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We evaluate numerically the three-momentum-space gluon propagator in the lattice Landau gauge, for
three-dimensional pure-$P) lattice gauge theory with periodic boundary conditions. Simulations are done for
nine different values of the coupling, from =0 (strong couplingto 8=6.0(in the scaling regiopn and for
lattice sizes up t&/=64°. In the limit of large lattice volume we observe, in all cases, a gluon propagator
decreasing for momenta smaller than a constant vajyg From our data we estimafg.-~350 MeV. The
result of a gluon propagator decreasing in the infrared limit has a straightforward interpretation as resulting
from the proximity of the so-called first Gribov horizon in the infrared directi¢88€556-282099)04713-X]

PACS numbes): 11.15.Ha, 12.38.Aw

I. INTRODUCTION proved that, in the infinite-volume limit, the “gluon propa-
gator” D(H,p) goes to zero ap—0 for almost every H

The infrared behavior of the gluon propagator in the lat-Here H should be interpreted as the strength of a spatially
tice Landau gauge has been the subject of several numericalodulated magnetic field coupled to the gluon figlg(x),
studies[1-10. In fact, although this propagator is a non- and the standard gluon propagator is obtainedHer0. A
gauge-invariant quantity, the study of its infrared behaviorsimilar result holds in three dimensions: one obtdit, 18
provides a powerful tool for increasing our understanding ofthat, in the infinite-volume limit, the gluon propagator must
QCD and for gaining insight into the physics of confinementbe less singular thap~! as p—0 and that, very likely, it
in non-Abelian gauge theorigsee, for example[11]). In vanishes in the infrared limit.
particular, the infrared behavior of the gluon propagator can A gluon propagator vanishing in the infrared limit was
be directly related12] to the behavior of the Wilson loop at also found — in four dimensions — by Gribdé7]. More
large separations and to the existence of an area law. precisely, he obtained the expressii(p*+ v), where the

On the lattice, the Landau gauge condition is imposednass scaley’* arises when the configuration space is re-
[1,13] by finding a gauge transformation which brings thestricted to the regiorf). This propagator agrees with the
functional&,[g], defined in Eq(4) below, to a minimum. A~ zeroth-order perturbative predictign 2 at large momenta,
lattice configuration satisfying this minimizing condition be- but gives a null propagator gi=0. The mass scale**
longs to the regioif) of transverse configurations, for which marks the transition point between the perturbative and the
the Faddeev-Popov operator is non-negafit4—16. This nonperturbative regimes. A propagator that is a generaliza-
region is delimited by the so-called first Gribov horizon, de-tion of the one obtained by Gribov has also been introduced
fined as the set of configurations for which the smallest nonl" Ref.[19] as an ansatz for a nonperturbative solution of the
trivial eigenvalue of the Faddeev-Popov operator is zerodluon Dyson-Schwinger equatidDSE). o
(The Faddeev-Popov operator has a trivial null eigenvalue, L€t us notice that a gluon propagator _vamshu:g in the
corresponding to a constant eigenvegtor. mfrargd limit isin complete contradiction vy|th tmaf sin-

The restriction of the configuration space to the regibn 9ularity obtained when the gluon DSE &pproximately
implies arigorous inequality [14—16 for the Fourier com- Solved in the infrared limif11,20. However, a recent study
ponents of the gluon field,,(x). From this inequality, which [21] has sh_owr_1 that this singularity is obtained only if the
is a consequence of the positiveness of the Faddeev-Pop&f0st contributions to the gluon DSE are neglected. In fact,
operator only, it follows that the regiof is bounded by a whe_n thes_e cont.r|but|ons_are |nclluded, t_he_gluon propagator
certain ellipsoid®. This bound implies the proximity of the Vanishes in the infrared lim{21], in qualitative agreement
first Gribov horizon in infrared directions and the consequentVith Refs.[16-18. , _
suppression of the low-momentum components of the gauge In this paper we present the first numerical stu_dy of the
field, a result already noted by Gribov in Rél7]. This Infrared behavior of the gluon propagator in three
bound also causes a strong suppression of the gluon propgl_mensmnsl. As explained in Refs[23-2§, non-Abelian
gator in the infrared limit(i.e., for momentump—0). In gauge t_heorles in three dimensions are smllar tp their four-
fact, Zwanziger provefi16,1§ that, in four dimensions and d!mens!onal counterparts, and results ob_talned in the three-
in the infinite-volume limit, the gluon propagator is less sin-dimensional case can teach us something about the more
gular thanp~2 in the infrared limit and that, very likely, it realistic four-dimensional theories. Of course, the advantage

