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Infrared behavior of the gluon propagator in the lattice Landau gauge:
The three-dimensional case

Attilio Cucchieri*
Fakultät für Physik, Universita¨t Bielefeld, D-33615 Bielefeld, Germany

~Received 17 February 1999; published 7 July 1999!

We evaluate numerically the three-momentum-space gluon propagator in the lattice Landau gauge, for
three-dimensional pure-SU~2! lattice gauge theory with periodic boundary conditions. Simulations are done for
nine different values of the couplingb, from b50 ~strong coupling! to b56.0 ~in the scaling region!, and for
lattice sizes up toV5643. In the limit of large lattice volume we observe, in all cases, a gluon propagator
decreasing for momenta smaller than a constant valuepdec. From our data we estimatepdec'350 MeV. The
result of a gluon propagator decreasing in the infrared limit has a straightforward interpretation as resulting
from the proximity of the so-called first Gribov horizon in the infrared directions.@S0556-2821~99!04713-X#

PACS number~s!: 11.15.Ha, 12.38.Aw
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I. INTRODUCTION

The infrared behavior of the gluon propagator in the l
tice Landau gauge has been the subject of several nume
studies@1–10#. In fact, although this propagator is a no
gauge-invariant quantity, the study of its infrared behav
provides a powerful tool for increasing our understanding
QCD and for gaining insight into the physics of confineme
in non-Abelian gauge theories~see, for example,@11#!. In
particular, the infrared behavior of the gluon propagator c
be directly related@12# to the behavior of the Wilson loop a
large separations and to the existence of an area law.

On the lattice, the Landau gauge condition is impos
@1,13# by finding a gauge transformation which brings t
functionalEU@g#, defined in Eq.~4! below, to a minimum. A
lattice configuration satisfying this minimizing condition b
longs to the regionV of transverse configurations, for whic
the Faddeev-Popov operator is non-negative@14–16#. This
region is delimited by the so-called first Gribov horizon, d
fined as the set of configurations for which the smallest n
trivial eigenvalue of the Faddeev-Popov operator is ze
~The Faddeev-Popov operator has a trivial null eigenva
corresponding to a constant eigenvector.!

The restriction of the configuration space to the regionV
implies a rigorous inequality @14–16# for the Fourier com-
ponents of the gluon fieldAm(x). From this inequality, which
is a consequence of the positiveness of the Faddeev-P
operator only, it follows that the regionV is bounded by a
certain ellipsoidQ. This bound implies the proximity of the
first Gribov horizon in infrared directions and the consequ
suppression of the low-momentum components of the ga
field, a result already noted by Gribov in Ref.@17#. This
bound also causes a strong suppression of the gluon pr
gator in the infrared limit~i.e., for momentump→0). In
fact, Zwanziger proved@16,18# that, in four dimensions and
in the infinite-volume limit, the gluon propagator is less s
gular thanp22 in the infrared limit and that, very likely, it
doesvanish in this limit. More precisely, in Ref.@18# it was
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proved that, in the infinite-volume limit, the ‘‘gluon propa
gator’’ D(H,p) goes to zero asp→0 for almost every H.
Here H should be interpreted as the strength of a spatia
modulated magnetic field coupled to the gluon fieldAm(x),
and the standard gluon propagator is obtained forH50. A
similar result holds in three dimensions: one obtains@16,18#
that, in the infinite-volume limit, the gluon propagator mu
be less singular thanp21 as p→0 and that, very likely, it
vanishes in the infrared limit.

A gluon propagator vanishing in the infrared limit wa
also found — in four dimensions — by Gribov@17#. More
precisely, he obtained the expressionp2/(p41g), where the
mass scaleg1/4 arises when the configuration space is
stricted to the regionV. This propagator agrees with th
zeroth-order perturbative predictionp22 at large momenta,
but gives a null propagator atp50. The mass scaleg1/4

marks the transition point between the perturbative and
nonperturbative regimes. A propagator that is a general
tion of the one obtained by Gribov has also been introdu
in Ref. @19# as an ansatz for a nonperturbative solution of
gluon Dyson-Schwinger equation~DSE!.

