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Ginsparg-Wilson-Lüscher symmetry and ultralocality
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~Received 4 February 1999; published 8 July 1999!

Important recent discoveries suggest that Ginsparg-Wilson-Lu¨scher~GWL! symmetry has analogous dy-
namical consequences for the theory on the lattice as chiral symmetry does in the continuum. While it is well
known that an inherent property of lattice chiral symmetry is fermion doubling, we show here that an inherent
property of GWL symmetry is that the infinitesimal symmetry transformation couples fermionic degrees of
freedom at arbitrarily large lattice distances~non-ultralocality!. The consequences of this result for the ultralo-
cality of symmetric actions are discussed.@S0556-2821~99!05513-7#

PACS number~s!: 11.15.Ha, 11.30.Rd
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I. INTRODUCTION

One of the outstanding problems in theoretical parti
physics is the question of a nonperturbative definition of
full standard model. Following Wilson’s work on the reno
malization group in late 1960s and early 1970s, it became
accepted practice to think of continuum field theory as
scaling limit of the appropriate model defined on the spa
time lattice. Quite naturally, then, this approach becam
primary candidate for achieving the goal of defining the th
oretical framework of particle physics nonperturbatively.

However, lattice field theory became a useful tool in th
respect only to the extent it was able to reflect the import
symmetries encoded in the standard model. From the st
point of principle, the only requirement for the lattice
regularized theory is that it possesses a critical point with
continuum limit, corresponding to the target field theo
While the presence of a particular symmetry of the tar
theory at the lattice level is not strictly required, it is des
able because it makes the lattice theory resemble its ta
more before the continuum limit is actually taken. Thus t
fact that Wilson’s formulation of lattice gauge theories@1#
accommodates local gauge invariance exactly is arguably
single most important reason why the lattice approach t
off in the context of high-energy physics.

Including gauge invariance on the lattice marked a n
perturbative formulation of QCD with proper gauge dyna
ics. However, at the same time, the persistent failure of
commodating chiral symmetries without fermion doubli
kept lattice QCD severly impaired from both theoretical a
practical points of view, and a lattice definition of the ele
troweak sector was not possible at all. Furthermore, th
were serious reasons to believe that this is actually unav
able @2#.

Sufficiently new ideas with the potential of ending th
‘‘chirally blind’’ period in lattice field theory only appeared
in the early 1990s. Starting with the influential paper
Kaplan@3#, subsequent developments were variations on
idea that by assigning to every light degree of freedom
ditional heavy ones in an appropriate manner, it might
possible to enforce chiral dynamics on the low-energy lat
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theory without a doubling of fermionic species. It becam
soon clear that to achieve strict chirality, the number of a
iliary degrees of freedom per single light one must be in
nite. In this respect,domain wall fermions@4# represent a
formulation with a finite total number of degrees of freedo
wherein the violations of chiral symmetry are viewed as
‘‘finite-volume effect.’’ The auxiliary degrees of freedom ar
realized by an ‘‘extra dimension,’’ and the chiral limit at
fixed number of light degrees of freedom is achieved as
extension of the extra dimension becomes large. The dom
wall fermion setup is quite natural for vectorlike theory su
as lattice QCD, but its use for chiral gauge theories is
quite clear. Nevertheless, the variation on this approach
posed in@5# might represent a valid regularization of th
standard model.

The overlap formalism@6# attempts to fully respect the
infinity of additional degrees of freedom. Their effect
‘‘summed up’’ into the overlap of ground states of the au
iliary finite many-body Hamiltonians. This setup is mo
flexible with respect to including chiral gauge theories th
domain wall fermions, and it may represent a general way
defining these theories nonperturbatively. For the vector
case, Neuberger was able to express the fermionic part
function given by the overlap formula as the determinant
the new lattice Dirac operator~Neuberger operator! @7#.
Thus, for vectorlike theory, the overlap prescription inclu
ing auxiliary Hamiltonians can be turned into a standard f
mionic path integral expression with a particular choice
lattice Dirac kernel.

Almost in parallel with the above developments, there h
been a significant activity on developing further the old id
of perfect action for QCD@8#. Even though defined on th
lattice, such action should be continuum-like in all dynam
cal respects, including the dynamical consequences of ch
symmetry@9#. What this formally implies for the perfect ac
tion is somewhat unclear, but as noted first by Hasenfr
@8#, for fixed-point action~classically perfect action! the an-
swer to that question was indirectly given long ago by G
sparg and Wilson@10#. In particular, using renormalization
group arguments, Ginsparg and Wilson suggested that
correct chiral dynamics can be ensured on the lattice by
posing the Ginsparg-Wilson~GW! relation for the lattice
Dirac kernel, and Hasenfratz has shown that this conditio
satisfied by the doubler-free fixed-point action.
©1999 The American Physical Society10-1
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IVAN HORVÁ TH PHYSICAL REVIEW D 60 034510
However, ‘‘perfectness’’ is not necessary for the GW r
lation to be satisfied. Indeed, in an interesting turn of eve
Neuberger has shown that his lattice Dirac operator also
resents an acceptable solution@11#. It thus turns out that the
overlap and domain walls share with the fixed-point act
the property of building in the Ginsparg-Wilson lattice chir
dynamics.