doesvanish in this limit. More precisely, in Ref18] it was of using a three-dimensional lattice is the possibility of simu-
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lating lattice sizes larger than those used in the fouryeg Uge R Uen® and US+G~G=1. Notice that in Eq.
dimensional case. This is _pamcularly important in Fhe study(l) the lattice spacing is necessary in order to make the
of the gluon propagator since Zwanziger's prediction of anyciion 5[ U] dimensionless; in fact, in the three-dimensional

infrared-suppressed gluon propagator is valid only in thecase[ZS—ZE], the couplingg? has dimension of mass, and in

infinite-volume limit. _ _ order to obtain a dimensionless lattice coupling we have to
We recall that in some recent numerical studigsfour setB=4/(ag?)

dimension$ [5,6] a sensible change in the infrared behavior
of the gluon propagator has been observed for momentg
smaller than a turnover valug,,, in agreement with the
prediction of a gluon propagator less singular tparf in the 1 R ~
infrared limit. Also, the numerical data obtained in Rjef] A (x)= E[Uﬂ(x)—UL(x)]inM(x)-o. (2
have been successfully fitted by a Gribov-like form{4a.
Finally,_ in Refs_.[7—9]_ we h_ave observed — f_or the _$2) We also define
group, in four dimensions, in the strong-coupling regime and
in the limit of large lattice volura — a gluon propagator Tr
decreasingas the momentum goes to zero. A similar result AL (X)= E[A#(X)Ubk U (x), <)
has also been obtained recentho] for the SU3) group in
duienchod cases. Let 46 notice that Zwanziger’s predictiont ™o e 15 Paull mix. Note thai A, () approaches
. cont)1b : : s
[16,18 for the gluon propagator arg independentin fact, (SL/Z)g[A( )]"(X) in_the continuum limit, ~where
they are derived only from the positiveness of the Faddee
Popov operator when the lattice Landau gauge is impose(?.
Thus, results in the strong-coupling regiiie., 3—0) are a
valid test of these predictions. Nevertheless, it is important t
extend this result to higher values Bf possibly up to the 3
: . . 1 Tr
s_calmg reglon._Of course, g increases, one r_1eeds to con- &ulgl=1- v > ?[g(x)UM(x)gT(ereM)],
sider larger lattice sizes in order to probe the infrared behav- w=1 x
ior of the gluon propagator. Moreover, as said above, the (4)
prediction we want to test applies only in the infinite-volume ) . o
limit. In four dimensions it was founfi7—9] that the lattice Whereg(x) e SU(2) are site variables, and=N;N, is the
size at which an infrared-decreasing gluon propagator starfttice volume.(HereNs is the number of lattice sites in the
to be observed increases with the coupling. This makes praéWo spatial directions, anll, is the number of lattice sites in
tically unfeasible, with present computational resources, tdhe time direction. If the configuration{U ,(x)} is a station-
study numerically the infrared behavior of the gluon propa-ary point OJ the functionaty[g], then[13] the lattice diver-
gator in the four-dimensional case and at valuegah the  gence ofA,(x) is null, namely,
scaling region. Our hope is that in this work, by studying the 3
three-dimensional case, we can consider lattice volumes that bron_ b b .
are large enough to allow a decreasing gluon propagator to (V-A) (x)=”2:l [AL()—AL(x—e,)]=0, ¥V xb.
be observed not only in the strong-coupling regime but also (5)
in the scaling region.

