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We present a study of the deconfinement phase transition of one-flavor QCD using the multiboson algo-
rithm. The mass of the Wilson fermions relevant for this study is moderately large and the non-Hermitian
multiboson method is a superior simulation algorithm. Finite-size scaling is studied on lattices of size 83

34, 12334, and 16334. The behaviors of the peak of the Polyakov loop susceptibility, the deconfinement
ratio, and the distribution of the norm of the Polyakov loop are all characteristic of a first-order phase transition
for heavy quarks. As the quark mass decreases, the first-order transition gets weaker and turns into a crossover.
To investigate finite-size scaling on larger spatial lattices we use an effective action in the same universality
class as QCD. This effective action is constructed by replacing the fermionic determinant with the Polyakov
loop identified as the most relevantZ(3)-symmetry-breaking term. Higher-order effects are incorporated in an
effectiveZ(3)-breaking fieldh, which couples to the Polyakov loop. Finite-size scaling determines the value
of h where the first-order transition ends. Our analysis at the end pointhep indicates that the effective model
and thus QCD are consistent with the universality class of the three-dimensional Ising model. Matching the
field strength at the end pointhep to thek values used in the dynamical quark simulations we estimate the end
point kep of the first-order phase transition. We findkep;0.08 which corresponds to a quark mass of about 1.4
GeV. @S0556-2821~99!05313-8#

PACS number~s!: 12.38.Gc, 11.15.Ha, 12.38.Mh, 64.60.Fr
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I. INTRODUCTION

Understanding the properties of quantum chromodyna
ics ~QCD! under extreme conditions of high temperatu
and/or pressure is a challenging problem and was consid
long ago. Polyakov@1# and Susskind@2# predicted that QCD
will undergo a deconfinement phase transition from norm
hadronic matter to a quark-gluon plasma when the temp
ture is increased. Such a phase transition is believed to h
occurred, in the opposite direction, 1ms after the big bang
and its nature is therefore important in astrophysics. Th
retical information on the deconfinement phase transition
also become important as planned ultrarelativistic exp
ments will soon start at the BNL Relativistic Heavy Ion Co
lider ~RHIC!, and later on at the CERN Large Hadron Co
lider ~LHC!. In these experiments the temperature reac
will be of the order of 600 MeV and, at this temperature, o
is still dealing with a strongly interactive system. Thus latti
QCD provides the most suitable nonperturbative approac
study such phenomena using directly the QCD Lagrangi

The zero-flavor sector of the theory~quenched! has been
studied extensively and it is established that there is a fi
order deconfinement phase transition@3# with the critical
temperature determined in the continuum limit@4–8#. State-
of-the-art lattice calculations are now being done includ
pair creation. For two flavors (Nf52) there are simulations
both with Wilson@9# and staggered fermions@9,10# whereas
for a greater number of flavors the simulations are usu
performed with the standard Wilson action@10,11#. On the
0556-2821/99/60~3!/034504~13!/$15.00 60 0345
-

ed

l
a-
ve

o-
s

i-

d
e

to
.

t-

g

ly

other hand, one-flavor QCD has been largely ignored~early
exceptions are given in Ref.@12#!, perhaps because of algo
rithm difficulties, although it has interesting properties.
the usual analysis the continuumNf51 theory is expected to
have no chiral phase transition@13# because of the anoma
lous breaking of the U~1! chiral symmetry. We note, how
ever, the unexpected results of a study of one-flavor s
gered fermions@14# which may imply a chiral phase
transition. The purpose of this work is to fill this gap b
investigating the deconfinement phase transition of o
flavor QCD.

A model that plays an important role in our understand
of the phase diagram in QCD is the three-state Potts mod
three dimensions. It has aZ(3) symmetry and the spontane
ous breakdown of this symmetry is expected to drive
deconfinement phase transition like it does in quenc
QCD. In the presence of an external field theZ(3) symmetry
is explicitly broken just like the fermionic determinan
breaksZ(3) symmetry in QCD. In fact it was shown b
DeGrand and DeTar@15# that, at high temperature and heav
quark mass, QCD reduces to the three-state Potts model
external field. From its phase diagram@15#, shown schemati-
cally in Fig. 1, we observe that the first-order phase tran
tion gets weaker as the strength of the external fieldh in-
creases and ends at some critical valuehep with a second-
order transition. Beyond this point a crossover behavio
seen. Whereas Fig. 1 gives us a good starting point for
expected qualitative behavior for QCD with dynamic
quarks, the quantitative question of the existence of such
©1999 The American Physical Society04-1
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CONSTANTIA ALEXANDROU et al. PHYSICAL REVIEW D 60 034504
end point and its location can only be answered after a
tailed calculation.

In the real world of two light quarks and one heavy qua
the phase diagram depends crucially on the size of the l
and heavy quark masses. Therefore it is usual to conside
phase diagram of three-flavor QCD in the mass planems vs
mu,d . The mass point~0,0! is the chiral limit with a first-
order transition. Pure gauge is the opposite limit of infin
quark masses where a first-order transition is also es
lished. As one moves away from the infinite-mass~or hop-
ping parameterk50) limit the first-order transition is ex
pected, like in the Potts model, to persist but to beco
weaker and eventually to disappear, as the quark mas
reduced. This presumed robustness is based on the exp
tion that an infinitesimal increase ink does not cause th
finite gap in the thermodynamical observables to change
continuously but smoothly. That a first-order transition is
general robust is supported from our experience with s
systems where a first-order transition remains first order
small magnetic fields. In this work we seek to determine
point on the line (mu,d5`,ms) where the first-order transi
tion ends as well as the universality class of the second-o
phase transition at this end point. It turns out that the relev
quark masses for this study are relatively large and there
the multiboson algorithm is a very efficient method for sim
lating such dynamical quarks.