Lüscher put these intriguing developments on more s
formal ~and also aesthetic! ground by identifying a symmetry
principle behind the GW relation@12#. He proposed a modi
fied chiral transformation of lattice fermionic variables, su
that invariance with respect to this transformation is equi
lent to imposing a GW relation. This meant that stand
field-theoretical language and methods could suddenly
used to deal with chirality on the lattice. While the doma
walls and overlap formalism seem rather mysterious and
natural to many workers in the field, the new developme
can be sumed up by saying that, instead of standard c
symmetry, we need to demand Ginsparg-Wilson-Lu¨scher
~GWL! symmetry and to study its field-theoretical cons
quences. The crucial element here is the fact that, w
GWL symmetry ensures appropriate continuum-like ch
dynamics@10,13,14#, fermion doubling is not a necessity. A
expected and hoped for, it now appears that@at least U~1!#
chiral gauge theories can also be constructed based on
fermionic actions with GWL symmetry@15#.

The importance of the above formal developments a
lies in the fact that we can now talk in general about the
of actions with GWL symmetry~GW actions!, to study their
common properties, to identify additional characteristics t
could usefully differentiate between them, to identify ne
explicit solutions, and so on. It is possible that ultimately
will turn out that using domain wall fermions, the Neuberg
operator, or some truncated perfect action will be the m
practical way to include chiral dynamics in lattice QCD
Nevertheless, the field-theoretical language of GWL symm
try is very appealing and these are virtually unexplored
ritories with high potential for a surprising result.

In this paper we will study generalized version of t
original Lüscher transformations@12# in the context of lattice
Dirac kernels that are local, respect symmetries of the hy
cubic lattice, are gauge invariant, and possess the co
classical continuum limit. An unconventional feature of Lu¨s-
cher transformations is that their nature depends on the
namics governing the fermionic theory under considerati
We show that if the dynamics is invariant, then the infin
tesimal symmetry operation requires a rearrangement o
finitely many degrees of freedom for every fermionic va
able on an unrestricted lattice. Stated equivalently,
transformation couples fermionic variables at arbitrar
large lattice distances~nonultralocality!. This means that en
suring GWL symmetry requires a delicate collective proc
involving the cooperation of many~perhaps all! fermionic
degrees of freedom contained in the system.

Note that this is the same kind of qualitative feature tha
present when we enforce chiral dynamics through dom
walls in extra dimensions. When the infinity of addition
degrees of freedom that helped to arrange for chirality
integrated out and the Neuberger operator arises, that op
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tor ~and Lüscher symmetry transformation! couples variables
at arbitrarily large lattice distances. Our result shows that
is an always-present property of GWL symmetry in the co
text of acceptable lattice Dirac operators.

The above conclusion has important implications for G
actions themselves. In particular, it implies non-ultralocal
for the subset of GW operators, specified in Ref.@17# ~see
also footnote 3!. While this subset is very relevant for prac
tical purposes, the statement is most likely true in the m
general case as well if one insists explicitly that the theory
doubler-free. From this point of view, we can refer to t
theorem on the absence of ultralocal symmetry transfor
tions presented here as theweak theorem on nonultralocality.
The hypothesis about strict absence of ultralocal doubler-
GW actions~strong theorem on nonultralocality! still awaits
its proof. These issues will be discussed in a separate
section.

II. GENERALIZED LU¨ SCHER TRANSFORMATIONS

Our main interest in this paper is to study infinitesim
linear transformations of the type first proposed by Lu¨scher
@12#.

A. General algebraic structure

Consider ad-dimensional hypercubic lattice~finite or in-
finite!, whered is an even integer. Letc,c̄T be vectors of
fermionic variables residing on lattice sites with the usu
spin-gauge-flavor structure. Let furtherD,R be arbitrary ma-
trices acting in the corresponding linear space. To every s
pair ~D,R! we assign a one-parameter family of infinitesim
transformations,

c→c1 iug5~I2RD!c, c̄→c̄1c̄ iu~I2DR!g5 , ~1!

and call them generalized Lu¨scher transformations. The
were considered, for example, in Ref.@16# for the case when
R is trivial in spinor space and Hermitian. Here we will n
make such a restriction.

An interesting subset of generalized Lu¨scher transforma-
tions is represented by those pairs~D,R! for which the trans-
formation does not change the expressionc̄Dc ~‘‘fermionic
action’’!. The change is given by

d~c̄Dc!5c̄Ddc1dc̄Dc5 iuc̄~$D,g5%2D$R,g5%D!c,

where$ , % denotes the anticommutator and vanishes only

$D,g5%5D$R,g5%D or $D21,g5%5$R,g5%. ~2!

We note that the first form of condition~2! is fundamental
and the second one is equivalent to it if the inverse ofD can
be meaningfully defined. For suchD, it can also be written in
equivalent explicit form

R5D211F, $F,g5%50, ~3!

with some arbitrary chirally symmetricF.
0-2
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B. Physically relevant restriction

We now specify three restrictions that will be used
define the subset of generalized Lu¨scher transformations rel
evant for GWL symmetry on the lattice.

~a! First of all, we assume thatD represents some accep
able lattice Dirac operator. By ‘‘acceptable’’ we mean t
following: ~i! correct classical continuum limit,~ii ! locality
~exponential decay at large distances!, ~iii ! invariance under
symmetries of the hypercubic lattice~translations and sym
metries of hypercube!, and ~iv! gauge invariance. We wil
define the corresponding concepts precisely as we will n
them and denote the set of these acceptable operators aD.
Note that we do not include the absence of doublers h
which is convenient to discuss separately.