Let us notice that a gluon propagator vanishing in t
infrared limit is in complete contradiction with thep24 sin-
gularity obtained when the gluon DSE isapproximately
solved in the infrared limit@11,20#. However, a recent study
@21# has shown that this singularity is obtained only if th
ghost contributions to the gluon DSE are neglected. In fa
when these contributions are included, the gluon propag
vanishes in the infrared limit@21#, in qualitative agreemen
with Refs.@16–18#.

In this paper we present the first numerical study of
infrared behavior of the gluon propagator in thr
dimensions.1 As explained in Refs.@23–25#, non-Abelian
gauge theories in three dimensions are similar to their fo
dimensional counterparts, and results obtained in the th
dimensional case can teach us something about the m
realistic four-dimensional theories. Of course, the advant
of using a three-dimensional lattice is the possibility of sim

1Preliminary results have been reported in@22#.
©1999 The American Physical Society08-1
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ATTILIO CUCCHIERI PHYSICAL REVIEW D 60 034508
lating lattice sizes larger than those used in the fo
dimensional case. This is particularly important in the stu
of the gluon propagator since Zwanziger’s prediction of
infrared-suppressed gluon propagator is valid only in
infinite-volume limit.

We recall that in some recent numerical studies~in four
dimensions! @5,6# a sensible change in the infrared behav
of the gluon propagator has been observed for mome
smaller than a turnover valuepto , in agreement with the
prediction of a gluon propagator less singular thanp22 in the
infrared limit. Also, the numerical data obtained in Ref.@3#
have been successfully fitted by a Gribov-like formula@4#.
Finally, in Refs.@7–9# we have observed — for the SU~2!
group, in four dimensions, in the strong-coupling regime a
in the limit of large lattice volume — a gluon propagato
decreasingas the momentum goes to zero. A similar res
has also been obtained recently@10# for the SU~3! group in
the strong-coupling regime, both in the quenched and
quenched cases. Let us notice that Zwanziger’s predict
@16,18# for the gluon propagator areb independent: in fact,
they are derived only from the positiveness of the Fadde
Popov operator when the lattice Landau gauge is impo
Thus, results in the strong-coupling regime~i.e.,b→0) are a
valid test of these predictions. Nevertheless, it is importan
extend this result to higher values ofb, possibly up to the
scaling region. Of course, asb increases, one needs to co
sider larger lattice sizes in order to probe the infrared beh
ior of the gluon propagator. Moreover, as said above,
prediction we want to test applies only in the infinite-volum
limit. In four dimensions it was found@7–9# that the lattice
size at which an infrared-decreasing gluon propagator s
to be observed increases with the coupling. This makes p
tically unfeasible, with present computational resources
study numerically the infrared behavior of the gluon prop
gator in the four-dimensional case and at values ofb in the
scaling region. Our hope is that in this work, by studying t
three-dimensional case, we can consider lattice volumes
are large enough to allow a decreasing gluon propagato
be observed not only in the strong-coupling regime but a
in the scaling region.

II. DEFINITIONS AND NOTATION

We consider a standard Wilson action for SU~2! lattice
gauge theory in three dimensions:

S@U#[
4

ag2

1

2 (
m,n51

3

(
x

H 12
Tr

2
@Um~x!Un~x1em!

3Um
21~x1en!Un

21~x!#J , ~1!

whereUm(x)PSU(2) are link variables,g is the bare cou-
pling constant,a is the lattice spacing, andem is a unit vector
in the positivem direction. We assume periodic bounda
conditions. For the matricesUPSU(2) we use the param

etrizationU[U011 iUW 1sW , where1 is the 232 identity ma-
trix, the components ofsW [(s1,s2,s3) are the Pauli matri-
03450
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21UW •UW 51. Notice that in Eq.