From the determination of the end point for one flavor
can draw conclusions about the end point for two flavo
i.e., where on the line (mu,d ,ms5`) the first-order transition
ends. The quark mass where this is expected to occu
about twice the mass obtained in the one-flavor case bec
the quark effects that we observe are about half as larg
the effects obtained for two flavors of the same mass.

In order to determine quantitatively the phase diagram
QCD we perform simulations on lattices with size 8334,
12334, and 16334. Performing a finite-size scaling analys
we find indeed that there is a first-order phase transition
heavy quarks which gets weaker as the quark mass decre
and becomes second order at a value ofkep;0.08. For
smaller quark masses a crossover behavior is seen@16#.

In order to determine the end point in the (b,k) plane
accurately one needs larger lattice sizes, which takes
long to simulate. However, there is a different route that
can follow. Namely, we investigate an effective model in t

FIG. 1. Phase diagram in the three-state Potts model in t
dimensions.
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same universality class as QCD which is easier to simul
determine the end point there, and then match back to Q
Such an effective model can be constructed by taking
pure gauge action and adding the most relev
Z(3)-breaking term which is a Polyakov loop. The streng
of the Z(3)-breaking field is adjusted to model higher-ord
terms. Within this effective model we were able to perform
finite-size scaling analysis up to a lattice size of 243 and
determine the critical strength of theZ(3)-breaking field
where the first-order transition ends. We also investigated
lattice spacing dependence within the effective model,
performing a simulation for temporal extensionNt52 in ad-
dition to Nt54. Finite-size scaling at the end pointhep
yields results that are consistent with the scaling beha
seen in the three-dimensional Ising model. We obtainh(k)
by performing a best fit of the Polyakov loop histogram
obtained in the effective model to those obtained in QC
This nonperturbative matching ofhep yields the critical value
of kep and ofbep .

This paper is organized as follows: In Sec. II we gi
details of the local bosonic algorithm which we used
simulate one dynamical Wilson fermion. In Sec. III we d
scribe the observables that we used to probe a chang
phase and the nature of this phase transition. We give
results of this analysis in Sec. IV. In Sec. V we discuss
simulation and the finite-size scaling analysis of the effect
model and connect it to full QCD. In Sec. VI we discuss t
continuum limit and finally in Sec. VII we summarize an
conclude.

II. LOCAL BOSONIC ALGORITHM FOR ONE FLAVOR

The local bosonic algorithm was originally proposed
Lüscher @17# as an alternative method to the widely us
hybrid Monte Carlo~HMC! algorithm to simulate dynamica
quarks. The basic idea is the replacement of the fermio
determinant by a functional integral overn bosonic fields
having a local action. IfQ5g5D/(118k) whereD is the
fermionic Wilson matrix, then for two degenerate flavors w
have

detQ2} lim
n→`

E )
k51

n

dfk
†dfk

3expS 2 (
k51

n

fk
†@~Q2mk!

21nk
2#fkD , ~1!

whereAzk5mk1 ink with zk being the roots of a polynomia
of even degreen constructed so that

lim
n→`

Pn~Q2!5
1

Q2
. ~2!

The error introduced by takingn finite can be eliminated by
a global accept-reject Metropolis test@18#. The generaliza-
tion to any number of flavors is made possible by finding
polynomial approximation to the fermionic matrix itse
rather than toQ2 @18,19#. This can be done by constructing

ee
4-2
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DECONFINEMENT PHASE TRANSITION IN ONE-FLAVOR QCD PHYSICAL REVIEW D60 034504
polynomial of even degreen defined in the complex plan
with complex conjugate rootszk such that

lim
n→`

Pn~z!5
1

z
~3!

for any z in the domain containing the spectrum ofD ~not
including the origin!. Since the spectral radius of the hoppin
matrix M is bounded by 8 in the free case and even less
the interacting case, we are guaranteed that the spectru
D512kM will remain in the complex right half-plane fo
the heavy to moderately heavy quarks that we simulatek
<1/8). This is demonstrated in Fig. 2 where the boundary
the spectrum of the Dirac matrix is estimated fork50.1 as in
Ref. @20#.

Using the propertyD5g5D†g5 we obtain

detPn~D !5cn)
k51

n/2

det~D2zk!
†det~D2zk!, ~4!

with cn an easily computed constant@19#. Instead of Eq.~1!
one now finds

detD5 lim
n→`

det21@Tn/2
† ~D !Tn/2~D !#} lim

n→`
E )

k51

n/2

dfk
†dfk

3expS 2 (
k51

n/2

fk
†~D2zk!

†~D2zk!fkD , ~5!

whereTn/2(D)5)k51
n/2 (D2zk). The algorithm is made exac

with a global Metropolis test as follows. The one-flavor d
terminant can be expressed as

detD5C det21@Tn/2
† ~D !Tn/2~D !#, ~6!

with the correction factorC given by

C5 lim
m→`

det21@Tm/2
† ~D !Tm/2~D !#

det21@Tn/2
† ~D !Tn/2~D !#

. ~7!

