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We present a study of the deconfinement phase transition of one-flavor QCD using the multiboson algo-
rithm. The mass of the Wilson fermions relevant for this study is moderately large and the non-Hermitian
multiboson method is a superior simulation algorithm. Finite-size scaling is studied on lattices of size 8
X4, 12x 4, and 18X 4. The behaviors of the peak of the Polyakov loop susceptibility, the deconfinement
ratio, and the distribution of the norm of the Polyakov loop are all characteristic of a first-order phase transition
for heavy quarks. As the quark mass decreases, the first-order transition gets weaker and turns into a crossover.
To investigate finite-size scaling on larger spatial lattices we use an effective action in the same universality
class as QCD. This effective action is constructed by replacing the fermionic determinant with the Polyakov
loop identified as the most relevan(3)-symmetry-breaking term. Higher-order effects are incorporated in an
effective Z(3)-breaking fieldh, which couples to the Polyakov loop. Finite-size scaling determines the value
of h where the first-order transition ends. Our analysis at the end pgjrihdicates that the effective model
and thus QCD are consistent with the universality class of the three-dimensional Ising model. Matching the
field strength at the end poiht,, to the x values used in the dynamical quark simulations we estimate the end
point «¢, of the first-order phase transition. We firgd,~0.08 which corresponds to a quark mass of about 1.4
GeV.[S0556-282199)05313-9

PACS numbdps): 12.38.Gc, 11.15.Ha, 12.38.Mh, 64.60.Fr

[. INTRODUCTION other hand, one-flavor QCD has been largely igndiesatly
exceptions are given in Rdf12]), perhaps because of algo-
Understanding the properties of quantum chromodynamrithm difficulties, although it has interesting properties. In
ics (QCD) under extreme conditions of high temperaturethe usual analysis the continulda= 1 theory is expected to
and/or pressure is a challenging problem and was considerddhve no chiral phase transitida3] because of the anoma-
long ago. Polyakoy1] and Susskindl2] predicted that QCD lous breaking of the (1) chiral symmetry. We note, how-
will undergo a deconfinement phase transition from normakver, the unexpected results of a study of one-flavor stag-
hadronic matter to a quark-gluon plasma when the temperaggered fermions[14] which may imply a chiral phase
ture is increased. Such a phase transition is believed to hawsansition. The purpose of this work is to fill this gap by
occurred, in the opposite direction, &s after the big bang investigating the deconfinement phase transition of one-
and its nature is therefore important in astrophysics. Theoflavor QCD.
retical information on the deconfinement phase transition has A model that plays an important role in our understanding
also become important as planned ultrarelativistic experiof the phase diagram in QCD is the three-state Potts model in
ments will soon start at the BNL Relativistic Heavy lon Col- three dimensions. It hasZ&(3) symmetry and the spontane-
lider (RHIC), and later on at the CERN Large Hadron Col- ous breakdown of this symmetry is expected to drive the
lider (LHC). In these experiments the temperature reachedeconfinement phase transition like it does in quenched
will be of the order of 600 MeV and, at this temperature, oneQCD. In the presence of an external field #(8) symmetry
is still dealing with a strongly interactive system. Thus latticeis explicitly broken just like the fermionic determinant
QCD provides the most suitable nonperturbative approach tbreaksZ(3) symmetry in QCD. In fact it was shown by
study such phenomena using directly the QCD LagrangianDeGrand and DeTdu5] that, at high temperature and heavy
The zero-flavor sector of the theotguencheilhas been quark mass, QCD reduces to the three-state Potts model in an
studied extensively and it is established that there is a firstexternal field. From its phase diagrd&®b], shown schemati-
order deconfinement phase transitif3] with the critical cally in Fig. 1, we observe that the first-order phase transi-
temperature determined in the continuum lifdit-8|. State- tion gets weaker as the strength of the external field-
of-the-art lattice calculations are now being done includingcreases and ends at some critical valyg with a second-
pair creation. For two flavorsN;=2) there are simulations order transition. Beyond this point a crossover behavior is
both with Wilson[9] and staggered fermiori9,10] whereas seen. Whereas Fig. 1 gives us a good starting point for the
for a greater number of flavors the simulations are usuallexpected qualitative behavior for QCD with dynamical
performed with the standard Wilson actiph0,11]. On the  quarks, the quantitative question of the existence of such an
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1st order same universality class as QCD which is easier to simulate,
determine the end point there, and then match back to QCD.
B Such an effective model can be constructed by taking the
2nd order pure gauge action _anq adding the most relevant
Z(3)-breaking term which is a Polyakov loop. The strength
/ of the Z(3)-breaking field is adjusted to model higher-order
terms. Within this effective model we were able to perform a
finite-size scaling analysis up to a lattice size of 2hd
determine the critical strength of th&(3)-breaking field
where the first-order transition ends. We also investigated the
h h,, lattice spacing dependence within the effective model, by
. . ) performing a simulation for temporal extensibg=2 in ad-
_ FIG._ 1. Phase diagram in the three-state Potts model in thregition to N,=4. Finite-size scaling at the end poiht,
dimensions. yields results that are consistent with the scaling behavior
seen in the three-dimensional Ising model. We obtdir)
end point and its location can only be answered after a deby performing a best fit of the Polyakov loop histograms
tailed calculation. obtained in the effective model to those obtained in QCD.
In the real world of two light quarks and one heavy quark This nonperturbative matching bf , yields the critical value
the phase diagram depends crucially on the size of the lighaf x.p, and of Bp,.
and heavy quark masses. Therefore it is usual to consider the This paper is organized as follows: In Sec. Il we give
phase diagram of three-flavor QCD in the mass plagers ~ details of the local bosonic algorithm which we used to
my 4. The mass point0,0) is the chiral limit with a first- simulate one dynamical Wilson fermion. In Sec. lll we de-
order transition. Pure gauge is the opposite limit of infinitescribe the observables that we used to probe a change of
quark masses where a first-order transition is also estalphase and the nature of this phase transition. We give the
lished. As one moves away from the infinite-m&ss hop-  results of this analysis in Sec. IV. In Sec. V we discuss the
ping paramete=0) limit the first-order transition is ex- simulation and the finite-size scaling analysis of the effective
pected, like in the Potts model, to persist but to becoménodel and connect it to full QCD. In Sec. VI we discuss the
weaker and eventually to disappear, as the quark mass @ontinuum limit and finally in Sec. VIl we summarize and
reduced. This presumed robustness is based on the expecg@nclude.
tion that an infinitesimal increase ik does not cause the
finite gap in the thermodynamical observables to change dis-|I. LOCAL BOSONIC ALGORITHM FOR ONE FLAVOR
continuously but smoothly. That a first-order transition is in ] ] o
general robust is supported from our experience with spin . The local bosonic algorithm was originally proposed by
systems where a first-order transition remains first order fofuscher[17] as an alternative method to the widely used
small magnetic fields. In this work we seek to determine thd!Ybrid Monte CarlodHMC) algorithm to simulate dynamical
point on the line (, y=%,m,) where the first-order transi- quarks._ The basic |dea_ is the_: replacement of the f_erm|on|c
tion ends as well as the universality class of the second-ordééterminant by a functional integral overbosonic fields
phase transition at this end point. It turns out that the relevarft@ving a local action. 1Q=ysD/(1+8«) whereD is the
quark masses for this study are relatively large and thereforiermionic Wilson matrix, then for two degenerate flavors we
the multiboson algorithm is a very efficient method for simu-nave
lating such dynamical quarks. n
From the determination of the end point for one flavor we 2 +
can draw conclusions about the end point for two flavors, detQ OCJTLJ kﬂl ddndeh
i.e., where on the lineng, 4,ms=) the first-order transition
ends. The quark mass where this is expected to occur is i . y 2
about twice the mass obtained in the one-flavor case because X ex —kzl Al (Q— )+ vidd |, (D)
the quark effects that we observe are about half as large as -
the effects obtained for two flavors of the same mass. wherezg= w,+i v With z, being the roots of a polynomial
In order to determine quantitatively the phase diagram for
: X . ; . of even degrea constructed so that
QCD we perform simulations on lattices with sizé>84,
122x 4, and 18X 4. Performing a finite-size scaling analysis

