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Chiral symmetry and the nucleon spin structure functions

M. Wakamatsu* and T. Kubota†

Department of Physics, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan
~Received 17 September 1998; published 8 July 1999!

We carry out a systematic investigation of twist-two spin dependent structure functions of the nucleon
within the framework of the chiral quark soliton model~CQSM! by paying special attention to the role of chiral
symmetry of QCD. The importance of chiral symmetry is illustrated through the good reproduction of the
recent SLAC data for the neutron spin structure functiong1

n(x,Q2). We also observe a substantial difference
between the predictions of the longitudinally polarized distribution functions and those of the transversity
distribution functions. That the chiral symmetry may be responsible for this difference is seen in the isospin
dependence of the corresponding first moments, i.e., the axial and tensor charges. The CQSM predicts
gA

(0)/gA
(3).0.25 for the ratio of the isoscalar to isovector axial charges, whilegT

(0)/gT
(3).0.46 for the ratio of the

isoscalar to isovector tensor charges, which should be compared with the predictiongA
(0)/gA

(3)5gT
(0)/gT

(3)

53/5 of the constituent quark model or of the naive MIT bag model without proper account of chiral sym-
metry. Another prominent prediction of the CQSM is the opposite polarization of theū and d̄ antiquarks,
thereby indicating the SU~2! asymmetric sea quark~spin! polarization in the nucleon.
@S0556-2821~99!06813-7#

PACS number~s!: 13.60.Hb, 12.39.Fe, 12.39.Ki
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I. INTRODUCTION

Undoubtedly, the so-called ‘‘nucleon spin crisis’’ caus
by the European Muon Collaboration~EMC! measuremen
in 1988 is one of the most exciting topics in the field
hadron physics@1#. The recent renaissance of nucleon stru
ture function physics is greatly indebted to this epoc
making finding. Naturally, the physics of nucleon structu
functions has two different aspects. One is a perturba
aspect, while the other is a nonperturbative aspect. Bec
of the asymptotic freedom of QCD, theQ2 evolution of
quark distribution functions can be controlled by the pert
bative QCD at least for large enoughQ2 @2#. However, per-
turbative QCD is entirely powerless for predicting distrib
tion functions themselves. Here we need to so
nonperturbative QCD in some way. Unfortunately, we ha
no reliable analytical method for handling this aspect
QCD. For the present moment, we are then left with t
tentative choices. One is to rely upon lattice QCD, while
other is to use effective models of QCD. If one takes the fi
choice, one must first evaluate infinite towers of moments
distribution functions, since the direct calculation of distrib
tion functions does not match this numerical simulati
method@3#. Here we take the second choice, which allows
a direct calculation of quark distribution functions. Sti
there are quite a lot of effective models of baryons. We
vocate that the chiral quark soliton model~CQSM! is a
unique model of baryons which has several appealing
tures not possessed by other models of baryons, espec
when applied to the physics of quark distribution function
First of all, it is an effective model of baryons maximal
incorporating spontaneous chiral symmetry breaking of Q
vacuum@4–6#. The nucleon in this model is a composite
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†Email address: kubota@kern.phys.sci.osaka-u.ac.jp
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three valence quarks and infinitely many Dirac sea qua
moving in a slowly rotating M.F. of hedgehog shape. As
natural consequence, it automatically simulates cloud
pions surrounding the core of three valence quarks. Ne
theless, since everything is described in terms of effec
quark fields only, we need not worry about a double count
of quark and pion degrees of freedom.~We recall that this
kind of double counting occurs, for instance, in models
hadrons based on the linear-sigma-quark-model type
grangian@7,8#.! This also means that we do not need to u
such an ambiguous procedure as convoluting the pion st
ture functions withpion probability function~or more pre-
cisely a light-cone momentum distribution of the pion! inside
the nucleon@9–11#.

Several group have already attempted to calculate nuc
structure functions within the CQSM or the Nambu–Jon
Lasinio ~NJL! soliton model. For instance, Weigelet al. in-
vestigated the polarized as well as unpolarized struc
functions of the nucleon under the so-called ‘‘valence qu
approximation’’ @12#. This is not an extremely bad approx
mation, but it is known to have several unpleasant featu
Probably, most serious would be the violation of positiv
condition for the unpolarized antiquark~or sea quark! distri-
bution functions. Although such an apparent disaster d
not happen for the spin dependent quark distribution fu
tions, a lesson learned from the above observation is th
reliable prediction ofantiquark distributions would not be
obtainable unless incorporating effects of Dirac sea quark
equivalently vacuum polarization effects.

More consistent calculation including vacuum polariz
tion effects have been performed by Diakonovet al. @13,14#
and also by Tanikawa and Saito@15# with different regular-
ization schemes, but by confining to the isosinglet unpo
ized as well as isovector longitudinally polarized distributi
functions, which have values at the leading order of 1/Nc
expansion~or at the 0th order of the expansion in the colle
tive angular velocityV of the hedgehog soliton!. Unfortu-
©1999 The American Physical Society20-1
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nately, an abundance of interesting physics like the phy
of ‘‘nucleon spin contents’’ is contained in the next order
1/Nc expansion@5#. This is easily understood because t
inclusion ofO(V1) terms is the minimum condition for th
collective quantization treatment of hedgehog solitons
hold. Otherwise, the nucleon cannot have correct quan
numbers@4–6#.

We have recently reported the first calculation of t
O(V1) contributions to the isovector unpolarized quark d
tribution function related to the physics of Gottfried sum@16#
with full inclusion of the vacuum polarization effects@17#. It

was shown that the model can explain the excess of thd̄
sea over theū sea in the proton very naturally@17–19#.
However, some of the treatments there were criticized i
recent paper by Pobylitsaet al. @20#. In the process of ob-
taining theoretical quark distribution functions, we need
evaluate nucleon matrix elements of quark bilinear opera
which are nonlocal in time. Their criticism is that the calc
lation in @17# does not treat this nonlocality in time to the fu
extent.

Now the purpose of the present paper is to carry ou
systematic calculation of all the twist-2 spin dependent qu
distribution functions of the nucleon as consistently as p
sible. We evaluate both of theO(V0) andO(V1) contribu-
tions with full inclusion of the vacuum polarization effect
The above-mentioned nonlocality effects are also caref
taken into account. We believe that these unique feature
our theoretical analysis would give new and important inf
mation on the nonperturbative aspect of the spin depen
quark distribution functions including theantiquarkdistribu-
tions as well.

The plan of the paper is as follows. For completeness,
give in Sec. II a precise definition of twist-2 quark distrib
tion functions which we shall investigate in the prese
paper. How to evaluate these quark distribution functio
within the framework of the CQSM is explained in Se
III. Section IV is devoted to the discussion of the nume
cal results. We then summarize what we have found
Sec. V.

II. DEFINITION OF QUARK DISTRIBUTION FUNCTIONS

Most theoretical analyses of quark distribution functio
of the nucleon are based on a field-theoretical formulat
given by Collins and Soper@21#. As a natural extension
Jaffe and Ji recently carried out a systematic classificatio
quark distribution functions by including chiral-odd distrib
tion functions which do not appear in the formulas of de
inelastic scattering cross sections@22#. According to them,
there are nine independent distribution functions, from tw
2 to twist 4. Here we are interested in the twist-2 distributi
functions, which are known to have simple parton mo
interpretation. There are three twist-2 distribution functio
the spin independent~or averaged! distribution f 1(x), the
longitudinally polarized distributiong1(x), and what is
called the transversity distributionh1(x). Following the no-
tation of @22#, they are represented as
03402
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f 1~x!5
1

&p1 E dl

2p
eilx^PSuc1

† ~0!c1~ln!uPS&, ~1!

g1~x!5
1

&p1 E dl

2p
eilx^PSzuc1

† ~0!g5c1~ln!uPSz&,

~2!

h1~x!5
1

&p1 E dl

2p

3eilx^PS'uc1
† ~0!g'g5c1~ln!uPS'&, ~3!

wherepm andnm are two lightlike~null! vectors, having the
properties,

p250, n150, p25n250, p•n51. ~4!

Without loss of generality, one can choose a frame in wh
the four-momentumPm of the initial nucleon and the four
momentum transferqm from a lepton to a nucleon have th
third and the time components only. In this frame,pm andnm

take the form

pm5
P
&

~1,0,0,1!, nm5
1

&P ~1,0,0,21!, ~5!

while Pm andqm are represented as

Pm5pm1
M2

2
nm, ~6!

qm5
1

MN
2 ~n2An21MN

2 Q2!pm1
1

2
~n1An21MN

2 Q2!nm,

~7!

with n5P•q and Q252q2. In the above definition of the
twist-2 quark distribution functions,c1 is a component of
the quark fieldc defined through the decomposition

c5~P11P2!c5c11c2 , ~8!

by the projection operatorsP65 1
2 g7g6 with g6

5(1/&) (g06g3). According to the authors of@22#, c1 is
called the ‘‘good’’ component ofc, since it describes an
independent propagating degrees of freedom in the lig
cone quantization scheme@23#. On the other hand,c2 is
called the ‘‘bad’’ component, since it can be interpreted
quark-gluon composites. It is important to recognize th
only the good component ofc appears in the definition o
twist-2 quark distribution functions in conformity with th
fact that they have simple parton model interpretation. In
actual model calculation of these distribution functions, it
more convenient to rewrite the above expressions with us
the identities

P1
2 5P15

1

2
~11g0g3!, ~9!
0-2
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P1g5P15
1

2
~11g0g3!g5 , ~10!

P1g'g5P15
1

2
~11g0g3!g'g5 . ~11!

Since the distribution functions are in principle fram
independent, it is also convenient to go to the nucleon
frame, in which one can setP5MN /&. Now using the
change of variable as

lnm5l
1

MN
~1,0,0,21![zm, ~12!

we obtain

z05
l

MN
, z352

l

MN
52z0 , z'50. ~13!

Noting that

E
2`

`

dl eilx
¯5MNE

2`

`

dz0eixMNz0
¯, ~14!

we are then led to the following expressions:

f 1~x!5
1

4p E dz0eixMNz0^P50,Suc†~0!~1

1g0g3!c~z!uP50,S&uz352z0 ,z'50 , ~15!

g1~x!5
1

4p E dz0eixMNz0^P50,Szuc†~0!~1

1g0g3!g5c~z!uP50,Sz&uz352z0 ,z'50 , ~16!

h1~x!5
1

4p E dz0eixMNz0^P50,S'uc†~0!~1

1g0g3!g'g5c~z!uP50,S'&uz352z0 ,z'50 . ~17!

What is left for us now is to evaluate nucleon matrix e
ments of quark bilinear operators containing two space-t
coordinates with light-cone distance. How to evaluate th
matrix elements ofbilocal quark operators will be explaine
in the next section.

III. THEORY OF QUARK DISTRIBUTION FUNCTIONS

As shown in the previous section, the quark distributi
functions of our present interest can generally be represe
in the form

q~x!5
1

4p E
2`

`

dz0eixMNz0^N~P50!

3uc†~0!Oac~z!uN~P50!&uz352z0 ,z'50 . ~18!
03402
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In the present study, we confine to spin-dependent distr
tion functions, so that we are to take

Oa5~11g0g3!g5 , t3~11g0g3!g5 , ~19!

respectively for the isoscalar and isovector parts of the l
gitudinally polarized distribution functions, whereas

Oa5~11g0g3!g'g5 , t3~11g0g3!g'g5 , ~20!

for the isoscalar and isovector parts of the transversity
tributions. We recall here the fact that, extending the defi
tion of distribution functionq(x) to interval21<x<1, the
relevant antiquark distributions are given as@14#

Dū~x!1Dd̄~x!5Du~2x!1Dd~2x! ~0,x,1!,
~21!

