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Important recent discoveries suggest that Ginsparg-Wils@eter (GWL) symmetry has analogous dy-
namical consequences for the theory on the lattice as chiral symmetry does in the continuum. While it is well
known that an inherent property of lattice chiral symmetry is fermion doubling, we show here that an inherent
property of GWL symmetry is that the infinitesimal symmetry transformation couples fermionic degrees of
freedom at arbitrarily large lattice distande®n-ultralocality. The consequences of this result for the ultralo-
cality of symmetric actions are discuss¢80556-282(199)05513-1

PACS numbs(s): 11.15.Ha, 11.30.Rd

[. INTRODUCTION theory without a doubling of fermionic species. It became
soon clear that to achieve strict chirality, the number of aux-
One of the outstanding problems in theoretical particleiliary degrees of freedom per single light one must be infi-
physics is the question of a nonperturbative definition of thenite. In this respectdomain wall fermiong4] represent a
full standard model. Following Wilson’s work on the renor- formulation with a finite total number of degrees of freedom,
malization group in late 1960s and early 1970s, it became awherein the violations of chiral symmetry are viewed as a
accepted practice to think of continuum field theory as &‘finite-volume effect.” The auxiliary degrees of freedom are
scaling limit of the appropriate model defined on the spacerealized by an “extra dimension,” and the chiral limit at a
time lattice. Quite naturally, then, this approach became #ixed number of light degrees of freedom is achieved as the
primary candidate for achieving the goal of defining the the-extension of the extra dimension becomes large. The domain
oretical framework of particle physics nonperturbatively.  wall fermion setup is quite natural for vectorlike theory such
However, lattice field theory became a useful tool in thisas lattice QCD, but its use for chiral gauge theories is not
respect only to the extent it was able to reflect the importantjuite clear. Nevertheless, the variation on this approach pro-
symmetries encoded in the standard model. From the stan@osed in[5] might represent a valid regularization of the
point of principle, the only requirement for the lattice- standard model.
regularized theory is that it possesses a critical point with the The overlap formalism[6] attempts to fully respect the
continuum limit, corresponding to the target field theory.infinity of additional degrees of freedom. Their effect is
While the presence of a particular symmetry of the target‘'summed up” into the overlap of ground states of the aux-
theory at the lattice level is not strictly required, it is desir-iliary finite many-body Hamiltonians. This setup is more
able because it makes the lattice theory resemble its targéiexible with respect to including chiral gauge theories than
more before the continuum limit is actually taken. Thus thedomain wall fermions, and it may represent a general way of
fact that Wilson’s formulation of lattice gauge theoridd  defining these theories nonperturbatively. For the vectorlike
accommodates local gauge invariance exactly is arguably thease, Neuberger was able to express the fermionic partition
single most important reason why the lattice approach toolunction given by the overlap formula as the determinant of
off in the context of high-energy physics. the new lattice Dirac operatofNeuberger operatpr(7].
Including gauge invariance on the lattice marked a nonThus, for vectorlike theory, the overlap prescription includ-
perturbative formulation of QCD with proper gauge dynam-ing auxiliary Hamiltonians can be turned into a standard fer-
ics. However, at the same time, the persistent failure of acmionic path integral expression with a particular choice of
commodating chiral symmetries without fermion doubling lattice Dirac kernel.
kept lattice QCD severly impaired from both theoretical and  Almost in parallel with the above developments, there has
practical points of view, and a lattice definition of the elec-been a significant activity on developing further the old idea
troweak sector was not possible at all. Furthermore, theref perfect action for QCO8]. Even though defined on the
were serious reasons to believe that this is actually unavoidattice, such action should be continuum-like in all dynami-
able[2]. cal respects, including the dynamical consequences of chiral
Sufficiently new ideas with the potential of ending the symmetry[9]. What this formally implies for the perfect ac-
“chirally blind” period in lattice field theory only appeared tion is somewhat unclear, but as noted first by Hasenfratz
in the early 1990s. Starting with the influential paper of[8], for fixed-point action(classically perfect actigrthe an-
Kaplan[3], subsequent developments were variations on thewer to that question was indirectly given long ago by Gin-
idea that by assigning to every light degree of freedom adsparg and Wilsoi10]. In particular, using renormalization
ditional heavy ones in an appropriate manner, it might begroup arguments, Ginsparg and Wilson suggested that the
possible to enforce chiral dynamics on the low-energy latticecorrect chiral dynamics can be ensured on the lattice by im-
posing the Ginsparg-WilsolGW) relation for the lattice
Dirac kernel, and Hasenfratz has shown that this condition is
*Email address: ih3p@virginia.edu satisfied by the doubler-free fixed-point action.