FIG. 2. Estimated boundary of the Dirac eigenvalue spectrum
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Because the error of the polynomial approximation~3! de-
creases exponentially with the degree of the polynomial, i
not necessary to actually take the limitm→` above. We
observed that takingm>3n, wheren is adjusted for suffi-
cient Metropolis acceptance below, is enough to make
systematic approximation error completely negligible co
pared to the statistical one. We implemented the correc
factorC by a noisy Metropolis test, along the lines sugges
in Ref. @18#. The gauge and boson fields (U,f) are updated
by a sequence of local Monte Carlo steps forming a traj
tory (U,f)→(U8,f8). This procedure satisfies detailed ba
ance with respect to the approximate action

Sapprox5Sg@U#1 (
k51

n/2

u~D2zk!fku2. ~8!

At the end of each trajectory, one generates a fieldh with
probability

PHB~h!5Re2uXhu2, ~9!

where X5Tm/2(D)Tn/2
21(D) and R is a normalization con-

stant. The new configuration (U8,f8) is accepted with prob-
ability

P(U,f)→(U8,f8)
A

5minF1,
e2uX8hu2

e2uXhu2 G . ~10!

The correction term is thus estimated by only oneh field.
Detailed balance with respect to the desired act
det21@Tm/2

† (D)Tm/2(D)#e2Sg[U] is satisfied after averaging
the probability density for the Metropolis tes
PHB(h)P(U,f)→(U8,f8)

A , over theh field.
The number of bosonic fieldsn is chosen so that the cor

rection term leads to an acceptance rate of about 2/3 andm is
taken at least 3 timesn.

For the local updating of the gauge and boson fields
used standard heat bath and overrelaxation algorithms as
scribed in@18#. A trajectory is a symmetric combination o
(2l 11) overrelaxation steps applied alternatively to t
gauge and boson fields, preceded and followed by a heat
on the bosons. Ergodicity for the gauge fields is maintain
due to their coupling to the bosonic fields. The rootszk are
distributed on a circle centered at~1,0!. We implemented
even-odd preconditioning to lower the number of boso
fields needed for a given accuracy. To efficiently equilibra
the system, we start from thermalized quenched gauge
figurations and initialize the boson fields by generating
Gaussian random vectorx and setting

fk←cnD)
lÞk

n

~D2zk! x. ~11!

III. SIGNALS FOR THE PHASE TRANSITION
OR LACK THEREOF

QCD with infinitely heavy quarks, i.e., quenched, unde
goes a first-order deconfinement transition correspondin
4-3
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CONSTANTIA ALEXANDROU et al. PHYSICAL REVIEW D 60 034504
the spontaneous breaking of theZ(3) Polyakov loop symme-
try @21#. Based on the Polyakov loop, given by the product
gauge links in the temporal direction,

L~n!5
1

3
Tr )

n051

Nt

U0~n,n0!, ~12!

which transforms underZ(3) asL(n)→zL(n), one can con-
struct a standard set of observables and order paramete
particular, ^L&50 in the Z(3)-symmetric, confined phase
and nonzero in the spontaneously broken, deconfined ph

As explained in the Introduction, one expects this ph
transition to persist in the presence of sufficiently heavy
namical quarks. However, these dynamical quarks explic
break the quenchedZ(3) symmetry, favoring the realZ3
branch and inducing a nonzero Polyakov loop^L&.0 even
in the confined phase. The Polyakov loop and associa
observables can no longer serve as an order parameter
phase transition will be identified as a discontinuity in the
observables, from one nonzero value to another, in the t
modynamic limit.

Furthermore, as also explained in the Introduction, t
first-order phase transition is expected to become weaker
eventually disappear, as the quark mass is reduced. The
relation length at criticality will correspondingly increas
and eventually diverge at the end point of the transition l
where the transition becomes second order. For yet lig
quarks, no singularity appears even in the thermodyna
limit, and a simple crossover occurs in^L&. The distinction
between weak first-order, second-order, or crossover be
ior requires lattice sizes at least comparable with the crit
correlation length. However, this requirement can be le
ened if one compares results for various small size latt
with a finite-size scaling ansatz. This is how the first-ord
nature of the quenched transition was first ascertained@3#,
and this is how we proceed here.

Our strategy is to varyb, for each quark mass, for thre
spatial lattice sizes and to look for the following signals.

Coexistence of the two phases. A distinctive feature of a
first-order transition is phase coexistence and on a finite
tice we look for tunneling between the confined and dec
fined phases which is observed over a small tempera
range around the critical temperature. As the size of the
tice increases tunneling is exponentially suppressed bu
the lattice sizes studied here enough tunneling events
observed to enable us to study the double-peak distribu
for the normuVu of the Polyakov loop defined as

V5
1

V (
n

L~n!, ~13!

with V the spatial volume. For a first-order phase transiti
the location of the peaks should be fixed as the volume
creases, while their width should decrease likeV21. For a
second-order phase transition or a crossover, the p
should merge as the volume increases, and the tunneling
nal should disappear.

Deconfinement ratio. The deconfinement ratio is define
by
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2
p2

1

2
, ~14!

with p the probability for the complex Polyakov loop to b
within 20° of aZ3 axis. Therefore, if theZ(3) symmetry is
unbroken, we findp51/3 andr50, whereas if it is broken
in such a way that the Polyakov loop is distributed near o
axis ~the real axis!, we havep51 andr51. The value of
r50 is only obtained in the quenched case where theZ(3)
symmetry is exact. With dynamical quarks we only look f
a discontinuity across the phase transition. On a finite latt
the discontinuity is smoothed out.^r& varies abruptly over a
range inb which shrinks asV21, and the slopedr/db is
maximum at the criticalb. The intersection of curvesr(b)
for various lattice sizes may also give information onbc .1

The real part of the Polyakov loop after projection on th
closest Z3 axis. This observable is also an order parame
for the quenched phase transition. It behaves just like
deconfinement ratio in the presence of dynamical quarks

The peak value of the susceptibility. The susceptibility
measures the fluctuations of the Polyakov loop. We cons
the behavior of

xL5V~^uVu2&2^uVu&2!, ~15!

which diverges at criticality for a first-order phase transiti
in the thermodynamic limit. On a finite lattice, instead of th
d function behavior, the peak value ofxL is proportional to
the volumeV, while the width of thexL distribution scales
like V21 and its peak may shift likeV21 @22#. The scaling
behavior of the susceptibility changes for a second-or
transition: the peak value ofxL becomes proportional toVa

with a,1. For a crossover behavior where, even in the th
modynamic limit, there is no discontinuity in the thermod
namic functions, the peak value ofxL remains constant with
the volume.

