b (y)Vn

c(z) in Eq. ~17! @10#. The local
axial vector current and the local vector current are defin
by

Am
b ~y!5c̄~y!

lb

2
gmg5c~y!, ~21!

Vn
c~z!5c̄~z!

lc

2
gnc~z!, ~22!

andZA andZV are the renormalization factors forAn
b(y) and

Vr
c(z), respectively. The identity~20! can be regarded as

set of equations forZA
ext andZA /ZV . Two independent equa

tions are obtained fromm5n54 andm5n5 i ( i 51,2,3).
The continuum four-quark operator relevant forBK is

given by

ÔVV1AA5~ s̄gmd!~ s̄gmd!1~ s̄gmg5d!~ s̄gmg5d!, ~23!

where the parentheses mean color trace, and the parity
lating part of the operator which does not contribute toBK is
dropped. To fix the mixing coefficients for the lattice fou
quark operators, we may choose a particular SU~3! flavor

chiral rotation to be applied forÔVV1AA . In order to avoid
complexities in numerical simulations it is essential to avo
flavor rotations that yield operators which have penguin c
tractions and hence mix with lower dimension operators. A
suming SU~2! symmetry mu5md we employ the l3

5diag(1,21,0) chiral rotation, under whichÔVV1AA and

ÔVA5( s̄gmd)( s̄gmg5d) form a minimal closed set of the
operators

d3
1

2
ÔVV1AA52 i ÔVA , ~24!

d3ÔVA52 i
1

2
ÔVV1AA . ~25!
1-3
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SinceÔVV1AA andÔVA are dimension six operators wit
Ds52, we can restrict ourselves to dimension six operat
for the construction of the lattice operators corresponding
them. The set of lattice bare operators with even parity
given by

VV5~ s̄gmd!~ s̄gmd!, ~26!

AA5~ s̄gmg5d!~ s̄gmg5d!, ~27!

SS5~ s̄d!~ s̄d!, ~28!

PP5~ s̄g5d!~ s̄g5d!, ~29!

TT5
1

2
~ s̄smnd!~ s̄smnd!, ~30!

and the set with odd parity is

VA5~ s̄gmd!~ s̄gmg5d!, ~31!

SP5~ s̄d!~ s̄g5d!, ~32!

TT̃5
1

2
~ s̄smnd!~ s̄smng5d!, ~33!

wheresmn5@gm ,gn#/2. We rearrange these operators in
the Fierz eigenbasis, which we find convenient when tak
fermion contractions for evaluating the Green functions
Eq. ~18!:

O05VV1AA ~1,1 !, ~34!

O15SS1TT1PP ~1,1 !, ~35!

O25SS2
1

3
TT1PP ~2,1 !, ~36!

O35~VV2AA!12~SS2PP! ~2,1 !, ~37!

O45~VV2AA!22~SS2PP! ~1,1 !, ~38!

O55VA ~1,1 !, ~39!

O65SP1
1

2
TT̃ ~1,2 !, ~40!

O75SP2
1

6
TT̃ ~2,2 !. ~41!

Here the first sign after each equation denotes the Fierz
genvalue and the second theCPS @3# eigenvalue. The Fierz
eigenbasis we employ is different from that chosen by
Rome group@7# based on one-loop perturbation theory.

The parity odd operatorsO6,7 are CPS odd whileO5 is
CPS even, and henceO5 does not mix withO6,7 under
03451
rs
o
is

g

i-

e

renormalization, where we assumemd5ms in the quark ac-
tion. Therefore the mixing structure of these operators
given by

ÔVV1AA

ZVV1AA
5OVV1AA5z0O01z1O11¯1z4O4 , ~42!

ÔVA

ZVA
5OVA5z5O5 , ~43!

whereZVV1AA and ZVA are overall renormalization factors
and we takez051.

Let us consider an external state consisting of twos
quarks and twod quarks, all having an equal momentump.
Underl3 chiral rotation the Ward identity~18! for such an
external state takes the following form:

FVV1AA[22rmZA
ext

3(
x

K Pa~x!
1

2
ÔVV1AA~0!s̃~p!s̃~p!d! ~p!d! ~p!L

2^ÔVA~0!s̃~p!s̃~p!d! ~p!d! ~p!&

2 K 1

2
ÔVV1AA~0!s̃~p!s̃~p!Fd! ~p!

g5

2 Gd! ~p!L
2 K 1

2
ÔVV1AA~0!s̃~p!s̃~p!d! ~p!Fd! ~p!

g5

2 G L
1O~a!50, ~44!

FVA[22rmZA
ext(

x
^Pa~x!ÔVA~0!s̃~p!s̃~p!d! ~p!d! ~p!&

2 K 1

2
ÔVV1AA~0!s̃~p!s̃~p!d! ~p!d! ~p!L

2 K ÔVA~0!s̃~p!s̃~p!Fd! ~p!
g5

2 Gd! ~p!L
2 K ÔVA~0!s̃~p!s̃~p!d! ~p!Fd! ~p!

g5

2 G L 1O~a!50.

~45!

We obtain the amputated Green functions forFVV1AA and
FVA by truncating the external quark propagators accord
to

GVV1AA[Gs
21~p!Gs

21~p!FVV1AAG
d̄

21
~p!G

d̄

21
~p!,

~46!

GVA[Gs
21~p!Gs

21~p!FVAG
d̄

21
~p!G

d̄

21
~p!,

~47!

where Gq
21 denotes the inverse quark propagator with t

flavor q.
1-4



ts
e

th

m

-

P

tr
o

-
is
a
is
s
m

s
of
t
ar

rm
ne
an

is

o-
to
m

f
or
we
d in

ed
-
on
rs

art
he

s
r

on

n
al-

KAON B PARAMETER WITH THE WILSON QUARK . . . PHYSICAL REVIEW D 60 034511
Let Pi ( i 50, . . . ,7) be the tree-level Dirac componen
corresponding to the four-quark operators in the Fierz eig
basisOi ( i 50, . . . ,7): e.g.,

P0
abdl5gm

abgm
dl1~gmg5!ab~gmg5!dl. ~48!

Since QCD conserves parity one can write

GVV1AA

ZVV1AA
5G5P5 , ~49!

GVA

ZVA
5G0P01G1P11¯1G4P4 , ~50!

where thec-number coefficientsG0 , . . . ,G5 are obtained by
applying the suitable projection operators toGVV1AA /
ZVV1AA andGVA /ZVA , e.g.,

P̄0
bald5

1

128
@gn

bagn
ld1~g5gn!ba~g5gn!ld#, ~51!

corresponding toP0
abdl . ExpressingÔVV1AA,VA in Eq. ~18!

in terms of lattice operators, we obtain six equations for
five coefficientsz1 , . . . ,z5 :

G i5c0
i 1c1

i z11¯1c5
i z55O~a!, i 50, . . . ,5. ~52!

This gives an overconstrained set of equations, and we
choose any five equations to exactly vanish to solve forzi :
the remaining equation should automatically be satisfied
O(a). We choose four equations to be those fori
51, . . . ,4, sinceO1 , . . . ,O4 do not appear in the con
tinuum. The choice of the fifth equation,i 50 or 5, is more
arbitrary. We have checked that eitherG050 or G550 leads
to a consistent result toO(a) for z1 , . . . ,z4 in the region
pa&1. In the present analysis we chooseG550.