~1! the lattice spacinga is necessary in order to make th
actionS@U# dimensionless; in fact, in the three-dimension
case@23–25#, the couplingg2 has dimension of mass, and i
order to obtain a dimensionless lattice coupling we have
setb[4/(ag2).

We define the gauge fieldAm(x), which belongs to the
SU(2) Lie algebra, as

Am~x![
1

2
@Um~x!2Um

† ~x!#5 iUW m~x!•sW . ~2!

We also define

Am
b ~x![

Tr

2i
@Am~x!sb#5Um

b ~x!, ~3!

wheresb is a Pauli matrix. Note thata21Am
b (x) approaches

(1/2)g@A(cont)#m
b (x) in the continuum limit, where

@A(cont)#m
b (x) is the ~unrenormalized! conventional vector

potential.
In order to fix the lattice Landau gauge we look for a loc

minimum2 of the functional@1,13#

EU@g#[12
1

3V (
m51

3

(
x

Tr

2
@g~x!Um~x!g†~x1em!#,

~4!

whereg(x)PSU(2) are site variables, andV[Ns
2Nt is the

lattice volume.~HereNs is the number of lattice sites in th
two spatial directions, andNt is the number of lattice sites in
the time direction.! If the configuration$Um(x)% is a station-
ary point of the functionalEU@g#, then@13# the lattice diver-
gence ofAm

b (x) is null, namely,

~¹•A!b~x![ (
m51

3

@Am
b ~x!2Am

b ~x2em!#50, ; x,b.

~5!

This is the lattice formulation of the usual~continuum! Lan-
dau gauge-fixing condition. By summing Eq.~5! over the
componentsxm of x with mÞn, for fixed n, and using the
periodicity of the lattice, it is easy to check@1# that if the
Landau gauge-fixing condition is satisfied, then the qua
ties

Qn
b~xn![ (

mÞn
(
xm

An
b~x! ~6!

are constant, i.e., independent ofxn .

2Here we do not consider the problem of searching for theabso-
lute minimum of the functionalEU@g#, which defines the so-called
minimal Landau gauge@18#. In fact, as stressed in the Introductio
the prediction of an infrared-suppressed gluon propagator is v
for any configuration in the regionV, i.e., for local as well absolute
minima of the functionalEU@g#.
8-2
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III. GLUON PROPAGATOR ON THE LATTICE

The lattice space-time gluon propagator is given by

Dmn
bc ~x2y![^Am

b ~x!An
c~y!&. ~7!

To go to momentum space we can use formula~3.1a! in Ref.
@16# and obtain

D~0![
1

9V (
m,b

K F(
x

Am
b ~x!G2L , ~8!

D~k![
1

6V (
m,b

K H F(
x

Am
b ~x!cos~2pk•x!G2

1F(
x

Am
b ~x!sin~2pk•x!G2J L . ~9!

Herem goes from 1 to 3, andk has components (kx ,ky ,kt).
In our simulations we consider the valueskxNs5kyNs50,1
and ktNt[0,1, . . . ,Nt21, and the momentum-space gluo
propagator is studied as a function of the magnitude of
lattice momentum

p~k![A(
m51

3

pm
2 ~k![2A(

m51

3

sin2~pkm!. ~10!

If we define the momentum-space gluon field as

Ãm
b ~k![(

x
Am

b ~x!exp@2p i ~k•x1km/2!#, ~11!

then Eqs.~8! and ~9! can be rewritten as

D~0![
1

9V (
m,b

^@Ãm
b ~0!#2&, ~12!

D~k![
1

6V (
m,b

^Ãm
b ~k!Ãm

b ~2k!&. ~13!

Notice thatD(0) in Eq. ~8! @or in Eq. ~12!# is not given by
D(k) in Eq. ~9! @or in Eq. ~13!# at k50. The difference is
due to the Landau gauge condition — the continuuml
condition as in Eq.~5! — which in momentum space read

(
m51

3

pm~k!Ãm
b ~k!50 ; k,b. ~14!
03450
e

e

If kÞ(0,0,0), weobtain that only two of the three Lorent

components ofÃb(k) — and therefore ofAb(x) — are inde-
pendent. This explains the factor of 6~instead of 9) in Eqs.
~9! and ~13!.