We define the gauge field ,(x), which belongs to the
U(2) Lie algebra, as

\I[_A(CO“‘)]Z(X) is the (unrenormalizefl conventional vector
otential.

In order to fix the lattice Landau gauge we look for a local
6ninimumz of the functional[1,13]

This is the lattice formulation of the usu@ontinuun Lan-
dau gauge-fixing condition. By summing E(h) over the
components,, of x with u# v, for fixed », and using the
We consider a standard Wilson action for @Ulattice  periodicity of the lattice, it is easy to che¢k] that if the

II. DEFINITIONS AND NOTATION

gauge theory in three dimensions: Landau gauge-fixing condition is satisfied, then the quanti-
ties
3
4 1 Tr
Ul=—3 1--[U, (XU, (x+e
W= gz, > l 2 I Ocre) QL= I Ax) ©
nFEv Xy
XU, H(x+ ey)U,fl(X)]], (1)  are constant, i.e., independentxgf.

whereU ,(x) e SU(2) are link variablesg is the bare cou- , _ _
pling constanta is the lattice spacing, arej, is a unit vector Here we do not consider the problem of searching forahgo-

conditions. For the matrice e SU(2) we use the param- minimal Landau gauggl8]. In fact, as stressed in the Introduction,
L. _ TN . . . the prediction of an infrared-suppressed gluon propagator is valid
etrizationU=U,l+iU + o, wherel is the 2<2 identity ma- ¢4 any configuration in the regioft, i.e., for local as well absolute

trix, the components of=(o!,02,¢°%) are the Pauli matri- minima of the functionaky[g].
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INFRARED BEHAVIOR OF THE GLUON PROPAGATOR ...

Ill. GLUON PROPAGATOR ON THE LATTICE

The lattice space-time gluon propagator is given by

PHYSICAL REVIEW B0 034508

TABLE I. The pairs (8,V) used for the simulations, the number
of configurations, the number of HOR sweeps used for thermaliza-
tion, the number of HOR sweeps between two consecutive configu-
rations used for evaluating the gluon propagator, and the parameter
Pso Used by the stochastic overrelaxation algorithm.

DR (x—y)=(AL0AUY)). (7)
B \% Configurations Thermalization Sweepspg,
Elongr;cg gﬁgﬁntum space we can use form@laa in Ref. 00 16 200 4 5> 085
0.0 32 100 4 2 090
1.0 16 200 1100 100 0.84
1 G 1.0 32 100 1100 100  0.93
D(0)=gy > AN ), 8
mb [ X 16 16 200 1650 150  0.81
1.6 32 100 1650 150 0.83
2 2.2 16 200 2200 200 0.75
D(k)EW <HZ Az(x)cogzwk-x) 2.2 32 100 2200 200 0.76
u,b X
2 2.8 16 200 2750 250 0.72
+ 2 AZ(X)Sin(Zﬂ'k-X) ]> (9) 2.8 32 100 2750 250 0.75
* 34 16 200 3025 275 0.69
Hereu goes from 1 to 3, ank has componentsk( ,k, ,k;). 34 32 100 3025 25 072
In our simulations we consider the valuedNs=k/Ns=0,1 42 16 200 3300 300 066
andk;N;=0,1, ... N;—1, and the momentum-space gluon 4o 33 100 3300 300 0.70
propagator is studied as a function of the magnitude of the - 64 56 3300 300 072
lattice momentum
5.0 16 1000 3575 325 0.63
50 16x32 200 3575 325 0.65
5.0 32 170 3325 325 0.68
p(k=1 > pi(k)=24/ X sirf(wk,). (100 50 32x64 100 3575 325 065
n=1 p=1 5.0 64 54 2275 325  0.69
If we define the momentum-space gluon field as 6.0 16 200 3850 350 061
6.0 32 150 3350 350 0.67
6.0 64 97 3850 350 0.71
Ab(k)=2 Ab()exd2mi(k-x+k,/2)], (1D
X
If k#(0,0,0), weobtain that only two of the three Lorentz
then Egs(8) and(9) can be rewritten as components oA®(k) — and therefore oA°(x) — are inde-
pendent. This explains the factor of(fistead of 9) in Egs.
(9) and(13).
1 ~ Let us also note that the zero three-momentum gluon
=_ b 2
D(0)= oV ;) <[Au(0)] ) (12 propagatoD (0) can be written as
v by2
. D<0>:§2b ((AD)3), (15)
~ ~ M
D(k)=5y 2 (ALKAL(-K). (13
b