Let us remark here that the equations obtained in the N
method@7# corresponds toG i50 for i 51, . . . ,4 inwhich the
contributions of the first term due to the quark mass con
butions and the third term representing chiral rotation
quark fields in the Ward identity~18! are dropped. The au
thors of Refs. @6,7,11# argued that the NPR method
equivalent to the Ward identities in the limit of large extern
quark momentump. The reasoning is that the first term
suppressed by one power ofp due to the explicit quark mas
factor, and the third term does not yield chiral-breaking co
ponents since the inverse quark propagator for largep has
the formG21} i (mgmpm which anticommutes withg5 . Un-
der these circumstances the first, third, and fourth term
FVA in Eq. ~45! become irrelevant for the determination
the mixing coefficientsz1 , . . . ,z4 . However, the latter poin
is not correct at finite lattice spacing. The inverse qu
propagator does not anticommute withg5 in the large mo-
mentum region because the contribution of the Wilson te
in the quark propagator becomes larger, and hence not
ligible, as the momentum increases. Therefore the third
fourth terms ofFVA in Eq. ~45! yield components having
Dirac structures other thanVV1AA after truncating the ex-
ternal quark propagators. In conclusion the NPR method
03451
n-

e

ay

to

R

i-
f

l

-

of

k

g-
d

a

part of the Ward identities; at the large external quark m
mentump the former becomes equivalent to the latter up
O(pa). In Sec. IV we show the difference between the
numerically.

B. Matching of lattice and continuum operators

In our earlier report@9# we employed the NPR method o
Ref. @6# to evaluate the overall renormalization fact
ZVV1AA in Eq. ~42!. For the reasons discussed in Sec. V
use the perturbative estimate in the final analysis presente
this article.

The one-loop perturbative renormalization of theDs52
operator is written in the following way@12#:

ÔVV1AA5ZVV1AAO01
as

4p
Z* S 1

3
O12

1

2
O32

5

12
O4D ,

~53!

with Oi ( i 50, . . . ,4) being the Fierz eigenoperators defin
in Eqs. ~34!–~38!. Employing the modified minimal sub
traction (MS) scheme with naive dimensional regularizati
~NDR! for the continuum theory the renormalization facto
are given by@12,5#

ZVV1AA511
as

4p
@24 ln~ma!1DVV1AA#, ~54!

DVV1AA5250.841 for NDR, ~55!

Z* 59.6431, ~56!

where m is the renormalization scale. The diagonal p
DVV1AA is affected by the renormalization scheme in t
continuum, while the mixing partZ* is independent. We
collect the value ofDVV1AA for the dimensional reduction
~DRED! scheme in the Appendix.

Including the normalization of quark field
A8KcA1/2K23/8Kc @13,14# tadpole improved by the facto
u05(8Kc)

21 leads to

ZVV1AA5S 1

2K
2

3

8Kc
D 2

3F11
as

4p
@24 ln~ma!1DVV1AA12p35.457#G .

~57!

Here Kc is the critical hopping parameter where the pi
mass vanishes. We use

1

8Kc
5125.457as/4 ~58!

in Ref. @15# for the perturbative estimate ofKc .
With the use ofZVV1AA

NDR we convert the matrix element o
the lattice into that in the continuum NDR scheme renorm
ized at the scalem51/a GeV @16,5#:
1-5
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BK~NDR,1/a!5
ZVV1AA

NDR

ZA
NDR

^K̄0uOVV1AAuK0&
~8/3!u^0uAmuK0&u2 , ~59!

whereOVV1AA is defined in Eq.~42!, andZA is the renor-
malization factor for the axial vector currentAm5 s̄gmg5d,
which is expressed as@17,15#

ZA511
as

4p
DA , ~60!

DA5221.061 for NDR. ~61!

The value ofDA for the DRED scheme is given in the Ap
pendix. With the tadpole improvement the expression~60!
becomes

ZA5S 1

2K
2

3

8Kc
D F11

as

4p
~DA1p35.457!G . ~62!

The continuum value at a physical scalem52 GeV is
obtained via a two-loop renormalization group running fro
m51/a GeV:

BK~NDR,m!5S aMS~m!

aMS~1/a! D
g~0!/2b0

3F11
aMS~m!2aMS~1/a!

4p

3S g~1!b02g~0!b1

2b0
2 D GBK~NDR,1/a!,

~63!

whereb0,1 are the leading and next-to-leading coefficients
the b function andg (0,1) are those of the anomalous dime

sion for ÔVV1AA . We takeb0511, b15102, g (0)54, and
g (1)527 @18# appropriate for the zero-flavor case corr
sponding to our quenched calculation ofBK .

We define anotherB parameter to investigate the chir

property of the operatorÔVV1AA :

BK
P~NDR,1/a!5

ZVV1AA
NDR

ZP
NDR

^K̄0uOVV1AAuK0&
~8/3!u^0uPuK0&u2

~64!

with ZP the renormalization factor for the pseudoscalar d
sity P5 s̄g5d. The continuum value ofBK

P at 2 GeV is ob-
tained by running fromm51/a to 2 GeV according to the
two-loop renormalization group. We usegP

(0)528 and
gP

(1)52404/3@18# for the leading and next-to-leading coe
ficients of the anomalous dimension of the pseudoscalar
sity in the zero-flavor case. The one-loop perturbative
pression forZP with the tadpole improvement is given b
@17,15#

ZP5S 1

2K
2

3

8Kc
D F11

as

4p
@8 ln~ma!1DP1p35.457#G ,

~65!
03451
f

-

n-
-

DP5230.128 for NDR. ~66!

The value ofDP for the DRED scheme is given in the Ap
pendix.

The overall renormalization factorsZVV1AA , ZA , andZP
can be alternatively determined by the NPR method@6#. The
NPR method closely follows what is usually done in t
perturbative renormalization. The vertex corrections are
tracted from the amputated Green functions for off-shell
ternal quark states with momentump in the Landau gauge
according to

Gs
21~p!Gs

21~p!^OVV1AA~0!s̃~p!s̃~p!d! ~p!d! ~p!&

3G
d̄

21
~p!G

d̄

21
~p!5L0~p!P01¯ , ~67!

Gs
21~p!^Am~0!s̃~p!d! ~p!&Gd̄

21
~p!5Lgmg5

~p!Pgmg5
1¯ ,

~68!

Gs
21~p!^P~0!s̃~p!d! ~p!&Gd̄

21
~p!5Lg5

~p!Pg5
1¯ ,

~69!

whereP’s are the tree-level Dirac components withP0 given
in Eq. ~48! andPgmg5 ,g5

defined by

Pgmg5

ab 5~gmg5!ab, ~70!

Pg5

ab5g5
ab . ~71!

We should note that the amputated Green functions for
bilinear operators can have extra Dirac components bes
their tree-level ones, which originate from contribution of t
higher dimensional operators. The quark wave-funct
renormalization factorZq(p) is extracted from the quark
self-energy

Zq~p!5
Tr@2 i (mgm sin~pm!Gq

21~p!#

12(m sin2~pm!
, ~72!

where the trace is applied for the Dirac and color indices
terms of the vertex corrections and the wave-function ren
malization factor one calculatesZVV1AA , ZA , andZP impos-
ing the following conditions:

ZVV1AA~p!Zq
22~p!L0~p!51, ~73!

ZA~p!Zq
21~p!F1

4 (
m

Lgmg5
~p!G51, ~74!

ZP~p!Zq
21~p!Lg5

~p!51. ~75!

This renormalization scheme is called the regularization
dependent~RI! scheme. In this scheme the renormalizati
constants depend on the external state and the gauge.
perturbative values of the renormalization consta
DVV1AA , DA , andDP defined in Eqs.~54!, ~60!, and~65! for
the RI scheme are given in the Appendix.
1-6
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TABLE I. Parameters of our simulations. See text for details.

b 5.9 6.1 6.3 6.5

L33T 243364 323364 403396 483396
No. conf. 300 100 50 24
Thermalization 22000 32000 45000 72000
Interval 2000 2000 5000 8000
K 0.15862 0.15428 0.15131 0.14925

0.15785 0.15381 0.15098 0.14901
0.15708 0.15333 0.15066 0.14877
0.15632 0.15287 0.15034 0.14853

Kc 0.15986(3) 0.15502(2) 0.15182(2) 0.14946(
msa/25mda/2 0.0294~14! 0.0198~16! 0.0144~17! 0.0107~16!

a21 @GeV# 1.95~5! 2.65~11! 3.41~20! 4.30~29!