Let us also note that the zero three-momentum glu
propagatorD(0) can be written as

D~0!5
V

9 (
m,b

^~A m
b !2&, ~15!

whereA m
b [V21(xAm

b (x) is the zero-momentum compone
of the gluon fieldAm

b (x). Notice that a nonzero value for th
constantsA m

b is a lattice artifact related to the use of period
boundary conditions and to the finiteness of the volume
fact, after the Landau gauge condition is imposed, these c
stants are identically null — even on a finite lattice — if fre
boundary conditions are considered@26#, while in the peri-
odic case they must go to zero in the infinite-volume lim
@15,16#. Of course, because of the volume factor in Eq.~15!,
the latter result does not imply thatD(0) should be zero in

TABLE I. The pairs (b,V) used for the simulations, the numbe
of configurations, the number of HOR sweeps used for thermal
tion, the number of HOR sweeps between two consecutive confi
rations used for evaluating the gluon propagator, and the param
pso used by the stochastic overrelaxation algorithm.

b V Configurations Thermalization Sweepspso

0.0 163 200 4 2 0.85
0.0 323 100 4 2 0.90

1.0 163 200 1100 100 0.84
1.0 323 100 1100 100 0.93

1.6 163 200 1650 150 0.81
1.6 323 100 1650 150 0.83

2.2 163 200 2200 200 0.75
2.2 323 100 2200 200 0.76

2.8 163 200 2750 250 0.72
2.8 323 100 2750 250 0.75

3.4 163 200 3025 275 0.69
3.4 323 100 3025 275 0.72

4.2 163 200 3300 300 0.66
4.2 323 100 3300 300 0.70
4.2 643 56 3300 300 0.72

5.0 163 1000 3575 325 0.63
5.0 162332 200 3575 325 0.65
5.0 323 170 3325 325 0.68
5.0 322364 100 3575 325 0.65
5.0 643 54 2275 325 0.69

6.0 163 200 3850 350 0.61
6.0 323 150 3350 350 0.67
6.0 643 97 3850 350 0.71
8-3
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TABLE II. For each couplingb we report the value of the average plaquette^W1,1&, together with the
volume V and the number of HOR sweeps used for the analysis. Also, forb>3.4, we report the tadpole
improved couplingb I , the string tensionAs in lattice units, and the inverse lattice spacinga21 in GeV.
Error bars for the string tension and the inverse lattice spacing come from propagation of errors. Err
for ^W1,1& are one standard deviation, evaluated taking into account the value of the integrated autoc
tion timet int,W1,1

for the plaquette; namely, the variance is multiplied by 2t int,W1,1
@see Eq.~3.7! in Ref. @29##.

b V Sweeps ^W1,1& b I As a21 (GeV)

0.0 323 198 0.000110~113!
1.0 323 9900 0.241650~16!

1.6 323 14850 0.373147~13!

2.2 323 19000 0.493302~12!

2.8 323 24500 0.595483~11!

3.4 323 26950 0.672720~9! 2.28725~3! 0.506~13! 0.87~2!

4.2 643 14149 0.741862~4! 3.11582~2! 0.387~8! 1.14~2!

5.0 643 16164 0.786877~3! 3.93438~1! 0.314~5! 1.40~2!

6.0 643 25135 0.824783~3! 4.94870~2! 0.254~4! 1.73~2!
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the infinite-volume limit. Nevertheless, as mentioned in
Introduction, it has been proved by Zwanziger@16,18# that,
in this limit and in three dimensions, the gluon propagato
less singular at momentump50 than p21 and that, very
likely, it vanishes in the infrared limit.