0556-2821/99/6(8)/03451@10)/$15.00 60 034510-1 ©1999 The American Physical Society



IVAN HORVA TH PHYSICAL REVIEW D 60 034510

However, “perfectness” is not necessary for the GW re-tor (and Lischer symmetry transformatipoouples variables
lation to be satisfied. Indeed, in an interesting turn of eventsat arbitrarily large lattice distances. Our result shows that this
Neuberger has shown that his lattice Dirac operator also reps an always-present property of GWL symmetry in the con-
resents an acceptable solutidrl]. It thus turns out that the text of acceptable lattice Dirac operators.
overlap and domain walls share with the fixed-point action The above conclusion has important implications for GW
the property of building in the Ginsparg-Wilson lattice chiral actions themselves. In particular, it implies non-ultralocality
dynamics. for the subset of GW operators, specified in Héf7] (see

Liischer put these intriguing developments on more solidSC footnote & While this subset is very relevant for prac-
formal (and also aesthetiground by identifying a symmetry tical purposes, the statement is most'I|I'<er true in the most
principle behind the GW relatiofL.2]. He proposed a modi- general case as well |f_one !nS|sts gxpllcnly that the theory be
fied chiral transformation of lattice fermionic variables, suchdoubler-free. From this point of view, we can refer to the

that invariance with respect to this transformation is equiva{€orem on the absence of ultralocal symmetry transforma-

lent to imposing a GW relation. This meant that standardions presented here as tweak theorem on nonultralocality

field-theoretical language and methods could suddenly p&he hypothesis about strict absence of ultralocal doubler-free
used to deal with chirality on the lattice. While the domain SW actions(strong theorem on nonultralocaliftill awaits

walls and overlap formalism seem rather mysterious and unitS Proof. These issues will be discussed in a separate sub-
natural to many workers in the field, the new development$€ction-

can be sumed up by saying that, instead of standard chiral )

symmetry, we need to demand Ginsparg-Wilsorsther Il. GENERALIZED LU SCHER TRANSFORMATIONS

(GWL) symmetry and to study its field-theoretical conse-
guences. The crucial element here is the fact that, whil
GWL symmetry ensures appropriate continuum-like chiral

Our main interest in this paper is to study infinitesimal
inear transformations of the type first proposed bysther

dynamicg10,13,14, fermion doubling is not a necessity. As [12].

expected and hoped for, it now appears ffatleast W1)] .

chiral gauge theories can also be constructed based on the A. General algebraic structure

fermionic actions with GWL symmetrj15]. Consider ad-dimensional hypercubic latticdinite or in-

The importance of the above formal developments alSTinite), whered is an even integer. Let, " be vectors of

lies in the fact that we can now talk in general about the se S . L . . X
of actions with GWL symmetryGW actions, to study their ermionic variables residing on lattice sites with the usual

common properties, to identify additional characteristics thafpin—gauge-flavor structure. Let furthBiR be arbitrary ma-
could usefully differentiate between them, to identify new rices acting in the corresponding linear space. To every such

s . . . . .. pair (D,R) w ign ne-parameter family of infinitesimal
explicit solutions, and so on. It is possible that ultimately it pair (D,R) we assign a one-parameter family o esima

will turn out that using domain wall fermions, the NeubergertranSformatlonS'

operator, or some truncated perfect action will be the most T I—RD o b+ Ui 6(1—DR 1
practical way to include chiral dynamics in lattice QCD. Y= gti6ys( W Yoyt ygi o )75, (1
Nevertheless, the field-theoretical language of GWL SYmmez 4 call them generalized "koher transformations. They

tfy IS very appeallng an_d these are vllrFuaIIy unexplored teri/vere considered, for example, in REE6] for the case when
ritories with high potential for a surprising result.

. ) . . R is trivial in spinor space and Hermitian. Here we will not
In this paper we will study generalized version of the P P

- . . . : make such a restriction.
original Luscher transformatiorfd.2] in the context of lattice An interesting subset of generalizeddaher transforma-
Dirac kernels that are local, respect symmetries of the hyper[v

cubic lattice, are gauge invariant, and possess the correcIP ns is represented by those paitsR) fOLWhICh the trans-

classical continuum limit. An unconventional feature gty formation does not change the expressjdny (“fermionic

cher transformations is that their nature depends on the dy2ction”). The change is given by

namics governing the fermionic theory under consideration. __ _ _ _

We show that if the dynamics is invariant, then the infini- (¢Dy)=yDoy+ SyDh=i0¢({D,ys} —D{R, ys}D) ¢,

tesimal symmetry operation requires a rearrangement of in-

finitely many degrees of freedom for every fermionic vari- where{, } denotes the anticommutator and vanishes only if

able on an unrestricted lattice. Stated equivalently, the

transformation couples fermionic variables at arbitrarily {D,y5}=D{R,ys5}D or {D71ys}={R,ys}. (2

large lattice distance@onultralocality. This means that en-

suring GWL symmetry requires a delicate collective processVe note that the first form of conditiof2) is fundamental

involving the cooperation of mangperhaps ajl fermionic  and the second one is equivalent to it if the invers® afan

degrees of freedom contained in the system. be meaningfully defined. For su@h it can also be written in
Note that this is the same kind of qualitative feature that issquivalent explicit form

present when we enforce chiral dynamics through domain

walls in extra dimensions. When the infinity of additional R=D"'+F, {F,ys}=0, (©)]

degrees of freedom that helped to arrange for chirality are

integrated out and the Neuberger operator arises, that operaith some arbitrary chirally symmetrie.
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B. Physically relevant restriction of D" tis local in an arbitrary gauge background.