La @fm# 2.4 2.4 2.3 2.2
^Tr UP& 0.582 0.604 0.622 0.638
aMS(1/a) 0.1922 0.1739 0.1596 0.1480
dp2 1.11 1.11 1.15 1.12

p(* )2
a2 0.9595 0.5012 0.2988 0.2056

Fitting range formp ,mr ,rm ,ZA
ext 12– 20 14– 24 17– 27 20– 30

Fitting range forBK ,BK
P 18– 45 24– 39 32– 63 35– 60
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III. DETAILS OF NUMERICAL SIMULATION

A. Data sets

Our calculations are made with the Wilson quark act
and the plaquette gauge action atb55.9–6.5 in quenched
QCD. Table I summarizes our run parameters. Gauge c
figurations are generated with the five-hit pseudo-heat-b
algorithm. At each value ofb four values of the hopping
parameterK are adopted such that the physical point for t
K meson can be interpolated. The critical hopping param
Kc is determined by extrapolating results formp

2 at the four
hopping parameters linearly in 1/2K to mp

2 50. We take the
down and strange quarks to be degenerate. The value of
the strange quark massmsa/2 is then estimated from th
experimental ratiomK /mr50.648.

The inverse lattice spacinga21 is determined from ther
meson massmr5770 MeV. The physical size of lattice i
chosen to be approximately constant atLa'2.4 fm. To cal-
culate the perturbative renormalization factors, we emp
the strong coupling constant at the scale 1/a in the MS
scheme, evaluated by a two-loop renormalization group r
ning starting from 1/gMS

2 (p/a)5^Tr UP&/glatt
2 10.0246 with

^Tr UP& the averaged value of the plaquette.
In order to calculate the mixing coefficientszi ( i

51, . . . ,5) with the Ward identity method and the renorm
ization factorsZVV1AA , ZA , andZP with the NPR method,
the latter for purpose of comparison with the perturbat
values, we prepare a set of external quark momentap( i )

5(px
( i ) ,py

( i ) ,pz
( i ) ,pt

( i )) ( i 51¯;40). These momenta ar
chosen recursively according to the condition that thei
11)th momentump( i 11)a is the minimum number satisfy
ing

~p~ i 11!a!2>dp2~p~ i !a!2, ~76!
03451
n-
th

er

alf

y

n-

-

e

px
~ i 11!<py

~ i 11!<pz
~ i 11! , ~77!

for a given value of the increment parameterdp2 starting
with p(1)a5(0,0,0,2p/T) where T denotes the tempora
lattice size. In the case of multiple choices for thei 1first
momentum we take the momentum that has the larg
value of pt

( i 11) . The choice of the value ofdp2 is listed in
Table I. We employ the momentum havingp(* )'2 GeV
among thep( i )’s for the analysis ofB parameters. We esti
mate errors by the single elimination jackknife procedure
all measured quantities except for the extrapolation to
continuum limit as a function ofa.

B. Calculational procedure

Our calculations are carried out in three steps. We fi
calculatemp , mr , rm , and ZA

ext using the hadron Green
functions. For this purpose quark propagators are solve
the Landau gauge for the point source located at the or
with the periodic boundary condition imposed in all fo
directions. Following Eq.~19! we can extract therm param-
eter from the ratio

rm5
1

2
F (xW^¹4A4

ext,3~xW ,t !P3~0W ,0!&

2(xW^P3~xW ,t !P3~0W ,0!&
1~ t→T2t11!G

→ ^0u¹4A4
ext,3up3&

2^0uP3up3&
, 0!t!T21 ~78!

by fitting a plateau as a function oft, where

¹4A4
ext,3~xW ,t !5A4

ext,3~xW ,t !2A4
ext,3~xW ,t21!, ~79!
1-7



S. AOKI et al. PHYSICAL REVIEW D 60 034511
TABLE II. Meson masses,rm parameter, and renormalization factor for the extended axial vector current atb55.9– 6.5 in quenched
QCD.

b K mp mr mp /mr rm ZA
ext

5.9 0.15862 0.2346~19! 0.443~10! 0.530~12! 0.03307~33! 1.328~58!

0.15785 0.2980~15! 0.4636~49! 0.6427~67! 0.05433~32! 0.941~19!

0.15708 0.3513~12! 0.4897~33! 0.7172~45! 0.07617~31! 0.925~13!

0.15632 0.3982~11! 0.5181~25! 0.7687~33! 0.09836~29! 0.919~10!

6.1 0.15428 0.1677~16! 0.323~12! 0.520~19! 0.02239~29! 0.970~36!

0.15381 0.2135~16! 0.3467~60! 0.616~11! 0.03732~29! 0.935~23!

0.15333 0.2527~15! 0.3688~40! 0.6853~81! 0.05276~29! 0.933~17!

0.15287 0.2864~14! 0.3892~31! 0.7358~63! 0.06778~29! 0.933~14!

6.3 0.15131 0.1282~23! 0.254~14! 0.504~27! 0.01725~34! 0.981~68!

0.15098 0.1641~20! 0.2643~65! 0.621~15! 0.02889~29! 0.949~41!

0.15066 0.1933~18! 0.2797~44! 0.691~11! 0.04024~26! 0.928~32!

0.15034 0.2195~17! 0.2960~35! 0.7413~88! 0.05169~24! 0.916~28!

6.5 0.14925 0.0782~39! 0.189~13! 0.414~31! 0.00860~42! 0.95~14!

0.14901 0.1119~32! 0.2079~79! 0.538~21! 0.01759~42! 0.951~66!

0.14877 0.1394~29! 0.2232~60! 0.625~18! 0.02658~41! 0.938~47!

0.14853 0.1632~25! 0.2368~45! 0.689~14! 0.03565~39! 0.929~37!
-
-

nta
s in
he

of
int
A4
ext,3~xW ,t !5

1

4
@ ū~xW ,t !g4g5U4~xW ,t !u~xW ,t11!

1ū~xW ,t11!g4g5U4
†~xW ,t !u~xW ,t !2~u↔d!#,

~80!

P3~xW ,t !5
1

2
@ ū~xW ,t !g5u~xW ,t !2~u↔d!#. ~81!

In order to determineZA
ext we make a zero-momentum pro

jection in y in Eq. ~20!:

22rmZA
ext,3(

x,yW
^P3~x!Am

1~yW ,t !Vn
2~0W ,0!&

5
ZV

ZA
(

yW
^Vm

1~yW ,t !Vn
2~0W ,0!&

2
ZA

ZV
(

yW
^Am

1~yW ,t !An
2~0W ,0!&, ~82!
03451
where the flavor matricesl1 andl2 are defined by

l15S 0,1,0
0,0,0
0,0,0

D , l25S 0,0,0
1,0,0
0,0,0

D . ~83!

At each time slicet we obtainZA
ext,3 andZA /ZV from the two

independent equations corresponding to the choicesm5n
54 and m5n5 i ( i 51,2,3) in Eq. ~82!. In Table II we
summarize the values ofmp , mr , rm , andZA

ext for the four
hopping parameters at eachb.

In terms ofrm andZA
ext we determine the mixing coeffi

cientszi ( i 51, . . . ,5) according to the Ward identity~18!.
The quark Green functions having finite space-time mome
are constructed with the point source quark propagator
the Landau gauge. For calculation of the first term in t
Ward identity ~18!, we employ the source method@19# to
insert the pseudoscalar density.

TheBK parameter is extracted from the following ratio
the hadron-three-point function divided by the two-po
functions
RA~ t !5
(xW ,yW ,zW^O K̄0~xW ,T21!ÔVV1AA~yW ,t !O K0

†
~zW,0!&

~8/3!(xW ,yW^O K̄0~xW ,T21!Â~yW ,t !&(yW8,zW^Â~yW 8,t !O K0
†

~zW,0!&
→ 1

L3
BK~NDR,1/a!, 0!t!T21, ~84!
where operators are defined by

O K0~xW ,t !5 s̄~xW ,t !g5d~xW ,t !, ~85!