Confined

we find indeed that there is a first-order phase transition for lim P,(Q?)= i )
heavy quarks which gets weaker as the quark mass decreases n—oo Q?

and becomes second order at a valuexgf~0.08. For

smaller quark masses a crossover behavior is g&&n The error introduced by taking finite can be eliminated by

In order to determine the end point in thg,k) plane a global accept-reject Metropolis td<t8]. The generaliza-
accurately one needs larger lattice sizes, which takes verjon to any number of flavors is made possible by finding a
long to simulate. However, there is a different route that wepolynomial approximation to the fermionic matrix itself
can follow. Namely, we investigate an effective model in therather than taQ? [18,19. This can be done by constructing a
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1.0 T T T Because the error of the polynomial approximati@ de-
g3 —0.10 creases exponentially with the degree of the polynomial, it is
» K=V not necessary to actually take the linmt—o above. We
observed that takingn=3n, wheren is adjusted for suffi-
0.5 — . . -
cient Metropolis acceptance below, is enough to make the
systematic approximation error completely negligible com-
pared to the statistical one. We implemented the correction
0.0 ¥ = - factorC by a noisy Metropolis test, along the lines suggested
W in Ref.[18]. The gauge and boson fieldd (¢) are updated
by a sequence of local Monte Carlo steps forming a trajec-
05 L | tory (U,¢)—(U’,¢"). This procedure satisfies detailed bal-
' ance with respect to the approximate action
n/2
-1.0 L L L Sapprox: Sg[U]+'(21 |(D_Zk)¢k|2- (8)
0.0 0.5 1.0 1.5 2.0 -
FIG. 2. Estimated boundary of the Dirac eigenvalue spectrum. At the end of each trajectory, one generates a figldith
probability
polynomial of even degrea defined in the complex plane 2
with complex conjugate rootg, such that P"8(7)=Re al”, ©)
_ 1 where X=Tm,2(D)T,j,§(D) and R is a normalization con-
lim Py(2)=~ (3)  stant. The new configuratioJ(,¢') is accepted with prob-
n—ee ability

for any z in the domain containing the spectrum Bf (not

including the origin. Since the spectral radius of the hopping p(AU (U6 min
matrix M is bounded by 8 in the free case and even less in ‘ ‘

the interacting case, we are guaranteed that the spectrum of

D=1-«M will remain in the complex right half-plane for The correction term is thus estimated by only opdield.

the heavy to moderate|y heavy quarks that we simulate ( Detailed balance with reSpeCt to the desired action
<1/8). This is demonstrated in Fig. 2 where the boundary oflet [ Th(D) Trx(D)]e %! is satisfied after averaging
the spectrum of the Dirac matrix is estimated é6¢0.1 as in  the  probability density for the Metropolis test,

—|x" 5|2
L | (10

Ref. [20]. PHB(1) Py ) (7.4 » OVET ther field.
Using the propertyD = ysD 'y we obtain The number of bosonic fieldsis chosen so that the cor-

rection term leads to an acceptance rate of about 2/3reisd

+ taken at least 3 times.