We now specify three restrictions that will be used to  T0 make this explicit, we writ® " in the relevant unique
define the subset of generalizedscher transformations rel- deécomposition
evant for GWL symmetry on the lattice. -1 -1 -1
- D *=(D +(D , 4
(a) First of all, we assume th& represents some accept- ( Jet ! In @

able lattice Dirac operator. By “acceptable” we mean thewhere {(D’l)c,y5}=0 and [(D"Yy,y5]=0. Then the

following: (i) correct classical continuum limitii) locality ~ above discussion requires tHfain relation(3) be written in

(exponential decay at large distangd§i) invariance under tpe form F= —(D"Y+E, whereE is an arbitrarylocal

symmetries of the hypercubic latticanslations and sym-  chjrally symmetric matrix. Relatiof3) then takes the form

metries of hypercube and (iv) gauge invariance. We will

define the corresponding concepts precisely as we will need R=(D Y)\+F, {|~:,y5}=0 (F local). (5)

them and denote the set of these acceptable operat@s as

Note that we do not include the absence of doublers here, (€) The final restriction is motivated by noting that ac-

which is convenient to discuss separately. cording to the fundamental GW relatio(®), adding a
Being composed of gauge fields, lattice Dirac operatotCh'ra”y symmetric part tdR has no effect on the dynamics

actually represents a set of linear operators, one for ever§ictated by the GWL symmetry. We will therefore not re-

gauge configuration. We require invariance of the fermionicdtuce the set of GW operators in any way if we only consider

action in arbitrary gauge background, which results in theR whose chirally symmetric part is identically equal to zero,
corresponding set of conditior{8). In this context, we will €.,

refer to them as GW relation. R is trivial in spinor space, [R,y5]=0 or R=Ry. (6)
this reduces formally to the standard GW relatjdg].

(b) The aim is to interpret Lscher transformations as Note that this restriction means settifig-0 in relation(5).
generalized chiral transformations. However, in view of re- | \what follows, we will denote the set of a that obey
lation (3), the corresponding symmetry Bf neither poses a restrictions discussed ifb) and (c) as 9. It is the set of

restriction on the set of acceptable operators nor is physicallyonzero locaR, satisfying(6). For Re 9%, the GW relation
interesting unless further requirements are imposed on the) can be written in the form

matrix R. Not surprisingly, the physically relevant restriction
is given by the requirement th&® be local[10,13. The {D,ys}=2DRysD or R=(D1)y. 7
intuitive argument proceeds as follows: According to GW

relation(2), R determines the character of the anticommuta-For future reference it is useful to assign to dg ®, R
tor of D™ with 5. For R=0, Luscher transformations re- %R an operator

duce to the usual chiral transformations and chiral symmetry

requires the propagator to anticommute with. Since the D=2RD, ®)
inherent feature of such lattice Dirac operators is doublin
[2], we have to consider a nonzeRy If R decays suffi-
ciently fast, then the propagator will anticommute wjthat _ 11 a1
least at large distances, which might still result in essentially {D.ys}=DysD or 31=(D ). ©)
chiral dynamics. Indeed, as shown explicitly by Hasenfrat . : ;
[13] in the context of the standard GW relation, this is indeeéHere the first form s fundamental and the second one is

. i . equivalent to it ifD~! can be meaningfully defined.
:gﬁzgrSRls local. We therefore restrict ourselves lcal To summarize, in this subsection we have restricted the

. . set of pairs(D,R) representing generalized &cher transfor-
_In what follows, we will refer toDe’® for .Wh'.Ch th_ere_z mations(1) to the subset wherBe ®, Re %R and the GW
exist a local nonzer® such that the GW relation is satisfied

. lation(7) i isfied. We will h f h -
as the operator with GWL symmet{EW operatoy. To ap- relation(7) is satisfied. We will denote the set of such trans

preciate the power of this restriction, it is useful to considerformations ast. By construction, sek contains transforma-
m ’ . . tions physically relevant to the situation when GWL symme-
the GW relation in the forng3) and to realize thab ! is a phy y y

_ = try is present in the theory defined by an acceptable lattice
nonlocal operator. For example, in the trivial gauge backs y ISP y y P

ground U=1), the Fourier image of the propagator has theDlrac operator.
usual 1p singularity. Such nonlocalities have to be canceled
by F for arbitrary gauge configuration. Sinéeis chirally
symmetric, this is possible if and only if the nonlocality of  The main result of this paper can be expressed by the
D! is entirely contained in its chirally symmetric part. This following statement:

is very restrictive onD, and physically it asserts that the  Transformations contained iff couple infinitely many
chirally nonsymmetric portion of the propagator does notfermionic degrees of freedom on the infinite lattice. Stated
affect the long-distance physics at all. This is an essentiatquivalently, these transformations couple variables at arbi-
property of GW operators that can be used as their alterndrarily large lattice distances, i.e., are non-ultralocal.

tive definition without any reference to opera®r The set The above conclusion is based on the following consider-
is defined by alD € © such that chirally nonsymmetric part ations:

Quhich brings the GW relation to the canonical form

C. Statement of the main result
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€) Because of the form of the generalizedscher trans- |G2 |<ce dm =l ymn.
formations, it is sufficient to show that the operaf@y as- ’

signed to arbitrary B,R) € T in Eq. (8), couples infinitely  Here|m—n| denotes the Euclidean norm of—n.
many fermionic degrees of freedom. Definition 2.(Translation Invariande OperatorG is said