Dū~x!2Dd̄~x!5Du~2x!2Dd~2x! ~0,x,1!,
~22!

for the longitudinally polarized distributions, while

dū~x!1dd̄~x!52@du~2x!1dd~2x!# ~0,x,1!,
~23!

dū~x!2dd̄~x!52@du~2x!2dd~2x!# ~0,x,1!,
~24!

for the transversity distributions@22#. As explained in the
previous paper@17#, the basis of our analysis is the followin
path integral representation of a matrix element of an a
trary ~bilocal! quark bilinear operator between the nucle
states with definite momenta:

^N~P!uc†~0!Oac~z!uN~P!&

5
1

Z E d3xd3ye2 iP•xeiP•yE DUE DcDc†

3JNS T

2
,xDc†~0!Oac~z!JN

† S 2
T

2
,yD

3expF i E d4xc̄~ i ]”2MUg5!c G , ~25!

where

L5c̄„i ]”2MUg5~x!…c, ~26!

with Ug5(x)5exp@ig5t•p(x)/ f p# being the basic Lagrang
ian of the CQSM, and

JN~x!5
1

Nc!
ea1¯aNcG

JJ3 ,TT3

$ f 1¯ f Nc
%
ca1f 1

~x!¯caNc
f Nc

~x!

~27!

is a composite operator carrying the quantum numb
JJ3 ,TT3 ~spin, isospin! of the nucleon, wherea i is the color

index, whileG
JJ3 ,TT3

$ f 1¯ f NC
%

is a symmetric matrix in spin-flavo

indices f i . By starting with a stationary pion field configu
0-3
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M. WAKAMATSU AND T. KUBOTA PHYSICAL REVIEW D 60 034020
ration of hedgehog shapeU0
g5(x)5exp@ig5t• r̂F(r )#, the

path integral over the pion fieldsU can be done in a saddl
point approximation. Next, we consider two important flu
tuations around the static configuration, i.e., the translatio
and rotational zero modes. To treat the translational ze
modes, we use an approximate momentum projection pr
dure of the nucleon state, which amounts to integrating o
all shift R of the soliton center-of-mass coordinates@14#:

^N~P!uc†~0!Oac~z!uN~P!&

˜E d3R^N~P!uc†~0,2R!Oac~z0 ,z2R!uN~P!&.

~28!

The rotational zero modes can be treated by introducin
rotating meson field of the form

Ug5~x,t !5A~ t !U0
g5~x!A†~ t !, ~29!

whereA(t) is a time-dependentSU(2) matrix in the isospin
space. Note first the identity
03402
al
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c̄„i ]”2MA~ t !U0
g5~x!A†~ t !…c5cA

†~ i ] t2H2V!cA ,
~30!

with

cA5A†~ t !c, H5
a•¹

i
1MbU0

g5~x!, V52 iA†~ t !Ȧ~ t !.

~31!

Here H is a static Dirac Hamiltonian with the backgroun
pion fields U0

g5(x), playing the role of a mean field fo
quarks, whileV5 1

2 Vata is the SU~2!-valued angular veloc-
ity matrix later to be quantized asVa˜ Ĵa /I with I the mo-
ment of inertia of the soliton andĴa the angular momentum
operator@4–6#. We then introduce a change of quark fie
variablesc˜cA , which amounts to getting on a body-fixe
rotating frame. DenotingcA anew asc for notational sim-
plicity, the nucleon matrix element~25! can then be written
as
ehog
n

pace of
^N~P!uc†~0!Oac~z!uN~P!&5
1

Z
G$ f %G$g%* E d3xd3ye2 iP•xeiP•yE d3RE DADcDc† expF i E d4xc†~ i ] t2H2V!c G

3)
i 51

Nc FAS T

2Dc f iS T

2
,xD Gc†~0,2R!A†~0!OaA~z0!c~z0 ,z2R!)

j 51

Nc F cgj

† S 2
T

2
,yDA†S 2

T

2D G .
~32!

Now performing the path integral over the quark fields, we obtain

^N~P!uc†~0!Oac~z!uN~P!&5
1

Z
G̃$ f %G̃$g%†

NcE d3xd3ye2 iP•xeiP•yE d3RE DAH f 1K T

2
,xU i

i ] t2H2V U0,2RL
g

•„A†~0!

3OaA~z0!…gd•dK z0 ,z2RU i

i ] t2H2V U2 T

2
,yL

g1

2TrS K z0 ,z2RU i

i ] t2H2V U0,2RL A†~0!OaA~z0! D
f 1

K T

2
,xU i

i ] t2H2V U2 T

2
,yL

g1
J

3)
j 52

Nc F f j K T

2
,xU i

i ] t2H2V U2 T

2
,yL

gj

G•exp@NcSp log~ i ] t2H2V!#, ~33!

with G̃$ f %5G$ f %@A(T/2)#Nc etc. Here Tr is to be taken over spin-flavor indices. Assuming a slow rotation of the hedg
soliton, we can make use of an expansion inV. SinceV is known to be anO(1/Nc) quantity, this perturbative expansion i
V can also be taken as a 1/Nc expansion. For an effective action, this gives

Sp log~ i ] t2H2V!5Sp log~ i ] t2H !1 i
1

2
I E Va

2dt. ~34!

The second term here is essentially the action of a rigid rotor, which plays the role of the evolution operator in the s
collective coordinates. We also use the expansion of the single quark propagator as
0-4
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f 1K T

2
,xU i

i ] t2H2V U0,2RL
g

5 f 1K T

2
,xU i

i ] t2H U0,2RL
g

2E dz08d
3z8 f 1K T

2
,xU i

i ] t2H Uz08 ,z8L
a

• iVab~z08!•
b
K z08 ,z8U i

i ] t2H U0,2RL
g

1¯ . ~35!

An important suggestion made in a recent paper by Pobilytsaet al. @20# is that one must also take account of the nonloca
~in time! of the operatorA†(0)OaA(z0). Expanding this operator around 0 orz0 , one respectively obtains

A†~0!OaA~z0!5A†~0!OaA~0!1z0A†~0!OaȦ~0!1¯ , ~36!

or A†~0!OaA~z0!5A†~z0!OaA~z0!2z0Ȧ†~z0!OaA~z0!1¯ . ~37!

Since both choices are known to lead to the same answer@20#, it is convenient to use a symmetrized form in the followin
manipulation. This amounts to performing the following replacement:

A†~0!OaA~z0!˜A†OaA1
1

2
z0~A†OaAA†Ȧ2Ȧ†AA†OaA!,

5Õa1 iz0

1

2
$V,Õa%, ~38!

in the process of collective quantization of the rotational motion. Here we have introduced the notation

Õa[A†OaA, ~39!

for saving space. Equation~38! means that the nonlocality of the operatorA†(0)OaA(z0) causes a rotational correctio
proportional to the collective angular velocityV. After taking all these into account, we are then led to a perturbative s
in V, which is also regarded as a 1/Nc expansion:

^N~P!uc†~0!Oac~z!uN~P!&5^N~P!uc†~0!Oac~z!uN~P!&V0
1^N~P!uc†~0!Oac~z!uN~P!&V1

1¯ , ~40!

where

^N~P!uc†~0!Oac~z!uN~P!&V0
5

1

Z
G̃$ f %G̃$g%†

NcE d3xd3ye2 iP•xeiP•yE d3RE DA~Õa!gd

3F
f 1

K T

2
,xU i

i ] t2H U0,2RL
g

•

d

K z0 ,z2RU i

i ] t2H U2 T

2
,yL

g1

2

d

K z0 ,z2RU i

i ] t2H U0,2RL
g

•

f 1

K T

2
,xU i

i ] t2H U2 T

2
,yL

g1
G

3)
j 52

Nc F
f j

K T

2
,xU i

i ] t2H U2 T

2
,yL

gj

G•expFNc ,Sp log~ i ] t2H !1 i
I

2 E Va
2dtG , ~41!

and
034020-5
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^N~P!uc†~0!Oac~z!uN~P!&V1

5
1

Z
G̃$ f %G̃$g%†

NcE d3xd3ye2 iP•xeiP•yE d3RE DAH E d3z8dz08iVab~z08!„A†~0!OaA~z0!…gd

3F
f 1

K T

2
,xU i

i ] t2H Uz08 ,z8L
a

•

b

K z08 ,z8U i

i ] t2H U0,2RL
g

•

d

K z0 ,z2RU i

i ] t2H U2 T

2
,yL

g1

1
f 1

K T

2
,xU i

i ] t2H U0,2RL
g

•

d
K z0 ,z2RU i

i ] t2H Uz08 ,z8L
a

•

b
K z08 ,z8U i

i ] t2H U2 T

2
,yL

g1

2
f 1

K T

2
,xU i

i ] t2H U2 T

2
,yL

g1

•

d
K z0 ,z2RU i

i ] t2H Uz08 ,z8L
a

•

b
K z08 ,z8U i

i ] t2H U0,2RL
g
G1 iz0

1

2
$V,Õa%gd

3F
f 1

K T

2
,xU i

i ] t2H U0,2RL
g

•

d
K z0 ,z2RU i

i ] t2H U2 T

2
,yL

g1

2
d
K z0 ,z2RU i

i ] t2H U0,2RL
g

•

f 1

K T

2
,xU i

i ] t2H U2 T

2
,yL

g1

G J
3)

j 52

Nc F f j K T

2
,xU i

i ] t2H U2 T

2
,yL

gj

G•expFNcSp log~ i ] t2H !1 i
I

2 E Va
2dtG . ~42!
n-

f t

-
ot
f

o-

o

Let us first discuss the leadingO(V0) term. As usual@4,5#,
we introduce the eigenstatesum& and the associated eigene
ergiesEm of the static Dirac HamiltonianH, satisfying

Hum&5Emum&. ~43!

This enables us to write down a spectral representation o
single quark Green function as follows:

aK x,tU i

i ] t2H Ux8,t8L
b

5u~ t2t8! (
m.0

e2 iEm(t2t8)
a^xum&^mux8&b

2u~ t82t ! (
m,0

e2 iEm(t2t8)
a^xum&^mux8&b .

~44!

Using this equation together with the relation

^z2Ru5^2Rueip•z, ~45!

we can perform the integration overR in Eq. ~41!. The re-
sultant expression is then put into Eq.~18! to carry out the
integration overz0 . We then arrive at a formula, which pro
vides us with a theoretical basis for evaluating the zer
order contributions inV to quark distribution functions o
the nucleon:
03402
he

h

q~x;V0!5E CJ3T3

(J)* @jA#O(0)@jA#CJ3T3

(J) @jA#djA , ~46!

where

CJ3T3

(J) @jA#5A2J11

8p2 ~21!T1T3D2T3J3

(J) ~jA!, ~47!

are wave functions, describing the collective rotational m
tion of the hedgehog soliton, while

O(0)@jA#5MN

Nc

2 S (
n<0

2 (
n.0

D ^nuÕad~xMN2En2p3!un&.

~48!

Using the identity

S (
n<0

1 (
n.0

D ^nuÕad~xMN2En2p3!un&50, ~49!

Eq. ~48! can be expressed in either of the following tw
forms:

O(0)@jA#5MNNc(
n<0

^nuÕad~xMN2En2p3!un&

52MNNc(
n.0

^nuÕad~xMN2En2p3!un&,

~50!
0-6
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i.e., as a sum over the occupied states or as a sum ove
nonoccupied states. As was emphasized in@14#, it is better to
use the first form forx.0, whereas the second form forx
,0, for the purpose of numerical calculation.

Next we turn to theO(V1) contribution. In writing down
Eq. ~42!, we have retained the time arguments 0,z0 andz08 in
A†, A andV, since we have to pay attention to the time ord
of these collective space operators, which do not gener
commute after collective quantization of the rotational ze
energy modes. In the previous paper@17#, motivated by the
physical picture that the time-scale of deep inelas
scattering processes is much shorter than that of collec
rotational motion of the soliton, we dropped special tim
order diagrams in which the Coriolis couplingV between the
collective rotational motion and the intrinsic quark motio
operates in the time interval betweenz0 and 0. However, this
procedure was criticized by Pobylitsaet al. in a recent paper
@20#. According to the them, there is little reason to assu
approximate degeneracy of 0 andz0 in A†(0)OaA(z0), since
the deep-inelastic scattering processes are not neces
short distance phenomena. Taking this nonlocality in ti
arguments more seriously, one should retain all the poss
time-order diagrams. In doing so, we must pay attention
the time order of collective space operatorsA and V. By
ordering these operators according to their time orders,
are led to the replacement

Vab~z08!„A†~0!OaA~z0!…gd

˜@u~z08 ,0,z0!1u~z08 ,z0 ,0!#VabÕgd

1@u~0,z0 ,z08!1u~z0 ,0,z08!#ÕgdVab

1u~0,z08 ,z0!~Oa!g8d8Agg8
† VabAd8d

1u~z0 ,z08 ,0!~Oa!g8d8Ad8dVabAgg8
† . ~51!