O K̄0~xW ,t !5d̄~xW ,t !g5s~xW ,t !, ~86!
ÔVV1AA~xW ,t !5(
i 50

4

ZVV1AAziOi~xW ,t !, ~87!

Â~xW ,t !5ZAs̄~xW ,t !g4g5d~xW ,t !, ~88!
1-8
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with ZVV1AA andZA given in Eqs.~57! and~62!. The contribution of each operatorOi ( i 50, . . . ,4) toBK(NDR,1/a) can be
measured by the ratio

RA
i ~ t !5

(xW ,yW ,zW^O K̄0~xW ,T21!ZVV1AAziOi~yW ,t !O K0
†

~zW,0!&

~8/3!(xW ,yW^O K̄0~xW ,T21!Â~yW ,t !&(yW8,zW^Â~yW 8,t !O K0
†

~zW,0!&
→ 1

L3

^K̄0uZVV1AAziOi uK0&

~8/3!u^0uÂuK0&u2
, 0!t!T21. ~89!

The sum ofRA
i (t) ( i 50, . . . ,4) is equal toRA(t). The parameterBK

P(NDR,1/a) defined in Eq.~64! is obtained from the ratio

RP~ t !5
(xW ,yW ,zW^O K̄0~xW ,T21!ÔVV1AA~yW ,t !O K0

†
~zW,0!&

~8/3!(xW ,yW^O K̄0~xW ,T21!P̂~yW ,t !&(yW8,zW^P̂~yW 8,t !O K0
†

~zW,0!&
→ 1

L3
BK

P~NDR,1/a!, 0!t!T21, ~90!
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where the renormalized pseudoscalar density is

P̂~xW ,t !5ZPs̄~xW ,t !g5d~xW ,t ! ~91!

with ZP in Eq. ~65!. For calculation of the ratiosRA , RA
i ,

and RP we solve quark propagators without gauge fixi
employing wall sources placed at the edges of lattice wh
the Dirichlet boundary condition is imposed in the time d
rection.

The value ofBK obtained with the Ward identity metho
depends on the external quark momentump( i ) at which the
mixing coefficients are evaluated. To investigate the qu
mass dependence anda dependence ofBK we employ the
averaged value ofBK over the five momenta fromp(* 22) to
p(* 12) where p(* ) represents the momentum nearest to
GeV. We employ the same procedure for the analysis ofBK

P .

IV. RESULTS FOR MIXING COEFFICIENTS

In Fig. 1 we plot a typical result for the mixing coeffi
cients zi ( i 51, . . . ,4) as a function of the external qua
momenta for the case ofK50.15034 atb56.3. In order to
evaluate the mixing coefficients we need to choose a spe
scalep(* ) that satisfies the conditionp(* )a!1 to avoid cut-
off contaminations. We observe that the mixing coefficie
show only weak dependence over a wide momentum ra
0.02&p2a2&1.0, albeitz1 and z2 have large errors in the
small momentum regionp2a2&0.1. This enables us to
evaluate the mixing coefficients with small uncertaint
from the choice of the momentump(* ). We adopt the value
p(* )'2 GeV, which we find to always fall within the rang
of a plateau for our runs atb55.9–6.5.

Let us compare the mixing coefficients obtained by
Ward identity~WI! method with those by the NPR. Since th
NPR method does not employ the full Ward identity of E
~18!, it is important to investigate differences in the mixin
coefficients between the NPR and the Ward identity me
ods. In Fig. 2 we present the result for the mixing coe
cients zi obtained with the NPR method. The NPR res
shows a strong scale dependence in the regionp2a2&0.3,
which contrasts to the Ward identity result in Fig. 1. W
suspect that this behavior of the NPR result originates fr
physical nonperturbative contributions, which survive ev
in the continuum limit~see also Sec. V!. Although we ob-
03451
re

k

2

fic

s
ge

e

.

-
-
t

n

serve a similar scale dependence for the two results bey
the scalep2a2;0.3, the numerical values forz2 andz3 show
clear deviations beyond the error bars between the WI re
and that from the NPR for momenta as large asp2a2;2.
This is contrary to the expectation that the NPR would
equivalent to the Ward identities in the limit of large extern
quark momenta@6,7,11#.

The difference between the NPR and the WI metho
comes from the first and third terms in Eq.~18!. To investi-
gate the contribution of each term to the mixing coefficie
we reevaluate the mixing coefficients using the Ward ide
ties without the first term or the third term. The former res
is plotted in Fig. 3~a! and the latter one in Fig. 3~b!. Com-
parison between Fig. 3~a! and Fig. 1 demonstrates that th
contribution of the first term to the mixing coefficients
remarkable in the lower momentum regionp2a2&0.3.
Above this scale, the first term seems to play a minor role
the determination of the mixing coefficients. On the oth
hand, comparing Fig. 3~b! with Fig. 1 the essential contribu
tion of the third term to the mixing coefficients is observ
over a wide range of external momentum, even up top2a2

;2. In the Ward identity method we can neglect neither
first term nor the third one.

FIG. 1. Mixing coefficientsz1 , . . . ,z4 obtained with the Ward
identity method plotted as a function of external momentu
squaredp2a2 for K50.15034 atb56.3. Vertical line corresponds
to p(* )'2 GeV.
1-9
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Figure 4 shows the quark mass dependence of the mi
coefficientszi ( i 51, . . . ,4) evaluated at the scalep(* ) ~filled
symbols! for the case ofb56.3. For comparison we also plo
the perturbative~PT! estimate forzi ~open symbols!, which
are given in Eq.~53!, i.e.,

z15
as

4p
Z* S 1

1

3D , ~92!

z250, ~93!

z35
as

4p
Z* S 2

1

2D , ~94!

z45
as

4p
Z* S 2

5

12D , ~95!

whereaMS(1/a) is used for the strong coupling constant. W
observe little quark mass dependence for the mixing coe
cients.

In Fig. 5 we present thea dependence of the mixing co
efficientszi ( i 51, . . . ,4) evaluated at the scalep(* ) employ-
ing the heaviest quark mass at eachb. We observe that thea
dependence of the mixing coefficients determined by
Ward identities is steeper compared to that of the PT e
mates to one-loop order. The magnitude of each mixing
efficient for the WI method varies nearly in proportion toa,
which reduces by 50% betweenmra'0.4 andmra'0.2. A
possible source of thisa dependence of the mixing coeffi
cients is theO(a) term in Eq. ~18!: contributions of the
O(a) term are absorbed in the mixing coefficients to sati
the continuum Ward identities at finite lattice spacing.

Comparing the mixing coefficients for the Ward identi
method and those of perturbation theory in Figs. 4 and 5,
note that a large value ofz2 determined by the Ward identi
ties sharply contrasts with the one-loop perturbative re
z250. The magnitude of this discrepancy appears larger t
that possibly explained by two-loop contributions; squarin
typical magnitude of one-loop terms in Fig. 5 only yields

FIG. 2. Mixing coefficientsz1 , . . . ,z4 obtained with the NPR
method. Parameters are the same as in Fig. 1.
03451
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value of order;0.001. Discrepancies also exist for the oth
coefficients, albeit less conspicuous in that the PT res
agree with those of WI in sign and rough orders of mag
tude. In particular the magnitude ofz4 is larger than that for
z3 for all values ofb, which is contrary to the perturbativ
result.

For our study of theB parameter the mixing coefficientz5

for the parity-odd operatorÔVA is not directly relevant.
However, it is instructive to examine the scale dependenc
z5 , because it would take the valuez551 in the absence o
cutoff dependent chiral symmetry breaking effects. In Fig
we plot a typical result forz5 . We find a scale dependenc
stronger than those ofzi ( i 51, . . . ,4) for parity-even opera
tors toward large momenta; the value ofz5 significantly de-
viates from unity as the momentum increases, which m
sures the magnitude of cutoff effects. The quark m
dependence ofz5 evaluated atp(* ) is shown in Fig. 7. The
value of z5 slightly increases as the quark mass decrea
We do not consider the strong scale dependence ofz5 to be
particularly alarming sincez5 evaluated at a fixed physica
scalep(* ) approaches unity toward the continuum limit
shown in Fig. 8.