IV. RESULTS

In Table I we collect the parameters of our simulation
Adjusting the number of bosonic fields,n, so that the accep
tance is about 2/3, we can make two observations: First,
a fixed quark mass we find thatn grows logarithmically with
the volume for the same acceptance ratio~i.e., for the same
relative error in the bosonic approximation of the determ
nant!. This is illustrated in Fig. 3 which shows thek50.1
data from Table I. Second, for a fixed volume,n is approxi-
mately inversely proportional to the quark mass; i.e., 1/n is
linear in 1/k. This behavior is displayed in Fig. 3 where
holds for a range ofk values. This dependence ofn on both
the quark mass and the volume confirms the expectation
e.g., Ref.@23#.

Our results for the observables which we used to dec
on the order of the transition are shown in Figs. 4–7. In F
4 tunneling between the confined and the deconfined pha

1One complication here is that^r& in the confined phase depend
on the spatial volumeV.
4-4
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TABLE I. In the first column we give thek values for the three volumes studied. In the other columnn
is the number of bosonic fields andacc the average acceptance;Ksw gives~in kilosweeps! the total number
of thermalized configurations used in the reweighting procedure@24#.

8334 12334 16334
k n/acc Ksw n/acc Ksw n/acc Ksw

0.05 8/0.78 18 12/0.74 20 24/0.83 20
0.10 16/0.67 45 24/0.63 50 32/0.67 37
0.12 24/0.74 55 32/0.67 40 40/0.69 12
0.14 32/0.77 60 40/0.70 37 50/0.67 12
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clearly observed fork50.1. A similar behavior is also found
in the case ofk50.05 whereas fork50.12 tunneling is no
longer observed, on our largest, 163, lattice. The double-peak
structure ofuVu for k50.10 is seen in Fig. 5 where it is fitte
to the sum of two Gaussian distributions in the comp
plane, one centered at the origin~confined phase! and one
centered at a fitted location along the real axis~deconfined
phase!. The second peak seems to approach the first as
lattice size increases, which would indicate a second- ra
than a first-order transition. A double-peak structure was a
observed fork50.05 but the distance between the pea
remains the same as the lattice size increased. Fork50.12
the double peak was no longer visible.

In Fig. 6 we show the deconfinement ratior as a function
of b, using reweighting@24#, for k50.05, 0.10, and 0.12 a
well as for the quenched case (k50). The latter is included
as a check of our methodology and statistical accuracy.
quenched data have similar statistics to our full QCD da
The intersection of the deconfinement ratio curvesr(b) for
various lattice sizes occurs very near the known value ofbc
@3#, shown by an asterisk, and around a value 3/4 for
deconfinement ratio. The largest lattice (243) results, actu-
ally obtained by reweighting data from our effective mod
~see Sec. V!, help determine the critical point more acc
rately, but are not necessary to ascertain the transition it
A qualitative change is seen to occur aroundk50.10;
namely, the curves for various lattice sizes stop intersect

FIG. 3. ~a! The number of bosonic fields,n, is plotted vs the
logarithm of the volume fork50.1. ~b! 1/n vs 1/k for the 8334
lattice.
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In fact for k50.14, which is not represented, the deconfin
ment ratio always stays very near 1.

A similar qualitative change is visible in Fig. 7, whic
shows the susceptibilityxL divided by the volume, again
reweighted as a function ofb. For k50 and 0.05, the peak
of xL /V is almost independent ofV. In other words,xL
diverges likeV, as befits a first-order transition. For all th
higherk ’s, xL /V decreases as the volume grows, indicati
that the first-order transition has disappeared or that
asymptotic behavior has not yet set in.

We use the peak of the Polyakov loop susceptibilityxL to
determine the pseudocritical couplingbc(k). The dotted
lines in Fig. 7 delimitate a band wherexL is near its peak

FIG. 4. Monte Carlo history of the Polyakov loop fork50.10
on lattices 8334, b55.670 ~upper!, 12334, b55.670 ~middle!,
and 16334, b55.660~lower!.
4-5



F
th

ke
rt

en
lu
.

y

t
m
r
e

t

rd
ec

p-
d

us-

st
tun-

e-
me
is

ller

ver

on
ed

e-

po
and
e
ult

CONSTANTIA ALEXANDROU et al. PHYSICAL REVIEW D 60 034504
value on our largest volume. These bands, also shown in
6, display the nice agreement between this criterion and
crossing of the deconfinement ratio lines when that ta
place. We have also looked at the average of the real pa
the Polyakov loopV after projection to the closestZ(3)
axis, and found that the position where data from differ
lattices cross is again within the same error band. Our va
for bc(k) are collected in Table II and plotted in Fig. 8
Comparing them with availablebc values forNf52 @25#,
also included in Table II, we see that the effect of one d
namical quark on the value ofbc is to shift it from the
quenched result ofbc55.6923(4) by about half the amoun
of the shift produced by two degenerate quarks for the sa
k value. Not surprisingly, when the dynamical quarks a
heavy, their ordering effect grows linearly with the numb
of flavors. One could therefore use ourNf51 data to com-
plete the blankNf52 entries in Table II.