Here the third and the fourth terms are new ones discarde
the treatment of@17#. In order to handle these somewh
peculiar terms, we first recall the rule of collective quantiz
tion:

V5
1

2
Vata˜

1

2I
Jata , ~52!

whereJa is the total angular momentum operator satisfyi
the commutation relations~CR! as follows:

@Ja ,Jb#5 i eabcJc , ~53!

@Ja ,A#5
1

2
Ata , ~54!

@Ja ,A†#52
1

2
taA†. ~55!

Using these CR, one can show that
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~Oa!g8d8Agg8
† VabAd8d5

1

2I
~tc!ab~Oa!g8d8Agg8

† JcAd8d

5
1

2I
~tc!ab~Oa!g8d8Agg8

†

3F1

2
~Atc!d8d1Ad8dJcG

5
1

2I
~tc!abF 1

2
~A†OaAtc!gd

1~A†OaA!gdJcG , ~56!

where we have used Eq.~54!. Similarly, by using Eq.~55!,
one may obtain an alternative expression

~Oa!g8d8Agg8
† VabAd8d

5
1

2I
~tc!abF1

2
~tcA

†OaA!gd1Jc~A†OaA!gdG .
~57!

In the following manipulation, we find it convenient to tak
an average of these two expressions as

~Oa!g8d8Agg8
† VabAd8d5

1

8I
~tc!ab@~A†OaAtc!gd

1~tcA
†OaA!gd#

1
1

4I
~tc!ab@~A†OaA!gdJc

1Jc~A†OaA!gd#. ~58!

Now we must treat two cases separately. The first is the c
in which the operatorOa contains an isospin factorta as

Oa5taŌ. ~59!

In this case, using the relationA†OaA5DabtbŌ, we can
rewrite as

~A†OaAtc!gd1~tcA
†OaA!gd5Dab„~tbtc1tctb!Ō…gd

52Dac~Ō!gd . ~60!

On the other hand, ifOa contains no isospin factor as

Oa5Ō, ~61!

we obtain

~A†OaAtc!gd1~tcA
†OaA!gd52~tcŌ!gd . ~62!

Unifying the two cases, we can then write as
0-7
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~Oa!g8d8Agg8
† VabAd8d5

1

4I
~tc!abH DacŌgd

~tcŌ!gd
J

1
1

2
$Vab ,~A†OaA!gd%1 . ~63!

A similar manipulation for the fourth term in Eq.~51! leads
to
03402
~Oa!g8d8Ad8dVabAgg8
†

52
1

4I
~tc!abH DacŌgd

~tcŌ!gd
J

1
1

2
$Vab ,~A†OaA!gd%1 . ~64!

Retaining all these possible time order diagrams, theO(V1)
contribution to the distribution function now becomes
s

^N~P!uc†~z!Oac~0!uN~P!&V1
5

1

Z
G̃$ f %G̃$g%†

NcE d3xd3ye2 iP•xeiP•yE d3RE DA

3H i E d3z8dz08S @u~z08 ,0,z0!1u~z08 ,z0 ,0!#Vab~Õa!gd1@u~0,z0 ,z08!1u~z0 ,0,z08!#

3~Õa!gdVab1u~0,z08 ,z0!F1

2
$Vab ,~Õa!gd%11

1

4I
~tc!abH DacŌgd

~tcŌ!gd
J G1u~z0 ,z08 ,0!

3F1

2
$Vab ,~Õa!gd%12

1

4I
~tc!abH DacŌgd

~tcŌ!gd
J G D

3F
f 1

K T

2
,xU i

i ] t2H Uz08 ,z8L
a

•

b
K z08 ,z8U i

i ] t2H U0,2RL
g

•

d
K z0 ,z2RU i

i ] t2H U2 T

2
,yL

g1

1
f 1

K T

2
,xU i

i ] t2H U0,2RL
g

•

d
K z0 ,z2RU i

i ] t2H Uz08 ,z8L
a

•

b
K z08 ,z8U i

i ] t2H U2 T

2
,yL

g1

2
f 1

K T

2
,xU i

i ] t2H U2 T

2
,yL

g1

•

d
K z0 ,z2RU i

i ] t2H Uz08 ,z8L
a

•

b
K z08 ,z8U i

i ] t2H U0,2RL
g
G

1 iz0

1

2
$V,Õa%gdF

f 1

K T

2
,xU i

i ] t2H U0,2RL
g

•

d
K z0 ,z2RU i

i ] t2H U2 T

2
,yL

g1

2
d
K z0 ,z2RU i

i ] t2H U0,2RL
g

•

f 1

K T

2
,xU i

i ] t2H U2 T

2
,yL

g1

G J
3)

j 52

Nc F
f j

K T

2
,xU i

i ] t2H U2 T

2
,yL

gj

G •expFNcSp log~ i ] t2H !1 i
I

2 E Va
2dtG . ~65!

After stating all the delicacies inherent in the structure function problem, we can now proceed in the same way as@17# and
@24#. Using the spectral representation of the single quark Green function~44! together with the relation~45!, we can perform
the integration overR,z8, andz08 . The resultant expression is then put into Eq.~18! to carry out the integration overz0 . We
then arrive at a formula, which gives a theoretical basis for evaluating theO(V1) contributions to quark distribution function
of the nucleon

q~x;V1!5E CJ3T3

(J)* @jA#O(1)@jA#CJ3T3

(J) @jA#djA , ~66!

where
0-8
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O(1)@jA#5OA
(1)1OB

(1)1OB8
(1)

1OC
(1) , ~67!

with

OA
(1)5MN

Nc

2 (
m.0,n<0

1

Em2En
@^nuÕa~dn1dm!um&^muVun&1^nuVum&^muÕa~dn1dm!un&#, ~68!

OB
(1)5MN

Nc

4 S (
m<0,n<0

2 (
n.0,m.0

D 1

Em2En
@^nuÕa~dn2dm!um&^muVun&1^nuVum&^muÕa~dn2dm!un&#,

~69!

OB8
(1)

5MN

Nc

8I S (
m<0,n<0

2 (
n.0,m.0

D 1

Em2En
^nutcum&^mu H DacŌ

tcŌ
J ~dn2dm!un&, ~70!

OC
(1)5

d

dx

Nc

4 S (
n<0

2 (
n.0

D ^nu$Õa ,V%dnun&. ~71!

In the above equations, we have used the notation

dm[d~xMN2Em2p3!, and dn[d~xMN2En2p3! ~72!

for saving space. HereOA
(1) is the contribution from the diagram in whichz08 is later~or earlier! than both of 0 andz0 . As was

emphasized in@17#, this term contains transitions between the occupied and nonoccupied single quark levels so that
in conflict with the Pauli principle. On the other hand,OB

(1) and OB8
(1) are the contributions from diagrams in whichz08 lies

between 0 andz0 . Although these terms appear to contain Pauli-violating transitions between the occupied levels them
or the nonoccupied ones, we take here the viewpoint advocated in@20# that there is no compulsory reason to drop them si
we are here dealing with operators which are nonlocal in time. Finally,OC

(1) is the O(V1) contribution resulting from the
nonlocality of the operatorA†(0)OaA(z0), i.e., the second term of Eq.~38!. In deriving OC

(1) , use has been made of th
identity

1

2p E
2`

`

dz0iz0ei (xMN2En2p3)z05
1

MN

]

]x
d~xMN2En2p3!. ~73!

As will become clear shortly, it is convenient to treatOA
(1) andOB

(1) in a combined way. To see it, first note that, after
simple change of summation indices,OA

(1) can be rewritten as

OA
(1)5MN

Nc

2 H (
m.0,n<0

1

Em2En
@^nuÕadnum&^muVun&1^nuVum&^muÕadnun&#

2 (
m<0,n.0

1

Em2En
@^muÕadnun&^nuVum&1^muVun&^nuÕadnum&#J . ~74!

From now on, we treat the two cases separately. First, assume that the relevant operatorOa contains an isospin factorta in
such a form asOa5taŌ. In this case, in view of the relationsÕa5A†OaA5DabtbŌ andV5 (1/2I ) Jctc , we must carefully
treat the noncommutativity of the two collective space operatorsDab andJc . By keeping the order ofDab andJc , OA

(1) can
generally be divided into two pieces@24# as
034020-9
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OA
(1)5MN

Nc

4I

1

2
$Dab ,Jc%1H (

m.0,n<0

1

Em2En
@^nutbŌdnum&^mutcun&1^nutcum&^mutbŌdnun&#

2 (
m<0,n.0

1

Em2En
@^nutbŌdnum&^mutcun&1^nutcum&^mutbŌdnun&#J 1MN

Nc

4I

1

2
@Dab ,Jc#

3H (
m.0,n<0

1

Em2En
@^nutbŌdnum&^mutcun&2^nutcum&^mutbŌdnun&#

2 (
m<0,n.0

1

Em2En
@^nutbŌdnum&^mutcun&2^nutcum&^mutbŌdnun&#J , ~75!

which contains symmetric and antisymmetric combinations of the two collective space operatorsDab andJc . On the other
hand, it can be easily verified thatOB

(1) term contains symmetric combination only:

OB
(1)5MN

Nc

4I

1

2
$Dab ,Jc%1H (

m.0,n<0

1

Em2En
@^nutbŌdnum&^mutcun&1^nutcum&^mutbŌdnun&#

2 (
m<0,n.0

1

Em2En
@^nutbŌdnum&^mutcun&1^nutcum&^mutbŌdnun&#J . ~76!

CombiningOA
(1) andOB

(1) terms, we then obtain for the isovector case

OA
(1)1OB

(1)5O$A,B%
(1) 1O[A,B]

(1) , ~77!

where

O$A,B%
(1) 5MN

Nc

4I

1

2
$Dab ,Jc%1S (

m.0,n<0
2 (

m<0,n.0
1 (

m<0,n<0
2 (

m.0,n.0
D

3
1

Em2En
@^nutbŌdnum&^mutcun&1^nutcum&^mutbŌdnun&# ~78!

O[A,B]
(1) 5MN

Nc

4I

1

2
@Dab ,Jc#S (

m.0,n<0
1 (

m<0,n.0
D 1

Em2En
@^nutbŌdnum&^mutcun&2^nutcum&^mutbŌdnun&#. ~79!

The situation is much simpler for isoscalar operatorsOa5Ō. SinceÕa5A†OaA5A†ŌA5Ō, we have only to replace both
of Dab andtb by 1 in the above manipulation, thereby leading to

O$A,B%
(1) 5MN

Nc

4I
JcS (

m.0,n<0
2 (

m<0,n.0
1 (

m<0,n<0
2 (

m.0,n.0
D 1

Em2En
@^nuŌdnum&^mutcun&1^nutcum&^muŌdnun&#,

~80!

O[A,B]
(1) 50. ~81!

One notices that only the symmetric combination of the matrix elements survives for this isoscalar case. This sh
contrasted to the isovector case in which either of the symmetric part or the antisymmetric part survives, dependin
symmetry property of the relevant single quark matrix elements appearing in Eqs.~78! and~79!. As we shall discuss later, th
symmetric part contributes to the isoscalar polarized distribution functionDu(x)1Dd(x) anddu(x)1dd(x) at theO(V1),
whereas the antisymmetric part plays an important role in theO(V1) term of the isovector polarized distribution function
Du(x)2Dd(x) or du(x)2dd(x) @24#.

Now we shall investigate the case of our interest in more detail for obtaining explicit formulas, which can be us
numerical calculation of polarized distribution functions of the nucleon.

A. Du„x…1Dd„x…

The relevant operator in this case is

Õa5A†~11g0g3!g5A5~11g0g3!g5. ~82!
034020-10
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Since theO(V0) contribution toDu(x)1Dd(x) vanishes due to the hedgehog symmetry, the leading contribution to
distribution function arises from theO(V1) terms. Due to the symmetry property of the relevant single quark matrix elem
only the symmetric combination ofOA

(1)1OB
(1) survives. The totalO(V1) term therefore consists of three pieces,O$A,B%

(1) , OB8
andOC

(1) . Using the general formulas obtained so far, the contributions of these three terms toDu(x)1Dd(x) are given as

@Du~x!1Dd~x!#$A,B%
(1) 5^J3&p↑•MN

Nc

4I S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En

3@^nu~11g0g3!g5dnum&^mut3un&1^nut3um&^mu~11g0g3!g5dnun&#, ~83!