Notice thatD(0) in Eq.(8) [or in Eq.(12)] is not given by
D(k) in Eq. (9) [or in Eq.(13)] at k=0. The difference is

WhereAszvflEfoL(X) is the zero-momentum component
of the gluon fieIdAZ(x). Notice that a nonzero value for the
constantsﬂ is a lattice artifact related to the use of periodic

due to the Landau gauge condition — the continuumlikeboundary conditions and to the finiteness of the volume. In
condition as in Eq(5) — which in momentum space reads fact, after the Landau gauge condition is imposed, these con-

3
2 p.(KAS(K)=0 V k,b. (14)
e

stants are identically null — even on a finite lattice — if free
boundary conditions are considergzb], while in the peri-
odic case they must go to zero in the infinite-volume limit
[15,14. Of course, because of the volume factor in Edp),
the latter result does not imply th&t(0) should be zero in
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TABLE Il. For each couplings we report the value of the average plaqueité, ;), together with the
volumeV and the number of HOR sweeps used for the analysis. Also3$e8.4, we report the tadpole-
improved couplingg, , the string tension/o in lattice units, and the inverse lattice spacig® in GeV.

Error bars for the string tension and the inverse lattice spacing come from propagation of errors. Error bars
for (Wy 1) are one standard deviation, evaluated taking into account the value of the integrated autocorrela-
tion time Tim,wmfor the plaquette; namely, the variance is multiplied byngwl‘l[see Eq(3.7) in Ref.[29]].

B Y Sweeps (Wyp) B Jo a ! (Gev)
0.0 32 198 0.00011(13

1.0 32 9900 0.24165(16)

1.6 32 14850 0.37314@73)

2.2 32 19000 0.4933022)

2.8 32 24500 0.5954831)

3.4 37 26950 0.67272®) 2.28725%3) 0.50613) 0.872)
4.2 64 14149 0.74186@) 3.115822) 0.3878) 1.142)
5.0 64 16164 0.78687(B) 3.934381) 0.3145) 1.4012)
6.0 64 25135 0.82478®) 4.9487@2) 0.2544) 1.732)

the infinite-volume limit. Nevertheless, as mentioned in thewhere
Introduction, it has been proved by Zwanzidé6,1§ that, .
in this limit and in three dimensions, the gluon propagator isY,;,,(X)=U ,(X)- - -U ,(x+ (I =1)e )U (x+(I-1)e,)
less singular at momentup=0 thanp~! and that, very B B
likely, it vanishes in the infrared limit. U+ (=De,+(1-1e,)
XU Mx+(I-1)e,+(I-1)e,)
IV. NUMERICAL SIMULATIONS