FIG. 3. Mixing coefficientsz1 , . . . ,z4 obtained with the Ward
identity ~18! neglecting~a! the first term or~b! the third one. Pa-
rameters are the same as in Fig. 1.
1-10
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V. RESULTS FOR OVERALL RENORMALIZATION
FACTORS WITH THE NPR METHOD

The NPR method is a possible way to estimate the ove
renormalization factorsZVV1AA , ZA , andZP . In Fig. 9 we
plot ZVV1AA , ZA , andZP in the RI scheme as a function o
p2a2 for the case ofK50.15034 atb56.3. For comparison
we also draw the tadpole-improved one-loop perturbative
timates~solid lines! in the RI scheme. The NPR result fo
ZVV1AA in Fig. 9~a! shows an agreement with the perturb
tive estimate in the region 0.1&p2a2&0.5. The dotted curve
in Fig. 9~a! represents theO0 contribution toZVV1AA , which
is obtained by neglecting contributions of the mixed ope
torsOi ( i 51, . . . ,4). We observe that the contributions
the mixed operators, leading of which is the two-loop rad
tive corrections, are quite small.

Figure 9~b! shows thatZA has a strongp2a2 dependence
below p2a2;0.3. This behavior is contrary to the expect

FIG. 4. Quark mass dependence of mixing coefficie
z1 , . . . ,z4 evaluated atp(* )'2 GeV using the Ward identity~WI,
filled symbols! method atb56.3. Perturbative~PT, open symbols!
results are also plotted for comparison.

FIG. 5. Comparison of mixing coefficientsz1 , . . . ,z4 evaluated
at p(* )'2 GeV using the Ward identity~WI, filled symbols!
method and the perturbative~PT, open symbols! one as a function
of mra.
03451
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tion thatZA should be independent ofp2a2 as the axial vec-
tor current has no anomalous dimension. The unexpe
behavior may be ascribed to nonperturbative contaminat
due to the pion pole which could give an important cont
bution at low external quark momentum@6#. In Fig. 9~c! we
observe a large deviation between the NPR result forZP and
that from perturbation theory belowp2a2;1. We suspect
that this discrepancy is also due to the nonperturbative
fects from the pion pole. It should be remarked that the c
tamination due to the pion pole is not a lattice artifact, a
hence survives even after taking the continuum limit.

We note that our NPR results forZA andZP are consistent
with those of recent studies@20–22#. In particular evidence
for the existence of pion pole contribution inZP has been
reported in Ref.@22# for the Kogut-Susskind action and i
Ref. @21# for the Wilson case.

For the calculation ofB parameters the ratiosZVV1AA /ZA
2

and ZVV1AA /ZP
2 are more relevant. We show the scale d

pendence of ZVV1AA /ZA
2 in Fig. 10~a! and that of

ZVV1AA /ZP
2 in Fig. 10~b!. Solid lines are tadpole-improve

one-loop results in the RI scheme. We observe that the N
result for ZVV1AA /ZA

2 has ap2a2 dependence opposite t

s

FIG. 7. Quark mass dependence of mixing coefficientz5 evalu-
ated atp(* )'2 GeV using the Ward identity method atb56.3.

FIG. 6. Same as Fig. 1 for mixing coefficientz5 .
1-11
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that expected from the perturbative estimate. For the r
ZVV1AA /ZP

2 the NPR result diverges toward lower mome
tum.

Application of the NPR method requires the existence
a regionLQCD!p!1/a where we can keep under contr
both nonperturbative contaminations and cutoff effec
which is called a ‘‘window’’ in Ref. @6#. We find for
ZVV1AA , ZA , ZP , and their ratios that the lower bound o
the window depends strongly on each operator; we obs
p2a2;0.1 for ZVV1AA and p2a2;0.3 for ZA , while it is
difficult to find the lower bound forZP , ZVV1AA /ZA

2 , and

FIG. 8. Lattice spacing dependence of mixing coefficientz5

evaluated atp(* )'2 GeV using the Ward identity method.

FIG. 9. Renormalization factors~a! ZVV1AA , ~b! ZA , and~c! ZP

in the RI scheme obtained with the NPR method as a function
external momentum squaredp2a2 for K50.15034 atb56.3. Trans-
verse lines denote tadpole-improved perturbative estimates.
dotted curve in~a! represents theO0 contribution toZVV1AA . Ver-
tical lines correspond top(* )'2 GeV.
03451
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ZVV1AA /ZP
2 . It is not clear to what extent nonperturbativ

contaminations can be separated out quantitatively. For th
reasons we employ the perturbative estimates forZVV1AA ,
ZA , andZP , rather than those of the NPR method, to obta
theB parameter in our final analysis presented in this artic
Numerical values of theBK parameter are little affected b
this change since the the ratioZVV1AA /ZA

2 has a similar
value atp(* ) among the two methods.

For completeness let us examine the quark mass de
dence and thea dependence ofZVV1AA , ZA , andZP taking
their results atp(* ) ~vertical lines in Fig. 9!. In Fig. 11 we

f

he

FIG. 10. Ratios of renormalization factors~a! ZVV1AA /ZA
2 and

~b! ZVV1AA /ZP
2 obtained with the NPR method as a function

external momentum squaredp2a2 for K50.15034 atb56.3. Trans-
verse lines denote tadpole-improved perturbative estimates. Ver
lines correspond top(* )'2 GeV.

FIG. 11. Quark mass dependence of renormalization factor
p(* )'2 GeV using the NPR~solid symbols! method atb56.3.
Open symbols represent tadpole-improved perturbative estima
1-12
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plot the NPR results forZVV1AA , ZA , andZP together with
tadpole-improved perturbative values as a function ofmq
5(1/K21/Kc)/2 for the case ofb56.3. While we observe
little quark mass dependence forZVV1AA andZA , ZP clearly
decreases as the quark mass decreases. Figure 12 show
a dependence ofZVV1AA , ZA , and ZP evaluated atp(* )

employing the heaviest quark mass at eachb. The NPR re-
sults forZVV1AA andZA are consistent with the perturbativ
ones at fourb values, while forZP we observe a large de
viation at eachb.

VI. CHIRAL BEHAVIOR

Let us examine the chiral property of the opera

ÔVV1AA using the matrix elementBK
P defined in Eq.~64!,

which vanishes in the chiral limit in the presence of chi
symmetry. In Fig. 13 we show the chiral behavior
BK

P(NDR, 1/a) for the case ofb56.3. Numerical values o

FIG. 12. Comparison of renormalization factors evaluated
p(* )'2 GeV using the NPR~NPR, solid symbols! method and the
tadpole-improved perturbation theory~PT, open symbols! as a func-
tion of mra.

FIG. 13. Test of the chiral behavior ofBK
P(NDR, 1/a) for the

Ward identity and perturbative methods atb56.3. Solid curves are
quadratic extrapolations to the chiral limit.
03451
the
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BK
P(NDR, 1/a) for the four hopping parameters at eachb are

summarized in Table III. The solid lines represent quadra
extrapolations of the WI and PT results in the bare qu
massmqa5(1/K21/Kc)/2. The extrapolated value atmq
50 is consistent with zero, demonstrating a significant i
provement of the chiral behavior compared to the pertur
tive result plotted with triangles.

Figure 14 shows thep2a2 dependence ofBK
P(NDR, 1/a)

extrapolated tomq50, which are evaluated at each sca
p( i ). Two solid lines represent the upper and lower bounds
one standard deviation error for the PT result. The value
BK

P(NDR, 1/a) for the WI method are consistent with zer
within error bars in the momentum rangep2a2&1, albeit the
errors become larger toward the small momentum region

We plot in Fig. 15 the values ofBK
P(NDR, 2 GeV) in the

chiral limit as a function of lattice spacing. The numeric
values are given in Table IV. The result for the WI meth
becomes consistent with zero at the lattice spacingmra
&0.3 (a&0.08 fm). In the perturbative approach with th
one-loop mixing coefficients, chiral breaking effects are e
pected to appear primarily as terms ofO(a) and secondly as
terms ofO@ag2(1/a)# andO@g4(1/a)# for the Wilson quark
action. A roughly linear behavior of our results for the pe
turbative method indicate the leading contribution from
O(a) term. Making a linear extrapolation to the continuu
limit a→0, we observe that the chiral behavior is recover
This may suggest that theO@ag2(1/a)# and O@g4(1/a)#
terms in the mixing coefficients left out in the one-loop tre
ment are small or accidentally canceled.