@Du~x!1Dd~x!#B8
(1)

5^1&p↑•MN

Nc

8I S (
m<0,n<0

2 (
m.,n.0

D 1

Em2En
^nutcum&^mutc~11g0g3!g5~dn2dm!un&, ~84!

@Du~x!1Dd~x!#C
(1)5^J3&p↑•

d

dx
MN

Nc

4I S (
n<0

2 (
n.0

D ^nut3~11g0g3!g5dnun&. ~85!

In the above equations,^O&p↑ denotes a matrix element of a collective space operatorO with respect to the proton in the spi
up state along thez-axis, i.e.,

^O&p↑5E C~1/2!~1/2!
~1/2! @jA#OC~1/2!~1/2!

~1/2! @jA#djA5^p,Sz51/2uOup,Sz51/2&. ~86!

In deriving Eq.~83!, we have used the relation

^$Õa ,V%1&p↑5K H ~11g0g3!g5 ,
1

2I
JctcJ

1
L

p↑
5

1

I
^J3&p↑•t3~11g0g3!g5 . ~87!

One may notice that the collective space operator contained in the term@Du(x)1Dd(x)#B8
(1) is 1 and it is different fromJ3

contained in other two terms. The appearance of this term seems to be inconsistent, since it does not change sign i
to the other two terms when the direction of the proton spin is reversed. Fortunately, it can be shown that this po
dangerous term vanishes identically due to the symmetry of the double sum of the single quark matrix element:

@Du~x!1Dd~x!#B8
(1)

50. ~88!

We are then left with the two terms, i.e.,@Du(x)1Dd(x)#$A,B%
(1) and @Du(x)1Dd(x)#C

(1) , which both have required stat
dependence. For the purpose of numerical calculation, it is convenient to rewrite the above two terms slightly furthe
relation in this manipulation is the following identity:

S (
m5all ,n<0

1 (
m5all ,n.0

D 1

Em2En
@^nu~11g0g3!g5dnum&^mut3un&1^nut3um&^mu~11g0g3!g5dnun&#50. ~89!

That this identity holds can be seen as follows. We first point out that, after separating from the double sum of Eq.~89! the sum
over terms withEm5En , we can rewrite it as

052 (
m5all ,n5all

(EmÞEn)

1

Em2En
^nut3um&^mu~11g0g3!g5dnun&1

1

MN

d

dx (
m5all ,n5all

(Em5En)

^nut3um&^mu~11g0g3!g5dnun&. ~90!

This essentially coincides with Eq.~A18! given in Appendix A of@20# except that the operatorsta andta(11g0g3) there are
replaced here byt3 and (11g0g3)g5 , respectively. The proof given in Appendix of@20# then holds without any essentia
modification. ~For assurance, we shall later try to check to what extent this identity holds in our numerical calcul!
Assuming the validity of the above identity~89!, @Du(x)1Dd(x)#$A,B%

(1) can be expressed in either of the following two form
034020-11
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@Du~x!1Dd~x!#$A,B%
(1) 5^2J3&p↑•MN

Nc

4I (
m5all ,n<0

1

Em2En

3@^nu~11g0g3!g5dnum&^mut3un&1^nut3um&^mu~11g0g3!g5dnun&#

52^2J3&p↑•MN

Nc

4I (
m5all ,n.0

1

Em2En

3@^nu~11g0g3!g5dnum&^mut3un&1^nut3um&^mu~11g0g3!g5dnun&#. ~91!

As advocated in@20#, it is convenient to use the first expression given as a sum over the occupied states for the nu
calculation of distribution functions in the regionx.0, while to use the second one given as sum over the nonoccupied
whenx,0, since one can thus avoid vacuum subtraction, i.e., subtraction of the corresponding sums over vacuum lev~with
U51!. Following @20#, we also separate theEm5En contribution from the above sum over the single quark levels. This
be done by noting the identities

(
m<0,n<0

1

Em2En
@^nu~11g0g3!g5dnum&^mut3un&1^nut3um&^mu~11g0g3!g5dnun&#

5
1

2 (
m<0,n<0

1

Em2En
@^nu~11g0g3!g5~dn2dm!um&^mut3un&1^nut3um&^mu~11g0g3!g5~dn2dm!un&#, ~92!

and

lim
Em˜En

d~xMN2En2p3!2d~xMN2Em2p3!

Em2En
5d8~xMN2En2p3!5

1

MN

d

dx
d~xMN2En2p3!. ~93!

From Eq.~91!, we can then readily obtain

@Du~x!1Dd~x!#$A,B%
(1) 5^2J3&p↑•MN

Nc

4I (
m5all ,n<0

(EmÞEn)

1

Em2En

3@^nu~11g0g3!g5dnum&^mut3un&1^nut3um&^mu~11g0g3!g5dnun&#1^J3&p↑•
d

dx

Nc

8I

3 (
m<0,n<0
(Em5En)

@^nu~11g0g3!g5dnum&^mut3un&1^nut3um&^mu~11g0g3!g5dnun&#, ~94!

and a corresponding expression given as sums over non-occupied levels. The remaining term@Du(x)1Dd(x)#C
(1) can simi-

larly be expressed in either of the two equivalent forms as

@Du~x!1Dd~x!#C
(1)5^2J3&p↑•

d

dx

Nc

4I (
n<0

^nut3~11g0g3!g5dnun&

52^2J3&p↑•
d

dx

Nc

4I (
n.0

^nut3~11g0g3!g5dnun&. ~95!

Inserting the complete set of single quark states into the first expression and separating theEmÞEn andEm5En terms in this
sum, we obtain

@Du~x!1Dd~x!#C
(1)5^2J3&p↑•

d

dx

Nc

4I (
m5all ,n<0

(EmÞEn)

^nut3um&^mu~11g0g3!g5dnun&

1^2J3&p↑•
d

dx

Nc

4I (
m<0,n<0
(Em5En)

^nut3um&^mu~11g0g3!g5dnun&, ~96!
034020-12
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and a corresponding expression given as sums over nonoccupied states. Just as argued in@20# for the case of the unpolarize
distribution function u(x)2d(x), Em5En contribution in the double sums in@Du(x)1Dd(x)#$A,B%

(1) and @Du(x)
1Dd(x)#C

(1) precisely cancel each other. After regrouping the terms in such a way that this cancellation occurs at the
analytical expressions, theO(V1) contribution to the distribution functionDu(x)1Dd(x) can finally be written in the
following form:

@Du~x!1Dd~x!# (1)5@Du~x!1Dd~x!#$A,B%8
(1)

1@Du~x!1Dd~x!#C8
(1) ~97!

where

@Du~x!1Dd~x!#$A,B%8
(1)

5^2J3&p↑•MN

Nc

2I (
m5all ,n<0

(EmÞEn)

1

Em2En
^nu~11g0g3!g5dnum&^mut3un&, ~98!

52^2J3&p↑•MN

Nc

2I (
m5all ,n.0

(EmÞEn)

1

Em2En
^nu~11g0g3!g5dnum&^mut3un&, ~99!

and

@Du~x!1Dd~x!#C8
(1)

5^2J3&p↑•
d

dx

Nc

4I (
m5all ,n<0

(EmÞEn)

^nut3um&^mu~11g0g3!g5dnun&, ~100!

52^2J3&p↑•
d

dx

Nc

4I (
m5all ,n.0

(EmÞEn)

^nut3um&^mu~11g0g3!g5dnun&. ~101!

These expressions will be used in the numerical calculation.

B. Du„x…2Dd„x…

The relevant operator for the isovector longitudinally polarized distribution function is

Õa535A†t3~11g0g3!g5A5D3btb~11g0g3!g5 . ~102!

The main contribution to this distribution function comes from the 0th order term inV. A simple manipulation gives

@Du~x!2Dd~x!# (0)5^D33&p↑•MNNc(
n<0

^nut3~11g0g3!g5dnun&

52^D33&p↑•MNNc(
n.0

^nut3~11g0g3!g5dnun&. ~103!

The O(V1) contribution toDu(x)2Dd(x) is far more complicated. It generally consists of 4 terms,OA
(1) , OB

(1) , OB8
(1) and

OC
(1) . As was already mentioned, the symmetric part of the sum ofOA

(1) andOB
(1) vanishes for this particular operator, owin

to the symmetry of the single quark matrix elements. Using the familiar commutation relation

@Jc ,D3b#5 i ecbeD3e , ~104!

the antisymmetric part ofOA
(1)1OB

(1) becomes
034020-13
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@Du~x!2Dd~x!# [A,B]
(1) 5^D33&p↑•MN

Nc

8I
i e3cb (

m.0,n<0

1

Em2En
@^nutcum&^mutb~11g0g3!g5~dn1dm!un&

2^nutb~11g0g3!g5~dn1dm!um&^mutcun&#

52^D33&p↑•MN

1

I

Nc

2 (
m.0,n<0

1

Em2En
F ^nut11um&^nut11~g51S3!

dn1dm

2
um&

2^nut21um&^nut21~g51S3!
dn1dm

2
um&G , ~105!

with the standard definitiont657(t16 i t2)/& andS35g0g3g5 . Next, from Eq.~70! with the case of isovector operato
we find that

@Du~x!2Dd~x!#B8
(1)

5^D33&p↑•MN

Nc

8I S (
m<0,n<0

2 (
m.0,n.0

D 1

Em2En
^nut3um&^mu~11g0g3!g5~dn2dm!un&. ~106!

One should notice that the state dependence of this somewhat peculiar contribution is nothing different from that of t
term, which implies that there is no reason for this term to vanish. In fact, the single quark matrix element appearin
above double sum is essentially the same as that appearing in the expression for@Du(x)1Dd(x)# (1).

The last but potentially important contribution comes from the nonlocality correction termOC
(1) . First note that

$Õa53 ,V%15H D3btb~11g0g3!g5 ,
1

2I
JctcJ

1

5
1

2I S 1

2
$D3b ,Jc%1@tb~11g0g3!g5tc1tctb~11g0g3!g5#

1
1

2
@D3b ,Jc#@tb~11g0g3!g5tc2tctb~11g0g3!g5# D

5
1

2I
„$D3c ,Jc%1~11g0g3!g51 i ebce@D3b ,Jc#te~11g0g3!g5…. ~107!

The first term of the above equation does not contribute, since

(
n<0

^nu~11g0g3!g5dnun&1 (
n.0

^nu~11g0g3!g5dnun&50. ~108!

Simplifying the second term by using the CR~104!, we finally obtain

@Du~x!2Dd~x!#C
(1)52^D33&p↑

(1)
•

d

dx

Nc

4I S (
n<0

2 (
n.0

D ^nut3~11g0g3!g5dnun&. ~109!

For the same reason as before, it is convenient to consider these term in a combined way. To this end, we first rewrite~109!
by inserting a complete set of single quark states and by separating theEm5En contributions from the resultant double sum
The result can be expressed in two alternative forms as

@Du~x!2Dd~x!#C
(1)52^D33&p↑•

d

dx

Nc

4I S (
m5all ,n<0

(EmÞEn)

1 (
m<0,n<0
(Em5En)

D ^nut3um&^mu~11g0g3!g5dnun&

5^D33&p↑•
d

dx

Nc

4I S (
m5all ,n.0

EmÞEn

1 (
m.0,n.0
Em5En

D ^nut3um&^mu~11g0g3!g5dnun&. ~110!

To rewrite theB8 term, we first separateEm5En contributions in the double sum of Eq.~105! as
034020-14
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@Du~x!2Dd~x!#B8
(1)

5^D33&p↑•MN

Nc

4I S (
m<0,n<0
(EmÞEn)

2 (
m.0,n.0
(EmÞEn)

D 1

Em2En
^nut3um&^mu~11g0g3!g5dnun&

1^D33&p↑•
d

dx

Nc

8I S (
m<0,n<0
(Em5En)

2 (
m.0,n.0
(Em5En)

D ^nut3um&^mu~11g0g3!g5dnun&. ~111!

Next, we notice the identity

05 (
m5all ,n5all

(EmÞEn)

1

Em2En
^nut3um&^mu~11g0g3!g5dnun&1

1

2MN

d

dx (
m5all ,n5all

(Em5En)

^nut3um&^mu~11g0g3!g5dnun&. ~112!