: U (- De)U, Hx+ (1= Dey)
In Table | we report, for each paiB(V), the parameters

used for the simulationsOverall, we have considered about . -U;l(x) (17
4100 configurations. In all our runs we have started from a

randomly chosen lattice gauge configuration. To thermalizé&nd, for Polyakov loops,

the gauge configuratiofU ,(x)} we use ahybrid overre- \ _
laxed (HOR) algorithm [25,27]; i.e., m microcanonical(or _ Ny _
energy-conservingipdate sweeps are done, followed by one Pu= v V;M XE _ngl Uuxtnge,), p=1,2,3.
standard local ergodic updatheat-bath sweegpof the lat- (18

tice. In order to optimize the efficiency of the heat-bath code,

we implement two different S(2) generatorsimethods 1 In all cases we obtained,;<1. (Note thatr;,;=0.5 indi-

and 2 described in Appendix A of Reff28], with h.,o¢¢  Cates that two successive configurations generated in the
=2). In our case we didottry to find the best tuning for the Monte Carlo simulation are independergince for all pairs
value ofm. By analogy with the four-dimensional caggg]  (8,V) and for all quantities the number of sweeps between

we setm=N,/2. two consecutive configurations used for evaluating the gluon
For all the pairs 8,V), we evaluated théntegrated au- Propagator(see Table)lis much larger than the correspond-
tocorrelation timé ,,, for the Wilson loops ing integrated autocorrelation time, we may conclude that

these configurations are essentially statistically independent.
1T E 2 ¥ _ For the numerical gauge fixing we use the so-cafita
WIJ=3_V 2 =5 U, 1=1,2,4,... Ns/2, chastic overrelaxatioralgorithm[31,32. In all our simula-
(16) tions we stop the gauge fixing when the condition

1
v > [(V-APx]P<101 (19
3Computations were performed on a SUN Ultra-1 and on a SUN xb

Ultra-2 at the Universitadi Roma “Tor Vergata,” where part of . e N . .
this work has been done, and on an ALPHAstation 255 at the ZiFIS satisfied]See Eq(5) for the definition of the lattice di

Center in Bielefeld vergence ¥-A)°(x) of the gluon field Az(x).] This is
“For a definition see, for exampli29]. To evaluate the integrated €0Uivalen{32] to fixing the minimizing functionaty,[g] up
autocorrelation time we use an automatic windowing procedurd® @bout 1 partin 18. In the final gauge-fixed configuration

[29] with two different window factors (6 and 15). We also employ W€ also evaluat¢32]

a method 30] based on a comparison between the naive statistical 1 1

error with a jackknife binning errof13]. In all cases we checked Q== Z = Z [QB(XV)_QB]Z[QBTZ' (20)
that these three estimates are in agreement. 99 N, X, b
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1.0 ———— — — e TABLE lll. For each coupling3= 3.4 we report the lattice spac-
[ ] ing in fm, the largest lattice volum¥é,,,,, the corresponding physi-
cal volume in fni, and the smallest nonzero momentum that can be

08— o B considered for that latticén GeV).

ﬂ a (fm) Vmax a3Vma>< (fma) a_lpmin (GEV)

0.6 - o _ 34 0.2266) 328 7.2 0.171

1 4.2 0.1733)  64° 11.28 0.112
5.0 0.1402)  64° 9.0° 0.137
6.0 0.1141) 64 7.3C 0.170

<Wyy >
a

0.4

]
|

1 for that lattice. Thus, in this work, we can explore the infra-
7 red behavior of the gluon propagator for momenta as small
asp~110 MeV, in relatively large physical volumes, and
1 for couplings 8 above the strong-coupling region. Let us
ootf—— v L notice that, if we compare the data for the string tengian
0 2 4 & 8 lattice unitg with data obtained for the S@) group in four
B dimensiongsee for example Table Il in Ref33]), then our
FIG. 1. Plot of the average plaquetté/; ;) as a function of the Iarges_t Value of3, namely, 6.0, corresponds &~2.4 in the
coupling 8. For comparison we also plot the leading strong- four-dimensional case.
coupling expansiorB/4 and weak-coupling expansion exg/3).
Error bars are not visible. B. Gribov copies
R In this work we do not consider the problem of Gribov
whereQ)=N, =, Q)(x,), andQ}(x,) has been defined in copies(see, for examplé7,8] and references therejriThis
Eq. (6). The quantityQ should be zero when the configura- is motivated by our finding in the study of the four-
tion is gauge fixed, and it is a good estimator of the qualitydimensional case. In fact, in Refg,8] we checked that, for
of the gauge fixing. As in Ref32], we found that the sto- the SU_2) group in the four-dimensional case, the influence
chastic overrelaxation algorithm is very efficient in fighting of Gribov copies on the gluon propagator is of the order of
critical slowing down[29] and in making the quantities Magnitude of the numerical accurad similar result has
QP(x,) constant, i.e.Q~0. In particular, by averaging over also been obtained for the Coulomb galgd].) In fact,
all the gauge-fixed configurations, we fin@=3.5(10) from Table 2 in Ref[8], it is clear that data corresponding to