VII. RESULTS FOR BK

We now turn to the calculation ofBK(NDR, 2 GeV). In
Fig. 16 we present the ratioRA(t) defined in Eq.~84! using
the mixing coefficients determined from the Ward identiti
with the external quark momentump(* ) for the heaviest
quark mass (K50.15034) and the lightest one (K
50.15131) atb56.3. A good plateau is observed in th
range 20&t&75. We make a global fit of the ratioRA(t) to
a constant over 32<t<63 for this data set. The three hor
zontal lines denote the central value ofBK(NDR, 1/a) and a
one standard deviation error band. We note that the erro
the fitted result is roughly equal in magnitude to those of
ratio over the fitted range, while we would usually expec
smaller error for the fitted result. This is because the erro
the ratioRA(t) is governed by those of the mixing coeffi
cientszi ( i 51, . . . ,4). Numerical values ofBK(NDR, 1/a)
for the four hopping parameters at eachb are listed in Table
III.

For comparison we also show the results forRA(t) ob-
tained with the perturbative mixing coefficients in Fig. 1
We observe a plateau in the range 30&t&65, which is
slightly narrower compared to the WI results. A global fit
RA(t) to a constant choosing the same fitting range as for
WI case yields the value ofBK(NDR, 1/a) given in Table III.
Let us note that the PT results have quite small errors c
pared to those of the WI method. This is because defi
values are taken for the mixing coefficients in the P
method.

t

1-13



zed

S. AOKI et al. PHYSICAL REVIEW D 60 034511
TABLE III. B parameters obtained with the WI, WIVS , and PT methods forb55.9– 6.5 in quenched QCD. Operators are renormali
at 1/a in the NDR scheme.

b K

BK(NDR,1/a) BK
P(NDR,1/a)

WI WIVS PT WI PT

5.9 0.15862 0.270~75! 0.108~26! 20.631(13) 0.0076~21! 20.01767(30)
0.15785 0.507~39! 0.259~13! 20.0728(56) 0.0236~18! 20.00340(25)
0.15708 0.620~26! 0.3617~82! 0.1937~38! 0.0408~17! 0.01274~26!

0.15632 0.687~20! 0.4348~60! 0.3501~32! 0.0585~17! 0.02977~30!

6.1 0.15428 0.62~14! 0.226~33! 20.416(24) 0.0156~34! 20.01039(49)
0.15381 0.686~75! 0.331~20! 20.044(13) 0.0293~32! 0.00186~57!

0.15333 0.720~51! 0.406~14! 0.257~10! 0.0439~31! 0.01565~66!

0.15287 0.747~39! 0.461~11! 0.3813~86! 0.0585~31! 0.02985~74!

6.3 0.15131 0.66~16! 0.286~41! 20.157(22) 0.0175~42! 20.00418(53)
0.15098 0.713~92! 0.387~26! 0.173~12! 0.0315~41! 0.00765~56!

0.15066 0.745~68! 0.455~19! 0.3362~96! 0.0460~43! 0.02072~63!

0.15034 0.775~54! 0.511~16! 0.4449~87! 0.0625~45! 0.03586~75!

6.5 0.14925 0.69~39! 0.212~87! 20.338(61) 0.0115~65! 20.00564(87)
0.14901 0.65~17! 0.327~46! 0.148~25! 0.0223~59! 0.00512~92!

0.14877 0.67~11! 0.406~33! 0.329~20! 0.0348~58! 0.0171~12!

0.14853 0.699~82! 0.467~24! 0.440~15! 0.0483~57! 0.0304~12!
o

o
o
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In Fig. 18 a representative result for the contribution
each operatorOi ( i 50, . . . ,4) toBK(NDR, 1/a) is shown as
a function of the external quark momentum for the case
K50.15034 atb56.3, which is obtained by fitting the rati
RA

i (t) ( i 50, . . . ,4) of Eq. ~89! with a constant over the
same fitting range as forRA(t). The contributions of mixed
operators are nearly independent of the external quark
mentum in the rangep2a2&1.0. An important observation i
that the value ofBK(NDR, 1/a) results from large cancella
tions between the amplitudes of the mixing operatorsziOi
( i 51, . . . ,4), each having a magnitude comparable to

FIG. 14. Dependence ofBK
P(NDR, 1/a) in the chiral limit on the

external momentum squaredp2a2 at b56.3. Horizontal solid lines
represent the upper and lower bound of one standard deviation
for tadpole-improved perturbative result in the chiral limit. The ve
tical line corresponds top(* )'2 GeV.
03451
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larger than that ofO0 . This is the essential reason why ca
culations ofBK with the Wilson quark action is difficult; the
mixing coefficients have to be known accurately includi
higher order effects both in the coupling constant and
lattice spacing.

We show the quark mass dependence ofBK(NDR, 1/a)
for b56.3 in Fig. 19. We observe that the results for the
method seem to diverge toward the chiral limit, while tho
for the WI method stay finite. We expect a different qua
mass dependence for the WI and PT results:

BK~NDR, 1/a!5AWI1BWImq1CWImq
2 for WI,

~96!

ror FIG. 15. BK
P(NDR, 2 GeV) atmq50 for the Ward identity and

perturbative methods as a function ofa. The solid line is a linear
extrapolation of the perturbative results to the continuum limit.
1-14
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TABLE IV. Results forBK~NDR, 2 GeV! obtained with the WI, WIVS, and PT methods as a function ofb. Values ofBK
P~NDR, 2 GeV!

in the chiral limit for the WI and PT methods are also given.

b 5.9 6.1 6.3 6.5 a50

BK~NDR, 2 GeV! WI 10.360(60) 10.66(11) 10.71(12) 10.69(19)
WIVS 10.162(20) 10.278(27) 10.346(35) 10.347(55) 10.562(66)
PT 20.391(13) 20.167(20) 10.037(19) 10.180(36) 10.622(69)

BK
P(NDR, 2 GeV)umq50 WI 20.0166(32) 20.0055(45) 20.0007(66) 10.0038(96)

PT 20.03761(67) 20.03055(90) 20.0222(11) 20.0180(15) 20.0023(27)
a
ira
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BK~NDR, 1/a!5
APT

mq
1BPT1CPTmq for PT, ~97!

whereA, B, andC are unknown constants. These function
forms are based on the following assumption for the ch
behavior of the matrix elements near the chiral limit:

^K̄0uÔVV1AAuK0&}mq for WI, ~98!

^K̄0uÔVV1AAuK0&}const for PT, ~99!

^0uÂmuK0&}Amq. ~100!

For the WI and PT methods we interpolate the data at
four hopping parameters with the forms~96! and ~97!, re-
spectively, toms/2 and obtain the value ofBK(NDR, 1/a) at
the physical point.

We summarize our final results forBK(NDR, 2 GeV) in
Table IV, whosea dependence is illustrated in Fig. 20. Th
method based on the Ward identity gives a value well c

FIG. 16. RatioRA(t) using mixing coefficients determined b
the Ward identity method for~a! K50.15034 and~b! K50.15131
at b56.3. Solid lines denote the fitted result and a one stand
deviation error band.
03451
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vergent from a lattice spacing ofmra'0.3. Unfortunately
the large errors do not allow us to take a linear extrapolat
to the continuum limit. We may instead take a constant fit
the three results at smaller lattice spacings (a21

52.7– 4.3 GeV) and findBK(NDR, 2 GeV)50.68(7), which
is our best estimate for the WI method.