Using this identity, Eq.~111! can be rewritten in either of the following two forms:

@Du~x!2Dd~x!#B8
(1)

5^D33&p↑•MN

Nc

4I S 2 (
m<0,n<0
(EmÞEn)

1 (
m.0,n<0

1 (
m<0,n.0 D 1

Em2En
^nut3um&^mu~11g0g3!g5dnun&

1^D33&p↑•
d

dx

Nc

4I (
m<0,n<0
(Em5En)

^nut3um&^mu~11g0g3!g5dnun&

52^D33&p↑•MN

Nc

4I S 2 (
m.0,n.0
(EmÞEn)

1 (
m.0,n<0

1 (
m<0,n.0 D 1

Em2En
^nut3um&^mu~11g0g3!g5dnun&

2^D33&p↑•
d

dx

Nc

4I (
m.0,n.0
(Em5En)

^nut3um&^mu~11g0g3!g5dnun&. ~113!

Comparing Eqs.~110! and~113!, one notices that theEm5En pieces in the double sums cancels precisely betweenB8 andC
terms.~This is true for both of the occupied and nonoccupied expressions.! After some manipulation by taking care of th
cancellation, the sum of these two terms can finally be expressed as

@Du~x!2Dd~x!#B81C
(1)

5^D33&p↑•MN

Nc

2I H (
m5all ,n<0

(EmÞEn)

1

Em2En
^nut3um&^mu~11g0g3!g5dnun&

2
1

2MN

d

dx (
m5all ,n<0

(EmÞEn)

^nut3um&^mu~11g0g3!g5dnun&

2 (
m.0,n<0

1

Em2En
^nut3um&^mu~11g0g3!g5

dn1dm

2
un&J

52^D33&p↑•MN

Nc

2I H (
m5all ,n.0

(EmÞEn)

1

Em2En
^nut3um&^mu~11g0g3!g5dnun&

2
1

2MN

d

dx (
m5all ,n.0

(EmÞEn)

^nut3um&^mu~11g0g3!g5dnun&

2 (
m<0,n.0

1

Em2En
^nut3um&^mu~11g0g3!g5

dn1dm

2
un&J . ~114!

For numerical calculation, we shall use the first form forx.0, while the second form forx,0.
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C. du„x…1dd„x…

Since the evaluation of the transversity distribution can be done in a completely parallel way as the longitudinally po
distribution functions, we shall show below only the final results. TheO(V0) contribution todu(x)1dd(x) vanishes: i.e.,

@du~x!1dd~x!# (0)50. ~115!

The O(V1) contribution consists of two pieces as

@du~x!1dd~x!# (1)5@du~x!1dd~x!#$A,B%8
(0)

1@du~x!1dd~x!#C8
(0) , ~116!

where

@du~x!1dd~x!#$A,B%8
(1)

5^2Jx&pSx
•MN

Nc

2I (
m5all ,n<0

(EmÞEn)

1

Em2En
^nu~g1g52 ig2!dnum&^mut1un&

52^2Jx&pSx
•MN

Nc

2I (
m5all ,n.0

(EmÞEn)

1

Em2En
^nu~g1g52 ig2!dnum&^mut1un&, ~117!

and

@Du~x!1Dd~x!#C8
(1)

52^2Jx&pSx
•

d

dx

Nc

4I (
m5all ,n<0

(EmÞEn)

^nut1um&^mu~g1g52 ig2!dnun&

5^2Jx&pSx
•

d

dx

Nc

4I (
m5all ,n.0

(EmÞEn)

^nut1um&^mu~g1g52 ig2!dnun&. ~118!

Here ^Jx&pSx
is defined by

^Jx&pSx
5^pSxuJxupSx&. ~119!

D. du„x…2dd„x…

The O(V0) contribution is given by

@du~x!2dd~x!# (0)5^D31&pSx
•MNNc(

n<0
^nut3~g1g52 ig2!dnun&52^D31&pSx

•MNNc(
n.0

^nut3~g1g52 ig2!dnun&.

~120!

The O(V1) contribution consists of two pieces as

@du~x!2dd~x!# (1)5@du~x!2dd~x!# [A,B]
(1) 1@du~x!2dd~x!#B81C

(1) ~121!

where

@du~x!2dd~x!# [A,B]
(1) 5^D31&pSx

•MN

Nc

8I
i e3cb (

m.0,n<0

1

Em2En

3@^nutcum&^mutb~g1g52 ig2!~dn1dm!un&1^nutb~g1g52 ig2!~dn1dm!um&^mutcun&#

52^D31&pSx
•MN

1

I

Nc

2 (
m.0,n<0

1

Em2En
F ^nut11um&^nut11~g1g52 ig2!

dn1dm

2
um&

2^nut21um&^nut21~g1g52 ig2!
dn1dm

2
um&G , ~122!

and
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@du~x!2dd~x!#B81C
(1)

5^D31&pSx
•MN

Nc

2I H (
m5all ,n<0

(EmÞEn)

1

Em2En
^nut3um&^mu~g1g52 ig2!dnun&

2
1

2MN

d

dx (
m5all ,n<0

(EmÞEn)

^nut3um&^mu~g1g52 ig2!dnun&

2 (
m.0,n<0

1

Em2En
^nut3um&^mu~g1g52 ig2!

dn1dm

2
un&J ,

52^D31&pSx
•MN

Nc

2I H (
m5all ,n.0

(EmÞEn)

1

Em2En
^nut3um&^mu~g1g52 ig2!dnun&,

2
1

2MN

d

dx (
m5all ,n.0

(EmÞEn)

^nut3um&^mu~g1g52 ig2!dnun&,

2 (
m<0,n.0

1

Em2En
^nut3um&^mu~g1g52 ig2!

dn1dm

2
un&J . ~123!
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IV. NUMERICAL RESULTS AND DISCUSSION

Before showing the results of numerical calculations,
briefly discuss the parameters of our effective model sp
fied by the Lagrangian~26!. Fixing f p to its physical value,
i.e., f p593 MeV, only one parameters of the model is t
constituent quark mass M, which plays the role of the c
pling constant between the pion and the effective qu
fields. There is some argument based on the instanton pic
of the QCD vacuum that the value of this mass param
should not be extremely far from 350 MeV@25#. Phenom-
enological analyses of various static baryon observa
based on this model prefer a slightly larger value ofM be-
tween 350 MeV and 425 MeV@5,6#. In the present analysis
we use the valueM5375 MeV favored from analyses o
various static observables of baryons. Actually the mo
contains ultraviolet divergences so that it must be regulari
by introducing some physical cutoff. In the case of sta
nucleon observables, most frequently used regulariza
scheme is the one based on Schwinger’s proper-time re
sentation@5,6#. Unfortunately, how to generalize this reg
larization scheme in the evaluation of nucleon structure fu
tions is an open problem. For evaluating quark distribut
functions, Diakonovet al. then proposed to use the so-call
Pauli-Villars regularization scheme, which they claim h
several nice properties as compared with the energy cu
scheme like the proper-time regularization scheme@14#. The
basic idea of this regularization scheme is very simple. Us
the derivative~gradient! expansion, one can evaluate the e
fective meson action corresponding to the original effect
quark Lagrangian~26! as

Se f f
M @U#52 iNcSp log@ i ]”2Meig5t•p/ f p#

5
4Nc

f p
2 I 2~M !•

1

2
~]mp!21¯ .

~124!
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Here the coefficient of the pion kinetic term given by

I 2~M ![ i E d4k

~2p!4

M2

~k22M2!2 , ~125!

contains logarithmic divergence. Clearly, this divergence
be removed by introducing a regularized actionSe f f

reg by

Se f f
reg[Se f f

M 2S M

M PV
D 2

Se f f
M PV . ~126!

HereSe f f
M PV denotes the effective meson action obtained fr

Se f f
M by replacing the dynamical quark mass M with th

Pauli-Villars massM PV . In fact, this replacesI 2(M ) with

I 2
reg[I 2~M !2S M

M PV
D 2

I 2~M PV!5
M2

16p2 log
M PV

2

M2 ,

~127!

which is clearly finite. Demanding further that the pion k
netic term inSe f f

reg has the correct normalization, one obtai

Nc

4p2 M2 log
M PV

2

M2 5 f p
2 . ~128!

For M5375 MeV, for instance, this givesM PV.562 MeV.
Other observables like quark distribution functions, whi
contains logarithmic divergence, can similarly be regulariz
as

^O& reg[^O&M2S M

M PV
D 2

^O&M PV. ~129!

For the sake of consistency, a soliton solution should also
obtained in the same regularization scheme. The start
point of soliton construction is the mean field equation

^c̄c& r
reg8 sinF~r !5^c̄ ig5t• r̂c& r

reg8 cosF~r !, ~130!
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obtained under the assumption of the static hedgehog
figuration

p̂~r!5 f p r̂F~r !. ~131!

Here^c̄c& r
reg8 and^c̄ ig5t• r̂c& r

reg8 are the regularized scala
and pseudoscalar densities in the Pauli-Villars subtrac
scheme :

^c̄c& r
reg8[^c̄c& r

M2S M

M PV
D ^c̄c& r

M PV, ~132!

^c̄g5t• r̂c& r
reg8[^c̄ ig5t• r̂c& r

M2S M

M PV
D

3^c̄ ig5t• r̂c& r
M PV . ~133!

Recently, self-consistent solutions of this equation of mot
has been obtained in@26# with use of the Kahana-Ripka bas
@27#. ~Essentially the same equation was solved in@28#
within the framework of the Nambu–Jona Lasinio mod
with an ad hocnonlinear constraint.! However, one should
use this regularization scheme with some care. In fact,
known that the single subtraction is not enough to get rid
linear divergences, for instance, contained in the expres
of the vacuum quark condensate@28#, which implies that

^c̄c& r
reg8 and ^c̄ ig5t• r̂c& r

reg8 also contain convergence
Why could the authors of Refs.@26,28# obtain self-consisten
solutions then? The reason is in the way of solving the eq
tion of motion~129! in the nonlinear model. Given an appro

priate initial form of F(r ), one can evaluatêc̄c& r
reg8 and

^c̄ ig5t• r̂c& r
reg8 by using the Kahana-Ripka plane-wave b

sis as long as the box size D and the maximum momen
kmax are finite. A newF(r ) can then be obtained from

F~r !5arctanS ^c̄ ig5t• r̂c& r
reg8

^c̄c& r
reg8 D . ~134!

As kmax increases, both of̂ c̄c& r
reg8 and ^c̄ ig5t• r̂c& r

reg8

tend to diverge. We numerically find that both quantifi
increases at the same rate askmax increases so that the re
sultantF(r ) is quite insensitive to the value ofkmax for large
enoughkmax. This is the reason why stable soliton solutio
could be found in the above mentioned single-subtrac
Pauli-Villars regularization scheme. The existence of fin
energy soliton could also be inferred from the derivative
pansion analysis of the nonlinear Lagrangian~124! with van-
ishing current quark masses. Nevertheless, one should
in mind that it is not a completely satisfactory scheme in
sense that its predictions for some special quantities like
vacuum quark condensate contain divergences. For obtai
satisfactory answers also for these special quantities,
single-substraction Pauli-Villars scheme is not enough.
found that more sophisticated Pauli-Villars scheme with t
substraction meets this requirement, and that its s
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consistent solutions are only slightly different from those
the naive single-subtraction scheme, except when discus
some special quantities as pointed out above.~This analysis
will be reported elsewhere.! Considering the fact that the
calculation of the structure functions are very tim
consuming, we shall then use here the single-subtrac
Pauli-Villars scheme, keeping in mind that some particu
observables are out of the application of this regularizat
scheme. Finally, as for the nucleon mass, we prefer to us
the theoretical soliton massMN.1102 MeV rather than the
physical mass, since it respects the energy-momentum
rule at the energy scale of the model.

For evaluating quark distribution functions at theO(V1),
we must perform infinite double sums over all the sing
quark orbitals which are eigenstates of the static Hamilton
H given by Eq.~31!. As far as static nucleon observables
numerical technique for carrying out such double sums w
established in@5#. On the other hand, several new subtlet
arising in the evaluation of quark distribution functions ha
been explained in@17#. In the actual numerical calculation
the expression of each physical quantity is divided into t
pieces, i.e., the contribution of what we call the valen
quark level~it is the lowest energy eigenstate of the sta
Dirac HamiltonianH, which emerges from the positive en
ergy continuum! and that of the Dirac sea quarks~or the
vacuum polarization contribution! as explained in@17#. The
regularization is introduced into the latter part only.