(b) We will prove the property ofD required in(a) rig-  to be translationally invariant if all its Clifford components
orously for free fermions, i.e., for the subset of generalizedga gatisfy

Luscher transformations, where the gauge field is set to unity
and the gauge-flavor structure is ignored. The flavor structure G: =G2 _=g® _ vVmn. (12)
of D is trivial from the start, and the gauge structure becomes mn- oM Enem '

so whenU=1. GW relation(7) then enforces this also on

R and henceD. ) ) . ] __ment of the hypercubic group in defining representation and
_(¢) In gauge-invariant theory, lattice sites coupled iny the corresponding element of the representation induced

trivial gauge background will also be coupled in generic gy, hypercubic group by spinorial representationQfd).

background. Hence, the same conclusion applies for this Ca??peratorG is said to have hypercubic invariance if for arbi-

Definition 3. (Hypercubic Invariance Let H be an ele-

too. , _ , trary H, m, n we have
We stress that there are no physically interesting excep-
tions to the result formulated here. G. =H1G H
n,m Hn,Hm' -

IIl. TRANSFORMATIONS IN UNIT GAUGE

The requirement of translation invariance and locality is
BACKGROUND

equivalent to the existence of diagonal analytic Fourier im-

In this section, we will consider the generalizedscher ~29€S Of space-time parts Gi. In particular,
transformations for free fermions. However, we will keep all
the notation of the previous section and the restriction will be _
implicitly understood. Since the gauge-flavor structure will Ga(p)Ezn: gre'P ", G(D)Eazl G4 (p)r?, (12
be ignored, the operators considered here act on the vectors -
of 292.component fermionic degrees of freedom residing oNyhere
the sites of an infinite hypercubic Euclidean latticadiaven
dimensions. MatrixG representing such operator can be
uniquely expanded in the form

od

functions G?(p) of lattice  momenta
p=(p1, - ..,pg) are complex-valued, periodic, and analytic.
Adding hypercubic symmetry as an additional constraint, we
now define explicitly the Fourier representation of local sym-
metric operators that we will use.

Definition 4. (Set &%'): Let G¥(p), a=1,2,...,%, be
the complex-valued functions of real variables, and let
G(p) be the corresponding matrix function constructed as in
wheremn label the lattice points3® denotes a matrix with Ed. (12). We say thatG(p) belongs to the se&®' if (a)
space-time indices, anH? is the element of the Clifford €veryG?(p) is an anlytic function with period 2 in all p,,
basis. The Clifford basis is built on gamma matrices satisfyand (b) for arbitrary hypercubic transformatioH it is true
ing {y,,7,}=24, 1. For example, in four dimensions we identically that

2d
Gmn= 2>, G2 .I'? (10)
a=1 !

have = I'={L¥.,¥5,¥5¥u:0un,(u<n}, ~ Where  ys ] ]
— 2 2
=7Y1Y2Y3Ya4, 0,,=(i/2) v, ,v,]. Because of the complete- .
ness of the Clifford basis on the space 8% 292 complex G(p) =a§=:1 Ga(D)FaZaZZl G(Hp)H ' TH. (13

matrices, Eq(10) describes arbitrary operator in question. In
what follows we will refer to the operatof@® as the Clifford

. SI . .
components of. We emphasize that the s&® is mathematically fully

equivalent to the set of all local, translation invariant kernels
G. We can therefore speak &f(p) andG interchangeably,
A. Representation of local symmetric operators and indeed, we will frequently writ& e &°'.

Since locality and invariance under symmetries of the hy- We finally note that since any hypercubic transformation
percubic lattice will play a crucial role in our discussion, we 7 can be decomposed into products of reflections of single
first define explicitly the Fourier representation for operatorsaxis (R,) and exchanges of two different axe(), it is
that satisfy these requirements. Hypercubic lattice structurgufficient to require invariance under these operations. The
is invariant under translations by an arbitrary lattice vectortransformation properties of all the elements of the Clifford
and under the subgroup of0(d) transformations— basis are determined by the fact thgf transforms ag,
hypercubic rotations and reflections. We refer to the formefvecto). In particular,
astranslation invarianceand to the latter akypercubic in-
variance

Definition 1.(Locality): OperatorG is said to be local if
there are positive real constamsé such that all its Clifford
componentss? satisfy and

— Yy if u=v,

~1 _
R, “v.R,= Yu I uFv,
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Yo if w=p, If operator G is translationally invariant and ultralocal,
X1y x ={ y, if u=o, then Ge &°' and for later reference it is useful to make

po TRTPT " otherwise explicit the following simple statement.

Yu ' Lemma 2.Clifford componentsG?(p) coresponding to
translation-invariant ultralocal operat@(p) are functions
with a finite number of Fourier terms.

Proof. This is a trivial consequence of ultralocality and

e definition of Fourier imag€12). In fact, ultralocality
implies the existence afy such that in the notation of Eq.
(11) we have

whereR,,,X,,, are the spinorial representations®f, , X, ,, .
The elements of the Clifford basis naturally split into groups
with definite transformation properties, and the hypercubi
symmetry thus translates into definite algebraic requiremen
on functionsG?(p), which we will later exploit.