detpn(D):anﬂl de(D -z, det(D -2z, (4) For the local updating of the gauge and boson fields we
used standard heat bath and overrelaxation algorithms as de-

with ¢, an easily computed constait9]. Instead of Eq(1)  Scribed in[18]. A trajectory is a symmetric combination of

n/2

one now finds (214+1) overrelaxation steps applied alternatively to the
gauge and boson fields, preceded and followed by a heat bath
n/2 on the bosons. Ergodicity for the gauge fields is maintained
detD = lim det { T} ,(D) Ty»(D)]e lim f IT dgldg due to their coupling to the bosonic fields. The rontsare
n—e noe k=1 distributed on a circle centered ét,0). We implemented
ni2 even-odd preconditioning to lower the number of bosonic
% exp( > #l(D-2z)T(D-2) ¢k) ' (5) fields needed for a given accuracy. To efficiently equilibrate
k=1 the system, we start from thermalized quenched gauge con-

o _ . figurations and initialize the boson fields by generating a
whereT, (D) =1II;Z,(D —z,). The algorithm is made exact Gaussian random vectqr and setting
with a global Metropolis test as follows. The one-flavor de-

terminant can be expressed as n
ée—cDI] (D-29 x. (1D
detD=Cdet }[T},(D)To(D)], (6) K
with the correction facto€ given by 1. SIGNALS FOR THE PHASE TRANSITION

OR LACK THEREOF

—1rt
C=lim det [ Tmz(D) TmzD)] 7) QCD with infinitely heavy quarks, i.e., quenched, under-

m—s oo det‘l[Tx,z(D)Tn,Z(D)] ' goes a first-order deconfinement transition corresponding to
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the spontaneous breaking of tA€3) Polyakov loop symme- 3 1
try [21]. Based on the Polyakov loop, given by the product of pP=5P~ 3, (14
gauge links in the temporal direction,
.M with p the probability for the complex Polyakov loop to be
_ = within 20° of aZ; axis. Therefore, if th&Z(3) symmetry is
L(m 3Trn¥:[1 Uo(nno), (12) unbroken, we findo=1/3 andp=0, whereas if it is broken

in such a way that the Polyakov loop is distributed near one

which transforms undez(3) asL(n)—zL(n), one can con- axis (the real axiy we havep=1 andp=1. The value of
struct a standard set of observables and order parameters. Je=0 is only obtained in the quenched case wherez{®)
particular, (L)=0 in the Z(3)-symmetric, confined phase, symmetry is exact. With dynamical quarks we only look for
and nonzero in the spontaneously broken, deconfined phasg discontinuity across the phase transition. On a finite lattice,

As explained in the Introduction, one expects this phasehe discontinuity is smoothed outp) varies abruptly over a
transition to persist in the presence of sufficiently heavy dyrange ing which shrinks asv~*, and the slopalp/dg is
namical quarks. However, these dynamical quarks explicitymaximum at the critical3. The intersection of curves(;3)
break the quenched(3) symmetry, favoring the real;  for various lattice sizes may also give information gp.*
branch and inducing a nonzero Polyakov lgdp>0 even The real part of the Polyakov loop after projection on the
in the confined phase. The Polyakov loop and associateglosest Z axis This observable is also an order parameter
observables can no longer serve as an order parameter. Thg the quenched phase transition. It behaves just like the
phase transition will be identified as a discontinuity in thesedeconfinement ratio in the presence of dynamical quarks.
observables, from one nonzero value to another, in the ther- The peak value of the susceptibilitfhe susceptibility
modynamic limit. measures the fluctuations of the Polyakov loop. We consider

Furthermore, as also explained in the Introduction, thishe behavior of
first-order phase transition is expected to become weaker and
eventually disappear, as the quark mass is reduced. The cor- x =V Q2 —{|Q])?), (15
relation length at criticality will correspondingly increase,
and eventually diverge at the end point of the transition lineVhich diverges at criticality for a first-order phase transition
where the transition becomes second order. For yet IighteiF‘ the thermodynamic limit. On a finite lattice, instead of this
quarks, no singularity appears even in the thermodynamié function behavior, the peak value gf is proportional to
limit, and a simple crossover occurs h). The distinction the volumeV, while the width of they, distribution scales
between weak first-order, second-order, or crossover behalike V' and its peak may shift liké/~* [22]. The scaling
ior requires lattice sizes at least comparable with the criticaPehavior of the susceptibility changes for a second-order
correlation length. However, this requirement can be lesstransition: the peak value of, becomes proportional tg*
ened if one compares results for various small size lattice®ith «<1. For a crossover behavior where, even in the ther-
with a finite-size scaling ansatz. This is how the first-ordermodynamic limit, there is no discontinuity in the thermody-
nature of the quenched transition was first ascerta@d namic functions, the peak value gf remains constant with
and this is how we proceed here. the volume.