As was stated in the paragraph below Eq.~89!, our nu-
merical analysis relies crucially upon the assumed equ
lence of distribution functions given as sums over the oc
pied and nonoccupied quark orbitals. In view of its importa
role played in our whole analysis, it is desirable if we c
verify this equivalence also numerically. The identity whic
we want to show numerically is Eq.~90!, or equivalently

A~x!1B~x!50, ~135!

with

A~x!5MN

1

I

Nc

2 (
m5all ,n5all

(EmÞEn)

1

Em2En

3^nut3um&^mu~11g0g3!g5dnun&, ~136!

B~x!5
d

dx

1

2I

Nc

2

3 (
m5all ,n5all

(Em5En)

^nut3um&^mu~11g0g3!g5dnun&.

~137!
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Using the well-established identity@13,14#

05 (
n5all

^nut3~11g0g3!g5dnun&

5 (
m5all ,n5all

(EmÞEn)

^nut3um&^mu~11g0g3!g5dnun&

1 (
m5all ,n5all

(Em5En)

^nut3um&^mu~11g0g3!g5dnun&,

~138!

B(x) can also be expressed as

B~x!52
d

dx

1

2I

Nc

2 (
m5all ,n5all

~EmÞEn)

^nut3um&

3^mu~11g0g3!g5dnun&. ~139!

In the actual numerical calculation ofB(x), we use this latter
form given as a derivative of a double sum over the sing
quark orbitals, since the effect of working in a finite mod
space~i.e., with finite values ofkmax andD! can be reduced
by using this latter expression rather than Eq.~137!. The
numerical derivative here is performed after calculating
double sum by using the method explained in@17#. The solid
and dash-dotted curves in Fig. 1~a! respectively stand for the
numerical results forA(x) and B(x), while their sum is
shown by the dotted curve.@This sum is shown also in Fig
1~b! with a different scale.# One sees that the two termsA(x)
andB(x) are nearly cancelled. Unfortunately, each ofA(x)
andB(x) has quite a large absolute value and their sum tu
out to have a fluctuating behavior around zero with the a
plitude of the order of quark distributions which we want
obtain. The fluctuation is especially violent nearx.0. Un-
doubtedly, the best we can say on the basis of the pre
numerical analysis is that the sum ofA(x) and B(x) is not
inconsistentwith zero. However, we find that such a fluct
ating behavior with large amplitude also appears when
evaluate the corresponding distribution function using
theoretical formula given as a occupied sum forx,0 and a
nonoccupied sum forx.0. This is due to a delicate cance
lation of two large numbers, i.e., the main contribution a
the corresponding vacuum subtraction term~obtained with
U51!. This should be contrasted to the case of using
theoretical expression given as an occupied sum forx.0
and a nonoccupied sum forx,0. ~Note that one can alway
rewrite the formulas for the distribution functions in either
the occupied or nonoccupied form, once the above identit
assumed.! In this case, the vacuum subtraction term iden
cally vanishes and there is no necessity of handling delic
cancellation of large numbers. This is the reason why
always want to rewrite the formulas for distribution fun
tions in either of the occupied form or the nonoccupied fo
according to the sign ofx by assuming the above identity
We illustrate in Fig. 2 the merit of evaluating distributio
functions in this way. The solid and dotted curves in F
03402
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2~a! respectively stand for the bare results for the valen
and vacuum polarization contributions to the@Du(x)
1Dd(x)#$A,B%8

(1) term in Eq. ~97!, obtained with use of the
discretized momentum basis of Kahana and Ripka, while
two curves in Fig. 2~b! represent the corresponding contrib
tions to the@Du(x)1Dd(x)#C8

(1) term before the numerica
derivative overx. ~We recall that the discontinuous behavi
of the shown distribution functions comes from the use
the discretized Kahana-Ripka basis. The physical distribu
functions, which are continuous functions ofx, can be ob-
tained by using either of the smearing method advocate
@13,14# or the least-square-fitting procedure used in@17#. The
numerical derivative overx in @Du(x)1Dd(x)#C8

(1) term be-
comes practicable only after this procedure.! We first notice
that there is no significant fluctuation in the vacuum pol
ization contribution to the@Du(x)1Dd(x)#C8

(1) term. Further-
more, even the fluctuation of the vacuum polarization con
bution to @Du(x)1Dd(x)#$A,B%8

(1) is seen to have much
smaller amplitude as compared with the one observed in
1~b!. It is in fact much smaller than unity, the typical scale
the relevant distribution function, provided by the contrib
tion of the discrete level. We therefore expect that, althou
the important identity~135! cannot be proved with the sam
numerical accuracy, the total distribution function them
selves can be evaluated with some reliable accuracy, o
Eq. ~135! is assumed.

Summarizing the above argument, although our numer
proof shown in Fig. 1 is far from complete, the observ
cancellation of the two terms, which have nontrivialx de-
pendences, cannot be accidental. We also recall that
equivalence of the occupied and nonoccupied express
follows basically from the anticommutation relation of th
quark fields at spacelike separation and this anticommuta
relation is not affected by the regularization with use of t
Pauli-Villars subtraction@13,14,20#. We therefore assume i
throughout the following numerical analysis with the ho
that more complete numerical proof will be provided by ne
future investigations.

Now we start to show the results of our numerical calc
lation for polarized quark distribution functions of th
nucleon. Shown in Fig. 3 are theO(V0) contributions to the
isovector longitudinally polarization distribution function
Du(x)2Dd(x) ~solid curves! and Dū(x)2Dd̄(x) ~dashed
curves!, which was first calculated by Diakonovet al. @14#.
Here Fig. 3~a! represents the contributions of the discre
valence quark level, while Fig. 3~b! is the vacuum polariza-
tion contribution to the same quantities. Sum of these t
contributions are shown in Fig. 3~c!. As shown by Diakonov
et al., the O(V0) vacuum polarization contributions t
Du(x)2Dd(x) and Dū(x)2Dd̄(x) are fairly large.@The
large and positive longitudinal polarization of the isovec
combination of the antiquark distributions seems to be
characteristic prediction of the CQSM, which can in pri
ciple be tested by the improved phenomenological analy
of polarized parton distribution functions in the near futu
More detailed discussion on this point will be given aft
finishing the evaluation of theO(V1) contribution to the
0-19
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same distribution function as well as that of the isosca
longitudinally polarized distribution functions.#

Next, we show in Fig. 4 theO(V1) contribution to the
same distribution functionsDu(x)2Dd(x) and Dū(x)
2Dd̄(x). Figures 4~a!, 4~b! and 4~c! respectively stand for
the O(V1) contributions of the discrete valence quark lev
those of the Dirac sea quarks~or the vacuum polarization
contributions!, and their sums. One sees that theO(V1) con-
tributions to the isovector longitudinally polarized distrib
tion function are far from negligible as compared with t
leadingO(V0) contributions. This could be expected sin
the first moment of this distribution functions gives the
ovector axial coupling constant of the nucleon

gA
(3)5E

0

1

$@Du~x!2Dd~x!#1@Dū~x!2Dd̄~x!#%dx,

~140!

while we already know from the previous analyses that
O(V1) contribution togA

(3) is large enough to resolve th
longstandinggA problem in the hedgehog soliton mod
@29,30,24#. Adding this O(V1) contribution to the leading
O(V0) contribution, we obtain final answers forDu(x)

FIG. 1. Numerical check of the identity~135! on which the
equivalence of the occupied and nonoccupied expressions fo
polarized quark distribution functions is based. The solid and da
dotted curves in~a! respectively stand for the numerical results f
A(x) andB(x) in Eq. ~135!, while their sum is shown by the dotte
curve in ~a! and also in~b! with a different scale.
03402
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2Dd(x) and Dū(x)2Dd̄(x), which will be shown later to-
gether with the final answer for the isoscalar longitudin

distribution functionsDu(x)1Dd(x) and Dū(x)1Dd̄(x).
Before showing those, we give in Fig. 5 the result for t
O(V1) contributions to the isoscalar longitudinally polarize

distribution functions,Du(x)1Dd(x) and Dū(x)1Dd̄(x).
@We recall that there is noO(V0) contribution to these dis-
tribution functions.# Figures 5~a!, 5~b! and 5~c! respectively
stand for the contributions of the discrete valence qu
level, those of the vacuum polarization contributions, a
their sums. One sees that the vacuum polarization contr
tions to the distribution functionsDu(x)1Dd(x) and

Dū(x)1Dd̄(x) are much smaller than those of the corr
sponding isovector distributionsDu(x)2Dd(x) and Dū(x)
2Dd̄(x). Now we show in Fig. 6 the final answers fo
Du(x)2Dd(x) andDū(x)2Dd̄(x), which are the sums o
theO(V0) andO(V1) contributions, in comparison with the
final answers forDu(x)1Dd(x) andDū(x)1Dd̄(x) arising
from theO(V1) terms alone. We observe quite a big diffe
ence between the isovector distributions and the isosc
one. The overall magnitude ofDu(x)1Dd(x) is much
smaller than that ofDu(x)2Dd(x), which denotes that
u-quark is positively polarized, while thed-quark is nega-
tively polarized to the direction of proton spin.

At this stage, it may be interesting to compare our the
retical predictions for the longitudinally polarized quark di
tribution functions with some of the semiphenomenologi
parametrization. The parametrization given by Glu¨ck, Reya,
Stratmann, and Vogelsang~GRSV! is especially convenien
for the purpose of handy comparison@31#, since the normal-
ization point (Qinit

2 .0.34 GeV2) of their parametrization is
fairly close to the energy scale of our effective quark mo
(M PV

2 .0.32 GeV2). Figure 7 shows this comparison. Th
filled squares in Fig. 7~a! and Fig. 7~b! stand for the GRSV
parametrizations for the quark distribution functio
x„Du(x)1Dū(x)1Dd(x)1Dd̄(x)… and x„Du(x)1Dū(x)
2Dd(x)2Dd̄(x)…, respectively. Of the two theoretica
curves in each figure, the solid curve is the answer of
present calculation, whereas the dashed curve is obtaine
using the old treatment used in@17#, which amounts to drop-
ping some of the nonlocality effects in time. One observ
that the nonlocality corrections newly introduced in t
present analysis are quite important especially for the is
calar distributionx„Du(x)1Dū(x)1Dd(x)1Dd̄(x)…, while
it is less important for the isovector distributionx„Du(x)
1Dū(x)2Dd(x)2Dd̄(x)…. @This is probably because th
nonlocality corrections appearing at theO(V1) are masked
by the dominantO(V0) contribution in the case of isovecto
polarized distribution functions.# By comparing the two the-
oretical curves forx„Du(x)1Dū(x)1Dd(x)1Dd̄(x)… with
the corresponding GRSV parametrization, one finds that
new treatment leads to a better agreement. Especially
pressive is that the new treatment reproduces the nega
sign of the GRSV distribution function in the smallerx re-
gion, although one should not forget the fact that the GR
parametrizations are not experimental data themselves.

he
h-
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CHIRAL SYMMETRY AND THE NUCLEON SPIN . . . PHYSICAL REVIEW D60 034020
FIG. 2. The solid and dotted curves in~a! respectively stand for the bare results for the valence and vacuum polarization contrib
to the @Du(x)1Dd(x)#$A,B%8

(1) term in Eq.~97!, obtained with use of the discretized momentum basis of Kahana and Ripka, while th
curves in~b! represent the corresponding contributions to the@Du(x)1Dd(x)#C8

(1) term before the numerical derivative overx. The vacuum
polarization contributions have been evaluated by using the occupied expression forx.0 and the nonoccupied one forx,0.
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point out that the most important factor leading to this qua
tative difference between the old and new treatments of
quark distribution functions is the nonlocality correction ar
ing from the second term of Eq.~38!, i.e., the proper accoun
of nonlocality in time of the operatorA†(0)OaA(z0).

