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A lattice QCD calculation of the kaoB parameteBy is carried out with the Wilson quark action in the
quenched approximation g&=6/g°=5.9—6.5. The mixing problem of thAs=2 four-quark operators is
solved nonperturbatively with full use of chiral Ward identities employing four external quarks with an equal
off-shell momentum in the Landau gauge. This method, without invoking any effective theory, enables us to
construct the weak four-quark operators exhibiting good chiral behavior. Our resuBg feith the nonper-
turbative mixing coefficients show small scaling violation beyond the lattice cafoft~2.5 GeV. Our esti-
mate conclude8,(NDR,2 GeV)=0.69(7) ata”1=2.7—-4.3 GeV, which agrees with the value obtained with
the Kogut-Susskind quark action. For comparison we also calcBlataiith one-loop perturbative mixing
coefficients. While this yields incorrect values at finite lattice spacing, a linear extrapolation to the continuum
limit as a function ofa leads to a result consistent with those obtained with the Ward identity method.
[S0556-282(99)05913-5

PACS numbd(s): 12.38.Gc, 11.15.Ha, 13.75.Jz

I. INTRODUCTION An annoying defect of the Wilson quark action is explicit
breaking of chiral symmetry at finite lattice spacing. For the
The kaonB parameter defined as a ratio calculation ofBy the problem appears as a nontrivial mixing

of the weakAs=2 four-quark operator of purely left handed
O B - B 0 chirality with those of mixed left-right chirality. Early stud-
BK:<K |Syi(l 75)d-57,(1= v5)d[KT) (1) ies showed that the mixing problem is not adequately treated
(8/3)<K0|§7MY5d|O><0|gyﬂ75d|K0> by perturbation theory, leading to an “incorrect answer” for
the matrix elemenf3]. Most calculations oBy have then

is one of the fundamental weak matrix elements which havéried to solve the mixing problem nonperturbatively with the
to be determined theoretically for deducing (@ violation  aid of chiral perturbation theoriy,5], and have succeeded in
phase of the Cabibbo-Kobayashi-Maskawa matrix from exgiving reasonable estimates fBg . This method, however,
periments. Lattice QCD calculation is expected to evaluatés not promising from a point of view to control systematic
Bk precisely incorporating the long-distance effects of QCD.errors, since it contains large uncertainties from higher order
Much effort has been devoted over the years to this purposeffects of chiral perturbation theory which survive even in
using both the Wilson and the Kogut-SusskifS) quark  the continuum limit.
actions. Successful calculations®f have been achieved so  An essential step toward a precise determinatioB ofs
far with the KS quark action, taking advantage of the correcto control the operator mixing nonperturbatively without re-
chiral behavior of the matrix element ensured bii)tchiral  sort to any effective theories. The failure of the perturbative
symmetry[1,2], while studies with the Wilson quark action approach suggests that higher order corrections in terms of
are rather stagnant. There are two purposes for us to try tthe coupling constant might be large in the mixing coeffi-
advance the calculations & with the Wilson action. One cients. Presence of large corrections in powers of the lattice
of them is to verify the consistency between the Wilson andspacinga in the mixing coefficients is also a possibility. In
the KS results, which would give full credit to the lattice order to deal with this problem, the Rome group has pro-
QCD calculation. The other is an application to the heavyposed the method of nonperturbative renormalizatdRR)
light system for which the interpretation of flavor quantum[6]. Numerical results based on this approach show an im-
numbers with the KS action is difficult. provement of the chiral behavior of thes=2 operator{7].
In this paper we propose an alternative nonperturbative
method to solve the operator mixing problem which is based
*On leave from Institute of Particle and Nuclear Studies, Highon the use of chiral Ward identitig8]. This method fully
Energy Accelerator Research OrganizatigkEK), Tsukuba, incorporates the chiral properties of the Wilson action ex-
Ibaraki 305-0801, Japan. plicitly. We also reexamine the question if perturbative mix-

0556-2821/99/6(8)/03451120)/$15.00 60 034511-1 ©1999 The American Physical Society



S. AOKI et al. PHYSICAL REVIEW D 60 034511

ing coefficients lead to erroneous results By in the con- (VMAGX"a(x)O(xl, X)) =2M(PEX)O(Xq, « . . Xn))
tinuum limit. Our simulations have been made within .
quenched QCD aB=5.9-6.5 keeping the physical spatial F(XEX)O(Xy, .+ .. Xn))

size approximately constant at 2.4 fm. The chief findings of .
our calculation have already been presented in fdfand Hi(SO0(, - Xa)), (6)
we give in this article a detailed description of the implemen-\yhere the pseudoscalar dend§, the extended axial vector
tation of our method and the results of our analyses. CurrentAexta and its divergence are defined by

This paper is organized as follows. In Sec. Il we describe

the formalism of our nonperturbative method to determine . \®?

the mixing coefficients for four-quark operators based on the PA) = (X) 5 vs¢(X), (7)
use of chiral Ward identities. The perturbative expressions

for the overall renormalization factors are also given. In Sec. A2

[l we present our data sets and give a description of the Aex“"(x)— 1//(x) 7#75UM(X) P(X+ )+ (X + )
calculational procedure fdy . Results for the mixing coef-

ficients are given in Sec. IV, where we compare our results A2
with those for the NPR method. The overall renormalization xiyﬂy;,u;(x) P(X) |,
factors determined by the NPR method are compared with
those obtained by the perturbative one in Sec. V. In Sec. VI
we examine the chiral properties of the four-quark operatorsy ,A%%(x) = 2 [ATY(x) = AT (x— )], 9)
constructed with the Ward identity method. The final results
for Bx are presented in Sec. VII. Through Secs. IV-VII we
also present results with the perturbative method for com?
parative purposes. Our conclusions are summarized in Sec.

VIII. xa(x)z—%E
o

®

and theX® term is given by

a

— A —
B0 5 ¥5U WO POCH )+ P+ o)

a

Il. FORMULATION OF THE METHOD )\
X3 5 ¥sULOOY(X) + (X=X~ 1)
A. Determination of the mixing coefficients

We first derive the generic form of the chiral Ward iden- a

tities in a standard manné¢8]. The Wilson quark action is +8¢(X)77’5¢(X)' (10
defined by
The X2 term mixes withP? and VMA‘Z under renormaliza-

1 . tion. Thus we write

== 52 [WO0(L=%)U,009(x+ o)

- X3(X) = X3(X) — 28mgP3(x) — (22— 1)V, A(x),
+FP(x+ 1) (14 y,)UL0¥(X)] (12)
> B0 (Mo +4) (), 2 where%”‘(x) should satisfy the following.

; Y00 (Mo 4 ¥(X) @ (i) On-shell matrix elements vanish in the continuum

limit:
where = (u,d,s) represents the up, down, and strange _
quark fields. The conventional hopping parameter is given by (a|X3(x)|By=0(a). (12
1 (i) Off-shell Green functions have only contact terms up
e (3) toterms ofO(a):
2my+8
ya _ . ra
Under the flavor S(B) chiral variation defined by (XA)O0(xq, - .- 'X“)>_Z SX=Xi){O Xy, - - - Xn))
A2 +0(a). (13
S () =15 vsih(x), (4) . . :
Defining the renormalized axial vector current by
A2 Aext,a(x) — ZiXtAeXt’a(X) (14)
S P(X) = ()i > Vs 5 g g
and the renormalized quark mass by
with \? (a=1,...,8) theflavor matrices normalized as m=my— My, (15)
Tr(A®\P)=252®, the naive Ward identity that follows from
the Noether procedure takes the form the Ward identity takes the following form:
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V A0 O(Xy, . . X)) =2M(PA(X)O(Xy, - . . Xp) (VL ASR(X)PP(y))
wiu
(XA Oy, + + + X)) =2pu(PAX)P°(y)) — 8(x—y)
. 1 /— 1 \C
+|<5aO(X1, e ,Xn)>. XTX'{< l//(y)[gﬁabl‘f'dabc?} l//(y)> +O(a).
(16) %A
(19

For finite quark masses it is also useful to take a four-
dimensional sum ovex, which gives For the determination a2 we employ another Ward iden-

B tity
2mg (PAX)O(Xq, . .. Xn))+ E (XA O(Xg, - - - Xn))
—zpngﬂg (PAX)AL(Y)VS(2))

+§ i(8%O(Xq, ... Xp))=0. 17 . .
= +ifEPIE OV (y)VE(2)) +iF IR (AR (y) A 2))
_ Zp w0y z,

We note thatX?(x) in Egs. (16) and (17) generates only

contact terms up to terms @(a). +0(a), (20

Let us consider a set of weak operators in the continuum

~ _aAb c :
{0} which closes under flavor chiral rotation$20, where we takeD=A,(y)V,(2) in Eq. (17) [10]. The local

. . i ' axial vector current and the local vector current are defined
=icjjO;. These operators are given by linear comblnatloneDy

of a set of lattice local operatof® ,} as@i =3,Zi,0,. We
choose the mixing coefficien, such that the Green func- AP

A AP (y)=(y) = : 21
tions of {O;} with quarks in the external states satisfy the wY)=9Y) 2 VuYs¥(y) @1
chiral Ward identity toO(a). This identity is obtained from
Eq. (17): . — A
Vi(2)=9(2) 5 7,u(2), (22

—2pmZ" <Pa(X)Oi(0)H ~t//(lok)> o
X k andZ, andZ, are the renormalization factors fArtV’(y) and
R 5 Vg(z), respectively. The identity20) can be regarded as a
+cf < 0,01 lﬁ(pk)> set of equations foz§" andZ,/Z, . Two independent equa-
. tions are obtained frojlm=v=4 andu=v=i (i=1,2,3).