IV. NUMERICAL SIMULATIONS

In Table I we report, for each pair (b,V), the parameters
used for the simulations.3 Overall, we have considered abo
4100 configurations. In all our runs we have started from
randomly chosen lattice gauge configuration. To therma
the gauge configuration$Um(x)% we use ahybrid overre-
laxed ~HOR! algorithm @25,27#; i.e., m microcanonical~or
energy-conserving! update sweeps are done, followed by o
standard local ergodic update~heat-bath sweep! of the lat-
tice. In order to optimize the efficiency of the heat-bath co
we implement two different SU~2! generators~methods 1
and 2 described in Appendix A of Ref.@28#, with hcuto f f
52). In our case we didnot try to find the best tuning for the
value ofm. By analogy with the four-dimensional case@7,8#
we setm5Ns /2.

For all the pairs (b,V), we evaluated theintegrated au-
tocorrelation time4 t int for the Wilson loops

Wl ,l[
1

3V

Tr

2 (
n.m

(
x

Um,n
l ,l ~x!, l 51,2,4,. . . ,Ns /2,

~16!

3Computations were performed on a SUN Ultra-1 and on a S
Ultra-2 at the Universita` di Roma ‘‘Tor Vergata,’’ where part of
this work has been done, and on an ALPHAstation 255 at the Z
Center in Bielefeld.

4For a definition see, for example,@29#. To evaluate the integrate
autocorrelation time we use an automatic windowing proced
@29# with two different window factors (6 and 15). We also emplo
a method@30# based on a comparison between the naive statis
error with a jackknife binning error@13#. In all cases we checked
that these three estimates are in agreement.
03450
e

s
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e

,

where

Um,n
l ,l ~x![Um~x!•••Um„x1~ l 21!em…Un„x1~ l 21!em…

•••Un„x1~ l 21!em1~ l 21!en…

3Um
21

„x1~ l 21!em1~ l 21!en…

•••Um
21

„x1~ l 21!en…Un
21

„x1~ l 21!en…

•••Un
21~x! ~17!

and, for Polyakov loops,

Pm[
Nm

V (
nÞm

(
xn

Tr

2 )
nm51

Nm

Um~x1nmem!, m51,2,3.

~18!

In all cases we obtainedt int&1. ~Note thatt int50.5 indi-
cates that two successive configurations generated in
Monte Carlo simulation are independent.! Since for all pairs
(b,V) and for all quantities the number of sweeps betwe
two consecutive configurations used for evaluating the glu
propagator~see Table I! is much larger than the correspon
ing integrated autocorrelation time, we may conclude t
these configurations are essentially statistically independ

For the numerical gauge fixing we use the so-calledsto-
chastic overrelaxationalgorithm @31,32#. In all our simula-
tions we stop the gauge fixing when the condition

1

V (
x,b

@~¹•A!b~x!#2<10212 ~19!

is satisfied.@See Eq.~5! for the definition of the lattice di-
vergence (¹•A)b(x) of the gluon field Am

b (x).# This is
equivalent@32# to fixing the minimizing functionalEU@g# up
to about 1 part in 1012. In the final gauge-fixed configuratio
we also evaluate@32#

Q[
1

9 (
n

1

Nn
(
xn ,b

@Qn
b~xn!2Q̂n

b#2@Q̂n
b#22, ~20!

N

-

e

al
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INFRARED BEHAVIOR OF THE GLUON PROPAGATOR . . . PHYSICAL REVIEW D60 034508
whereQ̂n
b[Nn

21(xn
Qn

b(xn), andQn
b(xn) has been defined in

Eq. ~6!. The quantityQ should be zero when the configur
tion is gauge fixed, and it is a good estimator of the qua
of the gauge fixing. As in Ref.@32#, we found that the sto-
chastic overrelaxation algorithm is very efficient in fightin
critical slowing down @29# and in making the quantitie
Qn

b(xn) constant, i.e.,Q'0. In particular, by averaging ove
all the gauge-fixed configurations, we findQ53.5(10)
31026. We also obtainQ<1028 for 69% of the gauge-fixed
configurations.