Being composed of gauge fields, lattice Dirac opera
actually represents a set of linear operators, one for ev
gauge configuration. We require invariance of the fermio
action in arbitrary gauge background, which results in
corresponding set of conditions~2!. In this context, we will
refer to them as GW relation. IfR is trivial in spinor space,
this reduces formally to the standard GW relation@10#.

~b! The aim is to interpret Lu¨scher transformations a
generalized chiral transformations. However, in view of
lation ~3!, the corresponding symmetry ofD neither poses a
restriction on the set of acceptable operators nor is physic
interesting unless further requirements are imposed on
matrix R. Not surprisingly, the physically relevant restrictio
is given by the requirement thatR be local @10,13#. The
intuitive argument proceeds as follows: According to G
relation~2!, R determines the character of the anticommu
tor of D21 with g5 . For R50, Lüscher transformations re
duce to the usual chiral transformations and chiral symm
requires the propagator to anticommute withg5 . Since the
inherent feature of such lattice Dirac operators is doubl
@2#, we have to consider a nonzeroR. If R decays suffi-
ciently fast, then the propagator will anticommute withg5 at
least at large distances, which might still result in essenti
chiral dynamics. Indeed, as shown explicitly by Hasenfr
@13# in the context of the standard GW relation, this is inde
true if R is local. We therefore restrict ourselves tolocal
nonzeroR.

In what follows, we will refer toDPD for which there
exist a local nonzeroR such that the GW relation is satisfie
as the operator with GWL symmetry~GW operator!. To ap-
preciate the power of this restriction, it is useful to consid
the GW relation in the form~3! and to realize thatD21 is a
nonlocal operator. For example, in the trivial gauge ba
ground (U51), the Fourier image of the propagator has t
usual 1/p singularity. Such nonlocalities have to be cance
by F for arbitrary gauge configuration. SinceF is chirally
symmetric, this is possible if and only if the nonlocality
D21 is entirely contained in its chirally symmetric part. Th
is very restrictive onD, and physically it asserts that th
chirally nonsymmetric portion of the propagator does n
affect the long-distance physics at all. This is an essen
property of GW operators that can be used as their alte
tive definition without any reference to operatorR: The set
is defined by allDPD such that chirally nonsymmetric pa
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of D21 is local in an arbitrary gauge background.
To make this explicit, we writeD21 in the relevant unique

decomposition

D215~D21!C1~D21!N , ~4!

where $(D21)C ,g5%50 and @(D21)N ,g5#50. Then the
above discussion requires thatF in relation~3! be written in
the form F52(D21)C1F̃, where F̃ is an arbitrarylocal
chirally symmetric matrix. Relation~3! then takes the form

R5~D21!N1F̃, $F̃,g5%50 ~ F̃ local!. ~5!

~c! The final restriction is motivated by noting that a
cording to the fundamental GW relation~2!, adding a
chirally symmetric part toR has no effect on the dynamic
dictated by the GWL symmetry. We will therefore not r
duce the set of GW operators in any way if we only consid
R whose chirally symmetric part is identically equal to zer
i.e.,

@R,g5#50 or R5RN . ~6!

Note that this restriction means settingF̃50 in relation~5!.
In what follows, we will denote the set of allR that obey

restrictions discussed in~b! and ~c! as R. It is the set of
nonzero localR, satisfying~6!. For RPR, the GW relation
~2! can be written in the form

$D,g5%52DRg5D or R5~D21!N . ~7!

For future reference it is useful to assign to anyDPD, R
PR an operator

D[2RD, ~8!

which brings the GW relation to the canonical form

$D,g5%5Dg5D or 1
2 I5~D21!N . ~9!

Here the first form is fundamental and the second one
equivalent to it ifD21 can be meaningfully defined.

To summarize, in this subsection we have restricted
set of pairs~D,R! representing generalized Lu¨scher transfor-
mations~1! to the subset whereDPD, RPR and the GW
relation~7! is satisfied. We will denote the set of such tran
formations asT. By construction, setT contains transforma-
tions physically relevant to the situation when GWL symm
try is present in the theory defined by an acceptable lat
Dirac operator.

C. Statement of the main result

The main result of this paper can be expressed by
following statement:

Transformations contained inT couple infinitely many
fermionic degrees of freedom on the infinite lattice. Sta
equivalently, these transformations couple variables at ar
trarily large lattice distances, i.e., are non-ultralocal.

The above conclusion is based on the following consid
ations:
0-3
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IVAN HORVÁ TH PHYSICAL REVIEW D 60 034510
~a! Because of the form of the generalized Lu¨scher trans-
formations, it is sufficient to show that the operatorD, as-
signed to arbitrary (D,R)PT in Eq. ~8!, couples infinitely
many fermionic degrees of freedom.

~b! We will prove the property ofD required in~a! rig-
orously for free fermions, i.e., for the subset of generaliz
Lüscher transformations, where the gauge field is set to u
and the gauge-flavor structure is ignored. The flavor struc
of D is trivial from the start, and the gauge structure becom
so whenU51. GW relation~7! then enforces this also o
R and henceD.

~c! In gauge-invariant theory, lattice sites coupled
trivial gauge background will also be coupled in gene
background. Hence, the same conclusion applies for this
too.