_ - - - The continuum four-quark operator relevant By is
i <Oi<0>gI w<pk>5aw<p|>>+0<a>=o, given by
(18 Oy an=(57,d)(57,0)+ (57, 750)(57,750), (23)

where p, is the momentum of the external quark. We note
that the first term in Eq(18) comes from the chiral variation
of the Wilson quark action and the third represents the chir . . S )
rotation of theqexternal fields. Since the idepnﬁl)S) is linear dropped. To fix the mixing coefficients fo_r the lattice four-
in the renormalization constants, the overall renormalizatior?Iuark operators, we may ChOPSe a particular(@Ulavor
factor cannot be fixed. Furthermore, with quarks in the exchiral rotation to be applied fo©yy ., aa. In order to avoid
ternal states, calculations have to be made in some fixegomplexities in numerical simulations it is essential to avoid
gauge, e.g., the Landau gauge. flavor rotations that yield operators which have penguin con-
The O(a) term is governed by the typical QCD scale tractions and hence mix with lower dimension operators. As-
Aqcp at low external quark momenta, while powerspg ~ Suming  SW2) symmetry m,=my we employ the A
become the dominant source of cutoff effects as momenta-diag(1,-1,0) chiral rotation, under whiclDyy. an and
increase. To be able to impose the Ward identityOt@), %)
we need to restrict the external momenta by the conditiorb
px<l/a for large momenta. On the other hand, no such
bounds exist for small momenta for the validity of the iden- 1. A
tity itself as long as\ gcpa<<1. 6\3§OVV+AA: —iOya, (24)
The parametep,,=(my— dmg)/Z&" in Eq. (18) is deter-
mined from the PCAQpartial conservation of axial vector
curren) relation obtained from an application of the Ward S0ua= —i EE’)
identity (16) for ©O=P"(y) [10]: VA 2 TVVTAA

where the parentheses mean color trace, and the parity vio-
al@ting part of the operator which does not contributd®ois

va=(57,d)(sy,vsd) form a minimal closed set of the
perators

(25
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SinceOyy; ap and Oy, are dimension six operators with rénormalization, where we assumg=m; in the quark ac-
As=2, we can restrict ourselves to dimension six operatordion- Therefore the mixing structure of these operators is
for the construction of the lattice operators corresponding t&iVen by
them. The set of lattice bare operators with even parity is

iven b O
J Y ZVV+AA =0yv+aa=Z000+ 2101+ +2,04, (42
_ _ VV+AA
VV=(sy,d)(sy,d), (26)
= — Ova
AA= (S')’,u 75d)(57,u75d)u (27) Z_VA =0ya=12505, (43
SS=(sd)(sd), (28)

whereZyy, ap andZy 5 are overall renormalization factors,
_ _ and we takezg=1.

PP=(sysd)(sysd), (29) Let us consider an external state consisting of tsvo
quarks and twal quarks, all having an equal momentym

1 — Under 3 chiral rotation the Ward identity18) for such an
= E(Sowd)(saﬂ“d)’ (30 external state takes the following form:
and the set with odd parity is Fuviaa=—2pmZ
— (- e 1. - o~ = -
SP=(sd)(sysd), (32) . - = -
i ~(Oual0J5(p)3(p)d(p)d(p))
~ 1 — 1
_- R L - sl -
TT= 557, (57,,750). 33 —< 50w an(0)S(PIS(P)| d(p) ﬂd<p>>
whereo,,=[v,,7,]/2. We rearrange these operators into 1. - o~ = = s
the Fierz eigenbasis, which we find convenient when taking ~| 5 Owv+aa0)s(p)s(p)d(p)| d(p) -

fermion contractions for evaluating the Green functions in

Eq. (18): +0(a)=0, (44)
Oo=VV+AA (+,+), (34) o . - = -
Fua=—2pnZR"2, (P*(x)Ova(0)S(p)S(P)d(p)d(p))
O;=SS+TT+PP (+,+), (35
1. -~ o~ =
1 _<EOVV+AA(0)S(p)s(p)d(p)d(p)>
(’)2=SS—§TT+PP (—,+), (36)
~ ~ ~ = ’y5 =
—{ Oya(0)s(p)s d —}d >
Oy=(VV—AA)+2(SS-PP) (—.+). @7 < va(0)s(p)s(p)| d(p) | d(p)
~ ~ = s Y
O04=(VV=AA)=2(SS-PP) (+,+), (38) —<OVA(0)S(p)S(p)d(p){d(p)75 >+O(a)=0-
Os=VA (+,+), (39 (45
1 ~ We obtain the amputated Green functions Fgf,.aa and
Op=SP+5TT (+.-), (400 F, by truncating the external quark propagators according
to
1 ~ _ _ _ _
O;=SP-£TT (=.-). (4D) Tuv:an=G5 () Gs {(P)FuvanGy (P)G (P),
(46)
Here the first sign after each equation denotes the Fierz ei- . . . .
genvalue and the second tBd? S[3] eigenvalue. The Fierz Fya=Gs (P)Gs “(P)FvaGy (P)Gy (),
eigenbasis we employ is different from that chosen by the (47)

Rome groud 7] based on one-loop perturbation theory.
The parity odd operator€g ; are CPS odd while Og is  where G;l denotes the inverse quark propagator with the
CPS even, and henc&s does not mix withOg,; under flavor g.
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Let P; (i=0,...,7) be the tree-level Dirac components part of the Ward identities; at the large external quark mo-
corresponding to the four-quark operators in the Fierz eigenmentump the former becomes equivalent to the latter up to
basisO; (i=0,...,7): e.g., O(pa). In Sec. IV we show the difference between them

aBON_ B, S\ N numerically.
Po ™ =yl v+ (v, 78) P (v, vs) . (48)

Since QCD conserves parity one can write B. Matching of lattice and continuum operators

In our earlier reporf9] we employed the NPR method of
Fyviaa Ref. [6] to evaluate the overall renormalization factor

ZVWAA_F5P5’ (49 Zyv+an in EQ. (42). For the reasons discussed in Sec. V we
use the perturbative estimate in the final analysis presented in
I'ya this article.
Zon =LoPo+ T Pyt +14Py, (50) The one-loop perturbative renormalization of the=2
operator is written in the following way12]:
where thec-number coefficient$’y, . . . I's are obtained by o 1 1 5
applying the suitable projection operators 16,y aa/ @V\HAA: Zyvs anOo+ —S 7% ~0;— = 03— =0,],
Zyyiaa andlya/Zy,, e.g., 4ar 3 2 12

(53

— 1

pharo— o8l YR+ (vsy,) P (¥sy,)M],  (BD) with O, (i=0,...,4) being the Fierz eigenoperators defined
in Egs. (34—(38). Employing the modified minimal sub-
traction (MS) scheme with naive dimensional regularization

; aBoN P ;
_correspondmg_t@o ) ExpressngV_WA_A,VA in Eq. (18) (NDR) for the continuum theory the renormalization factors
in terms of lattice operators, we obtain six equations for the X
. . ) are given by{12,5]
five coefficientszy, ... ,z5:

o _ ) o

I'i=cy+cyz;+--+cyzs=0(a), i=0,...,5. (52 Zyviaa=1+ 4_5[_4|n(ﬂa)+AVV+AA], (54)
a

This gives an overconstrained set of equations, and we may
choose any five equations to exactly vanish to solvezfor Ayyiaa=—50.841 for NDR, (55
the remaining equation should automatically be satisfied to
O(a). We choose four equations to be those for Z* =9.6431, (56)
=1,...,4, sinceO,,...,0, do not appear in the con-

tinuum. The choice of the fifth equatior=0 or 5, is more  where u is the renormalization scale. The diagonal part
arbitrary. We have checked that eitigy=0 orI's=0 leads A, a4 is affected by the renormalization scheme in the

to a consistent result t®(a) for z;,...,z, in the region  continuum, while the mixing parZ* is independent. We

pa=<1. In the present analysis we chodsg=0. collect the value ofAy,, aa for the dimensional reduction
Let us remark here that the equations obtained in the NPRDRED) scheme in the Appendix.

method[ 7] corresponds td';=0 fori=1,...,4 inwhich the Including the normalization of quark fields

contributions of the first term due to the quark mass contri-\/gK .\/1/2K — 3/8K, [13,14 tadpole improved by the factor
butions and the third term representing chiral rotation ofy,=(8K.) ! leads to

quark fields in the Ward identityl8) are dropped. The au-

thors of Refs.[6,7,11] argued that the NPR method is
equivalent to the Ward identities in the limit of large external Zyvv+aa=
guark momentunp. The reasoning is that the first term is
suppressed by one power pfdue to the explicit quark mass

factor, and the third term does not yield chiral-breaking com- X
ponents since the inverse quark propagator for lardeas

the formG‘lociEMyﬂpM which anticommutes withys. Un- (57)
der these circumstances the first, third, and fourth terms of _ » ) )
Fya in Eq. (45) become irrelevant for the determination of Here K¢ is the critical hopping parameter where the pion
the mixing coefficients, , . . . ,z,. However, the latter point Mass vanishes. We use

is not correct at finite lattice spacing. The inverse quark
propagator does not anticommute wif in the large mo-
mentum region because the contribution of the Wilson term 8K
in the quark propagator becomes larger, and hence not neg-

ligible, as the momentum increases. Therefore the third anth Ref. [15] for the perturbative estimate & .

fourth terms ofFy, in EqQ. (45) yield components having With the use oo} 4, we convert the matrix element on
Dirac structures other thaviV+ AA after truncating the ex- the lattice into that in the continuum NDR scheme renormal-
ternal quark propagators. In conclusion the NPR method is &ed at the scalg.=1/a GeV [16,5]:

1 32
2K 8K,

o
1+ ﬁ[ —41In(ua) + Ayyiapt 27X 5.457]].