Our strategy is to vang, for each quark mass, for three
spatial lattice sizes and to look for the following signals. IV. RESULTS

Coexistence of the two phasés distinctive feature of a ) )
first-order transition is phase coexistence and on a finite lat- !N Table 1 we collect the parameters of our simulations.

tice we look for tunneling between the confined and deconAdiusting the number of bosonic fields, so that the accep-

fined phases which is observed over a small temperatuf@nCe is about 2/3, we can make two observations: First, for
range around the critical temperature. As the size of the la fixed quark mass we find thagrows logarithmically with
tice increases tunneling is exponentially suppressed but fdh€ volume for the same acceptance rétie., for the same
the lattice sizes studied here enough tunneling events af&lative error in the bosonic approximation of the determi-
observed to enable us to study the double-peak distributioR@")- This is illustrated in Fig. 3 which shows the=0.1
for the norm|Q| of the Polyakov loop defined as data fro_m Table I. Secor_1d, for a fixed volunreis approxi-
mately inversely proportional to the quark mass; i.en, it/
1 linear in 1k. This behavior is displayed in Fig. 3 where it
0=y En: L(n), (13)  holds for a range ok values. This dependence wion both
the quark mass and the volume confirms the expectations of,

with V the spatial volume. For a first-order phase transition&-9-» Ref[23]. , ,
the location of the peaks should be fixed as the volume in- Our results for the observables which we used to decide

creases, while their width should decrease Nke!. For a  ©nN the order of the transition are shown in Figs. 4—7. In Fig.
second-order phase transition or a crossover, the peaklstunneling between the confined and the deconfined phase is
should merge as the volume increases, and the tunneling sig-
nal should disappear.

Deconfinement ratioThe deconfinement ratio is defined !0One complication here is thép) in the confined phase depends
by on the spatial volumy/.
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TABLE I. In the first column we give th& values for the three volumes studied. In the other columns

is the number of bosonic fields aad c the average acceptandesw gives(in kilosweep$ the total number

of thermalized configurations used in the reweighting procefi24g

83x4 128x4 16°x4
K n/acc Ksw racc Ksw racc Ksw
0.05 8/0.78 18 12/0.74 20 24/0.83 20
0.10 16/0.67 45 24/0.63 50 32/0.67 37
0.12 24/0.74 55 32/0.67 40 40/0.69 12
0.14 32/0.77 60 40/0.70 37 50/0.67 12

clearly observed fok=0.1. A similar behavior is also found In fact for «=0.14, which is not represented, the deconfine-
in the case ofc=0.05 whereas fok=0.12 tunneling is no ment ratio always stays very near 1.
longer observed, on our largest *1Gattice. The double-peak A similar qualitative change is visible in Fig. 7, which
structure of Q| for k=0.10 is seen in Fig. 5 where it is fitted shows the susceptibility, divided by the volume, again
to the sum of two Gaussian distributions in the complexreweighted as a function @8. For k=0 and 0.05, the peak
plane, one centered at the origiconfined phaseand one of y,/V is almost independent of. In other words,y,
centered at a fitted location along the real axisconfined diverges likeV, as befits a first-order transition. For all the
phase¢. The second peak seems to approach the first as thdgher «’s, x, /V decreases as the volume grows, indicating
lattice size increases, which would indicate a second- rathehat the first-order transition has disappeared or that the
than a first-order transition. A double-peak structure was alsasymptotic behavior has not yet set in.
observed fork=0.05 but the distance between the peaks We use the peak of the Polyakov loop susceptibjityto
remains the same as the lattice size increased«Fdd.12  determine the pseudocritical coupling.(x). The dotted
the double peak was no longer visible. lines in Fig. 7 delimitate a band whepg is near its peak

In Fig. 6 we show the deconfinement ragias a function
of B, using reweightind24], for x=0.05, 0.10, and 0.12 as «=0.10
well as for the quenched case<0). The latter is included ;
as a check of our methodology and statistical accuracy. O
guenched data have similar statistics to our full QCD data
The intersection of the deconfinement ratio curpég) for  __os
various lattice sizes occurs very near the known valug of
[3], shown by an asterisk, and around a value 3/4 for the
deconfinement ratio. The largest lattice {R4esults, actu-
ally obtained by reweighting data from our effective model
(see Sec. Y, help determine the critical point more accu-
rately, but are not necessary to ascertain the transition itsel
A qualitative change is seen to occur arourd-0.10;
namely, the curves for various lattice sizes stop intersecting
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FIG. 6. Deconfinement ratio foikx=0.05, x=0.10, and «

FIG. 5. Double-peak structure ff2| for «=0.10 fitted to a sum = 0.12 for three lattice sizes. The dashed lines give the error band
of two Gaussians, centered at the origin and at an adjustable podier the critical 8 value as determined from the maximum of the
tion on the real axis. susceptibility(see Fig. 7. The asterisk denotes the quenched result

for B, from Ref.[3].
value on our largest volume. These bands, also shown in Fig.
6, display the nice agreement between this criterion and therossover behavior. Far=0.10 andx=0.12 the situation is
crossing of the deconfinement ratio lines when that takefess clear. The small value of=0.22(3) atx=0.12 favors
place. We have also looked at the average of the real part ahe crossover region. Far=0.10, «=0.5§3), and wemust
the Polyakov loop() after projection to the closes(3) be quite near the second-order end point.
axis, and found that the position where data from different We summarize our findings.
lattices cross is again within the same error band. Our values For x=0.05 all our observableftunneling, intersecting
for B.(«) are collected in Table Il and plotted in Fig. 8. deconfinement ratiog(;3), linear dependence of the suscep-
Comparing them with availabl@. values forN¢=2 [25], tibility peak onV] behave quite similarly to the quenched
also included in Table I, we see that the effect of one dy-case and consistently point to a first-order transition.
namical quark on the value g8 is to shift it from the For k=0.12 and 0.14, all our observablé®o tunneling,
quenched result 08,=5.6923(4) by about half the amount no crossing of the deconfinement ratios, growth of the sus-
of the shift produced by two degenerate quarks for the sameeptibility peak slow or nonexistenpoint to a crossover.
k value. Not surprisingly, when the dynamical quarks are For x=0.10, the situation is less clear. On the largest
heavy, their ordering effect grows linearly with the number|attice, we do not see the signals of a phase transition: tun-
of flavors. One could therefore use dif=1 data to com- neling is suppressed as comparedcte0.05, the peak in the
plete the blankN¢=2 entries in Table II. Polyakov loop distribution moves towards the origin, the de-