The volume dependence of the peak value ofxL is more
clearly displayed in Fig. 9a. The lines shown are best fits
the form Va. As discussed in Sec. III, valuesa51, 0,a
,1 and 0 characterize a first-order transition, second-o
transition, or crossover, respectively, up to finite-size corr
tions. Fork50.05 the best fit yieldsa50.96(4), to becom-
pared to the pure gauge valuea51.02(4) for which the data
are plotted in Fig. 9b. The transition is first order. Fork
50.14, on the other hand, we finda50, a clear signal of

FIG. 5. Double-peak structure ofuVu for k50.10 fitted to a sum
of two Gaussians, centered at the origin and at an adjustable
tion on the real axis.
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crossover behavior. Fork50.10 andk50.12 the situation is
less clear. The small value ofa50.22(3) atk50.12 favors
the crossover region. Fork50.10,a50.56(3), and wemust
be quite near the second-order end point.

We summarize our findings.
For k50.05 all our observables@tunneling, intersecting

deconfinement ratiosr(b), linear dependence of the susce
tibility peak on V] behave quite similarly to the quenche
case and consistently point to a first-order transition.

For k50.12 and 0.14, all our observables~no tunneling,
no crossing of the deconfinement ratios, growth of the s
ceptibility peak slow or nonexistent! point to a crossover.

For k50.10, the situation is less clear. On the large
lattice, we do not see the signals of a phase transition:
neling is suppressed as compared tok50.05, the peak in the
Polyakov loop distribution moves towards the origin, the d
confinement ratio does not intersect the smaller volu
curves, and the peak of the Polyakov loop susceptibility
not much larger than the peak value for the next sma
volume. Based on this largest volume, we considerk50.10
as being close to the end point, but rather on the crosso
side.

A more precise statement would require simulations
larger lattices. Larger volumes together with a more refin
finite size scaling~FSS! ansatz would lead to a precise d

si-

FIG. 6. Deconfinement ratio fork50.05, k50.10, and k
50.12 for three lattice sizes. The dashed lines give the error b
for the critical b value as determined from the maximum of th
susceptibility~see Fig. 7!. The asterisk denotes the quenched res
for bc from Ref. @3#.
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FIG. 7. The susceptibility per
unit volume for the quenched
theory (k50) and for k50.05,
k50.10, k50.12, andk50.14.
The asterisk marksbc @3# for the
quenched theory.
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termination of the end point. We carry out this approach
the context of the effective model discussed in detail in
next section.

V. EFFECTIVE MODEL

It is clear from the above results that locating the e
point (bep ,kep) accurately requires very large lattice size

TABLE II. The pseudocriticalb value is given for the fourk
values studied. The two-flavor results are from Ref.@25# and are
given for comparison. The quenched result from@3# is bc

55.6923(4).

k 0.05 0.10 0.12 0.14

Nf51 bc 5.692~2! 5.660~3! 5.630~5! 5.59~1!

Nf52 bc 5.58~2! 5.46~2!
03450
n
e

d
,

beyond our computer capabilities. We thus adopt a differ
approach: We consider an effective model, in the same u
versality class as full QCD but cheaper to simulate. By sim
lating larger systems, we locate the end point in the coupl
plane of this model. Then we map this end point back on
full QCD.

The simplest prototype of our universality class is th
three-dimensional three-state Potts model in an external fi
h:

S52(̂
nl&

b Rezn* zl2h(
n

Rezn , h.0, ~16!

with zn an element ofZ(3). Dimensional reduction at high
temperature reduces QCD to this model. Quenched Q
maps onto theZ(3)-symmetrich50 version, which under-
goes a first-order transition atbc'0.55053@26#. Full QCD
4-7
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reduces to theh.0 version, where the strength of th
Z(3)-breaking fieldh grows with the inverse quark mas
That model has been studied by DeGrand and DeTar@15#.
They found a first-order transition line in the plane (b,h),
ending at (bep ,hep) ~see Fig. 1!. The second-order end-poin

FIG. 8. The pseudocritical deconfinement couplingbc as a func-
tion of kNt ~open squares! found from the analysis of the QCD dat
with one dynamical quark species~hereNt54). The dashed line is
to guide the eye. The results for the same quantity obtained for
effective model~Sec. V! are also plotted as a function of the fie
strengthh. The asterisk shows the second-order end point.
QCD data are shifted upwards by 16Nck

4 to take into account an
effective change inb coming from expanding the fermionic dete
minant up to orderk4.
03450
critical field hep was evaluated in the mean-field approxim
tion, yielding the small value2

3 log 224
9;0.018, and by

Monte Carlo simulations where the estimate 1023,hep
,1022 was obtained. Unfortunately the mapping fromhep
back to a quark mass is qualitative rather than quantitat
This is why we have to turn to a more complicated, fou
dimensional model.

The starting point is the fermionic determinant which c
be expanded into loops, yielding

det~12kM !5expS 2(
l

k l

l
Tr~Ml ! D . ~17!

This expansion will converge quickly for the range ofk ’s
under consideration. The loops which are relevant for
breaking of theZ(3) symmetry are the ones that win
around the time direction. Among them the shortest and m
important is the Polyakov loop, Eq.~12!, which carries a
coefficient (2/Nt)(2k)Nt on a lattice of time dimensionNt .
Our effective model tries to incorporate higher-order effe
with an effectiveZ(3)-breaking fieldh and an action

Seff5Sg@U#2h~k!(
x

Re TrL~x!. ~18!