=1-5.457a /4 (59)
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ZNOR (KO Oy aal K Ap=—30.128 for NDR. (66)

B(NDR1R)= —Zwor™ (g7 [(0]a, [KO)2" 0
"

The value ofA, for the DRED scheme is given in the Ap-
. . . . _ pendix.
where Oyy.aa is defined in Eq(42), andZ, is the renor The overall renormalization facto®,yaa, Za, andZp

malization factor for the axial vector curreAt,=sy,ysd,  can be alternatively determined by the NPR metf&jd The

which is expressed 447,15 NPR method closely follows what is usually done in the
o perturbative renormalization. The vertex corrections are ex-
Zp=1+ —SAA, (60)  tracted from the amputated Green functions for off-shell ex-
Am ternal quark states with momentumin the Landau gauge
according to
Ap=—21.061 for NDR. (61
-1 -1 PR 3 it
The value ofA, for the DRED scheme is given in the Ap- Gs “(P)Gs (P)(Ovv+aa(0)s(p)s(p)d(p)d(p))
endix. With the tadpole improvement the expressi6o) -1 -1
pendix. | pole imp pres=ion) X G (PG ()= Ag(p)Po+ -, 67
L as G5 (P)(AL(0IS(PIA(P)G, (P)=Ay 5 (PP, 5+
— > S d YuY Yu? ’
Za (ZK 8K, 1+ 47T(AA+ 7X5.457 (. (62 H w75 e 68
The continuum value at a physical scale=2 GeV is 1 ~ = -1,
obtained via a two-loop renormalization group running from  Gs (PHP(0)S(P)d(P))Gy (P)= A, ()P +--,
w=1/aGeV: (69)
(1) 128, ytherePfé are (;hpe tree-le(\j/e]!_Di:jact:) components Wi given
= — in Eq. an efine
Bx(NDR, 1) ey q. (48 Vu¥s s y
aws(p) — ays(l/a) P(;fysz (7.7s) 8, (70)
X| 1+
41 g g
Dm0 Pl = 75" (7D
M B« (NDR,1/a)
285 K e We should note that the amputated Green functions for the

63) bilinear operators can have extra Dirac components besides
their tree-level ones, which originate from contribution of the

where, , are the leading and next-to-leading coefficients ofigher dimensional operators. The quark wave-function
the A function andy(®? are those of the anomalous dimen- renormalization factoiZq(p) is extracted from the quark

. - self-ener
sion for Oyy,an. We takeBy=11, B;=102, y(®=4, and 9y
M=—-7[18 iate for th Al - i i -1
0% [18] appropriate for the zero-flavor case corre T{—iZ,y,sin(p,)G:Y(p)]
sponding to our quenched calculation & . Zy(p)= 1”22“ .nzp“ a P , (72)
We define anotheB parameter to investigate the chiral w SIN(PL)
property of the operato®yy. aa: where the trace is applied for the Dirac and color indices. In
NDR = terms of the vertex corrections and the wave-function renor-
BP(NDR, 1) = Zyy' an (K9 Oyy 1 anl K©) 64 malization factor one calculat@yy. aa, Za, andZp impos-
K ' ZQDR (8/3)|(0|P|K%)|? ing the following conditions:
with Z, the renormalization factor for the pseudoscalar den- Zyviaa(P)Zg 2 (P)Ao(P) =1, (73
sity P=sysd. The continuum value oB,'Z at 2 GeV is ob- 1
tained by running fromu=1/a to 2 GeV according to the 7 71 “S A -1 74
two-loop renormalization group. We usel”=-8 and A(P)Zq " (P) 4% vslP) =1 (74

y$)=—404/3[18] for the leading and next-to-leading coef-

ficients of the anomalous dimension of the pseudoscalar den- Zp(P)Zg H(P)A, (p)=1. (75)

sity in the zero-flavor case. The one-loop perturbative ex-

pression forZp with the tadpole improvement is given by This renormalization scheme is called the regularization in-
[17,19 dependentRI) scheme. In this scheme the renormalization
constants depend on the external state and the gauge. The
perturbative values of the renormalization constants
Ayvian, Aa, andAp defined in Eqs(54), (60), and(65) for

(65  the RI scheme are given in the Appendix.

L, [t
P l2K 8K,

o
1+ ﬁ[s In(,ua)-l—Ap+7r><5.457]},

034511-6
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TABLE |. Parameters of our simulations. See text for details.

B 5.9 6.1 6.3 6.5
L3XT 243X 64 32x64 46% 96 48x 96
No. conf. 300 100 50 24
Thermalization 22000 32000 45000 72000
Interval 2000 2000 5000 8000
K 0.15862 0.15428 0.15131 0.14925
0.15785 0.15381 0.15098 0.14901
0.15708 0.15333 0.15066 0.14877
0.15632 0.15287 0.15034 0.14853
Ke 0.15986(3) 0.15502(2) 0.15182(2) 0.14946(3)
mga/2=mya/2 0.029414) 0.019816) 0.014417) 0.010716)
a t[GeV] 1.955) 2.6511) 3.41(20) 4.30029)
La [fm] 2.4 2.4 2.3 2.2
(TrUp) 0.582 0.604 0.622 0.638
aps(l/a) 0.1922 0.1739 0.1596 0.1480
Op2 1.11 1.11 1.15 1.12
p(*)2a2 0.9595 0.5012 0.2988 0.2056
Fitting range form,,m, ,py,Z3" 12-20 14-24 17-27 20-30
Fitting range forBy ,BE 18-45 24-39 32-63 35-60
IIl. DETAILS OF NUMERICAL SIMULATION pg(iJrl)Sp;iJrl)g p(zi+l) , )
A. Data sets

for a given value of the increment parameigy. starting
with pMa=(0,0,0,27/T) where T denotes the temporal
Jattice size. In the case of multiple choices for thefirst

Womentum we take the momentum that has the largest
(i+1)

Our calculations are made with the Wilson quark action
and the plaquette gauge action &£5.9-6.5 in quenched
QCD. Table | summarizes our run parameters. Gauge co
figurations are generated with the five-hit pseudo-heat-bat ) S .
algorithm. At each value of3 four values of the hopping value of p; - The choice of the value o[?‘pz f; listed in
parameteK are adopted such that the physical point for theTable . We employ the momentum having*)~2 GeV.

mong thep("’s for the analysis oB parameters. We esti-

K meson can be interpolated. The critical hopping parametee? ‘ by the sindle elimination iackknif dure f
K. is determined by extrapolating results ftmfT at the four ~Mate €rrors by the singie elimination jackkniie procedure tor

hopping parameters linearly in M2to me=0. We take the all measured quantities except for the extrapolation to the

down and strange quarks to be degenerate. The value of hzﬁ?ntmuum limit as a function 0.
the strange quark massga/2 is then estimated from the

experimental ration, /m,=0.648. B. Calculational procedure
. . . 71 . . } ) . .
The inverse lattice spacing " is determined from the Our calculations are carried out in three steps. We first
meson massn,=770 MeV. The physical size of lattice is calculatem,,, m,, py, and 72 using the hadron Green

chosen to be approximately constantat~2.4fm. To cal-  fynctions. For this purpose quark propagators are solved in
culate the perturbative renormalization factors, we employhe | andau gauge for the point source located at the origin
the strong coupling constant at the scale It the MS  \jth the periodic boundary condition imposed in all four
scheme, evaluated by a two-loop renormalization group rungirections. Following Eq(19) we can extract the,,, param-
ning starting from ]gf,l—s(qr/a)=<TrUP)/gén+ 0.0246 with  eter from the ratio

(TrUp) the averaged value of the plaquette.

In order to calculate the mixing coefficientg (i 1 zi<V4A§th3()z,t)p3(6,o)>
=1,...,5) with the Ward identity method and the renormal- pm=7 A +(t—>T—t+1)
ization factorsZyy.aa, Za, andZp with the NPR method, 23 (P(X,1)P*(0,0))

the latter for purpose of comparison with the perturbative ext3 3
values, we prepare a set of external quark momeita _)<0|V4A4 A7)
=(p{.p{,p ,p{) (i=1---~40). These momenta are 2(0|P3| 7
chosen recursively according to the condition that the (

+1)th momentunp!*Ya is the minimum number satisfy- py fitting a plateau as a function of where
ing

. O<t<T-1 (79)

(p*Da)2=5,(pVa)2, (76) VAPAR D) =ATAX D - APRE-1), (79
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TABLE Il. Meson massesp,, parameter, and renormalization factor for the extended axial vector curr@it 519—-6.5 in quenched
QCD.