We stress that there are no physically interesting exc
tions to the result formulated here.

III. TRANSFORMATIONS IN UNIT GAUGE
BACKGROUND

In this section, we will consider the generalized Lu¨scher
transformations for free fermions. However, we will keep
the notation of the previous section and the restriction will
implicitly understood. Since the gauge-flavor structure w
be ignored, the operators considered here act on the ve
of 2d/2-component fermionic degrees of freedom residing
the sites of an infinite hypercubic Euclidean lattice ind even
dimensions. MatrixG representing such operator can
uniquely expanded in the form

Gm,n5 (
a51

2d

Gm,n
a Ga, ~10!

wherem,n label the lattice points,Ga denotes a matrix with
space-time indices, andGa is the element of the Clifford
basis. The Clifford basis is built on gamma matrices satis
ing $gm ,gn%52dm,nI. For example, in four dimensions w
have G[$I,gm ,g5 ,g5gm ,smn,(m,n)%, where g5
5g1g2g3g4 , smn[( i /2)@gm ,gn#. Because of the complete
ness of the Clifford basis on the space of 2d/232d/2 complex
matrices, Eq.~10! describes arbitrary operator in question.
what follows we will refer to the operatorsGa as the Clifford
components ofG.

A. Representation of local symmetric operators

Since locality and invariance under symmetries of the
percubic lattice will play a crucial role in our discussion, w
first define explicitly the Fourier representation for operat
that satisfy these requirements. Hypercubic lattice struc
is invariant under translations by an arbitrary lattice vec
and under the subgroup ofO(d) transformations—
hypercubic rotations and reflections. We refer to the form
as translation invarianceand to the latter ashypercubic in-
variance.

Definition 1.~Locality!: OperatorG is said to be local if
there are positive real constantsc, d such that all its Clifford
componentsGa satisfy
03451
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uGm,n
a u,ce2dum2nu ;m,n.

Here um2nu denotes the Euclidean norm ofm2n.
Definition 2.~Translation Invariance!: OperatorG is said

to be translationally invariant if all its Clifford componen
Ga satisfy

Gm,n
a 5G0,n2m

a [gn2m
a ;m,n. ~11!

Definition 3. ~Hypercubic Invariance!: Let H be an ele-
ment of the hypercubic group in defining representation a
H the corresponding element of the representation indu
on hypercubic group by spinorial representation ofO(d).
OperatorG is said to have hypercubic invariance if for arb
traryH, m, n we have

Gn,m5H21GHn,HmH.

The requirement of translation invariance and locality
equivalent to the existence of diagonal analytic Fourier i
ages of space-time parts ofG. In particular,

Ga~p![(
n

gn
aeip•n, G~p![ (

a51

2d

Ga~p!Ga, ~12!

where functions Ga(p) of lattice momenta
p[(p1 , . . . ,pd) are complex-valued, periodic, and analyti
Adding hypercubic symmetry as an additional constraint,
now define explicitly the Fourier representation of local sy
metric operators that we will use.

Definition 4. ~Set Gsl): Let Ga(p), a51,2, . . . ,2d, be
the complex-valued functions of real variablespm , and let
G(p) be the corresponding matrix function constructed as
Eq. ~12!. We say thatG(p) belongs to the setGsl if ~a!
everyGa(p) is an anlytic function with period 2p in all pm
and ~b! for arbitrary hypercubic transformationH it is true
identically that

G~p!5 (
a51

2d

Ga~p!Ga5 (
a51

2d

Ga~Hp!H21GaH. ~13!

We emphasize that the setGsl is mathematically fully
equivalent to the set of all local, translation invariant kern
G. We can therefore speak ofG(p) andG interchangeably,
and indeed, we will frequently writeGPGsl.

We finally note that since any hypercubic transformati
H can be decomposed into products of reflections of sin
axis (Rm) and exchanges of two different axes (Xmn), it is
sufficient to require invariance under these operations.
transformation properties of all the elements of the Cliffo
basis are determined by the fact thatgm transforms aspm
~vector!. In particular,

Rn
21gmRn5 H 2gm if m5n,

gm if mÞn,

and
0-4
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Xrs
21gmXrs5H gs if m5r,

gr if m5s,
gm otherwise,

whereRm ,Xmn are the spinorial representations ofRm ,Xmn .
The elements of the Clifford basis naturally split into grou
with definite transformation properties, and the hypercu
symmetry thus translates into definite algebraic requirem
on functionsGa(p), which we will later exploit.

B. SetsD, R, and T

We now give the definition of fundamental sets that
introduced in Sec. II.

Definition 5.~SetD!: Let D(p)PGsl be a local symmet-
ric operator, such that in the vicinity ofp50 its Clifford
componentsDa(p) satisfy

Da~p!5 H ipm1O~p2! if Ga5gm ,
O~p2! if GaÞgm ,;m. ~14!

CollectionD,Gsl of such elementsD(p) defines the set o
acceptable lattice Dirac operators.

Definition 6.~SetR!: SetR consists of all nonzero loca
operatorsR such that condition~6! is satisfied.

Definition 7. ~Set T!: We defineT as the collection of
pairs~D,R! such thatDPD, RPR, and GW relation~7! is
satisfied.

The following simple auxiliary statement will be useful
what follows.

Lemma 1. If ( D,R)PT, then RPGsl and D[2RD
PGsl.