Besides the leading hopping parameter expansion ab
which should be accurate at smallk, the mappingh(k) can
be obtained in other ways. One way is to resum all spa
hoppings within the free approximation, so that

h~k!5NtE
2p

p d3q

~2p!3
Tr@~11g0!kG~q!#Nt, ~19!

ur

e

FIG. 9. ~a! The volume dependence of the peak of the susceptibility fork50.05, k50.10, k50.12, andk50.14. ~b! The volume
dependence of the peak of the susceptibility in our effective model~Sec. V! for h50.01,h50.02,h50.025 andh50.05. A couple of points
are slightly shifted in volume for clarity.
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where G(q)21 is the free spatial quark propagator. Th
mapping incorporates the divergence ofh whenk→kc , with
kc51/8. This result can be further refined by consideri
tadpole improvement, such thatk in Eq. ~19! is substituted
by k^plaq&1/4. Finally, a nonperturbative approach consi
in finding the best matchh(k) between the distribution o
the magnitude of the Polyakov loopV @Eq. ~13!# in full
QCD and that in the effective model. The quality of such
matching is illustrated in Fig. 10. At lowerk or h, this non-
perturbative matching becomes more sensitive to statis
fluctuations in the exploration ofZ(3) sectors, which can
mimic a symmetry-breaking term. In that regime the oth
analytical methods work better. Our nonperturbative mat
ing results of the wholeV distribution are listed in Table III.
~Matching the first two moments of the distribution ga
consistent results.! Figure 11 compares the various mappin
h(k) considered here.

Now, equipped with a reasonably accurate corresp
dence betweenh and k, we can look for the critical line
(b,h) and its end point in our effective model. We simula
lattices of spatial size 83, 123, 163, and 243 with the tempo-
ral direction fixed atNt54 as in the case of the full QCD
simulations. We obtain data at various values ofh50.01,
0.02, 0.025, andh50.05 with typically 10 000–20 000 ther
malized configurations.

First, we perform the same analysis, using the same
servables as in Sec. IV for full QCD. At each value ofh, we

TABLE III. Nonperturbative determination ofh by fitting to the
QCD data. The value ofh listed here gave the best fit to the QC
data of theuVu distribution.

k 0.05 0.10 0.12

h 0.005~4! 0.026~2! 0.06~1!

FIG. 10. Best fit ofuVu from full QCD for k50.1 ~dashed line!
to the data obtained from the effective model using reweight
~solid line for h50.026).
03450
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identify the pseudocritical couplingbc(h) and obtain the
points included in Fig. 8, which for smallk follow closely
the corresponding curve obtained in full QCD. In Fig. 9b w
show the dependence of the peak of the Polyakov loop
ceptibility xL on the spatial volume for various values
h(k). The behavior is again very similar to that of full QCD
indicating a weakening of the first-order phase transition ah
increases and probably a crossover behavior forh>0.03.

Now we would like to determine as precisely as possi
the end point (bep ,hep) and check the scaling behavior in i
vicinity. In Ref. @27# the same issues were addressed in
context of the electroweak theory, and a reliable numer
procedure was presented which yielded impressively ac
rate answers. The procedure we follow is very similar,
though not quite identical. From our Monte Carlo data w
obtain the joint probability distribution of the plaquette an
the real part of the Polyakov loop~shown in Fig. 12!. The
principal axes of this distribution, which diagonalize the co
relation matrix of the two observables, are identified as
magnetizationlike variableM and the energylike variableE.
~The rotated distribution displayed in Fig. 13 shows t
double-peak distribution in theM-like direction.! After sub-
tracting the averages from the new variablesM and E such
that ^M &5^E&50, rescaling them such that^M2&5^E2&
51, and reweighting inb and h, we obtain the probability
density P(M ,E) shown in Fig. 14 at the end point. W
clearly see that the marginal distributionP(E) will show a
single peak, whileP(M ) will have a double peak. In an
infinite volume the distributionP(M ) would be symmetric.
Comparing theP(M ,E) distribution of Fig. 14 with the 3
dimensional~3d! results of Fig. 3 of Ref.@27# for the Ising
model and theO(2) andO(4) models, our result is in clos
est agreement with theP(M ,E) distribution of the Ising
model.

To determine the end point we need to perform a fini
size scaling analysis. For each lattice size, we reweight ib
and h until we minimize the asymmetry of theM distribu-
tion, by requiring the vanishing of the third cumulant:

g

FIG. 11. The strength of theZ(3)-breaking term versusk.
4-9
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^M3&

^M2&3/2
50. ~20!

This determines a line in the plane (b,h), which must go
through the infinite-volume critical point (bep ,hep), up to
statistical errors. The intersection of these lines obtained
various lattice sizes therefore determines the critical po
(bep ,hep). Parametrizing these lines by the value ofh, we
show in Fig. 15 the variation of the fourth magnetic cum
lant,

^M4&

^M2&2
, ~21!

along these lines, for the three largest lattices considered
Nt54 as well as for three lattices forNt52. The simulation
of the effective model atNt52 using spatial sizes 8, 12, an

FIG. 12. (Seff2^Seff&) vs (Sg2^Sg&) for 5000 configurations on
243 at h50.01, b55.680.