B K m, m, m,/m, Pm 5
5.9 0.15862 0.23469) 0.44310) 0.53012) 0.0330733) 1.32858)
0.15785 0.298@5) 0.463649) 0.642767) 0.0543332) 0.94119
0.15708 0.35132) 0.489733) 0.717245) 0.0761731) 0.92513)
0.15632 0.398A1) 0.518125) 0.7687133) 0.0983629) 0.91910)
6.1 0.15428 0.16716) 0.32312 0.52019 0.0223929) 0.97036)
0.15381 0.2134.6) 0.346760) 0.61411) 0.0373229) 0.93523)
0.15333 0.252(5) 0.368840) 0.685381) 0.0527629) 0.93317)
0.15287 0.2864.4) 0.389231) 0.735863) 0.0677829) 0.93314)
6.3 0.15131 0.12823) 0.25414) 0.50427) 0.0172%34) 0.981(68)
0.15098 0.164(@®0) 0.264365) 0.621(15) 0.0288929) 0.94941)
0.15066 0.1933598) 0.279744) 0.691(11) 0.0402426) 0.92832)
0.15034 0.2194.7) 0.296035) 0.741388) 0.0516924) 0.91628)
6.5 0.14925 0.07839) 0.18913 0.41431) 0.0086@42) 0.9514)
0.14901 0.111®82) 0.207979) 0.53821) 0.0175942) 0.951(66)
0.14877 0.139429) 0.223260) 0.625198) 0.0265841) 0.93847)
0.14853 0.16325) 0.236845) 0.68914) 0.0356%39) 0.92937)

1 where the flavor matrices™ and\~ are defined by
AR = Z[U(K D 745U a(X DU(R 1+ 1)

(0,1,0 0,0,0
FUKt+1 UL HUX ) = (u—d)], AT={000], \x"=|100]. (83)
( ) YaysU (X, HHu(X,t) —( )280) 0.0.0 000

At each time slice we obtainZ&*andz,/Z, from the two
. . independent equations corresponding to the chojcesy
u(X,t) ysu(x,t) = (ue=d)]. @D =4 andu=v=i (i=1,2,3) in Eq.(82). In Table Il we
summarize the values of,, m,, pp,, andz8* for the four
In order to determiné}i"t we make a zero-momentum pro- hopping parameters at eagh
jection iny in Eq. (20): In terms ofp,,, and Z&* we determine the mixing coeffi-
cientsz; (i=1,...,5) according to the Ward identitiL8).
_ ext,3 3 NV ey The quark Green functions having finite space-time momenta
2Pml A XEy (P (x)AM(y,t)VV(O,O)> are constructed with the point source quark propagators in
the Landau gauge. For calculation of the first term in the
_ 2 (VZ(V,t)V;(ﬁ,O)) Ward identity (18), we employ the source methdd9] to
VAN insert the pseudoscalar density.
7 The By parameter is extracted from the following ratio of
__AE A (O the hadron-three-point function divided by the two-point
A (Y,H)A,(0,0)), (82 | p y p
Zy 5 (ALY ) functions

PA(X,0)= %[

35,4 0k0(%,T=1) Oyys an(V,) O 1o(2,0)) 1
Ra(t)= - - - — —Bk(NDR,1k), 0<t<T-1, (84)
(83253 { Oo(X, T=1DAY,1)) 2y A", 1) O «o(Z,0))

where operators are defined by R 4
B OVV+AA()_()yt):_ZO Zyv+aaZiOi(X1), (87)

O o(%,)=s(%,t) ysd(X,1), (85) -
ORo(%,1) =d(%,1) ysS(X.1), (86) A(X 1) =Zas(%,1) yaysd(X,1), (88)

034511-8
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with Zyy4 ap andZ, given in Eqs.(57) and(62). The contribution of each operat6rk, (i=0, ... ,4) toBx(NDR,1/a) can be
measured by the ratio

Ei,y,i<OE0(ivT_1)ZVV+AAZiOi(Yat)O;r(O(zao» 1 <EO|ZVV+AAZiOi|KO>
1
(81333 #(Oo(X, T- DAY=y KA ,HOL(20) L° (8/3)[(0|A|KY)|2

Ry(t)= 0<t<T-1. (89

The sum oﬂ?iA(t) (i=0,...,4) is equal tdRa(t). The parameteBE(NDR,l/a) defined in Eq(64) is obtained from the ratio

S AOro(X,T—1)O (V,0) 01 (2,0) 1
Rp(t) = iy 4Ok - WRART KO T> — ~BR(NDR,1h), O<t<T-1, (90)
(81325 y(Oko(X, T=1)P(Y,1))Zy, {P(Yy",1) O 0o(Z,0))

where the renormalized pseudoscalar density is serve a similar scale dependence for the two results beyond
A - the scalgp?a®~0.3, the numerical values fas andz; show
P(X,t)=Zps(X,t) ysd(X,t) (91 clear deviations beyond the error bars between the WI result

. and that from the NPR for momenta as largepéa®~2.
with Zp in Eq. (65). For calculation of the ratioRa, Ry,  This is contrary to the expectation that the NPR would be
and Rp we solve quark propagators without gauge fixingequivalent to the Ward identities in the limit of large external
employing wall sources placed at the edges of lattice wherguark moment#6,7,11].
the Dirichlet boundary condition is imposed in the time di- The difference between the NPR and the WI methods
rection. comes from the first and third terms in E4.8). To investi-

The value ofBk obtained with the Ward identity method gate the contribution of each term to the mixing coefficients
depends on the external quark momentpi¥ at which the  we reevaluate the mixing coefficients using the Ward identi-
mixing coefficients are evaluated. To investigate the quarkies without the first term or the third term. The former result
mass dependence arddependence oBy we employ the is plotted in Fig. 8a) and the latter one in Fig.(B). Com-
averaged value dB, over the five momenta from™* =2 to parison between Fig.(8 and Fig. 1 demonstrates that the
p* *2) where p®*) represents the momentum nearest to 2contribution of the first term to the mixing coefficients is
GeV. We employ the same procedure for the analysBfof ~ remarkable in the lower momentum regigpfa?<0.3.

Above this scale, the first term seems to play a minor role on
IV. RESULTS FOR MIXING COEFFICIENTS the determination of the mixing coefficients. On the other
hand, comparing Fig.(B) with Fig. 1 the essential contribu-

In Fig. 1 we plot a typical result for the mixing coeffi- tion of the third term to the mixing coefficients is observed
cientsz (i=1,...,4) as a function of the external quark over a wide range of external momentum, even up3ia’

momenta for the case &€=0.15034 at3=6.3. In order to  ~2. |n the Ward identity method we can neglect neither the
evaluate the mixing coefficients we need to choose a specifigrst term nor the third one.

scalep™) that satisfies the conditiop(*)a<1 to avoid cut-
off contaminations. We observe that the mixing coefficients 02 [~ T T T v v

show only weak dependence over a wide momentum range L mixing coefficients ]
0.02<p?a®<1.0, albeitz, andz, have large errors in the i ty } (WD
small momentum regiorp?a?<0.1. This enables us to - i “ f+,t.“it!s!»:::::::::::;-'_ ]
evaluate the mixing coefficients with small uncertainties =~ 00 [7--F--"=-T-m--ommmmommmopemomomomoeoes *=*BBnases

44444 1

from the choice of the momentupi*’). We adopt the value }ohy ““mmmmm.mum ]

p*)~2 GeV, which we find to always fall within the range

of a plateau for our runs 88=5.9-6.5. L *Z, ]

Let us compare the mixing coefficients obtained by the -02 |- "z, .
Ward identity(WI) method with those by the NPR. Since the r .z, ]
NPR method does not employ the full Ward identity of Eq. i R ]

(18), it is important to investigate differences in the mixing L i
coefficients between the NPR and the Ward identity meth- g4 ST T ST R e
ods. In Fig. 2 we present the result for the mixing coeffi- 0.01 0.10 1.00 10.00
cients z; obtained with the NPR method. The NPR result
shows a strong scale dependence in the regitaf<0.3,
which contrasts to the Ward identity result in Fig. 1. We  F|G. 1. Mixing coefficientsz, , . . . ,z, obtained with the Ward
suspect that this behavior of the NPR result originates fl’Oﬂkjentity method plotted as a function of external momentum
physical nonperturbative contributions, which survive eversquaredp?a? for K=0.15034 a{8=6.3. Vertical line corresponds
in the continuum limit(see also Sec. \ Although we ob- to p*)=~2 GeV.