Proof. SinceRPR, it is local. GW relation~7! has to be
satisfied, and from its second form it follows thatR has to
respect symmetries ofD. HenceRPGsl and consequently
DPGsl. j

C. Ultralocality

We now give a precise meaning to ultralocality and to
notion that operator couples ‘‘infinitely many degrees
freedom.’’ By ultralocality we mean that the fermionic var
ables do not interact beyond some finite lattice distance:

Definition 8. ~Ultralocality!: Let CN denote the set of al
lattice sites contained in the hypercube of side 2N, centered
at n50, i.e., CN[$n:unmu<N,m51, . . . ,d%. OperatorG is
said to be ultralocal if there is a positive integerN, so that

Gm,n
a 50, ;m,n:~m2n!¹CN ,;a.

When the ultralocal operatorG acts on the vector of fer
mionic variablesc, then every newcm8 5Gm,ncn is a linear
combination of finite number of variables residing in t
corresponding hypercubeCN around pointm. On the con-
trary, if the operator is non-ultralocal, then there exist a po
m such that thecm8 is a combination of infinite number of old
variables. WhenG is translationally invariant, this is true fo
arbitrary pointm.
03451
c
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If operator G is translationally invariant and ultraloca
then GPGsl and for later reference it is useful to mak
explicit the following simple statement.

Lemma 2.Clifford componentsGa(p) coresponding to
translation-invariant ultralocal operatorG(p) are functions
with a finite number of Fourier terms.

Proof. This is a trivial consequence of ultralocality an
the definition of Fourier image~12!. In fact, ultralocality
implies the existence ofCN such that in the notation of Eq
~11! we have

Ga~p![ (
nPCN

gn
aeip•n. ~15!

j

D. Minimal periodic directions

Consider straight lines in momentum space pass
through the origin. A special subset is defined by those li
for which all periodic functionsf (p) ~periodic with 2p in all
pm) will remain periodic when restricted to that line. Suc
lines run, in addition to origin, through other pointsp such
that pm52pkm , kmPZ,;m, and define so-called periodi
directions in momentum space. Periodic directions are s
cial from the point of view of hypercubic symmetry an
symmetric functions simplify on them accordingly. In th
subsection, we will consider the subset of periodic directio
~minimal periodic directions!, for which the structure of ele-
ments inGsl simplifies maximally when they are restricte
to the corresponding lines.

Definition 9.~RestrictionDr): Let rP$1,2, . . . ,d% and let
p̄ denote the restriction of the momentum variablep on the
line defined through

p̄m5 Hq if m51, . . . ,r,
0 if m5r11, . . . ,d.

Map Dr that assigns to arbitrary functionf (p) of d real
variables a functionf̄ (q) of single real variable through

Dr@ f ~p!#[ f̄ ~q![ f ~ p̄! ~16!

will be referred to as restrictionDr.
The following auxiliary statement will be important i

what follows:
Lemma 3.Let rP$1,2, . . . ,d%. Let further G(p)PGsl,

and letḠ(q) be its restriction underDr defined through

Ḡ~q!5 (
a51

2d

Ḡa~q!Ga, Ḡa~q!5Dr@Ga~p!#.

ThenḠ(q) can be written in the form

Ḡ~q!5X~q!I1Y~q! (
m51

r

gm , ~17!
0-5
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IVAN HORVÁ TH PHYSICAL REVIEW D 60 034510
where X(q)5X(2q), Y(q)52Y(2q) are analytic func-
tions of one real variable, periodic with 2p.

Proof.Let us denote the following sets of indices for lat
convenience: u[$1,2, . . . ,d%, ur[$1,2, . . . ,r%. It is use-
ful to think of the Clifford basis as subdivided into non
intersecting subsetsG5ø jG ( j ) , whereG ( j ) , j 50,1, . . . ,d,
contains the elements that can be written as the productj
gamma matrices. For example,G (0)5$I%, G (1)5$gm ,m
Pu%, and so on. With the appropriate convention on ord
ing of gamma matrices in the definition ofGa, we can then
rewrite the Clifford decomposition ofG(p) in the form

G~p!5(
j 50

d

(
m1 ,m2¯m j

m1,m2¯,m j

Fm1 ,m2 ,...,m j
~p!gm1

gm2
¯gm j

,

~18!

where all m iPu. We will now consider contributions to
Ḡ(q) originating from different subsetsG ( j ) .

~1! j >2. Consider an arbitrary single term in decompo
tion ~18!, specified by the set of indicesv
[$m1 ,m2 ,...,m j%. At least one of the following statemen
is true: ~a! there exists an elementmPv, such thatm¹ur;
~b! there exist two elementsm,nPv such thatm,nPur.

Indeed, assume that both of the above statements
false. Then, from~a! it follows that v,ur. Since~b! is also
false, this means thatv contains at most one element. This
the contradiction with the assumption thatj >2.

If then ~a! is true for our particularv, we can consider
the reflection Rm through the corresponding axism.
Since Rm

21gm1
gm2

¯gm j
Rm52gm1

gm2
¯gm j

, hypercubic

symmetry of G(p) requires Fm1 ,m2 ,...,m j
(Rmp)

52Fm1 ,m2 ,...,m j
(p). However, sincem¹ur, the restricted

variablep̄ underDr satisfiesRmp̄5 p̄, and hence

F̄m1 ,m2 ,...,m j
~q![Fm1 ,m2 ,...,m j

~ p̄!52Fm1 ,m2 ,...,m j
~ p̄!50.