X 107, We also obtairQ< 108 for 69% of the gauge-fixed the minimal Landau gaugébsolute minima of the func-
configurations. tional £,[g]) are in complete agreement, within statistical

0.2

A. String tension and lattice spacing . I

For each coupling we evaluate the average plaquette
(Wyy) (see Table I. Results for3=5.0 and 6.0 are in
agreement with the data reported in Table 15 of [R&5]. In
Fig. 1 we also plofW, ;) as a function of the coupling,
and we compare the numerical data with the leading strong-
coupling expansionB/4 and weak-coupling expansion
exp(—1/p). It is clear that the crossover region from strong
coupling to weak coupling occurs arougk3, in agree- i T
ment with Ref[23], and that our simulations range from the L I
strong-coupling region up to the weak-coupling one. ¥

Following Ref.[25] we also evaluate, foj3=3.4, the 018 -
tadpole-improved couplingB,=B(W; ;) (see Table I\ ¥
Then, by using the fit given in Eq67) of that reference |
(which is valid for 8=3.0), we calculate the string tension .
Jo in lattice units and the inverse lattice spacig using
the input value\/c—r=0.44 GeV(see the last two columns in
Table 1I).

Finally, in Table Il we report(for each=3.4) the lat- FIG. 2. Plot of the lattice gluon propagatbr(k) [see Eqs(8)
tice spacing in fm, the largest lattice volurvg,,, consid-  and(9)] as a function of the lattice momentupgk) [see Eq(10)]
ered, the corresponding physical volume infrand the for lattice volumes V=163 (Od) and V=32 (*), with k
smallest nonzero momentufim GeV) that can be considered =(0,0k,), at 83=0. Error bars are one standard deviation.

0.2 —

I . —
0 1 2

p(k)
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0.25 — = 0.30 —

0.25 -—%

§ 0.20 — §
s B
0.20 |—
015~ F _| I
1 1
| . . | o —J l |
0 1 2 0 1 2
p(k) p(k)
T T ™ 0.7 — I
]
R S I |
04— :Al; — 0.6 -— ..:
= F | 2 0.5:— :E I _
= £ : I

sl 1 :

% 0.3
P I N R N B i I R N
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
p(k) p(k)
FIG. 3. Plot of the lattice gluon propagatbr(k) [see Eqs(8) and(9)] as a function of the lattice momentuptk) [see Eq(10)] for
lattice volumesv=16° (0) andV=32 (*), with k=(0,0k,), at(top lef)) B=1.0, (top right B=1.6, (bottom lefy) B=2.2, (bottom righ}
[=2.8. Error bars are one standard deviation.