B. Sets®, R, and ©
We now give the definition of fundamental sets that we Gi(p)= >, gl (15

introduced in Sec. II. neln
Definition 5.(Set®): Let D(p) € &°' be a local symmet- u
ric operator, such that in the vicinity gi=0 its Clifford
componentdD?(p) satisfy D. Minimal periodic directions

Consider straight lines in momentum space passing
through the origin. A special subset is defined by those lines
for which all periodic function$ (p) (periodic with 27 in all
p,) will remain periodic when restricted to that line. Such
Collection®C &*' of such element® (p) defines the set of lines run, in addition to origin, through other poinissuch

_[ip,+O(p?) if T2=y,,

a
P*P=lo(p? it T2%y,,Yu.

(14)

acceptable lattice Dirac operators. thatp,=27k,, k,€Z,¥Yu, and define so-called periodic
Definition 6.(Set9R): Set9 consists of all nonzero local directions in momentum space. Periodic directions are spe-
operatorsk such that conditiori6) is satisfied. cial from the point of view of hypercubic symmetry and

Definition 7. (Set¥): We defineT as the collection of symmetric functions simplify on them accordingly. In this
pairs(D,R) such thaD e ®, Re R, and GW relation(7) is  subsection, we will consider the subset of periodic directions

satisfied. (minimal periodic directions for which the structure of ele-
The following simple auxiliary statement will be useful in ments in&®' simplifies maximally when they are restricted
what follows. to the corresponding lines.
Lemma 1.If (D,R)eX, then Re &% and D=2RD Definition 9.(RestrictionA®): Letpe{1,2, ... d} and let
e s, P denote the restriction of the momentum variaplen the

Proof. SinceR e R, it is local. GW relation(7) has to be line defined through
satisfied, and from its second form it follows tHathas to

respect symmetries dd. HenceRe &°' and consequently q if u=1,...p,
l D =
De&®. u Pu=l0 if u=p+1,...d.
C. Ultralocality Map A’ that assigns to arbitrary functioh(p) of d real

We now give a precise meaning to ultralocality and to thevariables a functiorf(q) of single real variable through
notion that operator couples “infinitely many degrees of
freedom.” By ultralocality we mean that the fermionic vari- Al’[f(p)]zf_(q)zf(ﬁ) (16)
ables do not interact beyond some finite lattice distance:

Definition 8. (Ultralocality): Let Cy denote the set of all il be referred to as restriction”.

lattice sites contained in the hypercube of sid¢ Zentered The following auxiliary statement will be important in
atn=0, i.e.,CNE{n:lnM|sN,,u=1, ... d}. OperatorG is  what follows:
said to be ultralocal if there is a positive intedérso that Lemma 3.Let pe{1,2,...d}. Let furtherG(p) e &°,

and Ietg(q) be its restriction undeA” defined through
Ghn=0, Vm,n:(m—n)e&Cy,Va.
2d

When the ultralocal operat@ acts on the vector of fer- Gla)= G2 G¥q)=A"[G3 _
mionic variablesy, then every new),,= G, ¢, is a linear (@ azl (@1 (@ [G*p)]
combination of finite number of variables residing in the o
corresponding hypercub€, around pointm. On the con- ThenG(q) can be written in the form
trary, if the operator is non-ultralocal, then there exist a point
msuch that thel;, is a combination of infinite number of old o
var!ables. V\_/herG is translationally invariant, this is true for G(q)zX(q)}HY(q)E YV, (17)
arbitrary pointm. a=1
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where X(q)=X(—q), Y(q)=—-Y(—q) are analytic func- Y(a)=Yi(@)=Ya(q)="=Y,(q).
tions of one real variable, periodic withm2
Proof. Let us denote the following sets of indices for later

convenience: U={1.2, ... d}, u"={12, ... p}. It is use- This gives the desired forit17) and the reflection properties

- ) . S . of X(q), Y(q) follow from invariance under the product of
ful to think of the Clifford basis as subdivided into non- reflectionsR, R -, . Analyticity and periodicity are in-

intersecting subseS=U, Iy, wherel'gy, j=0.1,...d, = porieq from corresponding propereties of unrestricted opera-
contains the elements that can be written as the product Oftor n

gamma matrices. For exampld;o)={I}, I')={v,.u

e u}, and so on. With the appropriate convention on order-

ing of gamma matrices in the definition bf, we can then E. Lemma

rewrite the Clifford decomposition d&(p) in the form The most important ingredient in the proof of our main
theorem will be the following auxiliary statement that was

d first formulated in Ref[17].
G(p)= E (p) ey Lemma 4Let K,L be non-negative integers apd posi-
(P JZO M:L’MEZ"'M]' syt PV Vs g™ Vg tive real number. Consider the s&t“" of all pairs of func-
S AN 18) tions[A(q),B(q)] that can be written in the forms
vlhere all u;eu. We will now consider contributions to A(q)= E a,e"  B(q)= E b,eldn,
G(q) originating from different subsets;, . —L=n=K —L=n=K
(1) j=2. Consider an arbitrary single term in decomposi- (19

tion (18), specified by the set of indicesv

={p1,12,....u;}. At least one of the following statements Whereqe R, neZ, anda,, b,e C are such thasy ,by do

is true: (a) there exists an elemepte v, such thatuw ¢ u?; ~ not vanish simultaneously aral | ,b_ do not vanish si-