FIG. 13. (Seff2^Seff&) vs (Sg2^Sg&) for 5000 configurations on
243 at h50.01, b55.680 after a rotation.
03450
or
t
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or

16 can be used as a check of our procedure in a situa
where significant deviations from scaling are not expect
The three lines forNt52 cross at a point which gives th
critical end point. The fact that the three lines meet at a po
~within statistical errors! indicates stability against deviation
from scaling. Note that we made no assumption about
universality class in our determination of the critical poin
Because of its generality and because of its relative statis
robustness in our case, we favor the method we just
scribed to find the end point over the method used in R
@27#, which fixes the fourth cumulant, Eq.~21!, to its Ising
value. The value of̂ (DM )4&/^(DM )2&2 at the critical end
point can now be used to check the universality class of
effective model and thus the universality class of QC
From Fig. 15~a! at hep50.06 we find^(DM )4&/^(DM )2&2

;1.67(5) in good agreement with the corresponding va
of 1.604(1) for the Ising model.2 The value ofbep deter-
mined from the crossing of the lines parametrized with
value of b is bep55.047(1). For Nt54 the lines for our

2For theO(2) andO(4) models^(DM )4&/^(DM )2&251.233(6)
@28# and 1.092(3)@29#, respectively, i.e., clearly lower than ou
value of 1.67(5).

FIG. 14. Normalized probability distribution at the critical poin
hep50.009 for 243.
4-10
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FIG. 15. The fourth magnetic cumulant versus the field strengthh: ~a! for Nt52, ~b! for Nt54. The point of intersection of the line
determines the critical pointhep .
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three largest volumes converge ath;0.009. Scaling viola-
tions are still seen for the lattice with spatial extentL512.
Thus here the end point is determined less accurately as c
pared to theNt52 case, although we have increased o
statistics fivefold using;100000 configurations for the tw
smaller lattices and;50000 for the largest lattice. Since th
point of intersection for the two largest lattices is with
statistical errors consistent withh50.009, we takehep
;0.009(1) as the best determination of the critical po
from these data. Having determined the critical point we c
look at critical exponents. The magnetic susceptibility athep
should scale like@27#

xM5V^~DM !2&}L231g/n. ~22!

We plot thexM distributions in Fig. 16 for our three lattice

FIG. 16. Scaling of theM-like distribution at the critical point
hep andbep for the three largest lattices. We have applied a sca
factor of L20.8 to all the data.
03450
m-
r

t
n

after scaling withL20.8. They are seen to nicely fall on top o
each other. This scaling thus yields a rough estimate of
exponentg/n;2.2 to be compared with a value of 1.96 fo
the Ising,O(2), andO(4) models. To determine exponen
such asa/n which can pin down the Ising model universali
class we need to consider the scaling behavior of theE-like
variable, which is smaller than theM-like variable by at least
two orders of magnitude. Scaling based on theE-like vari-
able was found to be unstable within the statistical precis
of our present simulation.

Finally, we comment on the Polyakov distribution di
played in Fig. 14. It is clear from this figure that even at t
end point hep50.009, the Polyakov loop distribution sti
shows a marked double-peak structure. In Ref.@30# where
the same effective model was studied, the criterion used
identify the end point was to look for the value ofh where
the double-peak structure of the real part of the Polyak
loop was no longer visible. This criterion thus led to a mu
bigger value;0.08 for the critical field strength than we ar
finding here.

VI. DISCUSSION

From the previous section we conclude that the end p
of the first-order transition occurs ath(k);0.009 which
maps tok;0.08. The qualitative picture expected for~211!
flavors in the continuum is that there is a finite region in t
mass plane (mu,d ,ms) of the two degenerate flavors versu
the third near the quenched limit where the deconfinem
phase transition is first order. OurNf51 result corresponds
to the infinite-mass limit formu,d . In this limit, which up to
now received little attention, we find that the first-order pu
gauge phase transition persists up tok;0.08. Since we ex-
pect dynamical quark effects to be twice as strong for t
flavors ~see Table II!, we can estimate the boundary of th
first-order region as

2he f f~ku,d!1he f f~ks!'0.009, ~23!

with he f f(k) as per Fig. 11.
g
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It is of course of crucial importance to establish the sc
ing behavior of our results and to express the end-point
rameter as a quark mass, not a hopping parameter.
might wonder if the rather small value ofkep we found may
not be an artifact of the relatively coarse lattice discretizat
and if one would recoverkep50 in the continuum limit.
This would mean that the deconfinement transition dis
pears as soon as dynamical quarks of any mass are allo
Such a scenario goes against the robustness of a first-o
phase transition. The first-order deconfinement transi
must be robust against small variations of the paramet
before ending at a second-order point. We made this a
ment in the Introduction to justify the expected phase d
gram, Fig. 1, in our discrete theory. The same argument
plies to the continuum QCD theory. Therefore, we expect
deconfinement transition to end at a finite quark massmq .
Determining this mass would require a full-blown scali
study of one-flavor QCD, which is beyond the scope of t
paper. However, we have considered what happens to
effective model as the lattice spacinga changes. We have
simulated our effective model forNt52 and foundhep
'0.06, with scaling exponents consistent with those atNt
54. ChangingNt54 to Nt52 amounts to doubling the lat
tice spacinga. Therefore, the variation of the end-point valu
hep indicates a scaling behavior

hep~2a!/hep~a!'0.06/0.009}a2.7. ~24!

This strongly supports the existence of a continuum limit
the effective model, Eq.~18!, with the action

Se f f5S@A#2h̃E d3xL~x!, ~25!

whereh5h̃a3 in the discretized theory, having a critical en
point at some positiveh̃ep .