Similarly, if ~b! is true, we can apply the exchangeXmn of
the axesm,nPur. Then, again, the Clifford element is od
which forces this also on the corresponding function. Ho
ever, p̄ does not change under this operation and hence
restriction vanishes in this case too.

Consequently,F̄m1 ,m2 ,...,m j
(q) must vanish for anyv.

~2! j ,2. After considerations of case~1!, we can write
Ḡ(q) in the form

Ḡ~q!5X~q!I1 (
m51

d

Ym~q!gm ,

whereX(q),Ym(q) are the restrictions of the correspondin
Clifford elements. Invariance under reflection of the a
m¹ur demands, however, that correspondingYm(q)50.
Moreover, if we exchange axesm,nPur, then hypercubic
symmetry implies
03451
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Y~q![Y1~q!5Y2~q!5¯5Yr~q!.

This gives the desired form~17! and the reflection propertie
of X(q), Y(q) follow from invariance under the product o
reflectionsR1R2¯Rr . Analyticity and periodicity are in-
herited from corresponding propereties of unrestricted op
tor. j

E. Lemma

The most important ingredient in the proof of our ma
theorem will be the following auxiliary statement that w
first formulated in Ref.@17#.

Lemma 4.Let K,L be non-negative integers andr a posi-
tive real number. Consider the setFK,L of all pairs of func-
tions @A(q),B(q)# that can be written in the forms

A~q!5 (
2L<n<K

aneiq•n, B~q!5 (
2L<n<K

bneiq•n,

~19!

whereqPR, nPZ, andan , bnPC are such thataK ,bK do
not vanish simultaneously anda2L ,b2L do not vanish si-
multaneously. Further, letFr

K,L,F K,L denote the set of al
solutions onF K,L of the equation

A~q!21rB~q!251. ~20!

Then the following holds.

~a! If K5L50, thenFr
0,05$(a0 ,b0):a0

21rb0
251%.

~b! If K5L.0, thenF r
K,K5$(A(q),B(q))%, such that

A~q!5a2Ke2 iq•K1aKeiq•K,

B~q!5b2Ke2 iq•K1bKeiq•K,

with

bKÞ0, b2K5
1

4rbK
, aK5ciArbK , a2K5

c

4iArbK

,

whereAr.0 andc561.

~c! If KÞL, thenF r
K,L5B.

The usefulness of the above result lies in the fact that
~20! arises as a GW condition~9! for D restricted byDr.
Lemma 4 provides us with classification of all solutions
this equation on the space of periodic functions withfinite
number of Fourier terms. Indeed, if both function
A(q),B(q) have only strictly positive~negative! Fourier
components, then the equation clearly cannot be satis
0-6
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All other cases are covered by lemma 4. Perhaps surp
ingly, the Fourier structure of solutions of Eq.~20! is thus
either very simple~essentially a single Fourier componen!
or very complicated~infinitely many of them!.

Proof. Case~a! of constant functionsA(q),B(q) is obvi-
ous and so we concentrate on cases~b! and ~c!. Because of
completeness and othogonality of the Fourier basis, Eq.~20!
imposes the following set of conditions on coefficien
an ,bn :
y
u

s
se

tl

he

n

he

03451
is-
(

2L<n<K
2L<k2n<K

anak2n1r (
2L<n<K

2L<k2n<K

bnbk2n5dk,0 ,

22L<k<2K. ~21!
Case~b!. We split the set of equations~21! into groups

that can be analyzed in sequence.
~I! K<k<2K. Equations in this group involve the coe

ficients of nonnegative frequencies only. Starting fromk
52K and continuing down we have1
05aK
2

05aKaK21

052aKaK221aK21
2

]

052aKa012aK21a11¯1aK/2
2

1rbK
2 ,

1rbKbK21 ,
1r~2bKbK221bK21

2 !,

1r~2bKb012bK21b11¯1bK/2
2 !.

~22!
le.

ffi-

ive
ill

on,
The first equation is equivalent to

aK5ciArbK , Ar.0, c561. ~23!

SinceaK ,bK are not simultaneously zero, it follows that the
have to be both nonzero. Inserting this into the second eq
tion of Eqs.~22! yields that alsoaK215ciArbK21 .

This procedure can be repeated with the analogous re
for other coefficients. Indeed, a generic equation in this
quence has the schematic form

2aKaK2n1 f ~aK21 ,aK22 ,...,aK2n11!1r@2bKbK2n

1 f ~bK21 ,bK22 ,...,bK2n11!#50,

where we have just grouped the variables convenien
Since the relationaj5ciArbj already holds forj 5K,K
21, . . . ,K2n11, the variables grouped by functionf will
drop out of the equation and we are left withaK2n

5ciArbK2n as claimed. By induction, we thus have that t
set of equations~22! is equivalent to

an5ciArbn , Ar.0, c561, n50,1, . . . ,K.
~24!

~II ! 22K<k<2K. We can use exactly the same reaso
ing for these equations as we did for group~I! and transform
them into

a2n5 c̄iArb2n , Ar.0, c̄561, n50,1, . . . ,K.
~25!

The constantsc,c̄ are related. To see that, we examine t
equation fork50, namely,

(
n51

K

2ana2n1a0
21rS (

n51

K

2bnb2n1b0
2D 51.