(b) there exist two elementg,v e v such thatu,v e u”. multaneously. Further, Iepr"'CFK"- denote the set of all
Indeed, assume that both of the above statements as®lutions onFX- of the equation

false. Then, froma) it follows thatvCu”. Since(b) is also

false, this means that contains at most one element. This is

the contradiction with the assumption that 2. A(9)%+pB(a)*=1. (20
If then (a) is true for our particularv, we can consider

the reflection R, through the corresponding axig.. Then the following holds.

Since R;17M17u2"'7ujRu:_7’#17#2"'7’#]* hypercubic

symmetry  of G(p) requires F, . . (R,p) (@ If K=L=0, then°={(ag,bo):a5+ pbj=1}.

=-F »,(P). However, sincew ¢ u”, the restricted (b) If K=L>0, thenF " ={(A(q),B(q))}, such that
variablep underA? satisfiesR ,p=p, and hence

A(q)=a_yxe 'TK+aedK,
Fruimg, ﬂj(q)EFerMZ ----- l"j(m: —Fung., Mj(mzo'

— —iq-K ig-K
Similarly, if (b) is true, we can apply the exchangg, of B(q)=b_e +bye™
the axesu,veuf. Then, again, the Clifford element is odd,
which forces this also on the corresponding function. How-With
ever,p does not change under this operation and hence the
restriction vanishes in this case too.

Consequently_MM2 ,,,,, le(q) must vanish for any.
(2) j<2. After considerations of cagd), we can write

G(q) in the form

1 ] c
bK?EO, b_K:m, aK:C|\/;bK, a_K:4i\/;b y
K

where /p>0 andc=*1.
d
G(q)=X(q)1+ 2, Y (@)Y, (o) If K#L, then]-'E’L=@.
u=1 The usefulness of the above result lies in the fact that Eq.
(20) arises as a GW conditio(®) for D restricted byA®.
whereX(q),Y ,(q) are the restrictions of the corresponding Lemma 4 provides us with classification of all solutions of
Clifford elements. Invariance under reflection of the axisthis equation on the space of periodic functions Wittite
pn&u” demands, however, that correspondiMg(q)=0. number of Fourier terms. Indeed, if both functions
Moreover, if we exchange axgs,v e u?, then hypercubic A(q),B(q) have only strictly positive(negative Fourier
symmetry implies components, then the equation clearly cannot be satisfied.
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All other cases are covered by lemma 4. Perhaps surpris-
ingly, the Fourier structure of solutions of E€O) is thus _L<2n<K andk-ntp —L<2n<K Pnbk—n= k0,
either very simple(essentially a single Fourier component —L=k-n=K —L=k-n=K
or very complicatedinfinitely many of them. ol <k=2K 21)
Proof. Case(a) of constant function#\(q),B(q) is obvi- I . .
Case(b). We split the set of equation®1) into groups
ous and so we concentrate on cad®sand (c). Because of .
. : ! that can be analyzed in sequence.
completeness and othogonality of the Fourier basis (Hg). () K<k=2K. Equations in this group involve the coef-

imposes the following set of conditions on coefficients iants of nonnegative frequencies only. Starting frém
an,bn: =2K and continuing down we have

Ozai +pb2,
O=akak-1 +pbgbyg -1,
szaKaK—2+aﬁ—1 +p(2bgby o+ bE ), (22

0=_2agap+2ax_qa;+ - +as, +p(2bgbg+2bg_1b;+---+bZ,).

The first equation is equivalent to

ax=ciVpbk, p>0, c==1. (23

Sinceay , by are not simultaneously zero, it follows that they Two useful implications of Eq924), (25), (26) that we will
have to be both nonzero. Inserting this into the second equaise in examining the rest of the equations are
tion of Egs.(22) yields that alsay_;=ciypby_.

K
(1-¢cc)2p >, byb_,=1 = c=—c. (26)
n=1

This procedure can be repeated with the analogous result 8p=by=0 (27)
for other coefficients. Indeed, a generic equation in this S€3nd
guence has the schematic form
0 if nm=0