The volume dependence of the peak valugepfis more  confinement ratio does not intersect the smaller volume
clearly displayed in Fig. 9a. The lines shown are best fits t@urves, and the peak of the Polyakov loop susceptibility is
the formV®. As discussed in Sec. Ill, values=1, 0O<a  not much larger than the peak value for the next smaller
<1 and O characterize a first-order transition, second-orderolume. Based on this largest volume, we consider0.10
transition, or crossover, respectively, up to finite-size correcas being close to the end point, but rather on the crossover
tions. Fork=0.05 the best fit yieldee=0.964), to becom-  side.
pared to the pure gauge value=1.02(4) for which the data A more precise statement would require simulations on
are plotted in Fig. 9b. The transition is first order. Rer larger lattices. Larger volumes together with a more refined
=0.14, on the other hand, we find=0, a clear signal of finite size scalingFSS ansatz would lead to a precise de-
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termination of the end point. We carry out this approach inbeyond our computer capabilities. We thus adopt a different
the context of the effective model discussed in detail in theapproach: We consider an effective model, in the same uni-
next section. versality class as full QCD but cheaper to simulate. By simu-
lating larger systems, we locate the end point in the coupling
plane of this model. Then we map this end point back onto
. . full QCD.

.lt is clear from the above rgsults that Iocatmg the_ end The simplest prototype of our universality class is the
point (Bep, xep) accurately requires very large lattice SIZ€S, three-dimensional three-state Potts model in an external field

TABLE Il. The pseudocritical3 value is given for the fouk h:
values studied. The two-flavor results are from Heb] and are
given for comparison. The quenched result frd8] is B

V. EFFECTIVE MODEL

— S=— Rez*z—h2, Rez,, h>0, 16
=5.69234). (% BRez;z, ; n (16)

“ 0.05 0.10 0.12 0.14 with z, an element ofZ(3). Dimensional reduction at high
Ni=1 B. 5.6922) 56603 5.6305  5.591) temperature reduces QCD to this model. Quenched QCD
N;=2 Be 5.582) 5.462) maps onto the&Z(3)-symmetrich=0 version, which under-

goes a first-order transition #.~0.55053[26]. Full QCD
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5.70 T T T critical field h,, was evaluated in the mean-field approxima-
& ) tion, yielding the small valueilog2—3~0.018, and by
N dynamical quark Monte Carlo simulations where the estimate™3@h,,
ses | <K . 4 effective model <10 2 was obtained. Unfortunately the mapping framg,
NG back to a quark mass is qualitative rather than quantitative.
\i This is why we have to turn to a more complicated, four-
5.66 |- N L - dimensional model.
o N The starting point is the fermionic determinant which can
Q. AN be expanded into loops, yielding

5.64 |- \% - — K|
N de(l—KM):exp<—2 l—Tr(M')). (17)
562 - ~ -1

N %\ This expansion will converge quickly for the range ©%
under consideration. The loops which are relevant for the
5.60 ' ' ' breaking of theZ(3) symmetry are the ones that wind
0.00 0.02 0.04 0.06 0.08 around the time direction. Among them the shortest and most
h or 4N (2k)™ - - : ,
¢ important is the Polyakov loop, Eq12), which carries a
coefficient (2N,)(2«)"Nt on a lattice of time dimensioN, .
Our effective model tries to incorporate higher-order effects
with an effectiveZ(3)-breaking fieldh and an action

FIG. 8. The pseudocritical deconfinement couplgas a func-
tion of kNt (open squarggound from the analysis of the QCD data
with one dynamical quark speciéisereN,=4). The dashed line is
to guide the eye. The results for the same quantity obtained for our
effective model(Sec. V) are also plotted as a function of the field _ .
strengthh. The asterisk shows the second-order end point. The Seft= Sg[U] h(K)g Re TrL(x). (18
QCD data are shifted upwards byNg* to take into account an

ef_fective change irﬁ4coming from expanding the fermionic deter- gagides the leading hopping parameter expansion above,
minant up to ordew™. which should be accurate at small the mappinch(x) can

) be obtained in other ways. One way is to resum all spatial
reduces to theh>0 version, where the strength of the hoppings within the free approximation, so that

Z(3)-breaking fieldh grows with the inverse quark mass.

That model has been studied by DeGrand and D¢T&}. - %
The_y found a first-order '.[ran5|t|on line in the planﬁ,h),. h(K):th 3Tr[(1+ yo) kG(q) ™, (19)
ending at Bp,,he;,) (see Fig. 1 The second-order end-point —m (217)
10' . . . .
m]
10° b .
X X i I
O 0 9
ghor 1 s
><_, I | ><_, 2'_1'
1 L h = 0.0 a=102(4)
a x=0.05 —  a=0.96(4) 10 . h=0010 a=078(3)]
& £=0.10 -—-  a=0.56(3) —-—-- h=0.020 a=0.50(5)
X k£=0.12 —-— a=0.22(3) L e h=0.025 a=0.33(3) |
Ly | xe=004 «a=00 | |  -=-- h=0.050 «=0.21(7)
']O 1 |3 1 1 |3 1 |4
10 10 10
volume volume
(a) (b)

FIG. 9. (&8 The volume dependence of the peak of the susceptibility«fe10.05, x=0.10, x=0.12, andx=0.14. (b) The volume
dependence of the peak of the susceptibility in our effective m@kd. \j for h=0.01,h=0.02,h=0.025 anch=0.05. A couple of points
are slightly shifted in volume for clarity.
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1800 - 1 —— tadpole improved !
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1600 g | —-—-— free spatial propagator | ||
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1400 | . 1 /
10 n
1200 b I
=
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- / _
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600 | . L ‘S
/ 4
‘ /
/
400 | 1 10-4 VA I
-2 -1
200 10 10
K

0 002 004 006 006 04 o012 044 ods ods FIG. 11. The strength of th&(3)-breaking term versus.