Since the origin of the large error is traced to that of t
mixing coefficients, we attempt to develop an alternat
method, in which the denominator of Eq.~59! is estimated

with the vacuum saturation of the operatorÔVV1AA con-
structed by the WI method:

BK
VS~NDR, 1/a!5

^K̄0uÔVV1AAuK0&

ZA
2^K̄0uOVV1AAuK0&VS

, ~101!

where in terms of Eq.~42! the vacuum saturation ofÔVV1AA
is rewritten as

^K̄0uOVV1AAuK0&VS5(
i 50

4

zi^K̄
0uO i uK0&VS, ~102!

FIG. 17. Same as Fig. 16 for the perturbative method.
rd
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with

^K̄0uO 0uK0&VS5
8

3
^K̄0uAu0&^0uAuK0&, ~103!

^K̄0uO 1uK0&VS5
8

3
^K̄0uPu0&^0uPuK0&,

~104!

^K̄0uO 2uK0&VS5
4

3
^K̄0uPu0&^0uPuK0&,

~105!

^K̄0uO 3uK0&VS52
4

3
^K̄0uAu0&^0uAuK0&

2
8

3
^K̄0uPu0&^0uPuK0&, ~106!

FIG. 18. Contributions of the operatorsOi ( i 50, . . . ,4) to
BK(NDR, 1/a) with zi determined by the Ward identity method fo
K50.15034 atb56.3. Vertical line corresponds top(* )'2 GeV.

FIG. 19. Quark mass dependence ofBK(NDR, 1/a) for the
Ward identity method and the tadpole-improved perturbative on
b56.3. Open symbols are interpolations of data toms/2.
03451
^K̄0uO 4uK0&VS52
8

3
^K̄0uAu0&^0uAuK0&1

16

3
^K̄0uPu0&

3^0uPuK0&. ~107!

We refer to this as the WIVS method, with which the fluctua-
tions in the numerator are expected to largely cancel aga
those in the denominator. In fact, errors are substantially
duced with the WIVS method as apparent in Fig. 20. The co
is that the correct chiral behavior of the denominator is
respected at a finite lattice spacing due to the contribution
the pseudoscalar matrix element. This contribution brings
WIVS result to disagree with WI at a finite lattice spacing, b
the discrepancy should vanish in the continuum limit. A li
ear extrapolation of the WIVS results in a yields
BK(NDR, 2 GeV)50.562(66).

This linear extrapolation, however, involves a systema
uncertainty arising from the chiral symmetry breaking te
cPu^0uPuK0&u2 in the denominator, wherecP58/3z114/3z2

FIG. 21. One-loop diagrams for~a! quark self-energy,~b! vertex
correction for the quark bilinear operator, and~c!–~h! vertex cor-
rections for the four-quark operator.p denotes an off-shell momen
tum for the external quark state, andi , j , k, and l label color
indices.

at

FIG. 20. BK(NDR, 2 GeV) plotted as a function ofmra for the
WI, WIVS, and PT methods. Solid lines show linear extrapolatio
to the continuum limit.
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TABLE V. Results forS (1)(p) andLG
(1)(p). In the entries labeled ‘‘color’’ the color factors are give

with the use ofCF54/3 andNc53. In the third column F refers to the results in the Feynman gaugl
51. L refers to the coefficients of the gauge parameter2(12l) for the results in a general gauge. Diverge
part is expressed as 1/ẽ[1/e2gE1 ln 4p. p” L

^ p” L representspmgm(12g5) ^ pngn(12g5). The definition of
evanescent operatorsE are given in Eqs.~A6!–~A8!.

~a! NDR

S (1)(p)/( ip” ) color CFd i j

~a! F 21/ẽ2 lnum2/p2u21

~a! L 21/ẽ2 lnum2/p2u21

Lgmg5

(1) (p) color CFd i j

~b! F gmg5(1/ẽ1 lnum2/p2u11)22pmp”g5 /p2

~b! L gmg5(1/ẽ1 lnum2/p2u11)22pmp”g5 /p2

Lg5

(1)(p) color CFd i j

~b! F g5(4/ẽ14 lnum2/p2u16)

~b! L g5(1/ẽ1 lnum2/p2u12)

Lg
m
L

^ g
m
L

(1) (p) color CFd i j dkl/21(d i j dkl2d i l dk j /Nc)/4

~c!, ~d! F gm
L

^ gm
L (1/ẽ1 lnum2/p2u11)22p”L

^p”L/p2

~c!, ~d! L gm
L

^ gm
L (1/ẽ1 lnum2/p2u11)22p”L

^p”L/p2

color (d i l dk j2d i j dkl /Nc)/41(d i j dkl2d i l dk j /Nc)/4

~e!, ~f! F gm
L

^ gm
L (24/ẽ24 lnum2/p2u29116 ln 2)1Eg

m
L

^g
m
L

NDR /e

~e!, ~f! L gm
L

^ gm
L (21/ẽ2 lnum2/p2u2214 ln 2)

color (d i l dk j2d i j dkl /Nc)/41CFd i l dk j/2

~g!, ~h! F gm
L

^ gm
L (1/ẽ1 lnum2/p2u)12p”L

^p”L/p21Eg
m
L

^g
m
L

NDR /e

~g!, ~h! L gm
L

^ gm
L (1/ẽ1 lnum2/p2u)12p”L

^p”L/p2

~b! DRED

S (1)(p)/( ip” ) color CFd i j

~a! F 21/ẽ2 lnum2/p2u22

~a! L 21/ẽ2 lnum2/p2u21

Lgmg5

(1) (p) color CFd i j

~b! F gmg5(1/ẽ1 lnum2/p2u15/2)22pmp”g5 /p22Egmg5

DRED/e

~b! L gmg5(1/ẽ1 lnum2/p2u11)22pmp”g5 /p2

Lg5

(1)(p) color CFd i j

~b! F g5(4/ẽ14 lnum2/p2u18)

~b! L g5(1/ẽ1 lnum2/p2u12)

Lg
m
L

^ g
m
L

(1) (p) color CFd i j dkl/21(d i j dkl2d i l dk j /Nc)/4

~c!, ~d! F gm
L

^ gm
L (1/ẽ1 lnum2/p2u15/2)22p” L

^ p” L/p22Eg
m
L

^ g
m
L

DRED /e

~c!, ~d! L gm
L

^ gm
L (1/ẽ1 lnum2/p2u11)22p”L

^p”L/p2

color (d i l dk j2d i j dkl /Nc)/41(d i j dkl2d i l dk j /Nc)/4

~e!, ~f! F gm
L

^ gm
L (24/ẽ24 lnum2/p2u28116 ln 2)

~e!, ~f! L gm
L

^ gm
L (21/ẽ2 lnum2/p2u2214 ln 2)

color (d i l dk j2d i j dkl /Nc)/41CFd i l dk j/2

~g!, ~h! F gm
L

^ gm
L (1/ẽ1 lnum2/p2u13/2)12p” L

^ p” L/p21Eg
m
L

^ g
m
L

DRED /e

~g!, ~h! L gm
L

^ gm
L (1/ẽ1 lnum2/p2u)12p”L

^p”L/p2
28/3z3116/3z4 from Eqs.~104!–~107!. Perturbative contri-
butions tocP starts at two-loop order ofO@g4(1/a)# as can
be checked from the one-loop expressions forzi ( i
51, . . . ,4) in Eq.~53!. Since the matrix element^0uPuK0&
03451
diverges in proportion to@g2(1/a)#24/11 due to the anoma-
lous dimension of the pseudoscalar operatorP,
cPu^0uPuK0&u2 receives contributions of form@g2(1/a)#14/11

which diminishes only as a fractional power of 1/loga. To
1-17
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assess the systematic error associated with this effect
estimate the two-loop contribution tocP by squaring the
typical magnitude of the one-loop terms inzi : e.g.,
uzi

one-loop@aMS(1/a)#u&0.08 atb55.9 from Fig. 5. We also
estimate

^0uPuK0&

^0uAuK0&
5

mK

md1ms
'5 ~108!

from the PCAC~partial conservation of axial vector curren!
relation @23#, which yields cPu^0uPuK0&u2/(8/3)/
u^0uAuK0&u2&0.4. SinceaMS(1/a)14/11decreases by 30% be
tweenb55.9–6.5, over whicha decreases by a factor 2, th
fraction should reduce to'0.16 after taking the continuum
limit. Taking account of uncertainties in the choice of co
pling constant and the mixing coefficients at the two-lo
level, we estimate the chiral symmetry breaking contribut
of the pseudoscalar density that survives after a continu
extrapolation linear ina to be &20%. We conclude
BK(NDR, 2 GeV)50.56(7)(11) for the WIVS method.