L
,ta*_l‘

errors, with those obtained in a generic Landau galmml  states[35]. Here we did the same analysis gt=5.0 and

minima of £,[g]). In particular, this seems to be the caselattice volumeV=16% with 1000 configurations. Since we

even at small values of the coupligg namely, in the strong- work in three dimensions, there aré=28 possible states,

coupling regime, where the number of Gribov copies isj.e. combinations of the signs of the average Polyakov loops.

higher and their effects, if present, should be larger and morgye obtain that, also in this case, the gluon propagator de-

easily detectable. pends strongly on the state used for evaluating the expecta-
tion value. For example, fok=(0,0,1) thesmallest value

C. Z(2) symmetry — D(k)=1.50(3) — is obtained for the state characterized

In Ref. [35] it was shown for the four-dimensional case by positive Polyakov loops in the three directions, while the
that, atvery large 8, the data for the gluon propagator are largest value —D (k) =1.68(3) — corresponds to the state
strongly affected by the brokes(2) symmetry. In particu- characterized by negative Polyakov loops in the three direc-
lar, one can consider all the possible combinations of signgons. The two values clearly differ by several standard de-
of the average Polyakov loog® ) [see Eq18)], for a total  viations. A similar result is obtained when other momekta
of 24=16 different states. Then, if the expectation values arere considered. This observation may explain why the data
evaluated only over configurations belonging to the samdor the gluon propagator are usually characterized by large
state, the gluon propagator takes different values in differenstatistical fluctuations.
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0.8
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% ; ; |
t 2
§ |
L 5
a3 [ ‘ . i
0.0 0.5 1.0
p(k)
[ T j
. ]
L3 .
[ k3
L 3
Q B
|- ﬁ M
| | R U R
0.0 0.2 0.4 0.6 0.8
p(k)

FIG. 4. Plot of the lattice gluon propagatbr(k) [see Eqs(8) and(9)] as a function of the lattice momentuptk) [see Eq(10)] for
lattice volumesy=16° (), V=162x32 (+), V=32 (*), V=32X64 (O), andV=64 (¢ ), with k=(0,0 k,), at(top lef) 3=3.4, (top
right) 8=4.2, (bottom lef) 8=5.0, (bottom righ} 3=6.0. Error bars are one standard deviation.

In Figs. 2—4 we plot the data for the gluon propagasee

V. INFRARED BEHAVIOR
OF THE GLUON PROPAGATOR

Egs.(8) and(9)] as a function of the lattice momentum(k),

defined in Eq(10), for different lattice volume® and cou-
plings 8. Our data confirm previous resultg—10] obtained
in the strong-coupling regime for the four-dimensional case:
the gluon propagator is decreasing @%) decreases, pro-
vided thatp(k) is smaller than a valupgec. Also, as in four
dimensions, the lattice size at which this behavior for th
gluon propagator starts to be observed increases with tr}(;r

SIn particular see Fig. 1 in Ref9].

Cst

coupling 8. In particular, in the strong-coupling regime, this
propagator is clearly decreasing ja&k) goes to zero, even
for relatively small lattice volumessee Figs. 2 and)30n
the contrary, for8=3.4 (see Fig. 4, this propagator is in-
creasing(monotonically in the infrared limit for V=16°,

while
considered.

it is decreasing at the

largest lattice volume

Let us also notice that, at high momenta, there are very
small finite-size effects, at all values @f The situation is
completely different in the small-momenta sector, as already

ressed above. Moreover, the vall€0) of the gluon
opagator at zero momentum decreases monotonically as

the lattice volume increasegsee, for example, the cage
=5.01in Fig. 4. These results suggest a finite value Bg0)
in the infinite-volume limit, but it is not clear whether this
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FIG. 5. Plot of the lattice gluon propagatbr(k) [see Eqs(8) and(9)] as a function of the lattice momentuptk) [see Eq.(10)] for
lattice volumeV =643, with k=(0,0k,) (*) andk=(1,1k,) (O) at (left) 8=5.0, (right) 8=6.0. Error bars are one standard deviation.

value would be zero or a strictly positive constant. Therefore(l/Z)g[A(CO”‘)] (x) in the continuum limita—0, where

the possibility of a zero value f@(0) in the infinite-volume

limit is not ruled out.