FIG. 10. Best fit ofl Q| from full QCD for x=0.1 (dashed ling
to the data obtained from the effective model using reweightin

gidentify the pseudocritical coupling.(h) and obtain the
(solid line forh=0.026). p

oints included in Fig. 8, which for smakt follow closely
the corresponding curve obtained in full QCD. In Fig. 9b we
show the dependence of the peak of the Polyakov loop sus-
ceptibility xy, on the spatial volume for various values of

x.=1/8. This result can be further refined by considering”(%)- The behavior is again very similar to that of full QCD,
tadpole improvement, such thatin Eq. (19) is substituted !nd|cat|ng a weakening of the first-order phgse transitioh as
by x(plag)¥. Finally, a nonperturbative approach consistsiNcreases and prot_)ably a crossover behaV|.oh%0.O3. .
in finding the best match(x) between the distribution of Now we would like to determine as precisely as possible
the magnitude of the Polyakov loo@ [Eq. (13)] in full the end point B¢, he,) and check the scaling behavior in its
QCD and that in the effective model. The quality of such avicinity. In Ref. [27] the same issues were addressed in the
matching is illustrated in Fig. 10. At lowes or h, this non- ~ context of the electroweak theory, and a reliable numerical
perturbative matching becomes more sensitive to statisticirocedure was presented which yielded impressively accu-
fluctuations in the exploration af(3) sectors, which can rate answers. The procedure we follow is very similar, al-
mimic a symmetry-breaking term. In that regime the otherthough not quite identical. From our Monte Carlo data we
analytical methods work better. Our nonperturbative matchebtain the joint probability distribution of the plaquette and
ing results of the whol€) distribution are listed in Table Ill. the real part of the Polyakov loofshown in Fig. 12 The
(Matching the first two moments of the distribution gave principal axes of this distribution, which diagonalize the cor-
consistent resultsFigure 11 compares the various mappingsrelation matrix of the two observables, are identified as the
h(x) considered here. magnetizationlike variabl&! and the energylike variablE.
Now, equipped with a reasonably accurate correspon¢The rotated distribution displayed in Fig. 13 shows the
dence betweet and x, we can look for the critical line  double-peak distribution in thei-like direction) After sub-
(B,h) and its end point in our effective model. We simulate tracting the averages from the new variablésand E such
lattices of spatial size§ 12°, 16°, and 24 with the tempo-  that (M)=(E)=0, rescaling them such thdM?2)=(E?)

ral direction fixed atN;=4 as in the case of the full QCD =1, and reweighting i andh, we obtain the probability
simulations. We obtain data at various valueshef0.01, density P(M,E) shown in Fig. 14 at the end point. We

0.02, 0.025, anth=0.05 with typically 10 000—20 000 ther- (jearly see that the marginal distributi®t(E) will show a

malized configurations. _ _ single peak, whileP(M) will have a double peak. In an

First, we perform the same analysis, using the same olfinite volume the distributioP(M) would be symmetric.
servables as in Sec. IV for full QCD. At each valuehpfve Comparing theP(M,E) distribution of Fig. 14 with the 3

dimensional(3d) results of Fig. 3 of Ref[27] for the Ising

TABLE lll. Nonperturbative determination df by fitting to the  model and thed(2) andO(4) models, our result is in clos-
QCD data. The value df listed here gave the best fit to the QCD gt agreement with th®(M,E) distribution of the Ising
data of the| Q| distribution. model.

To determine the end point we need to perform a finite-
size scaling analysis. For each lattice size, we reweigigt in
h 0.0054) 0.0262) 0.061) and h until we minimize the asymmetry of thil distribu-
tion, by requiring the vanishing of the third cumulant:

where G(q) ! is the free spatial quark propagator. This
mapping incorporates the divergencehafhenk— k., with

K 0.05 0.10 0.12
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0.1 T

0.05 |-

005

-0.1 1
-0.005 0 0.005

FIG. 12. Ser—(Serr)) VS (Sg—(Sy)) for 5000 configurations on

24 ath=0.01, 8=5.680. E

(M?)
My 0
This determines a line in the plang,h), which must go
through the infinite-volume critical point&gp,hep), up to
statistical errors. The intersection of these lines obtained for
various lattice sizes therefore determines the critical point
(Bep,hep). Parametrizing these lines by the valuehofwe
show in Fig. 15 the variation of the fourth magnetic cumu-

PHYSICAL REVIEW D 60 034504

lant,

(M%)
(M?)2’

FIG. 14. Normalized probability distribution at the critical point
hep=0.009 for 24.

along these lines, for the three largest lattices considered for

N;=4 as well as for three lattices fdt;=2. The simulation
of the effective model aN,=2 using spatial sizes 8, 12, and

-2.2 0
M

FIG. 13. (Ser—(Serr)) VS (Sg—(Sy)) for 5000 configurations on

24° ath=0.01, 8=5.680 after a rotation.