Turning back to Fig. 6, let us inspect the theoretical p
dictions for the antiquark distributions in more detail. A
interesting feature is that, in most region ofx, Dū(x)
2Dd̄(x).0 and Dū(x)1Dd̄(x),0 with the relation
uDū(x)2Dd̄(x)u@uDū(x)1Dd̄(x)u. This denotes thatd̄ is
strongly polarized in the opposite direction to the prot
spin, whileū is weakly polarized in the same direction to th
proton spin. This appears to be a prominent prediction of
CQSM, which is worthy of special mention. In fact,
sharply contradicts the assumption of SU~2! symmetric sea
quark polarizationDū(x)5Dd̄(x), which is frequently used
in semiphenomenological analyses of parton distributio
03402
-
e
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-

e
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The isospin symmetric polarization is also assumed in
analysis by Glu¨ck, Reya, Stratmann and Vogt@31#. We com-
pare in Fig. 8 our prediction for thexDū(x) and xDd̄(x)
with the GRSV parametrization, which assumes th
xDū(x)5xDd̄(x)@[xDq̄(x)#. Naturally, one finds qualita-
tive difference between the theoretical distributions and
GRSV parametrization. Still, it is interesting to see that t
average of the two theoretical distributionsxDū(x) and
xDd̄(x) is not extremely different from the correspondin
GRSV parametrizationxDq̄(x). As for the unpolarized dis-
tribution functions, the breakdown of the assumption
SU~2! symmetric sea has already been confirmed by the N
Muon Collaboration~NMC! measurement@16#. By the same
token, there is no compelling reason to believe that the s
dependent antiquark~sea quark! distributions are isospin
symmetric. In fact, our previous analyses based on the s
model shows that the isospin asymmetry of the unpolari
he
.

FIG. 3. TheO(V0) contributions to the is-
ovector longitudinally polarized distribution
functions Du(x)2Dd(x) ~solid curves! and

Dū(x)2Dd̄(x) ~dashed curves!. Here the three
figures~a!, ~b!, and ~c! correspond to the contri-
butions of the discrete valence level, those of t
Dirac sea quarks, and their sums, respectively
0-21
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FIG. 4. TheO(V1) contributions to the is-
ovector longitudinally polarized distribution
functions Du(x)2Dd(x) ~solid curves! and

Dū(x)2Dd̄(x) ~dashed curves!. The meaning of
the three figures~a!, ~b!, and~c! is the same as in
Fig. 2.
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sea quark distributions can be explained very naturally
combined effects of two ingredients, i.e., the apparently
isting flavor asymmetry of valence quark numbers in
nucleon and the spontaneous chiral symmetry breaking
QCD vacuum@17–19#. It is just the same mechanism that
responsible for the opposite longitudinal polarization of theū

and d̄ quarks.
The above-mentioned fairly big difference between

isovector and isoscalar longitudinally polarized distributi
functions manifests itself also in their first moments, i.e.,
isovector and isoscalar axial charges given as

gA
(3)5E

0

1

$@Du~x!2Dd~x!#1@Dū~x!2Dd̄~x!#%dx.1.41,

~141!

gA
(0)5E

0

1

$@Du~x!1Dd~x!#1@Dū~x!1Dd̄~x!#%dx.0.35.

~142!

The resultant large isovector axial charge and small isosc
~flaver-singlet! one seem to be qualitatively consistent w
the observation. Especially interesting here is the flav
singlet axial charge identified with the quark spin content
the nucleon. In the context of the CQSM, this quantity w
first investigated in@5# with use of the self-consistent solito
solution obtained in the proper-time regularization schem
The value ofgA

(0)5^S3& obtained there ranges from 0.4
0.5 corresponding to the variation of the dynamical qu
massM from 425 MeV to 375 MeV. One may notice that th
03402
s
-

e
of

e

e

lar

r-
f
s

e.

k

valuegA
(0).0.35 obtained in the present calculation is a lit

smaller than the previous one. The cause of this differe
can be traced back to the qualitative change of the s
consistent soliton solution obtained in the new regularizat
scheme. As a general trend, the Pauli-Villars regularizat
scheme cuts off high momentum components more wea
than the energy-cutoff scheme like the proper-time o
thereby leading to soliton solutions with stronger distortio
Incidentally, owing to the nucleon spin sum rulêL3&
1 1

2 ^S3&5 1
2 proved in @5#, the rest of the nucleon spin i

carried by the orbital angular momentum of the effecti
quark fields.~Naturally, this is true only at lowQ2 corre-
sponding to the energy scale of our effective model. It w
be shown later that an increasing portion of the nucleon s
is carried by gluons asQ2 increases.! A soliton with stronger
distortion gives larger orbital angular momentum, and co
sequently smaller quark spin fraction@5#.

The characteristic feature of the above theoretical pre
tion, i.e., larger isovector charge and smaller isoscalar
seems also consistent with the idea ofNc counting or 1/Nc
expansion of QCD. For understanding it, we just recall
fact that the collective angular velocityV scales as 1/Nc , so
that the leading contributions to the isovector and isosc
polarized distribution functions are respectively of t
O(Nc

1) andO(Nc
0). The detailed comparison of the theore

ical first moments with the corresponding experimental d
will be given later after taking account of the scale depe
dence of them.

Now we show the results of our numerical calculation f
transversity distributions. Figure 9 shows theO(V0) contri-
-

.

FIG. 5. TheO(V1) contributions to the iso-
scalar longitudinally polarized distribution func
tions Du(x)1Dd(x) ~solid curves! and Dū(x)

1Dd̄(x) ~dashed curves!. The meaning of the
three figures~a!, ~b!, and~c! is the same as in Fig
2.
0-22
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CHIRAL SYMMETRY AND THE NUCLEON SPIN . . . PHYSICAL REVIEW D60 034020
butions to the isovector transversity distribution functio
du(x)2dd(x) ~solid curves! and dū(x)2dd̄(x) ~dashed
curves!. Here Fig. 9~a! stand for the contributions of th
discrete valence level, while Fig. 9~b! represent the vacuum
polarization contributions to the same quantities. The su
of these two contributions are shown in Fig. 9~c!. One finds
that the vacuum polarization contributions to these distri
tion functions are fairly small. Incidentally, within the con
text of the CQSM, the isovector transversity distributi
function was investigated by Pobylitsa and Polyakov for
first time @32#. Our answer shown in Fig. 9~a! is qualitatively
consistent with their result which takes account of the c
tribution of the discrete valence level only. They also ga
some argument in favor of the suppression of the Dirac c
tinuum contribution todu(x)2dd(x) by using the knowl-
edge of the derivative expansion together with the first m
ment sum rule. Now it appears that their conjecture ga

FIG. 6. The final predictions of the CQSM for the longitudinal
polarized distribution functionsDu(x)2Dd(x) and Dū(x)

2Dd̄(x) given as the sums of theO(V0) andO(V1) contributions,
in comparison with those for the isoscalar longitudinally polariz

distribution functionsDu(x)1Dd(x) and Dū(x)1Dd̄(x) coming
from theO(V1) terms.
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quantitative support by our explicit calculation of the Dira
sea contribution. Note, however, that their calculation
du(x)2dd(x) cannot be taken as a final one, which can
compared with some phenomenological distribution. This
because it has not yet included potentially importantO(V1)
contributions discussed below. Now, we show in Fig. 10 o
result for theO(V1) contributions to the same transversi

distribution functions du(x)2dd(x) and dū(x)2dd̄(x).
Also for theseO(V1) terms, the vacuum polarization contr
butions turn out to be very small as compared with the c
tributions of the discrete valence quark level. However, o
should note that the valence level contribution at theO(V1)
is far from small as compared with the leadingO(V0) con-
tributions, and should not be discarded. Next we show in F
11 the theoretical isoscalar transversity distributions res
ing at theO(V1). One sees that vacuum polarization cont
bution is quite small again. The final predictions of th

CQSM fordu(x)2dd(x) anddū(x)2dd̄(x), which are the
sums of theO(V0) andO(V1) contributions, are shown in
Fig. 12, in comparison with the final answers fordu(x)
1dd(x) and dū(x)1dd̄(x) arising from theO(V1) terms.
One again sees that the magnitudes of the isoscalar dist
tions are much smaller than those of the isovector distri
tions in consistency with theNc counting rule. Remembe
the similar observation made before for the longitudina
polarized distribution functions. To see it in more detail, w
find that the ratio of the isoscalar to isovector distribution
much smaller for the longitudinally polarized distributio
than for the transversity one. We shall come back later to
point when discussing the corresponding first moments
these spin dependent quark distribution functions.

The transversity distribution functions have also been
vestigated by Gamberget al. @12# based on the Nambu–
Jona–Lasinio soliton model with anad hocnonlinear con-
straint, which is essentially equivalent to the CQSM. In vie
of the above observation that the Dirac sea contributions p
no significant role at least for the transversity distributions
appears that their calculation carried out under the ‘‘vale
e
,

i-
y

lid
n,
the

.

FIG. 7. The theoretical predictions for th
longitudinally polarized distribution functions

x„Du(x)1Dū(x)1Dd(x)1Dd̄(x)… and

x„Du(x)1Dū(x)2Dd(x)2Dd̄(x)…, are com-
pared with the corresponding sem
phenomenological parametrization given b
Glück, Reya, Stratmann and Vogelsang@31#. Of
the two theoretical curves in each figure, the so
curve is the answer of the present calculatio
whereas the dashed curve is obtained by using
old treatment used in@17#, which amounts to
dropping some of the nonlocality effects in time
0-23
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M. WAKAMATSU AND T. KUBOTA PHYSICAL REVIEW D 60 034020
quark approximation’’ might be justified and that their r
sults should essentially coincide with ours. However, sev
important differences between their analysis and ours sh
not be overlooked. The first concerns the nonlocality corr
tion in time, which was properly taken into account in o
present analysis but was totally neglected in their treatm
Note that the most important piece of it is included in E
~118! for du(x)1dd(x) and in Eq. ~123! for du(x)
2dd(x). As was already shown in the case of the isosca
longitudinally polarized distributionDu(x)1Dd(x), this
nonlocality correction in time plays quite an important ro
even under the ‘‘valence quark approximation.’’ Second
in the calculation of the isovector transversity distributi
function, they have included only theO(V0) contribution
and dropped theO(V1) term intentionally. The reason i
based on their claim that thisO(V1) contribution arises only

FIG. 8. The predictions of the CQSM for the polarized antiqua

distributions xDū(x) and xDd̄(x) are compared with the corre
sponding GRSV parametrization, which assumes SU~2! symmetric

sea quark polarization,xDū(x)5xDd̄(x)@[xDq̄(x)#.
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when one adopts a particular ordering of the operators in
collective space and that in the case of the isovector a
charge, gA

(3) , the introduction of the corresponding ter
leads to a significant violation of PCAC~partial conservation
of axial vector current! relation. That this claim is not justi-
fied was already discussed in@24# to the full extent, so that
we do not repeat it here. We just want to mention that
introduction of thisO(V1) correction also seems to be re
quired by phenomenology. In fact, as admitted by the
selves, dropping of this contribution leads to sizable und
estimation of the isovector axial chargegA

(3) . This in turn
indicates that it would also lead to a considerable undere
mation of the isovector tensor charge. To sum up, by co
paring the numerical results of our analysis and theirs, t
naturally share many qualitative features in common. To
it in more detail, however, there appear to be some quan
tive differences especially for the transversity distribution
d-quark. The above-mentioned differences of the two th
retical analyses, i.e., theO(V1) contribution to the isovector
transversity distribution and the nonlocality correction
time to the isoscalar one are likely to be the main cause
these quantitative discrepancies.