A. String tension and lattice spacing

For each couplingb we evaluate the average plaque
^W1,1& ~see Table II!. Results forb55.0 and 6.0 are in
agreement with the data reported in Table 15 of Ref.@25#. In
Fig. 1 we also plot̂ W1,1& as a function of the couplingb,
and we compare the numerical data with the leading stro
coupling expansionb/4 and weak-coupling expansio
exp(21/b). It is clear that the crossover region from stro
coupling to weak coupling occurs aroundb'3, in agree-
ment with Ref.@23#, and that our simulations range from th
strong-coupling region up to the weak-coupling one.

Following Ref. @25# we also evaluate, forb>3.4, the
tadpole-improved couplingb I[b^W1,1& ~see Table II!.
Then, by using the fit given in Eq.~67! of that reference
~which is valid for b*3.0), we calculate the string tensio
As in lattice units and the inverse lattice spacinga21 using
the input valueAs50.44 GeV~see the last two columns i
Table II!.

Finally, in Table III we report~for eachb>3.4) the lat-
tice spacing in fm, the largest lattice volumeVmax consid-
ered, the corresponding physical volume in fm3, and the
smallest nonzero momentum~in GeV! that can be considere

FIG. 1. Plot of the average plaquette^W1,1& as a function of the
coupling b. For comparison we also plot the leading stron
coupling expansionb/4 and weak-coupling expansion exp(21/b).
Error bars are not visible.
03450
y

g-

for that lattice. Thus, in this work, we can explore the infr
red behavior of the gluon propagator for momenta as sm
as p'110 MeV, in relatively large physical volumes, an
for couplings b above the strong-coupling region. Let u
notice that, if we compare the data for the string tension~in
lattice units! with data obtained for the SU~2! group in four
dimensions~see for example Table III in Ref.@33#!, then our
largest value ofb, namely, 6.0, corresponds tob'2.4 in the
four-dimensional case.

B. Gribov copies

In this work we do not consider the problem of Gribo
copies~see, for example,@7,8# and references therein.! This
is motivated by our finding in the study of the fou
dimensional case. In fact, in Refs.@7,8# we checked that, for
the SU~2! group in the four-dimensional case, the influen
of Gribov copies on the gluon propagator is of the order
magnitude of the numerical accuracy.~A similar result has
also been obtained for the Coulomb gauge@34#.! In fact,
from Table 2 in Ref.@8#, it is clear that data corresponding t
the minimal Landau gauge~absolute minima of the func
tional EU@g#) are in complete agreement, within statistic

FIG. 2. Plot of the lattice gluon propagatorD(k) @see Eqs.~8!
and~9!# as a function of the lattice momentump(k) @see Eq.~10!#
for lattice volumes V5163 (h) and V5323 (*), with k
5(0,0,kt), at b50. Error bars are one standard deviation.

TABLE III. For each couplingb>3.4 we report the lattice spac
ing in fm, the largest lattice volumeVmax, the corresponding physi
cal volume in fm3, and the smallest nonzero momentum that can
considered for that lattice~in GeV!.

b a (fm) Vmax a3Vmax (fm3) a21pmin (GeV)

3.4 0.226~6! 323 7.23 0.171
4.2 0.173~3! 643 11.13 0.112
5.0 0.140~2! 643 9.03 0.137
6.0 0.114~1! 643 7.303 0.170
8-5
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FIG. 3. Plot of the lattice gluon propagatorD(k) @see Eqs.~8! and ~9!# as a function of the lattice momentump(k) @see Eq.~10!# for
lattice volumesV5163 (h) andV5323 (*), with k5(0,0,kt), at ~top left! b51.0, ~top right! b51.6, ~bottom left! b52.2, ~bottom right!
b52.8. Error bars are one standard deviation.
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errors, with those obtained in a generic Landau gauge~local
minima of EU@g#). In particular, this seems to be the ca
even at small values of the couplingb, namely, in the strong-
coupling regime, where the number of Gribov copies
higher and their effects, if present, should be larger and m
easily detectable.