22
pa
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0.2 T T IIIIIII T IIIIIII T T T T TTIT 0.2 T [r I1IIII| T II.I‘IIII T ‘I 'IIIIII
L mixing coefficients ] L ++ ml).ul?g C?;,’fﬁaents ]
| g | [T g e
oo L L AT I S T oo Lt ety e, ]
L ‘A‘Agzéé E - ““:“Q d
L ““M“M““MM ] | . cptptaananassaddsl |
L ‘“.H 1 i i 1“1 |
L ! HH *z . r +*+** "4 i
-02_— }4i+ "z, —_ -02_— "z, —_
| { "7 | L "7 |
-0.4- N S P R -0.4- A R O R
0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00

2 2 22

pa (@ pa
FIG. 2. Mixing coefficientszy, . . ., z, obtained with the NPR 0.2 T T T —
method. Parameters are the same as in Fig. 1. i mixing coefficients 1
| } * 4 (without third term) |
Figure 4 shows the quark mass dependence of the mixing | *+*****H - i
coefficientsz; (i=1,...,4) evaluated at the scgi&’ (filled 0.0 oo e Rl LTI TP TR
symbolg for the case 03=6.3. For comparison we also plot - . ““wm .
the perturbativePT) estimate forz; (open symbols which - et phsaspantissd 7
are given in Eq(53), i.e., I ii 4 | ##H* .z, ]
02 - t A .
:&Z* + 1 (92) B .7z E
g 3)’ - 3 ]
L Lz, _
22:0' (93) _0_4- vl I Lol L ||||||-

0.01 0.10 1.00 10.00
as _ 1 22
=2 - — b a
Z3 47_rZ ( 2), (94) (b) p

FIG. 3. Mixing coefficientsz,, . . . ,z, obtained with the Ward
ag 5 identity (18) neglecting(a) the first term or(b) the third one. Pa-
) (95 rameters are the same as in Fig. 1.

whereags(1/a) is used for the strong coupling constant. We value of order~0.001. Discrepancies also exist for the other

cients. agree with those of WI in sign and rough orders of magni-

In Fig. 5 we present tha dependence of the mixing co- tude. In particular the mggniltude of is larger than that fqr
efficientsz; (i=1,...,4) evaluated at the scaé) employ-  Z3 for all values ofB, which is contrary to the perturbative
ing the heaviest quark mass at eg@hWe observe that the ~ "esult. o o
dependence of the mixing coefficients determined by the Forour study of thé parameter the mixing coefficieng
Ward identities is steeper compared to that of the PT estifor the parity-odd operato),,, is not directly relevant.
mates to one-loop order. The magnitude of each mixing coHowever, it is instructive to examine the scale dependence of
efficient for the W1 method varies nearly in proportiongp  z5, because it would take the valzg=1 in the absence of
which reduces by 50% betweem,a~0.4 andm,a~0.2. A cutoff dependent chiral symmetry breaking effects. In Fig. 6
possible source of thia dependence of the mixing coeffi- we plot a typical result fors. We find a scale dependence
cients is theO(a) term in Eq. (18): contributions of the stronger than those & (i=1,...,4) for parity-even opera-
O(a) term are absorbed in the mixing coefficients to satisfytors toward large momenta; the valueafsignificantly de-
the continuum Ward identities at finite lattice spacing. viates from unity as the momentum increases, which mea-

Comparing the mixing coefficients for the Ward identity sures the magnitude of cutoff effects. The quark mass
method and those of perturbation theory in Figs. 4 and 5, welependence dfs evaluated ap™) is shown in Fig. 7. The
note that a large value @, determined by the Ward identi- value of z5 slightly increases as the quark mass decreases.
ties sharply contrasts with the one-loop perturbative resultWe do not consider the strong scale dependencg td be
z,=0. The magnitude of this discrepancy appears larger thaparticularly alarming sinces evaluated at a fixed physical
that possibly explained by two-loop contributions; squaring ascalep™) approaches unity toward the continuum limit as
typical magnitude of one-loop terms in Fig. 5 only yields ashown in Fig. 8.
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0.12 T T T T T T T [ T LB LR R | T LB | T T IIIIII-
C m, dependence of Z, ] s - mixing coefficients -

0.08 |- +\+\+R+ . ST WD) 7]
L ] i A T

0.04 = ———%— 7] [ > |
r ] 1.0 -"*“""V"'vvvv‘i;'y;';; """"""""""""" -

0.00 -------mmmm s o o o g----an- - I Y. T
- o—oZ®ED . - . -

[ e—ezWD 1 i v, T

-004 - = °Z = i v ]
L " mZ S 1 7 A 1 05 - vy N

N O—=07Z, I’* T f ? 1 - g

-0.08 - ‘_‘% & A A A . [ "', )
- A—aAZ . I . i
_012' | . ) . | ) . . T 0.0 L s el 1 s 1l 1 111

: 0.00 0.02 0.04 0.01 0.10 1.00 10.00

mqa=(1/K—1/KC)/2 p2a2

FIG. 4. Quark mass dependence of mixing coefficients
Zy,....Z, evaluated ap*)~2 GeV using the Ward identitjwl,
filled symbolg method ai3=6.3. PerturbativéPT, open symbo)s
results are also plotted for comparison.

FIG. 6. Same as Fig. 1 for mixing coefficiery.

tion thatZ, should be independent pfa? as the axial vec-

tor current has no anomalous dimension. The unexpected

behavior may be ascribed to nonperturbative contaminations

V. RESULTS FOR OVERALL RENORMALIZATION due to the pion pole which could give an important contri-
FACTORS WITH THE NPR METHOD bution at low external quark momentui®]. In Fig. 9c) we

The NPR method is a possible way to estimate the overaPbserve a large deviation between the NPR resulZfoand
renormalization factor&yy. aa, Za, andZp. In Fig. 9 we  that from perturbation theory below?a®~1. We suspect
plot Zyy+aa, Za, andZp in the RI scheme as a function of that this discrepancy is also due to the nonperturbative ef-
p2a? for the case oK =0.15034 at3=6.3. For comparison fects from the pion pole. It should be remarked that the con-
we also draw the tadpole-improved one-loop perturbative es@mination due to the pion pole is not a lattice artifact, and
timates(solid lineg in the RI scheme. The NPR result for hence survives even after taking the continuum limit.
ZVV+AA in F|g Qa) shows an agreement with the perturba_ ) We note that our NPR .results fer andZF.) are COH:SIStent
tive estimate in the region 0<Ip?a2<0.5. The dotted curve With those of recent studig20-22. In particular evidence
in Fig. 9(a) represents thé, contribution toZyy. s, Which for the existence of pion pole contrlbutlc_m J7aS has been_
is obtained by neglecting contributions of the mixed operafeported in Ref[22] for the Kogut-Susskind action and in
tors O, (i=1,...,4). We observe that the contributions of Ref.[21] for the Wilson case.
the mixed operators, leading of which is the two-loop radia- For the calculation oB parameters the ratic&,. aa/Z4
tive corrections, are quite small. and ZV\HAA/ZE, are more relevant. We show the scale de-

Figure 9b) shows thaZ, has a strong?a® dependence pendence of ZV\HAA/Zi in Fig. 10a and that of
below p?a?~0.3. This behavior is contrary to the expecta- Z,y, aa/Z3 in Fig. 10b). Solid lines are tadpole-improved

one-loop results in the Rl scheme. We observe that the NPR

o777 result for Zyy, aa/Z4 has ap?a® dependence opposite to
L adependence of Z ]
0.08 -_ p 1 _- 1.1 [ T T T T T T T T ]
0.04 | ] i m_ dependence of Z; .
[ ] T —
0.00 ... oo o o L 4
- O—OZ,(PT) L L J
[ e —ezWD 1 L *\"\F\w ]
-0.04 |- o0—~0o7, — 09 - i
[ ooz, ] i ]
008 [ 4*Z . i 1
[ a—az ] 08 - ]
_0.12 1 I 1 I 1 I I L B
0.0 0.1 0.2 0.3 0.4 3 i
mpa 0'7 I 1 1 1 I 1 1 1
0.00 0.02 0.04
FIG. 5. Comparison of mixing coefficients, . . . ,z, evaluated m a=(1/K-1/K)/2

at p*)~2 GeV using the Ward identityW!, filled symbolg

method and the perturbati®T, open symbo)sone as a function

of m,a.

FIG. 7. Quark mass dependence of mixing coefficenevalu-

ated atp*)~2 GeV using the Ward identity method At6.3.
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| | | | T T IIIIIII T IIIIIII T LU
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I a dependence of Z 1 [ cesesee® ]

[ : [ K KOs s

L ) 0.8 [ boh ) ]
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0.0 1 1 1 | 1 1 1 | 6 I -

00 0.1 02 03 04 i ty .

m a B ]
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FIG. 8. Lattice spacing dependence of mixing coefficieant [ ! . ]

evaluated ap™*)~2 GeV using the Ward identity method. 2 teee, —

| ®eee,, i

[ ALY TY I

that expected from the perturbative estimate. For the ratio L Ll il
0.01 0.10 1.00 10.00

ZV\HAA/Z,% the NPR result diverges toward lower momen-
tum. pa
Application of the NPR method requires the existence of

a region Agcp<p<<l/a where we can keep under control  FIG. 10. Ratios of renormalization factofa) Zyv:anlZi and

both nonperturbative contaminations and cutoff effects(b) Zyy,aa/Z5 obtained with the NPR method as a function of

which is called a “window” in Ref.[6]. We find for  external momentum squar@da? for K=0.15034 a3=6.3. Trans-

Zyvian, Za, Zp, and their ratios that the lower bound of verse lines denote tadpole-improved perturbative estimates. Vertical

the Wlndow depends strongly on each operator; we observines correspond tp*)~2 GeV.