2agag ntf(ak-1,8k-2,---@k-n+1) T p[2bkbk

+f(bk-1,bk-2,....bk-n+1)]1=0,

andmtPbbm=) o b it nm<o. @9
Note that ifK=1, we have no other equations available.
where we have just grouped the variables convenientlyEquation(26) reduces tdo;b_,=1/4p, which together with
Since the relationa;=ci\pb; already holds forj=K,K  Egs.(24), (25), and (27) implies the desired result. K
—1,... K—n+1, the variables grouped by functidrwill >1, then we have groups of equations that mix the coeffi-
drop out of the equation and we are left with_, cients of positive and negative frequencies.
=ciypbk_, as claimed. By induction, we thus have that the (Ill) 1<k<K—1. Because of constraint28), only the
set of equation$22) is equivalent to monomials that are the products of one coefficient of positive
frequency and one coefficient of negative frequency will
a,=Ci \/Ebn, \/E>0, c=*1, n=0,1,...K. contribute. Starting fronk=K— 1 the equations are
(24) 0= be*lv
(I —2K=k=—K. We can use exactly the same reason-
ing for these equations as we did for grolipand transform

them into O0=bgb_,+by_1b_q,

a =Civpb_,, Vp>0, T==1, n=01,...K 0=Dbib_3+bx-1b-o+Dbi-ob-s,

(29
The constantg,c are related. To see that, we examine the
equation fork=0, namely, O0=byb_k_1)Tbx_1b_ k-2t -+bb_;. (29
K K
2a,a_,+ag+ 2b,b_,+bj | =1.
nzl nG-nTSoTP gl neon oo For definiteness of notation, we assume implicitly tHats an
even integer, but that distinction is only relevant for the notation,

Using Eqgs.(24) and (25) this reduces to not the argument.
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Sinceby # 0, it follows from the first equation thdi_;=0.
Inserting this into the second equation, we haveg=0, and
by trivial induction

b_,=0=a_,, n=12,...K-1, (30)
where we have already used the regah).
(IV) —K+1=<k=<—1. Analogously to grouflll ), this set
of equations combined with resuyR4) is equivalent to
b,=0=a,,

n=1.2,... K—1. (31

PHYSICAL REVIEW D 60 034510

where A(q),B(q) are analytic functions periodic with72
such that following properties arounp=0 are satisfied:

A()=1+0(g?), B(q)=rq+0(a?). (39

(c) The GW relation forD given in Eq. (34) takes a
simple form
A(9)*+pB(9)*=1, (36)

and, according to lemma 2, ultralocality @f implies that

(V) k=0. This is the only equation that is still available, A(q),B(q) have Fourier series with finite number of terms.

and we have already put it in the forf26). Using Eqs.(30)
and (31), this simplifies to

1

be—Kzgi (32)

which together with Eqg24), (25) establishes the resul).

Case(c). The strategy of splitting the total set of equa-
tions (21) into groups goes over to this case without any

change(except for index ranges

Assume first thakK>L. If L=0, then all we have is a

group (1) of equations and the equatidi). In particular,
result (24) implies a3+ pb3=0, while the equation foik

=0 reduces t@z+ pb3=1, thus leading to a contradiction.

If L>0, then we will also have groug#l) and (lll). How-
ever, sincel <K, the result(30) implies that coefficients of
all negative frequencies now vanish ,=b_,=0, for (n
=1,2,...L). Consequently, the equation fée=0 again
reduces t@3+ pbZ= 1, which contradicts Eq24) and there
is no solution.

(d) Because ofc), we can apply lemma 4 to conclude that
functionsA(q),B(q) must either be the constants, or there is
an integerk ,>0, such that

A(q) = apre*iq.KP—F aeriq'pr
B(q)= b_er“q‘Ker pre‘q‘Kp.

The local propertie$35) exclude the constants, while in the
second case they dictate that the solutions &af@)
=cosK,0), B(q)=rsinK,g)/K,. For these functions we
have

2

A%+ pB?=cos (K q) + rK—fsinz(qu). (37
P

(e) In view of Egs.(36), (37) we have to distinguish two
cases:
(i) If r=0, Eq.(36) cannot be identically satisfied and we

For K<L the same line of logic leads to the same con-already have a contradiction.

clusion, which completes the prodll

F. Theorem

The required tools are now in place to prove the following

theorem.
Theorem 1If (D,R) e ¥, thenD=2RD is not ultralocal.

(ii) If r#0, then to satisfy Eq(36) we have to demand

Jp>0.

This condition has to be satisfied for ale{1,2, ... d}. In

Proof. We will proceed by contradiction. Let us therefore particu]ar, |fp is a square of another |ntegq5:€ 1, for ex-

assume that there exisD(R) e ¥ such thatD actually is

ample, we have to conclude thatis a rational number. At

ultralocal and the following steps will lead us to contradic- the same time, ip is not a square of an integep € 2, for

tion.
(@ According to lemma 1Re &°. Consequently, its

Clifford components are analytic with well-defined Taylor
series. In particular, let us for later convenience write explic-

itly
Ra(p)=%+0(p) if T2=1. (33

(b) We now consider the restrictioP(q) = 2R(q)D(q)

underA®. Taking into account lemma 3, the local properties

(14) of D(p), the fact thaf R, y5]=0, and using notation of
Eq. (33), we can conclude

P
5<q>=[1—A(q>]ﬂ+iB(q>21 Yur (34)

exampleg, we have to conclude thatis irational and we thus
have a contradiction for#0 as well. This completes our
proof. W

The above result implies that every transformatidn
corresponding t® e ® with GWL symmetry couples vari-
ables at arbitrarily large lattice distances. Every transformed
variable is a linear combination of infinitely many original
ones. This establishes theeak theorem on ultralocalitfor
GWL symmetry.