Finally, in Fig. 5 we plot(for 8=5.0 and 6.0 andV
=64°) the data for the gluon propagat@(k) with the
choicek=(0,0k,), together with the data fok=(1,1k,).

potennal

In

the

same

[ACMT0(x) is the (unrenormalizefl conventional vector
limit, aD(Kk)
g2D(c°"(k)/4, whereD(¢°"Y(k) is the unrenormalized con-
tinuum gluon propagatofWe recall that, in three dimen-
sions,D(¢°"(k) has mass dimensior 2 andg? has mass

approaches

In both cases the two sets of data seem to fall on a singldimension 1} In Fig. 6 we plotaD(k) (in GeV ') as a
curve; i.e., we see no sign of breaking of rotational invari-function of the momenta*p(k) (in GeV) for three differ-
ent values of the coupling: 3.4 , 4.2, and 5.0. In all cases
As said in Sec. Il, with our definition of the gluon field we consider the largest lattice volume availafslee Table)l
[see Egs.(2) and (3)] the quantitya™ 1Ab(x) approaches The data show good scaling in the region where finite-size

ance.

1.2

) % =
a r ; a
© sl ﬁ% B ©
I % ?% 06
Y i,
%’&?&% | 0.4
0.0 | ]
0 1 2
a™ p(k)

0.0

05
a™' p(k)

1.0

FIG. 6. Plot of the gluon propagat@D(k) in physical units (GeV?) as a function of the momenta ‘p(k) (in GeV) with k
=(0,0k,) andk=(1,1k,), for 8=3.4 andv=32* (), B=4.2 andV=64° (*), 8=5.0 andv=64° (). In the second figure only the
infrared regiona™1p(k)<1 GeV is considered. Error bars are one standard deviation.
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FIG. 7. Plot of the dimensionless produptk)D(k) as a function of the momenta ‘p(k) (in GeV) with k=(0,0k,) and k
=(1,1k,), for 8=3.4 andV=32 (O), B=4.2 andV=64° (*), B=5.0 andV=64° (¢ ). In the second figure only the infrared region
a~lp(k)<1 GeV is considered. Error bars are one standard deviation.

effects are negligible, i.e., in the limit of large momerKsae creasing for momentp<pgy..is clearly verified numerically
Fig. 6).° On the contrary, the scaling is poorer in the infraredfor several values of the coupling ranging from the strong-
limit as expected. Nevertheless, we can see that the gluagoupling regime to the scaling region. Moreover, as in the
propagator is decreasing for momeme pye. and that the  four-dimensional casgZ—9), it appears that the lattice size at
value ofpyec (in physical unitgis practicallys independent.  which this behavior for the gluon propagator starts to be
From our datdsee Fig. 60)] we can sefpyec~350 MeV.  gpserved increases with the coupling. This requirement of
Let us notice thapge corresponds to the mass scafé’in  |arge lattice volumes could explain why a decreasing gluon

a Gribov-like propagator. , _ propagator has never been observed in the scaling region for
Finally, for the same set of data we consideee Fig. 7 the four-dimensional cagd—10].

the plot of the dimensionless prodyxtk) D (k) as a function As mentioned above. our data in the strona- ; }
~1 ; . y -1 , g-coupling re

(3730 pM(kzl Since p(k)D(kr? |shdec|reasmg fora™"p(k) esJime and in three dimensions are in qualitative agreement

I~ eV, we can say that the gluon propagator is 1€sg i, reqits obtained at small in the four-dimensional case

singular thanp™?! in the infrared limit, in agreement with _ : .
Zwanziger’s prediction. We notice that the turnover value[7. 10 Th|s_ strongly.suggests to us that a similar analogy
will hold — in the limit of large lattice volumes — for cou-

Pio=~700 MeV is in good agreement with the result obtamedplings 8 in the scaling region, leading to an infrared-

irr?csggly[/el]r; four dimensions for the $8) group (see Fig. 8 suppressed gluon propagator also in the four-dimensional
e case.

VI. CONCLUSIONS

We think that our data for the gluon propagator are very ACKNOWLEDGMENTS
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