p2a®~0.1 for Zyy.aa and p?a®~0.3 for Z,, while it is

difficult to find the lower bound foZp, Zyy,aa/Zi, and  Z,.Aa/Z2. It is not clear to what extent nonperturbative
contaminations can be separated out quantitatively. For these

o F RN B B B reasons we employ the perturbative estimatesZigy, aa,
gl (@) Zyy,an ] Z,, andZp, rather than those of the NPR method, to obtain
L i - the B parameter in our final analysis presented in this article.
06 '_\Ht,. s vetennstteneress® ] Nl_,|mer|cal vaIl_Jes of th8y parameter are2 little affec_te_d by
I L\ this change since the the ratid,y.aa/Zx has a similar
L | value atp*) among the two methods.
R T R For completeness let us examine the quark mass depen-
R (b) z, I dence and tha dependence oy, pn, Za, andZp taking
ok M, ] their results ap™) (vertical lines in Fig. 9. In Fig. 11 we
I “.++"." %400000s000 0% patssse i
0.6 — r
1 111l IlIII 1 11 IIIII 1 L) 11l 1.0 _ m dependence OfZ factors =
I ©2Z, ] I
0.6 | T e . 08 [ S —& —8—° -
P oo 1
C . r o—oZ®D
L boort’ ] 06 F e—eZ(NPR)
Vet ] 6 ooz, FE—A——f——1 q
0.2 B 1 1 IIIIIII 1 IIIIIII 1 011l i H;VV
r LH—A
0.01 0.10 1.00 10.00 b ar T ]
22 4 - 7]
pa I — |
| L L L | L L L
FIG. 9. Renormalization factofs) Zyy; aa, (b) Za, and(c) Zp 0.00 0.02 0.04
in the Rl scheme obtained with the NPR method as a function of mqa=(1/K—1/Kc)/2

external momentum squareda? for K=0.15034 a{3=6.3. Trans-

verse lines denote tadpole-improved perturbative estimates. The FIG. 11. Quark mass dependence of renormalization factors at
dotted curve in(a) represents th&, contribution toZyy, aa. Ver-  p®*)=~2 GeV using the NPRsolid symbol$ method at8=6.3.

tical lines correspond tp*)~2 GeV. Open symbols represent tadpole-improved perturbative estimates.
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FIG. 12. Comparison of renormalization factors evaluated a
p®*)~2 GeV using the NPRNPR, solid symbolsmethod and the
tadpole-improved perturbation thed®T, open symbo)sas a func-
tion of m,a.

plot the NPR results foZ\\ . an, Za, andZp together with
tadpole-improved perturbative values as a functionnmgf
=(1/K—-1/K.)/2 for the case of3=6.3. While we observe
little quark mass dependence 0y ap andZ,, Zp clearly
decreases as the quark mass decreases. Figure 12 shows
a dependence oFyy;aa, Za, and Zp evaluated atp™*)
employing the heaviest quark mass at e@gcfThe NPR re-
sults forZyy . ap andZ, are consistent with the perturbative
ones at fourB values, while forZ, we observe a large de-
viation at eachg.

VI. CHIRAL BEHAVIOR

PHYSICAL REVIEW D 60 034511

BE(NDR, 1/a) for the four hopping parameters at egglare
summarized in Table Ill. The solid lines represent quadratic
extrapolations of the WI and PT results in the bare quark
massmga=(1/K—-1/K.)/2. The extrapolated value aih,

=0 is consistent with zero, demonstrating a significant im-
provement of the chiral behavior compared to the perturba-
tive result plotted with triangles.

Figure 14 shows th@?a? dependence oBf(NDR, 1/a)
extrapolated tom,=0, which are evaluated at each scale
p®. Two solid lines represent the upper and lower bounds of
one standard deviation error for the PT result. The values of
BE(NDR, 1/a) for the WI method are consistent with zero
within error bars in the momentum rangéa®<1, albeit the
errors become larger toward the small momentum region.

We plot in Fig. 15 the values (BE(NDR, 2GeV) in the
ichiral limit as a function of lattice spacing. The numerical
values are given in Table IV. The result for the WI method
becomes consistent with zero at the lattice spasm@
=<0.3 (@<0.08 fm). In the perturbative approach with the
one-loop mixing coefficients, chiral breaking effects are ex-
pected to appear primarily as terms®fa) and secondly as
terms ofO[ag?(1/a)] andO[ g*(1/a)] for the Wilson quark
action. A roughly linear behavior of our results for the per-
turbative method indicate the leading contribution from an

) term. Making a linear extrapolation to the continuum
limit a—0, we observe that the chiral behavior is recovered.
This may suggest that th®[ag?(1/a)] and O[g*(1/a)]
terms in the mixing coefficients left out in the one-loop treat-
ment are small or accidentally canceled.

VIl. RESULTS FOR By
We now turn to the calculation @y (NDR, 2 GeV). In

Let us examine the chiral property of the operatorrig. 16 we present the rati@,(t) defined in Eq(84) using

éVV+AA using the matrix elemerBf; defined in Eq.(64),

the mixing coefficients determined from the Ward identities

which vanishes in the chiral limit in the presence of chiralwith the external quark momentump™) for the heaviest
symmetry. In Fig. 13 we show the chiral behavior of quark mass K=0.15034) and the lightest oneK(
BR(NDR, 1k) for the case of3=6.3. Numerical values of =0.15131) at$3=6.3. A good plateau is observed in the

0.08 T T T T

B_(NDR, 1/a)
0.04

0.00

0.02

m qa=(1/K- 1/K)/2

FIG. 13. Test of the chiral behavior CBE(NDR, 1/) for the
Ward identity and perturbative methods@t6.3. Solid curves are
quadratic extrapolations to the chiral limit.

range 26:t=75. We make a global fit of the ratig(t) to
a constant over 32t<63 for this data set. The three hori-
zontal lines denote the central valueBf(NDR, 1/a) and a
one standard deviation error band. We note that the error of
the fitted result is roughly equal in magnitude to those of the
ratio over the fitted range, while we would usually expect a
smaller error for the fitted result. This is because the error of
the ratioR,(t) is governed by those of the mixing coeffi-
cientsz; (i=1,...,4). Numerical values d8x(NDR, 1/a)
for the four hopping parameters at egélare listed in Table
Il

For comparison we also show the results Ry(t) ob-
tained with the perturbative mixing coefficients in Fig. 17.
We observe a plateau in the range<3Gs65, which is
slightly narrower compared to the WI results. A global fit of
Ra(t) to a constant choosing the same fitting range as for the
WI case yields the value @&y (NDR, 1/a) given in Table IlI.
Let us note that the PT results have quite small errors com-
pared to those of the WI method. This is because definite
values are taken for the mixing coefficients in the PT
method.
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TABLE Ill. B parameters obtained with the WI, W, and PT methods fo8=5.9—-6.5 in quenched QCD. Operators are renormalized
at 1& in the NDR scheme.

Bk(NDR, 1/2) BL(NDR,1/)

B K wi Wiys PT wi PT

5.9 0.15862 0.2705) 0.10826) —0.631(13) 0.007@1) —0.01767(30)
0.15785 0.50B9) 0.25913) —0.0728(56) 0.02389) —0.00340(25)
0.15708 0.62(26) 0.361782) 0.193738) 0.040817) 0.0127426)
0.15632 0.68(20) 0.434860) 0.350132) 0.058%17) 0.0297730)

6.1 0.15428 0.6@.4) 0.22633) ~0.416(24) 0.015@4) —0.01039(49)
0.15381 0.68(75) 0.331(20) —0.044(13) 0.02932) 0.0018657)
0.15333 0.72(51) 0.40614) 0.25710) 0.043931) 0.0156%66)
0.15287 0.74B9) 0.461(11) 0.381386) 0.058531) 0.02985%74)

6.3 0.15131 0.68.6) 0.28641) -0.157(22) 0.017&2) —0.00418(53)
0.15098 0.71®2 0.38726) 0.17312) 0.031541) 0.0076%56)
0.15066 0.7469) 0.45519) 0.336296) 0.046@43) 0.0207263)
0.15034 0.7764) 0.511(16) 0.444987) 0.062545) 0.0358675)

6.5 0.14925 0.639) 0.21287) —0.338(61) 0.01165) ~0.00564(87)
0.14901 0.6617) 0.32746) 0.14825) 0.022359) 0.0051292)
0.14877 0.6711) 0.40633) 0.32920) 0.034858) 0.017112)
0.14853 0.69®2) 0.46724) 0.44Q15) 0.048357) 0.030412)

In Fig. 18 a representative result for the contribution of|arger than that of),. This is the essential reason why cal-
each operato®; (i=0, . .. ,4) toBx(NDR, 1/) is shown as  culations ofBy with the Wilson quark action is difficult; the
a function of the external quark momentum for the case ohixing coefficients have to be known accurately including
K=0.15034 ai3=6.3, which is obtained by fitting the ratio higher order effects both in the coupling constant and the
Ra(t) (i=0,...,4) of Eq.(89 with a constant over the Ilattice spacing.
same fitting range as fdR,(t). The contributions of mixed We show the quark mass dependenceBR{NDR, 1/a)
operators are nearly independent of the external quark mder 8=6.3 in Fig. 19. We observe that the results for the PT
mentum in the rangp?a®<1.0. An important observation is method seem to diverge toward the chiral limit, while those
that the value oBx(NDR, 1/a) results from large cancella- for the WI method stay finite. We expect a different quark
tions between the amplitudes of the mixing operatnrs, mass dependence for the WI and PT results:
(i=1,...,4), each having a magnitude comparable to or