If one believes in the physical nature of the critical co
pling h̃ep , then the corresponding quark mass cannot be
finite. For instance, the leading hopping parameter exp
sion, Eq. ~17!, at constant physical temperatureT
5(Nta)21 gives

h~k!;4Nc~2k!(aT)21
. ~26!

If h(k)5h̃epa
3, then this relation is not consistent wit

lima→0k50. One is again led to expect persistence of
first-order transition, for some range of quark mass, in
continuum one-flavor QCD theory.

We can get an estimate of the critical quark mass
physical units by using the naive prescriptionmqa5 1

2 (1/k
21/kc). Using the quenched data of Ref.@31# for the pion
mass we findkc50.1694(2), at b55.7 in the zero-flavor
theory. On the other hand, the SESAM Collaboration fin
kc50.1585(1)@32# at b55.6 in the two-flavor theory. Go
ing to our value ofbep55.683(3) will decrease the critica
value from SESAM slightly. If we neglect this change a
take the average between the zero- and two-flavor cases
end up with kc'0.164. Taking the end-point valuekep
;0.08 we find a quark massmqa53.2 in units of the lattice
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spacinga. This mass is in fact of the same order as that
the doubler modes, which leads to an overestimation of
mass at the end point. Sincemqa.1, finite-a corrections are
expected to be rather large. At the tree level the correc
mass is given by

mqa;
mqa

A11mqa
, ~27!

which reduces our estimate by about a factor of 2 tomqa
;1.56. To convert this to physical units we use (4a)21

;220 MeV from the deconfinement temperature. This giv
mq;1.4 GeV for the end point.

A critical quark mass of the order of 1 GeV is in line wit
phenomenological expectations. The pure gauge decon
ment transition is fairly weak, with a critical correlatio
length jc;(7 –10)a at b56 @25#, i.e. ;11 GeV21 or
O (5s21/2). This is the minimum system size necessary
observe the first-order nature of the deconfinement transit
Dynamical quarks introduce a new length scaler c , namely,
the distance where the string breaks,r c;O(2mq /s). Con-
finement can only be observed up to this distance. For v
heavy quarks,r c.jc : string breaking occurs for a larg
separation, larger than the critical correlation length. T
passage from confinement to deconfinement will allow ‘‘li
erated’’ quarks to appear even if their separation is less t
r c . This qualitative change signals a phase transition. As
quark mass is lowered, the string-breaking scaler c de-
creases. Whenr c;jc , the passage from confinement to d
confinement does not liberate quarks that were not alre
liberated by string breaking. There is no qualitative chan
from one regime to the other, and one cannot really tell if
system is confined or deconfined: the phase transition
disappeared and been replaced by a crossover. This oc
for

mq;O~5As/2!, i.e., mq;O~1! GeV. ~28!

VII. SUMMARY AND CONCLUSIONS

The multiboson method can be used to simulate an
number of flavors as well as an even number. In this w
we have shown that the multibosonic algorithm is well suit
for the study of one-flavor QCD for moderately heavy W
son quarks. Using this algorithm we were able to carry ou
detailed finite size scaling analysis to determine the pse
ocritical b(k) line for k values up tok50.14. We demon-
strated that the first-order phase transition seen in
quenched theory persists when one includes dynam
quarks. Using FSS we showed that the deconfinement p
transition gets weaker as the dynamical quark mass incre
and then turns into a crossover. In general we find that
dynamical quark effects on the phase transition are appr
mately half those for two flavors. Using lattices of sizes 83,
123, and 16334 within full QCD, we found an end poin
aroundk50.1. A more accurate determination would requ
simulation of larger spatial volumes. In order to carry ou
more refined FSS analysis with larger lattices we conside
an effective model in the same universality class as
4-12
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QCD. In this effective model the effects of the fermion
determinant were simulated by an effectiveZ(3)-breaking
field coupled to the Polyakov loop. We studied the pha
transition as a function of this field strengthh on lattices with
spatial volumes 83, 123, 163, and 243 and found a first-order
transition that gets weaker as the field strength increa
exactly like in QCD ask increases. Performing a FSS ana
sis using the joint probability distribution of the plaquet
and the real part of the Polyakov loop we were able to
termine, without any assumptions about the universa
class of the model, the end point of the first-order transit
line. Matching of the Polyakov loop histograms or its fir
two moments in the effective model to those in full QC
enabled us to determine nonperturbatively the corresp
dence betweenh andk. In this way we obtained the value o
kep;0.08 for the end point of the QCD first-order transitio
line. Futhermore, the FSS analysis of the effective mode
the critical point yielded results consistent with our effecti
model being in the same universality class as the Is
model. Although a FSS analysis was not possible for QC
this finding is important in suggesting that the universa
class of one-flavor QCD and the Ising model may be
same.

We have also studied our effective model on a coar
lattice atNt52, and have found good scaling behavior of t
end point field strength, with similar Ising-like exponents
ys
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ur
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the end point. This scaling test strongly supports the e
tence of a critical end point at a nonvanishing positive fie
strength in the continuum limit of our effective model. I
turn, this indicates a nonvanishing quark mass for the
point of the deconfinement transition lineTc(mq) in con-
tinuum one-flavor QCD. Our findings are in agreement w
the idea that a first-order transition is robust against sm
variations of the parameters, before ending at a second-o
point. Converting the value ofkep50.08 to physical units
can only be done approximately, using quenched and t
flavor determinations ofkc at similarb values. After correct-
ing for finite lattice spacing errors to the tree level we obta
an estimate of the quark mass at the end point ofmq;1.4
GeV, consistent with phenomenological expectations.
simulation of one-flavor QCD closer to the continuum lim
would allow tighter control over discretization errors, but
beyond our computer resources.
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