2.2

16 can be used as a check of our procedure in a situation
where significant deviations from scaling are not expected.
The three lines foN;=2 cross at a point which gives the
critical end point. The fact that the three lines meet at a point
(within statistical errorsindicates stability against deviations
from scaling. Note that we made no assumption about the
universality class in our determination of the critical point.
Because of its generality and because of its relative statistical
robustness in our case, we favor the method we just de-
scribed to find the end point over the method used in Ref.
[27], which fixes the fourth cumulant, E§21), to its Ising
value. The value of (AM)*/((AM)?)? at the critical end
point can now be used to check the universality class of the
effective model and thus the universality class of QCD.
From Fig. 1%a) at hep,=0.06 we find((AM)*)/{(AM)?)?
~1.67(5) in good agreement with the corresponding value
of 1.604(1) for the Ising modél.The value of Bep deter-
mined from the crossing of the lines parametrized with the
value of B is B¢p=5.0411). For N;=4 the lines for our

2For theO(2) andO(4) models((AM)*/{(AM)?)2=1.233(6)
[28] and 1.092(3)[29], respectively, i.e., clearly lower than our
value of 1.675).
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2.0 2.0
1.9 § 19
c .0
£ 18 1 518
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£
216 4 216
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14 L 14 I
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FIG. 15. The fourth magnetic cumulant versus the field strehgtla for N,=2, (b) for N;=4. The point of intersection of the lines
determines the critical poirt,,.

three largest volumes converge hat-0.009. Scaling viola-  after scaling witi. ~%8, They are seen to nicely fall on top of
tions are still seen for the lattice with spatial extént12.  each other. This scaling thus yields a rough estimate of the
Thus here the end point is determined less accurately as coraxponenty/ v~2.2 to be compared with a value of 1.96 for
pared to theN,=2 case, although we have increased ourthe Ising,0(2), andO(4) models. To determine exponents
statistics fivefold using~100000 configurations for the two such asy/v which can pin down the Ising model universality
smaller lattices and-50000 for the largest lattice. Since the class we need to consider the scaling behavior ofEti&e
point of intersection for the two largest lattices is within variable, which is smaller than thé-like variable by at least
statistical errors consistent with=0.009, we takeh., two orders of magnitude. Scaling based on Eikke vari-
~0.009(1) as the best determination of the critical pointable was found to be unstable within the statistical precision
from these data. Having determined the critical point we carof our present simulation.

look at critical exponents. The magnetic susceptibilithaf Finally, we comment on the Polyakov distribution dis-
should scale likg27] played in Fig. 14. It is clear from this figure that even at the
end pointh,,=0.009, the Polyakov loop distribution still
xm=V{((AM)?)oc L7377, (220 shows a marked double-peak structure. In R&€] where

the same effective model was studied, the criterion used to
identify the end point was to look for the value lofwhere
the double-peak structure of the real part of the Polyakov

We plot they), distributions in Fig. 16 for our three lattices

1200 T T T

L=24 —— loop was no longer visible. This criterion thus led to a much
T bigger value~0.08 for the critical field strength than we are
finding here.

1000 | ]

VI. DISCUSSION

800 - 1 From the previous section we conclude that the end point
of the first-order transition occurs dt(«)~0.009 which
maps tox~ 0.08. The qualitative picture expected f@r+1)

800 [ 1 flavors in the continuum is that there is a finite region in the
mass planery, 4,ms) of the two degenerate flavors versus
the third near the quenched limit where the deconfinement

400 | . phase transition is first order. Otd;=1 result corresponds
to the infinite-mass limit fomy, 4. In this limit, which up to
now received little attention, we find that the first-order pure

200 | 4 gauge phase transition persists upkte 0.08. Since we ex-
pect dynamical quark effects to be twice as strong for two
flavors (see Table I, we can estimate the boundary of the

0 : ! ! ! o first-order region as

1.5 1 05 0 0.5 1 15

FIG. 16. Scaling of theM-like distribution at the critical point 2het1(Ky,g) + heti(ks) ~0.009, (23
hep and B, for the three largest lattices. We have applied a scaling
factor of L% to all the data. with het¢(x) as per Fig. 11.
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It is of course of crucial importance to establish the scal-spacinga. This mass is in fact of the same order as that of
ing behavior of our results and to express the end-point pathe doubler modes, which leads to an overestimation of the
rameter as a quark mass, not a hopping parameter. Omaass at the end point. Sinog,a> 1, finite-a corrections are
might wonder if the rather small value af, we found may expected to be rather large. At the tree level the corrected
not be an artifact of the relatively coarse lattice discretizatiommass is given by
and if one would recovek,,=0 in the continuum limit.

This would mean that the deconfinement transition disap- mya 27
. m aN —,
pears as soon as dynamical quarks of any mass are allowed. q ltma mga

Such a scenario goes against the robustness of a first-order

phase transition. The first-order deconfinement transitiogynich reduces our estimate by about a factor of Mg
must be robust against small variations of the parameters., 1 56 To convert this to physical units we useaf4’
before ending at a second-order point. We made this argu= 250 MeV from the deconfinement temperature. This gives
ment in the Introduction to justify the expected phase diay, —1.4 GeV for the end point.

gram, Fig. 1, in our discrete theory. The same argument ap- “a critical quark mass of the order of 1 GeV is in line with

plies to the continuum QCD theory. Therefore, we expect thephenomenological expectations. The pure gauge deconfine-

deconfinement transition to end at a finite quark Mags  ment transition is fairly weak, with a critical correlation
Determining this mass would require a full-blown scaling length £,~(7-10) at B=6 [25], ie. ~11 GeV'! or

study of one-flavor QCD, which is beyond the scope of thisy, (50~ ). This is the minimum system size necessary to

paper. However, we have considered what happens to 0yserve the first-order nature of the deconfinement transition.
e_ffectlve model as the lattice spaciagchanges. We have Dynamical quarks introduce a new length saale namely,
S|mulated. our effectlve model foNt_=2 and_ foundhep,  the distance where the string breaks;- O(2mq/a). Con-
~0.06, with scaling exponents consistent with thos&Nat  finement can only be observed up to this distance. For very
=4. ChangingN;=4 to N;=2 amounts to doubling the lat- heayy quarksy,>¢,: string breaking occurs for a large
tice spacinga. Therefore, the variation of the end-point value geparation, larger than the critical correlation length. The
hep indicates a scaling behavior passage from confinement to deconfinement will allow “lib-
erated” quarks to appear even if their separation is less than
r.. This qualitative change signals a phase transition. As the
This strongly supports the existence of a continuum limit forduark mass is lowered, the string-breaking scalede-

the effective model, Eq(18), with the action creases. When.~¢&., the passage from confinement to de-
confinement does not liberate quarks that were not already