Bk(NDR, 1/2) = A"+ BY'my+C¥'m; for Wi,

L i (96)
0.08 - . = —— T
- By (NDR, 1/a) at mq=0 E 0.04 [ N
- - L P _ ]
0.04 | oo i : B (NDR, 2GeV) at mq—O ]
000 =111 T H*~*Jlr{{wh**ﬁmo......,,,.‘_ 000 g +++ """"""""" 7]
- 1 \ -
004 | ] 002 - \"\-.\ * _
e ' 'l Lt 1411 I ' Ll 11l II ' ' L1 1 41 - i . WI R -
0.01 0.10 1.00 10.00 roo APT \‘\ 1
004 -
P232 I T T N SRR S
0.0 0.1 0.2 0.3 0.4 0.5
FIG. 14. Dependence (BE(NDR, 1/) in the chiral limit on the mpa

external momentum squargda? at 8=6.3. Horizontal solid lines

represent the upper and lower bound of one standard deviation error FIG. 15. BE(NDR, 2 GeV) atm,=0 for the Ward identity and
for tadpole-improved perturbative result in the chiral limit. The ver- perturbative methods as a function af The solid line is a linear
tical line corresponds tp®*)~2 GeV. extrapolation of the perturbative results to the continuum limit.
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TABLE IV. Results forBc(NDR, 2 Ge\j obtained with the W1, Wjs, and PT methods as a function 8f Values ofBL (NDR, 2 Ge\}
in the chiral limit for the WI and PT methods are also given.

B 5.9 6.1 6.3 6.5 a=0
B«(NDR, 2 Ge\) wi +0.360(60) +0.66(11) +0.71(12) +0.69(19)
Wiys +0.162(20) +0.278(27) +0.346(35) +0.347(55) +0.562(66)
PT —0.391(13) —0.167(20) +0.037(19) +0.180(36) +0.622(69)
BR(NDR, 2 GeV) m,=0 wi —0.0166(32) —0.0055(45) —0.0007(66)  +0.0038(96)
PT —-0.03761(67)  —0.03055(90)  —0.0222(11)  —0.0180(15)  —0.0023(27)
APT o1 pT vergent from a lattice spacing @h,a~0.3. Unfortunately
Bk(NDR, 18)=-——+B"+C"'my for PT, (97)  the large errors do not allow us to take a linear extrapolation
a to the continuum limit. We may instead take a constant fit of

whereA, B, andC are unknown constants. These functionalthe _three results at smaller lattice spacings™
forms are based on the following assumption for the chiraF=2.7—4.3 GeV) and fin@(NDR, 2 GeV)=0.647), which

behavior of the matrix elements near the chiral limit: is our best estimate for the WI method.
Since the origin of the large error is traced to that of the
(EO|@VV+AA|KO>“mq for WI, (99) mixing coefficients, we attempt to develop an alternative
method, in which the denominator of EG9) is estimated
<E0|(5vv+ anlK%ecconst  for PT, (999  With the vacuum saturation of the operatoX,..aa con-
structed by the WI method:
(O[A,|K®)ox my. (100
. <KO|OVV+AA|KO>
For the WI and PT methods we interpolate the data at the BY>(NDR, 1/a) = —— , (101
four hopping parameters with the fornt@6) and (97), re- Zi<K°|(’)vv+AA|K°>vs

spectively, tomg/2 and obtain the value @y (NDR, 1/) at
the physical point.

We summarize our final results f@c(NDR, 2 GeV) in
Table 1V, whosea dependence is illustrated in Fig. 20. The
method based on the Ward identity gives a value well con-

where in terms of Eq(42) the vacuum saturation «ﬁ)\,w AA
is rewritten as

4
LINNLENL B L L L L L B L B L B L L B B B <KO|OVV+AA|KO>VS:E Z|<KO|O||KO>VS, (102)

14 | — =
[ (a) K=0.15034 |
r++ ++- 0.7 _'I L :_
L0 .Jﬂﬂ M’. - () K=0.15034 -
- iy 5 '
s ; 05T ﬁ+++m+++++++Hﬂ+++++ : +++++++++“'+*'“**”++++++ i
LN LN LU L i T
I ] 03 -
1.0T~|'} (b) K=0.15131 Uﬂ_ S T
I i o1l ]
5 | H ” g (b) K=0.15131 .
[
: ‘ ' o1 HHHHH “HH i Iy HUH .
[ | ‘ P .
Y : ”HHHH\H Wﬁf&#wm "]
0 24 48 72 96 | ]
t
. . . - . -0'3_-----l-----l-----l-----_
FIG. 1§. Ra_uoRA(t) using mixing coefficients determined by 0 24 48 72 96
the Ward identity method fofa) K=0.15034 andb) K=0.15131 t
at f=6.3. Solid lines denote the fitted result and a one standard
deviation error band. FIG. 17. Same as Fig. 16 for the perturbative method.
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FIG. 18. Contributions of the operato®; (i=0,...,4) to
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FIG. 20. B (NDR, 2 GeV) plotted as a function @fa for the

B« (NDR, 1/2) with z; determined by the Ward identity method for WI, Wlys, and PT methods. Solid lines show linear extrapolations
K=0.15034 ai3=6.3. Vertical line corresponds {o'*)~2 GeV.

with
_ 8
(K| Oo[K%)vs= 3(K°|A[0)(O]AIK®), (103
_ 8
<K0|01|K0>vs:§<KO|P|O><O|P|KO>,
(104
_ 4 —
(KO0 |K)vs= 5 (K°|P|0)O|PIK?),
(109
_ 4 —
(K% O4|K®)vs= = 5(K°|A|0)(0|A[K®)
8 —
— 3(K°IPI0)0IPIK®), (106
T , T T
o B, (NDR, 1/a)

|

0.5 ]

/A' d

A :

00 A .

i o WI ]

i APT .

0.5 -

[ 1 1 1 I 1 1 1 ]
0.00 0.02 0.04

mqa=(1 /K-1/K)/2

FIG. 19. Quark mass dependence Bf(NDR, 1/a) for the

to the continuum limit.

0 0 8 10 0 16 10
(K210 K)ys= = 5 (K A0} O AK®) + —(K°|P[0)

x{0|P|KO). (107
We refer to this as the W§ method, with which the fluctua-
tions in the numerator are expected to largely cancel against
those in the denominator. In fact, errors are substantially re-
duced with the W} method as apparent in Fig. 20. The cost
is that the correct chiral behavior of the denominator is not
respected at a finite lattice spacing due to the contributions of
the pseudoscalar matrix element. This contribution brings the
WI, s result to disagree with WI at a finite lattice spacing, but
the discrepancy should vanish in the continuum limit. A lin-
ear extrapolation of the W} results in a yields
Bk(NDR, 2 GeV)=0.562(66).

This linear extrapolation, however, involves a systematic
uncertainty arising from the chiral symmetry breaking term
cp|(0|P|K®|? in the denominator, where,=8/3z, + 4/3z,

T pAp
i j

(a) (b)
NN
NN
i i

(© (d (e) ® (® (h)

FIG. 21. One-loop diagrams f@a) quark self-energy(b) vertex
correction for the quark bilinear operator, atwi—(h) vertex cor-
rections for the four-quark operatqr.denotes an off-shell momen-

Ward identity method and the tadpole-improved perturbative one atum for the external quark state, amdj, k, and| label color

B=6.3. Open symbols are interpolations of datartg?.

indices.
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TABLE V. Results for>®(p) and A{Y)(p). In the entries labeled “color” the color factors are given
with the use ofC=4/3 andN.=3. In the third column F refers to the results in the Feynman gauge
=1. L refers to the coefficients of the gauge parametét —\) for the results in a general gauge. Divergent
part is expressed asék 1/e— ye+In 4. ptopt representp, v, (1—vs)®p,¥,(1— vs). The definition of
evanescent operatoEs are given in Eqs(A6)—(A8).