Using Eqs.~24! and ~25! this reduces to
a-

ult
-

y.

-

~12cc̄!2r (
n51

K

bnb2n51 ⇒ c̄52c. ~26!

Two useful implications of Eqs.~24!, ~25!, ~26! that we will
use in examining the rest of the equations are

a05b050 ~27!

and

anam1rbnbm5 H0 if nm>0
2rbnbm if nm,0. ~28!

Note that ifK51, we have no other equations availab
Equation~26! reduces tob1b2151/4r, which together with
Eqs. ~24!, ~25!, and ~27! implies the desired result. IfK
.1, then we have groups of equations that mix the coe
cients of positive and negative frequencies.

~III ! 1<k<K21. Because of constraints~28!, only the
monomials that are the products of one coefficient of posit
frequency and one coefficient of negative frequency w
contribute. Starting fromk5K21 the equations are

05bKb21 ,

05bKb221bK21b21 ,

05bKb231bK21b221bK22b21 ,

]

05bKb2~K21!1bK21b2~K22!1¯1b2b21 . ~29!

1For definiteness of notation, we assume implicitly thatK is an
even integer, but that distinction is only relevant for the notati
not the argument.
0-7
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SincebKÞ0, it follows from the first equation thatb2150.
Inserting this into the second equation, we haveb2250, and
by trivial induction

b2n505a2n , n51,2, . . . ,K21, ~30!

where we have already used the result~25!.
~IV ! 2K11<k<21. Analogously to group~III !, this set

of equations combined with result~24! is equivalent to

bn505an , n51,2, . . . ,K21. ~31!

~V! k50. This is the only equation that is still availabl
and we have already put it in the form~26!. Using Eqs.~30!
and ~31!, this simplifies to

bKb2K5
1

4r
, ~32!

which together with Eqs.~24!, ~25! establishes the result~b!.
Case~c!. The strategy of splitting the total set of equ

tions ~21! into groups goes over to this case without a
change~except for index ranges!.

Assume first thatK.L. If L50, then all we have is a
group ~I! of equations and the equation~V!. In particular,
result ~24! implies a0

21rb0
250, while the equation fork

50 reduces toa0
21rb0

251, thus leading to a contradiction
If L.0, then we will also have groups~II ! and ~III !. How-
ever, sinceL,K, the result~30! implies that coefficients of
all negative frequencies now vanisha2n5b2n50, for (n
51,2, . . . ,L). Consequently, the equation fork50 again
reduces toa0

21rb0
251, which contradicts Eq.~24! and there

is no solution.
For K,L the same line of logic leads to the same co

clusion, which completes the proof.j

F. Theorem

The required tools are now in place to prove the followi
theorem.

Theorem 1.If ( D,R)PT, thenD52RD is not ultralocal.
Proof. We will proceed by contradiction. Let us therefo

assume that there exist (D,R)PT such thatD actually is
ultralocal and the following steps will lead us to contrad
tion.

~a! According to lemma 1,RPGsl. Consequently, its
Clifford components are analytic with well-defined Tayl
series. In particular, let us for later convenience write exp
itly

Ra~p!5
r

2
1O~p! if Ga5I. ~33!

~b! We now consider the restrictionD̄(q)52R̄(q)D̄(q)
underDr. Taking into account lemma 3, the local properti
~14! of D(p), the fact that@R,g5#50, and using notation o
Eq. ~33!, we can conclude

D̄~q!5@12A~q!#I1 iB~q! (
m51

r

gm , ~34!
03451
-

-

where A(q),B(q) are analytic functions periodic with 2p,
such that following properties aroundq50 are satisfied:2

A~q!511O~q2!, B~q!5rq1O~q2!. ~35!

~c! The GW relation forD̄ given in Eq. ~34! takes a
simple form

A~q!21rB~q!251, ~36!

and, according to lemma 2, ultralocality ofD implies that
A(q),B(q) have Fourier series with finite number of term

~d! Because of~c!, we can apply lemma 4 to conclude th
functionsA(q),B(q) must either be the constants, or there
an integerKr.0, such that

A~q!5a2Kr
e2 iq•Kr1aKr

eiq•Kr,

B~q!5b2Kr
e2 iq•Kr1bKr

eiq•Kr.

The local properties~35! exclude the constants, while in th
second case they dictate that the solutions areA(q)
5cos(Krq), B(q)5r sin(Krq)/Kr . For these functions we
have

A21rB25cos2~Krq!1
r 2r

Kr
2 sin2~Krq!. ~37!

~e! In view of Eqs.~36!, ~37! we have to distinguish two
cases:

~i! If r 50, Eq.~36! cannot be identically satisfied and w
already have a contradiction.

~ii ! If rÞ0, then to satisfy Eq.~36! we have to demand

r 5c
Kr

Ar
, c561, Ar.0.

This condition has to be satisfied for allrP$1,2, . . . ,d%. In
particular, if r is a square of another integer (r51, for ex-
ample!, we have to conclude thatr is a rational number. At
the same time, ifr is not a square of an integer (r52, for
example!, we have to conclude thatr is irational and we thus
have a contradiction forrÞ0 as well. This completes ou
proof. j

The above result implies that every transformation~1!
corresponding toDPD with GWL symmetry couples vari-
ables at arbitrarily large lattice distances. Every transform
variable is a linear combination of infinitely many origin
ones. This establishes theweak theorem on ultralocalityfor
GWL symmetry.