C. Z„2… symmetry

In Ref. @35# it was shown for the four-dimensional cas
that, atvery largeb, the data for the gluon propagator a
strongly affected by the brokenZ(2) symmetry. In particu-
lar, one can consider all the possible combinations of si
of the average Polyakov loops^Pm& @see Eq.~18!#, for a total
of 24516 different states. Then, if the expectation values
evaluated only over configurations belonging to the sa
state, the gluon propagator takes different values in differ
03450
s
re

s

e
e
nt

states@35#. Here we did the same analysis atb55.0 and
lattice volumeV5163 with 1000 configurations. Since w
work in three dimensions, there are 2358 possible states
i.e., combinations of the signs of the average Polyakov loo
We obtain that, also in this case, the gluon propagator
pends strongly on the state used for evaluating the expe
tion value. For example, fork5(0,0,1) thesmallest value
— D(k)51.50(3) — is obtained for the state characteriz
by positive Polyakov loops in the three directions, while t
largest value —D(k)51.68(3) — corresponds to the sta
characterized by negative Polyakov loops in the three dir
tions. The two values clearly differ by several standard
viations. A similar result is obtained when other momentak
are considered. This observation may explain why the d
for the gluon propagator are usually characterized by la
statistical fluctuations.
8-6
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FIG. 4. Plot of the lattice gluon propagatorD(k) @see Eqs.~8! and ~9!# as a function of the lattice momentump(k) @see Eq.~10!# for
lattice volumesV5163 (h), V5162332 (1), V5323 (*), V5322364 (s), andV5643 (L), with k5(0,0,kt), at ~top left! b53.4,~top
right! b54.2, ~bottom left! b55.0, ~bottom right! b56.0. Error bars are one standard deviation.
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V. INFRARED BEHAVIOR
OF THE GLUON PROPAGATOR

In Figs. 2–4 we plot the data for the gluon propagator@see
Eqs.~8! and~9!# as a function of the lattice momentump(k),
defined in Eq.~10!, for different lattice volumesV and cou-
plings b. Our data confirm previous results@7–10# obtained
in the strong-coupling regime for the four-dimensional cas5

the gluon propagator is decreasing asp(k) decreases, pro
vided thatp(k) is smaller than a valuepdec. Also, as in four
dimensions, the lattice size at which this behavior for
gluon propagator starts to be observed increases with

5In particular see Fig. 1 in Ref.@9#.
03450
:

e
he

couplingb. In particular, in the strong-coupling regime, th
propagator is clearly decreasing asp(k) goes to zero, even
for relatively small lattice volumes~see Figs. 2 and 3!. On
the contrary, forb>3.4 ~see Fig. 4!, this propagator is in-
creasing~monotonically! in the infrared limit for V5163,
while it is decreasing at the largest lattice volum
considered.

Let us also notice that, at high momenta, there are v
small finite-size effects, at all values ofb. The situation is
completely different in the small-momenta sector, as alre
stressed above. Moreover, the valueD(0) of the gluon
propagator at zero momentum decreases monotonicall
the lattice volume increases~see, for example, the caseb
55.0 in Fig. 4!. These results suggest a finite value forD(0)
in the infinite-volume limit, but it is not clear whether thi
8-7
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FIG. 5. Plot of the lattice gluon propagatorD(k) @see Eqs.~8! and ~9!# as a function of the lattice momentump(k) @see Eq.~10!# for
lattice volumeV5643, with k5(0,0,kt) (*) and k5(1,1,kt) (h) at ~left! b55.0, ~right! b56.0. Error bars are one standard deviatio
re
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ri
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-
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ize
value would be zero or a strictly positive constant. Therefo
the possibility of a zero value forD(0) in the infinite-volume
limit is not ruled out.