(a) NDR

SM(p)/(ip) color Ced;
@ F —1/é—In|u?p?—1
(@ L —1/eé—In|u?p?—1

1

A(m)*/s(p) color Ced;
(b) F ¥ ys(LE+In|u?p? +1)—2p,pys/p®
(b) L ¥ ys(LE+In|u?p? +1)—2p,pys/p®

A(yls)(p) color Crd;
(b) F ys(4/é+ 4 In|u?p? +6)
(b) L ys(L/é+In|u?p?+2)

A()/]L)®'yl‘(p) CO|0I’ C,:5ij5k|/2+(5i]—5k|—5i|5kj/NC)/4

e (©), (d) F 5@ 5 (1e+In|u?p?+1)—2p- o pH1p?
(0), (d) L ¥5® ¥ (1 +In|u?p? +1)—2p- @ p-/p?
(e), (f) F Y5® YL (— 47— 4 In|u2/py—9+16 In 2)+E'jf; )€
(e), (f) L Y5 ® 5 (= 1e—In|u?p?—2+41n 2)
color (5iI5kj_5ij5kI/Nc)/4+ CF6iI5kj/2
(9), () F Y5® 5 (1e+In|u?lp?) +2p- @ pHp?+ Eﬁfg });/e
@, (h L Y5 ® Vo (1E+In|u?p?) + 2p- o pt/p?
(b) DRED

SO (p)/(ip) color Ce 3
(@ F — 17— In|u?p?—2
(@ L — 16— In|u?p?—1

A(Vt)‘/s(p) color Cr o
(b) F ¥, vs(LIé+In|u?p?|+5/2)— 2p ,pys /p?— EBS;,EED/E
(b) L ¥, vs(LE+In|u?p? +1)—2p,bys/p®

AS(p) color Crd;

(b) F vs(4E+ 4 In|u?p?+8)
(b) L vs(17é+ In|u?lp?+2)

A()/]';LL)@’Yb(p) COlOr CF(sij 5k|/2+(5ij6k|_5i|5kj/NC)/4 I
(), @ F Yp® Vi (Ue+In|w?p? +5/2)— 2p- @ pH1p>~E | L/ e
©, (@ L V58 Vi (L&t Inwp?|+)-2p-epip? © "
C0|0r (5|| 5k]_ 6” 5k| /NC)/4+ (6” 5k|_ 6“ 5k] /NC)/4
(e, () F ¥5,® v, (—4é—4In|u?/p?~8+161n 2)

(e, (f) L Y@ Yo (— 1e—In|u?p?|—2+41n 2)

C0|0I’ (5i|5kj_5ij5k|/NC)/4+ CF5i|5kj/2

@, (h) F Vo ® yL(LUe+In|wdlp? +312)+ 2pt @ pip?+ ECr o e
@, () L Yo® V(e nip?)+2p-epip® " "

—8/3z;+ 16/, from Eqgs.(104—(107). Perturbative contri- diverges in proportion t§g?(1/a)] **! due to the anoma-
butions tocp starts at two-loop order dD[g*(1/a)] as can lous dimension of the pseudoscalar operatd?,
be checked from the one-loop expressions fgr (i cp|(0|P|K®)|? receives contributions of formg?(1/a)]*4**
=1,...,4) in Eq.(53). Since the matrix elemer0|P|K®  which diminishes only as a fractional power of 1/&gTo
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assess the systematic error associated with this effect, wimnit recently obtained with the Kogut-Susskind quark action
estimate the two-loop contribution top by squaring the by us[2].

typical magnitude of the one-loop terms ig: e.g., The error of our Wilson result foBy , however, is still
|zi°”e"°°'[a,\,|—s(1/a)]|50.08 at8=5.9 from Fig. 5. We also too large to convincingly demonstrate that the Wilson and
estimate Kogut-Susskind quark actions yield the same value in the
continuum limit. We emphasize that this large error is not
(0|P|KO) My due to an intrinsic defect of the Ward identity method. It

(108 stems from that of large statistical errors of the mixing coef-
ficients, which in turn originates from our use of point source
) ) ) in evaluating relevant quark Green functions. Recent work
from the PCAC(partial conservation of axial vector currgnt gnqws that a variant wall source method with the momentum
relationo 2[23]’ which yieldimCP|<o|P|K0>|2/(8/3)/ source for the off-shell quark propagaf@?2,24 would be
[(OJA|K)[*<0.4. Sincenys(1/a)™*™ decreases by 30% be- gfective to diminish the errors of the mixing coefficients.
tweenp=5.9-6.5, over whicla decreases by a factor 2, this  Another technical point concerns the issue of Gribov cop-
fraction should reduce te=0.16 after taking the continuum jag in the Landau gauge. While an earlier st{2%§] suggests
limit. Taking account of uncertainties in the choice of cou-that ambiguities in the choice of the Gribov copies induce
pling constant and the mixing coefficients at the two-loopgn|y small uncertainties comparable to typical statistical er-
level, we estimate the ch|r_al symmetry breaking contrlb_utlonrorS in current numerical simulations, exploring gauge in-
of the pseudoscalar density that survives after a continuuR)ariant implementation of the Ward identity methods, either
extrapolation linear ina to be =20%. We conclude employing the external hadron states or the Sdimger

(OJAIK®) ~ mg+m, >

Bk (NDR, 2GeV)=0.5q7)(11) for the W{s method.  fynctional, which is free from this problem, would be worth-
An interesting point in Fig. 20 is that the perturbative yhile.
calculation(PT), which gives a completely “wrong value” In recent calculations 0By using the O(a)-improved

ata#0, yields the correct result f@x , when extrapolated quark action the chiral property @y, ax constructed with

to the continuum limita=0. This is a long extrapolation one-loop mixing  coefficients shows much improvement
from negative to positive, but the linearly extrapolated value P 9 b

B(NDR, 2 GeV)=0.622(69) is reasonable compared with (o EaIel O 78 (RN A GO T e e i
those obtained with the WI or W& method. This linear P g P

S . ) . . the Wilson quark action which suggest in Secs. VI and VIl
extrapolation is a credible choice because the chiral behawcH1at the leading contribution to chiral breaking effects is

of the matrix elementk®| Oy aalK°) is linearly recovered  O(a). Toward a precise determination Bf, the improve-

as we saw in Fig. 15. We have to make a reservation, howment of the quark action is an essential ingredient.

ever, that this long extrapolation may bring an error larger A very important physics issue is the effect of quenching.
than quoted in the extrapolated value due to systematic efyjith the KS quark action it has been observed that the error
fects of O[ag®(1/a)] and O[g*(1/a)]. The estimation of due to quenched approximation is snjdll27]. Whether this
these systematic errors is too complicated because the matii supported by calculations with Wilson action we must
elements of the mixing operators have quite different absodefer to future studies. It is straightforward to apply our

lute values. method once configurations are generated with dynamical
Each of results from the above three methods suffers fronguarks.

statistical and systematic errors of 10—20 % which are com-  Finally the application of our method for calculations of

parable in magnitude. Although the W¥land the PT meth- B would be a worthwhile attempt since previous calcula-
ods have the advantage of small statistical errors, we recogipns of Bg have relied on the mixing coefficients which

nize that this is offset by the difficulty to control large were calculated perturbatively in the massless limit with tad-
systematic errors when attempting a continuum extrapolapole improvement.

tion. We thus conservatively take the result of the WI
methodBy(NDR, 2 GeV)=0.68(7) ata” '=2.7-4.3GeV as
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at the one-loop level. We consider it useful to reproduce TABLE VI. Scheme dependence of renormalization constants
them in this appendix using off-shell external quark states ifvv+aa, Aa, andAp.

the general covariant gauge for quark self-energy and vertex

functions.
We consider the following operators:

Oysori 8 5kp2L 81 64;
X (Pyy,u(1= y5) W) (7, (1= y5) ),
(A1)
Oy =05 (47, v5h), (A2)
0, = 8 (Wyysih), (A3)

where 7';@ y,'] representsy,(1—ys)® y,(1—vs) andi, j,

k, andl label the color indices. We note that the operator

NDR-DRED NDR-RI
AVV+AA _3 —l4/3+8|l"|2
Ap -2/3 0
Ap —4/3 16/3

duced space-time dimensidh is parametrized by as D
=4-2¢, €>0. We should note that the one-loop vertex cor-
rections yield the extra evanescent operators which vanish in
D=4 both for the NDR and the DRED schemes. It is mean-
ingless to give results without mentioning the definition of
evanescent operators, because the constant terms at the one-
loop level depend on the definition of the evanescent opera-
tors. Our choice is as follows:

. nor 1
Oyvian defined in Eq.(23) is parity conserving part of y;@,y;:ZVp%Wu(l_?’5)®7u(1_7’5)767p
Oy;@yl; with lﬂ]_: 1/1325 and 1702: ¢4:d
2

We draw the relevant one-loop diagrams in Fig. 24); (2-D) 1 1 A6
the quark self-energyb) the one-loop vertex correction for 4 7u(1775)®7u(177s), (A)
the quark bilinear operators, afid)—(h) the six types of the
one-loop vertex corrections for the four-quark operator. The DRED. = D
off-shell momentum for the external quark state is denoted as EyM)/S =0,V Y5~ RIEE (A7)
p. The gauge dependence ;s parametrized\4l1;p<pressing
the gluon propagator a8, , /k*—(1—N\)k,k, /k". DRED —

Up to the one-loop level the inverse auark propagator and E«/,LL® Y Our¥(1=¥5) @ yu(1=7s)
the vertex functions fof =y}, ® ¥}, ,7,¥s, ys are written in b
the following form: -7 V(1= 5)®y,(1—vs), (A8)

G H(p)=ip— >3 W(p), (Ad)
_ Fs (@)
Ar(p)=T+ EAF (p), (A5)

where the superscrilgt) refers to thath loop level. In Table
V we compile the results foE ) and A" obtained by em-
ploying the NDR scheme and the DRED of#9]. The re-

where g, is the D-dimensional metric tensor.

From the results forS™®(p) and Af(p) (I'=7v,
®'y;,y#'y5,'y5) we can extract the scheme dependence of
the renormalization constanss,y; aa, Aa, andAp, which
are summarized in Table VI. For the RI scheme, for which
the renormalization constants depend on the external states
and the gauge, we employ the off-shell external quark state
with momentump?= 12 and the Landau gauge fixing.
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