Note that we are not strict about enforcing all the consequences
of hypercubic symmetry because it is not necessary. For example,
one can easily see that hypercubic symmetry requires the Taylor
reminder in Eq.(33) be actuallyO(p?), and the reminder oB(q)
in Eq. (35) be O(q®).
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G. Ultralocality of symmetric actions construction of a natural field-theoretical framework for
Theorem 1 has the following useful immediate conse-Studying questions related to this issue_. The central building
quence. block of this framework is the notion of Iseher transforma-
Corollary 1.1f (D,R) € T andR is ultralocal therD must  tions and corresponding GWL symmetry. While the standard
be non-ultralocal. chiral transformation appears to be a smooth limiting case of

In other words, the lattice Dirac operatbre ®, satisfy- generalized Lscher transformationél), we argue here that
ing GW relation(7) with ultralocal R cannot be ultralocal there is a sharp discontinuity in the behavior of the two cases
[17].2 This has some unfortunate drawbacks for practical usévhen the underlying fermionic dynamics exhibits the corre-
of actions in this category: It complicates perturbationsponding symmetry. While the chiral transformation only
theory, one loses obvious numerical advantages Stemmir{@ixes variables on a single site, the infinitesimal GWL sym-
from sparcity of the conventional operators, and the questiometry operation always requires a rearrangement of infinitely
of simulating them is nontrivial and widely open. Moreover, many degrees of freedom and couples variables at arbitrarily
while locality can be ensured easily for the free case, it idarge lattice distances.
usually not obvious in the presence of gauge fields if the The above discontinuity is apparently at the heart of the
action is not ultralocal. Studies such[d9] will probably be  fact that while fermion doubling is a definite property of
necessary for any individual operator that might be of inter-chiral symmetry, it is an indefinite property of GWL symme-
est. try. At the same time, luckily, dynamical consequences are

We stress that no definite conclusion on ultralocalitypof ~not affected by this discontinuity. This appears to support the
from Theorem 1 can be made if the correspondiis not ~ general picture which says that imposing a proper chiral dy-
ultralocal. In fact, there exist elemen®,R) e T such thaD namics without doubling requires a delicate cooperation of

is ultralocal whernR is not. For examp|e, we can take many fermionic degrees of freedom. These have to COﬂSpiI’e
to ensure that the chirally nonsymmetric part of the action
d d does not affect the long-distance behavior of the propagator

D<p>=< 21 sir?p,,

I+i 2 sinp,,y (38) and that the would-be doublers from the chirally symmetric
M
n= pn=1

part become heavy.

) o . i Our discussion assumes that acceptable fermionic actions
Wh'%h satisfies the GW relation withR(p)=1/(1  respect symmetries of the hypercubic lattice structure. This is
+EM=;S|n2 p.)- The point is that seD also contains opera- reasonable since it guarantees the recovery of the corre-
tors with doublers, and the above example is one of themgponding Poincarsymmetries of Minkowski space in the
Theorem 1 and Corollary 1 are valid regardless of whethegontinuum limit without tuning. We rely quite heavily on the
the action is doubler-free or not. However, the hypothesis oonsequences of hypercubic symmetry in particular, and so it
the absence of ultralocal GW actions at the free level cafyould be interesting to know whether the picture changes if
only hold if operators with doublers are excluded as theyonly the translation invariance is retained. At the free level,
should. In view of our discussion leading to GW relati@,  there indeed is a difference here for there exist ultralocal
one could prove thetrong theorem on ultralocality prov- | {ischer transformations with symmetric lattice Dirac ker-

ing the following hypothesis. nels. For example, in two dimensions we can consider the
Hypothesis 1There is ndD(p) € ® such that the follow-  jtralocal operator

ing three requirements are satisfied simultaneously:

(& D(p) involves a finite number of Fourier terms.

(b) (D~ Y(p))y is analytic.

(© (D Yp))c is analytic except if p,=0
(mod 27), V.

Needless to say, it would be rather interesting to have a

rigorous answer to whether the above hypothesis holds or . o
not. which does not respect hypercubic symmetry, satisfies GW

relation (7) with R(p)=1/2, and the Lacher transformation
IV. CONCLUSION is ultralocal. However, there is a doubler pt=(m, ).

The | di for i . hiral fermioni Therefore, we can only hypothesize that if the requirement of
e long-standing quest for incorporating chira ermlonlchypercubic symmetry is lifted, there are no ultralocaktu

dynamics on the lattice properly culminated recently in theCher transformations involving doubler-fr&(p). It would

be interesting to clarify whether that is indeed the case and
also whether non-ultralocality of symmetric doubler-free ac-
SForR trivial in spinor space, this result was stated in R&%] as  tions holds.
a simple extension of the canonical case by the techniques dis-
cussed there. The proof was presented for example at the
VIELAT98 workshop. Shortly before this paper was ready for re- ACKNOWLEDGMENTS
lease, Bietenholz posted a n¢is3], where he uses these techniques
in a similar fashion. Contrary to the original statement in that note, | thank H. Thacker for many pleasant discussions on the
its revised version appears to claim the case identical to one didgssues discussed here and V. Balek for useful input on the
cussed in Ref[17] and here. case without hypercubic symmetry.

D(p)=(1—-cospy cosp,)l+isinp; cosp,y,+i sinpsys,
(39
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