Finally, in Fig. 5 we plot ~for b55.0 and 6.0 andV
5643) the data for the gluon propagatorD(k) with the
choicek5(0,0,kt), together with the data fork5(1,1,kt).
In both cases the two sets of data seem to fall on a sin
curve; i.e., we see no sign of breaking of rotational inva
ance.

As said in Sec. II, with our definition of the gluon fiel
@see Eqs.~2! and ~3!# the quantitya21Am

b (x) approaches
03450
,

le
-

(1/2)g@A(cont)#m
b (x) in the continuum limita→0, where

@A(cont)#m
b (x) is the ~unrenormalized! conventional vector

potential. In the same limit, aD(k) approaches
g2D (cont)(k)/4, whereD (cont)(k) is the unrenormalized con
tinuum gluon propagator.@We recall that, in three dimen
sions,D (cont)(k) has mass dimension22 andg2 has mass
dimension 1.# In Fig. 6 we plot aD(k) ~in GeV21) as a
function of the momentaa21p(k) ~in GeV! for three differ-
ent values of the couplingb: 3.4 , 4.2, and 5.0. In all case
we consider the largest lattice volume available~see Table I!.
The data show good scaling in the region where finite-s
FIG. 6. Plot of the gluon propagatoraD(k) in physical units (GeV21) as a function of the momentaa21p(k) ~in GeV! with k
5(0,0,kt) andk5(1,1,kt), for b53.4 andV5323 (h), b54.2 andV5643 (*), b55.0 andV5643 (L). In the second figure only the
infrared regiona21p(k)&1 GeV is considered. Error bars are one standard deviation.
8-8
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FIG. 7. Plot of the dimensionless productp(k)D(k) as a function of the momentaa21p(k) ~in GeV! with k5(0,0,kt) and k
5(1,1,kt), for b53.4 andV5323 (h), b54.2 andV5643 (*), b55.0 andV5643 (L). In the second figure only the infrared regio
a21p(k)&1 GeV is considered. Error bars are one standard deviation.
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effects are negligible, i.e., in the limit of large momenta~see
Fig. 6!.6 On the contrary, the scaling is poorer in the infrar
limit as expected. Nevertheless, we can see that the g
propagator is decreasing for momentap&pdec and that the
value ofpdec ~in physical units! is practicallyb independent.
From our data@see Fig. 6~b!# we can setpdec'350 MeV.
Let us notice thatpdec corresponds to the mass scaleg1/4 in
a Gribov-like propagator.

Finally, for the same set of data we consider~see Fig. 7!
the plot of the dimensionless productp(k)D(k) as a function
of a21p(k). Since p(k)D(k) is decreasing fora21p(k)
&700 MeV, we can say that the gluon propagator is l
singular thanp21 in the infrared limit, in agreement with
Zwanziger’s prediction. We notice that the turnover val
pto'700 MeV is in good agreement with the result obtain
recently in four dimensions for the SU~3! group ~see Fig. 8
in Ref. @6#!.

VI. CONCLUSIONS

We think that our data for the gluon propagator are v
interesting. The prediction@16–19,21# of a propagator de-

6We have checked scaling, in the limit of large momenta, also
the data atb56.0. However, these data are not included in Fig
for clarity.
,

03450
on

s

y

creasing for momentap&pdec is clearly verified numerically
for several values of the couplingb, ranging from the strong-
coupling regime to the scaling region. Moreover, as in
four-dimensional case@7–9#, it appears that the lattice size a
which this behavior for the gluon propagator starts to
observed increases with the coupling. This requiremen
large lattice volumes could explain why a decreasing glu
propagator has never been observed in the scaling regio
the four-dimensional case@1–10#.

As mentioned above, our data in the strong-coupling
gime and in three dimensions are in qualitative agreem
with results obtained at smallb in the four-dimensional case
@7–10#. This strongly suggests to us that a similar analo
will hold — in the limit of large lattice volumes — for cou
plings b in the scaling region, leading to an infrared
suppressed gluon propagator also in the four-dimensio
case.
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