An interesting point in Fig. 20 is that the perturbativ
calculation~PT!, which gives a completely ‘‘wrong value’
at aÞ0, yields the correct result forBK , when extrapolated
to the continuum limita50. This is a long extrapolation
from negative to positive, but the linearly extrapolated va
BK(NDR, 2 GeV)50.622(69) is reasonable compared w
those obtained with the WI or WIVS method. This linear
extrapolation is a credible choice because the chiral beha

of the matrix element̂K̄0uÔVV1AAuK0& is linearly recovered
as we saw in Fig. 15. We have to make a reservation, h
ever, that this long extrapolation may bring an error larg
than quoted in the extrapolated value due to systematic
fects of O@ag2(1/a)# and O@g4(1/a)#. The estimation of
these systematic errors is too complicated because the m
elements of the mixing operators have quite different ab
lute values.

Each of results from the above three methods suffers f
statistical and systematic errors of 10–20 % which are co
parable in magnitude. Although the WIVS and the PT meth-
ods have the advantage of small statistical errors, we re
nize that this is offset by the difficulty to control larg
systematic errors when attempting a continuum extrap
tion. We thus conservatively take the result of the W
methodBK(NDR, 2 GeV)50.68(7) ata2152.7– 4.3 GeV as
our final estimate of the present work.

VIII. CONCLUSIONS

In this paper we have presented a full account of
method based on chiral Ward identities to nonperturbativ
determine the mixing coefficients of theDs52 operator for
the Wilson quark action in lattice QCD. Implementing th
method in a quenched calculation carried out at four val
of lattice spacing, we have demonstrated the effectivenes
the method for constructing theDs52 operator with the cor-
rect chiral property. Our final result forBK(NDR, 2 GeV)
50.68(7) ata2152.7– 4.3 GeV shows a reasonable cons
tency with BK(NDR, 2 GeV)50.628(42) in the continuum
03451
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limit recently obtained with the Kogut-Susskind quark acti
by us @2#.

The error of our Wilson result forBK , however, is still
too large to convincingly demonstrate that the Wilson a
Kogut-Susskind quark actions yield the same value in
continuum limit. We emphasize that this large error is n
due to an intrinsic defect of the Ward identity method.
stems from that of large statistical errors of the mixing co
ficients, which in turn originates from our use of point sour
in evaluating relevant quark Green functions. Recent w
shows that a variant wall source method with the moment
source for the off-shell quark propagator@22,24# would be
effective to diminish the errors of the mixing coefficients.

Another technical point concerns the issue of Gribov co
ies in the Landau gauge. While an earlier study@25# suggests
that ambiguities in the choice of the Gribov copies indu
only small uncertainties comparable to typical statistical
rors in current numerical simulations, exploring gauge
variant implementation of the Ward identity methods, eith
employing the external hadron states or the Schro¨dinger
functional, which is free from this problem, would be wort
while.

In recent calculations ofBK using theO(a)-improved

quark action the chiral property ofÔVV1AA constructed with
one-loop mixing coefficients shows much improveme
compared to the Wilson quark case@26#. This observation
can be expected on the ground of our perturbative result
the Wilson quark action which suggest in Secs. VI and V
that the leading contribution to chiral breaking effects
O(a). Toward a precise determination ofBK the improve-
ment of the quark action is an essential ingredient.

A very important physics issue is the effect of quenchin
With the KS quark action it has been observed that the e
due to quenched approximation is small@1,27#. Whether this
is supported by calculations with Wilson action we mu
defer to future studies. It is straightforward to apply o
method once configurations are generated with dynam
quarks.

Finally the application of our method for calculations
BB would be a worthwhile attempt since previous calcu
tions of BB have relied on the mixing coefficients whic
were calculated perturbatively in the massless limit with ta
pole improvement.
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APPENDIX

The continuum renormalization scheme dependence
the renormalization constantsDVV1AA , DA , andDP defined
in Eqs. ~54!, ~60!, and ~65! have been computed for th
NDR, DRED, and RI schemes by a variety of authors@5,28#
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at the one-loop level. We consider it useful to reprodu
them in this appendix using off-shell external quark state
the general covariant gauge for quark self-energy and ve
functions.

We consider the following operators:

Og
m
L

^ g
m
L 5

d i j dkl1d i l dk j

2

3~ c̄1
i gm~12g5!c2

j !~ c̄3
kgm~12g5!c4

l !,

~A1!

Ogmg5
5d i j ~ c̄1

i gmg5c2
j !, ~A2!

Og5
5d i j ~ c̄1

i g5c2
j !, ~A3!

wheregm
L

^ gm
L

representsgm(12g5) ^ gm(12g5) and i , j ,
k, and l label the color indices. We note that the opera

ÔVV1AA defined in Eq.~23! is parity conserving part o
Ogm

L
^ gm

L with c15c35s andc25c45d.
We draw the relevant one-loop diagrams in Fig. 21;~a!

the quark self-energy,~b! the one-loop vertex correction fo
the quark bilinear operators, and~c!–~h! the six types of the
one-loop vertex corrections for the four-quark operator. T
off-shell momentum for the external quark state is denoted
p. The gauge dependence is parametrized byl expressing
the gluon propagator asdmn /k22(12l)kmkn /k4.

Up to the one-loop level the inverse quark propagator
the vertex functions forG5gm

L
^ gm

L ,gmg5 ,g5 are written in
the following form:

G21~p!5 ip”2
as

4p
S (1)~p!, ~A4!

LG~p!5G1
as

4p
LG

(1)~p!, ~A5!

where the superscript~i! refers to thei th loop level. In Table
V we compile the results forS (1) andLG

(1) obtained by em-
ploying the NDR scheme and the DRED one@29#. The re-
03451
e
n
ex

r

e
s

d

duced space-time dimensionD is parametrized bye as D
5422e, e.0. We should note that the one-loop vertex co
rections yield the extra evanescent operators which vanis
D54 both for the NDR and the DRED schemes. It is mea
ingless to give results without mentioning the definition
evanescent operators, because the constant terms at the
loop level depend on the definition of the evanescent op
tors. Our choice is as follows:

E
gm

L
^ gm

L
NDR

5
1

4
grgdgm~12g5! ^ gm~12g5!gdgr

2
~22D !2

4
gm~12g5! ^ gm~12g5!, ~A6!

Egmg5

DRED5 d̄mngng52
D

4
gmg5 , ~A7!

E
gm

L
^ gm

L
DRED

5 d̄mngn~12g5! ^ gm~12g5!

2
D

4
gm~12g5! ^ gm~12g5!, ~A8!

whered̄mn is theD-dimensional metric tensor.
From the results forS (1)(p) and LG

(1)(p) (G5gm
L

^ gm
L ,gmg5 ,g5) we can extract the scheme dependence

the renormalization constantsDVV1AA , DA , andDP , which
are summarized in Table VI. For the RI scheme, for wh
the renormalization constants depend on the external s
and the gauge, we employ the off-shell external quark s
with momentump25m2 and the Landau gauge fixing.

TABLE VI. Scheme dependence of renormalization consta
DVV1AA , DA , andDP .

NDR-DRED NDR-RI

DVV1AA 23 214/318 ln 2
DA 22/3 0
DP 24/3 16/3
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