~ 3 liberated by string breaking. There is no qualitative change
Seff:S[A]_hJ d*xL(x), (29 from one regime to the other, and one cannot really tell if the
system is confined or deconfined: the phase transition has
whereh=ha? in the discretized theory, having a critical end disappeared and been replaced by a crossover. This occurs
point at some positive,,,. for
If one believes in the physical nature of the critical cou-
pling ﬁep, then the corresponding quark mass cannot be in-
finite. For instance, the leading hopping parameter expan-
sion, Eq.(17), at constant physical temperaturd
=(N;a) " gives The multiboson method can be used to simulate an odd
. number of flavors as well as an even number. In this work
h(x)~4Ng(2x)@D " (260 we have shown that the multibosonic algorithm is well suited
_ for the study of one-flavor QCD for moderately heavy Wil-
If h(x)=he,a% then this relation is not consistent with son quarks. Using this algorithm we were able to carry out a
lim,_oxk=0. One is again led to expect persistence of thedetailed finite size scaling analysis to determine the pseud-
first-order transition, for some range of quark mass, in thepcritical 8(«) line for « values up tox=0.14. We demon-
continuum one-flavor QCD theory. strated that the first-order phase transition seen in the
We can get an estimate of the critical quark mass inquenched theory persists when one includes dynamical
physical units by using the naive prescriptimgla=%(1//< guarks. Using FSS we showed that the deconfinement phase
—1/k¢). Using the quenched data of R¢R1] for the pion  transition gets weaker as the dynamical quark mass increases
mass we findk.=0.16942), at 3=5.7 in the zero-flavor and then turns into a crossover. In general we find that the
theory. On the other hand, the SESAM Collaboration findsdynamical quark effects on the phase transition are approxi-
k.=0.1585(1)[32] at B=5.6 in the two-flavor theory. Go- mately half those for two flavors. Using lattices of size's 8
ing to our value ofg.,=5.683(3) will decrease the critical 128, and 16x 4 within full QCD, we found an end point
value from SESAM slightly. If we neglect this change and aroundx=0.1. A more accurate determination would require
take the average between the zero- and two-flavor cases, wémulation of larger spatial volumes. In order to carry out a
end up with k,~0.164. Taking the end-point value,,  more refined FSS analysis with larger lattices we considered
~0.08 we find a quark mass,a= 3.2 in units of the lattice an effective model in the same universality class as full

hep(2a)/hey(@)~0.06/0.008a%". (24)

my~O(5Va/2), e, myg~O(1) GeV. (28

VII. SUMMARY AND CONCLUSIONS
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QCD. In this effective model the effects of the fermionic the end point. This scaling test strongly supports the exis-
determinant were simulated by an effecti¥é3)-breaking tence of a critical end point at a nonvanishing positive field
field coupled to the Polyakov loop. We studied the phasetrength in the continuum limit of our effective model. In
transition as a function of this field strendtton lattices with  turn, this indicates a nonvanishing quark mass for the end
spatial volumes § 12°, 16°, and 24 and found a first-order point of the deconfinement transition lifg,(mg) in con-
transition that gets weaker as the field strength increasegnyum one-flavor QCD. Our findings are in agreement with
exactly like in QCD asc increases. Performing a FSS analy- the idea that a first-order transition is robust against small
sis using the joint probability distribution of the plaquette yariations of the parameters, before ending at a second-order
and the real part of the Polyakov loop we were able to depoint. Converting the value ok.,=0.08 to physical units
termine, without any assumptions about the Universalit%jan On|y be done approximate|y, using quenched and two-
class of the model, the end point of the first-order transitiorjayor determinations ok, at similar3 values. After correct-
line. Matching of the Polyakov loop histograms or its first ing for finite lattice spacing errors to the tree level we obtain
two moments in the effeCtiVe m0de| to those in fu” QCD an estimate Of the quark mass at the end ponq“ne{, 1.4
enabled us to determine nonperturbatively the correspongeyv, consistent with phenomenological expectations. A
dence betweeh and«. In this way we obtained the value of simuylation of one-flavor QCD closer to the continuum limit
kep~0.08 for the end point of the QCD first-order transition would allow tighter control over discretization errors, but is
line. Futhermore, the FSS analySiS of the effective model abeyond our Computer resources.
the critical point yielded results consistent with our effective
model being in the same universality class as the lIsing
model. Although a FSS analysis was not possible for QCD,
this finding is important in suggesting that the universality
class of one-flavor QCD and the Ising model may be the We thank SIC of the EPFL in Lausanne, ZIB in Berlin,
same. and the Minnesota Supercomputing Institute for providing
We have also studied our effective model on a coarsethe necessary computer time. P.dF. would like to thank M.
lattice atN,;=2, and have found good scaling behavior of theOgilvie, K. Rummukainen, A. J. van der Sijs, J. Zinn-Justin,
end point field strength, with similar Ising-like exponents atand C. A. B. Svetitsky for discussions.
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