2Note that we are not strict about enforcing all the consequen
of hypercubic symmetry because it is not necessary. For exam
one can easily see that hypercubic symmetry requires the Ta
reminder in Eq.~33! be actuallyO(p2), and the reminder ofB(q)
in Eq. ~35! be O(q3).
0-8
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G. Ultralocality of symmetric actions

Theorem 1 has the following useful immediate con
quence.

Corollary 1. If ( D,R)PT andR is ultralocal thenD must
be non-ultralocal.

In other words, the lattice Dirac operatorDPD, satisfy-
ing GW relation~7! with ultralocal R cannot be ultraloca
@17#.3 This has some unfortunate drawbacks for practical
of actions in this category: It complicates perturbati
theory, one loses obvious numerical advantages stemm
from sparcity of the conventional operators, and the ques
of simulating them is nontrivial and widely open. Moreove
while locality can be ensured easily for the free case, i
usually not obvious in the presence of gauge fields if
action is not ultralocal. Studies such as@19# will probably be
necessary for any individual operator that might be of int
est.

We stress that no definite conclusion on ultralocality ofD
from Theorem 1 can be made if the correspondingR is not
ultralocal. In fact, there exist elements (D,R)PT such thatD
is ultralocal whenR is not. For example, we can take

D~p!5S (
m51

d

sin2 pmD I1 i (
m51

d

sinpmgm , ~38!

which satisfies the GW relation withR(p)5I/(1
1(m51

d sin2 pm). The point is that setD also contains opera
tors with doublers, and the above example is one of th
Theorem 1 and Corollary 1 are valid regardless of whet
the action is doubler-free or not. However, the hypothesis
the absence of ultralocal GW actions at the free level
only hold if operators with doublers are excluded as th
should. In view of our discussion leading to GW relation~7!,
one could prove thestrong theorem on ultralocalityby prov-
ing the following hypothesis.

Hypothesis 1.There is noD(p)PD such that the follow-
ing three requirements are satisfied simultaneously:

~a! D(p) involves a finite number of Fourier terms.
~b! „D21(p)…N is analytic.
~c! „D21(p)…C is analytic except if pm50

(mod 2p),;m .
Needless to say, it would be rather interesting to hav

rigorous answer to whether the above hypothesis hold
not.

IV. CONCLUSION

The long-standing quest for incorporating chiral fermion
dynamics on the lattice properly culminated recently in

3For R trivial in spinor space, this result was stated in Ref.@17# as
a simple extension of the canonical case by the techniques
cussed there. The proof was presented for example at
VIELAT98 workshop. Shortly before this paper was ready for
lease, Bietenholz posted a note@18#, where he uses these techniqu
in a similar fashion. Contrary to the original statement in that no
its revised version appears to claim the case identical to one
cussed in Ref.@17# and here.
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construction of a natural field-theoretical framework f
studying questions related to this issue. The central build
block of this framework is the notion of Lu¨scher transforma-
tions and corresponding GWL symmetry. While the stand
chiral transformation appears to be a smooth limiting case
generalized Lu¨scher transformations~1!, we argue here tha
there is a sharp discontinuity in the behavior of the two ca
when the underlying fermionic dynamics exhibits the cor
sponding symmetry. While the chiral transformation on
mixes variables on a single site, the infinitesimal GWL sy
metry operation always requires a rearrangement of infini
many degrees of freedom and couples variables at arbitra
large lattice distances.

The above discontinuity is apparently at the heart of
fact that while fermion doubling is a definite property
chiral symmetry, it is an indefinite property of GWL symm
try. At the same time, luckily, dynamical consequences
not affected by this discontinuity. This appears to support
general picture which says that imposing a proper chiral
namics without doubling requires a delicate cooperation
many fermionic degrees of freedom. These have to cons
to ensure that the chirally nonsymmetric part of the act
does not affect the long-distance behavior of the propag
and that the would-be doublers from the chirally symmet
part become heavy.

Our discussion assumes that acceptable fermionic act
respect symmetries of the hypercubic lattice structure. Th
reasonable since it guarantees the recovery of the co
sponding Poincare´ symmetries of Minkowski space in th
continuum limit without tuning. We rely quite heavily on th
consequences of hypercubic symmetry in particular, and s
would be interesting to know whether the picture change
only the translation invariance is retained. At the free lev
there indeed is a difference here for there exist ultralo
Lüscher transformations with symmetric lattice Dirac ke
nels. For example, in two dimensions we can consider
ultralocal operator

D~p!5~12cosp1 cosp2!I1 i sinp1 cosp2g11 i sinp2g2 ,
~39!

which does not respect hypercubic symmetry, satisfies G
relation~7! with R(p)51/2, and the Lu¨scher transformation
is ultralocal. However, there is a doubler atp5(p,p).
Therefore, we can only hypothesize that if the requiremen
hypercubic symmetry is lifted, there are no ultralocal Lu¨s-
cher transformations involving doubler-freeD(p). It would
be interesting to clarify whether that is indeed the case
also whether non-ultralocality of symmetric doubler-free a
tions holds.

ACKNOWLEDGMENTS

I thank H. Thacker for many pleasant discussions on
issues discussed here and V. Balek for useful input on
case without hypercubic symmetry.

is-
he
-

,
is-
0-9
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