Roughly speaking, the quark distribution functions eva
ated here corresponds to the energy scale of the order o
Pauli-Villars cutoff massM PV.0.56 GeV. TheQ2 evolution
must be taken into account in some way before compa
them with the observed nucleon structure functions at h
Q2. Recently, Saga group provided a Fortran progra
which gives numerical solution of Dokshitzer-Gribov
Altarelli-Parisi ~DGLAP! evolution equations at the next-to
leading order~NLO! for the polarized as well as unpolarize
structure functions of the nucleon@33–35#. We shall make
use of their Fortran programs to evaluate the polarized
tribution functions at largeQ2 @34,35#. The question here is
what value we should take for the initial energy scale of t
Q2 evolution. Since the use of perturbative QCD below
GeV is anyhow questionable, one may take this initial e
ergy scaleQinit

2 as an adjustable parameter, which would
fixed by adjusting the observed structure functions at h
energy region. Here we have tried to see the effect of va
tion of Qinit

2 in a small range ofQ2 around the model energ
scale of M PV

2 .(0.56 GeV)2. The valueQinit
2 5(0.5 GeV)2

50.25 GeV2 obtained from this analysis will be use
throughout the following investigation. Before showing th
s-
ks,
FIG. 9. TheO(V0) contributions to the is-
ovector transversity distribution functionsdu(x)

2dd(x) ~solid curves! and dū(x)2dd̄(x)
~dashed curves!. Here the three figures~a!, ~b!,
and~c! correspond to the contributions of the di
crete valence level, those of the Dirac sea quar
and their sums, respectively.
0-24
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FIG. 10. TheO(V1) contributions to the is-
ovector transversity distribution functionsdu(x)

2dd(x) ~solid curves! and dū(x)2dd̄(x)
~dashed curves!. The meaning of the three figure
~a!, ~b!, and~c! is the same as in Fig. 2.
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results ofQ2 evolution, we want to make a short comme
One notices from the figures given so far, the distribut
functions evaluated in our effective model have unphys
tails beyondx.1, although they are not so significant. The
unphysical tails of the theoretical distribution functions com
from an approximate nature of our treatment of the soli
center-of-motion~as well as the collective rotational mo
tion!, which is essentially nonrelativistic. A simple procedu
to remedy this defect was proposed by Jaffe based on
~111! dimensional bag model@36# and recently reinvesti-
gated by Gamberget al. within the context of the NJL soli-
ton model@37#. According to the latter authors@37#, the ef-
fect of Lorentz contraction can effectively be taken in
account by first evaluating the distribution functions in t
soliton rest frame~as we are doing here! and then by using a
simple analytical transformation that preserves first mome
of distribution functions, as far as theO(V0) contributions
to the distribution functions are concerned. Such a sim
relation may not be expected however if we consider
rotational motion of the soliton, which are anyhow three
mensional. In fact, a comparison with the corresponding p
nomenological distribution functions seems to indicate t
the above procedure based on the~111! dimensional dynam-
ics tends to overestimate the effect of Lorentz contraction
the present investigation, we therefore decided not to
their procedure. Still we want distribution functions whic
vanish outside the range 0,x,1 so that we can use th
Q2-evolution Fortran program provided by Saga gro
@34,35#. Since the unphysical tails of our theoretical distrib
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tions are rather small in magnitude, we are to use a sim
cutoff procedure as follows. That is, we obtain modified d
tribution functions, which can be used as input distributio
of the above Fortran program, from the original theoreti
distribution functions by multiplying thex-dependent cutoff
factor (12x10). ~This special cutoff factor is invented from
the requirement that only the tails of the distribution fun
tions are modified.! Figure 13 illustrates the effect of thi
tentative cutoff procedure. The solid curve here is the th
retical distribution functionDu(x)2Dd(x) given as a sum
of the O(V0) and O(V1) contributions. We point out tha
this distribution function is the worst case in the sense t
the tail beyondx51 is most significant as compared with th
other distributions. The dashed curve in the same figur
obtained by using the above cutoff procedure. One sees
it leaves the distribution function forx<0.7 almost intact.
Naturally, this cutoff procedure alters the values of integr
of the distribution functions, i.e., the first moments. How
ever, it turns out that the reduction is less than 2% even
the above worst case. We therefore expect that the tenta
nature of the above procedure hardly affects the follow
qualitative analyses of scale dependence of the quark di
bution functions.

For the sake of comparison, we have carried out a sim
evolution procedure also for the initial distributions given
the MIT bag model. The distribution functions of the~naive!
MIT bag model are already known and they are given a
lytically as follows @22#. The isoscalar longitudinally polar
ized distribution functions are given by
s

FIG. 11. TheO(V1) contributions to the iso-
scalar transversity distribution functionsdu(x)

1dd(x) ~solid curves! and dū(x)1dd̄(x)
~dashed curves!. The meaning of the three figure
~a!, ~b!, and~c! is the same as in Fig. 2.
0-25
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Du~x!1Dd~x!5
~MNR!v1

2p~v121! j 0
2~v1!

3H E
uyminu

`

dyyF t0
2~v1 ,y!

12t0~v1 ,y!t1~v1 ,y!S ymin

y D
1t1

2~v1 ,y!X2S ymin

y D 2

21CG J ,

~143!

whereas the isoscalar transversity distribution functions
given as

du~x!1dd~x!5
~MNR!v1

2p~v121! j 0
2~v1!

3H E
uyminu

`

dyyF t0
2~v1 ,y!

12t0~v1 ,y!t1~v1 ,y!S ymin

y D
1t1

2~v1 ,y!S ymin

y D 2G J . ~144!

On the other hand, the isovector distribution functions
simply related to the isoscalar ones as

Du~x!2Dd~x!5
5

3
@Du~x!1Dd~x!#, ~145!

FIG. 12. The final predictions of the CQSM for the transvers

distribution functionsdu(x)2dd(x) and dū(x)2dd̄(x) given as
the sums of theO(V0) and O(V1) contributions, in comparison
with those for the isoscalar transversity distribution functio

du(x)1dd(x) anddū(x)1dd̄(x) coming from theO(V1) terms.
03402
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e

du~x!2dd~x!5
5

3
@du~x!1dd~x!#. ~146!

In Eqs.~137! and~138!, MN andR respectively stand for the
nucleon mass and the bag radius, whilevn is the nth root of
the bag eigenvalue equation as

tanvn52
vn

vn21
, ~147!

andymin5xMNR2v1 . The functiont l(vn ,y) is defined by

t l~vn ,y!5E
0

1

j l~uvn! j l~uy!u2du. ~148!

The bag radiusR is only one free parameter of this simp
model. In the numerical calculation, we adopt the value u
by Jaffe and Ji@22#, i.e.,

MNR54.0v1 , ~149!

wherev1.2.043 is the lowest~dimensionless! eigenvalue of
the bag equation.

To get a rough idea about the scale dependence, we s
in Fig. 14 and Fig. 15 the theoretical polarized quark dis
bution functions before and afterQ2 evolution. HereDu(x)
anddu(x) in Fig. 14~a! respectively stand for the longitudi
nal and transversity distributions foru-quark. In our model,
the difference between the two distributions are sizable e
at the initial low energy scale. A comparison with the exi
ing and yet-to-be-obtained high energy data must be d
with care, since the way of evolution of these two distrib
tions are pretty different and the deference between the
becomes larger and larger asQ2 increases. A general trend i
a rapid growth of smallx component of the longitudinally
polarized distribution due to the coupling with gluons.
similar tendency is also observed for the correspond

FIG. 13. The solid curve represents the theoretical distribut
functionsDu(x)2Dd(x), whereas the dashed curve is a modifi
one obtained from it by multiplying ax-dependent cutoff factor
(12x10).
0-26



e
c-

-

CHIRAL SYMMETRY AND THE NUCLEON SPIN . . . PHYSICAL REVIEW D60 034020
FIG. 14. The theoretical predictions for th
twist-2 spin dependent quark distribution fun
tions before and afterQ2 evolution. HereDu(x)
anddu(x) @in ~a!# respectively stand for the lon
gitudinal and transversity distributions ofu
quark, whileDd(x) and dd(x) @in ~b!# are the
corresponding quantities ford quark.
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d-quark distributions shown in Fig. 14~b!. We can also give
some predictions for the polarized antiquark distributi
functions. As one can see in Fig. 15, even the signs
different for the longitudinal and transversity distribution
~This is the case for both ofū andd̄ quarks.! The twist-2 spin
dependent distribution functions were calculated by sev
authors based on various effective models of bary
@12,32,38–40#. As for the polarized quark distribution func
tions, the predictions of various models give more or le
similar shape of distributions assuming that they take
count of the dominant nature of the valence quark contri
tion as well as the effects of pion cloud in some effect
way. The situation is quite different for the polarizedanti-
quark distributions. The transversity distribution function
for the antiquarks have, for instance, been evaluated by
one et al. within the chiral chromodielectric model@39#.
Comparing their predictions fordū(x) anddd̄(x) with ours
shown in Fig. 15, we find that their model givesdū(x).0,
while ours doesdū(x),0. The shapes ofdū(x) anddd̄(x)
are also quite different in both models. In consideration
the fact that the polarized antiquark distributions are qu
sensitive to the detailed dynamics of the model, it is ve
important to get precise phenomenological information
them.

Next we show in Fig. 16~a! the theoretical predictions
for the proton structure functiong1

p(x,Q2) at Q255 GeV2

in comparison with the corresponding experimental d
given by E143 Collaboration@41#. The theoretical curves ar
obtained as follows. Starting with the initial distribution
Du(x)1Dd(x), Dū(x)1Dd̄(x) and Du(x)2Dd(x),
Dū(x)2Dd̄(x) or equivalently Du(x),Dū(x) and
Dd(x),Dd̄(x) given at Qinit

2 .0.25 GeV2 @we assume
Ds(x)5D s̄(x)50 andDg(x)50 at this energy scale#, we
solve the NLO evolution equation to obtain the distributi
functions atQ255 GeV2. These distribution functions ar
then convoluted with the relevant quark and gluon coe
cient functions at the NLO within the framework of pertu
bative QCD. These procedures have been carried out fo
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initial distribution given by the CQSM and also by the MI
bag model. The solid and dashed curves in Fig. 16~a! respec-
tively stand for the prediction of the CQSM and that of t
MIT bag model. A remarkable feature of the CQSM as co
pared with the MIT bag model is the enhancement of
structure function at smallx region, i.e., large sea quar
components. One also observes that a clear peak
g1

p(x,Q2) aroundx.0.3 predicted by the MIT bag model~a
relativistic valence quark model! is not seen in the experi
mental structure function. On the other hand, one can
that the prediction of the CQSM reproduces qualitative f
ture of the observed structure function in the whole range
x. Figure 16~b! shows the theoretical prediction of th
CQSM ~solid curve! and that of the MIT bag model~dashed
curve! for the neutron spin structure functiong1

n(x,Q2) in
comparison with the E154 data@42#. One clearly sees tha
the neutron spin structure functiong1

n(x,Q2) predicted by the
MIT bag model is negligibly small in magnitude even aft
evolution. We recall that at the initial energy scale the na
MIT bag model predictg1

n(x)50, which is a necessary con
sequence of a model that does not properly incorporate ch
symmetry. On the other hand, the prediction of the CQS
for g1

n(x,Q2) is seen to be large and negative especially
the smallx region in good agreement with the experimen
observation. Then, this agreement may be regarded a
manifestation of the importance of chiral symmetry in t
physics of high-energy deep-inelastic scattering.

As is widely known, the simplest but the most importa
quantities characterizing the quark distribution functions
the associated first moments. Here we are interested in
first moments of the longitudinally polarized distributio
functions and of the transversity ones, which are respectiv
called the axial and tensor charges defined as

gA
(3)5E

0

1

$@Du~x!2Dd~x!#1@Dū~x!2Dd̄~x!#%dx,

~150!
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FIG. 15. The theoretical predictions for th
twist-2 spin dependent antiquark distributio
functions before and afterQ2 evolution. Here
Dū(x) and dū(x) @in ~a!# respectively stand for
the longitudinal and transversity distributions o

ū quark, whileDd̄(x) anddd̄(x) @in ~b!# are the

corresponding quantities ford̄ quark.
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gA
(0)5E

0

1

$@Du~x!1Dd~x!#1@Dū~x!1Dd̄~x!#%dx,

~151!

gT
(3)5E

0

1

$@du~x!2dd~x!#2@dū~x!2dd̄~x!#%dx,

~152!

gT
(0)5E

0

1

$@du~x!1dd~x!#2@dū~x!1dd̄~x!#%dx.

~153!

Before discussing the prediction of the CQSM for the
quantities, it may be instructive to remember some ba
properties of those.~We recall that the first calculation of th
tensor charge in the CQSM was given in@43#.! As empha-
sized by Jaffe and Ji@22#, there is a remarkable differenc
between the axial and tensor charges originating from
charge conjugation properties of the relevant operators.
each flavor, the tensor charge counts the number of vale
quarks ~quarks minus antiquarks! of opposite transversity
03402
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Consequently, the sea quarks do not contribute to the te
charge.~This does not necessarily means vanishing tra
verse polarization of antiquarks, however.! On the other
hand, the axial charge counts the number of quarksplus an-
tiquarks of opposite helicity. In fact, by rewriting Eqs.~152!
and ~153! as

gA
(3)5E

0

1

$@Du~x!2Dd~x!#2@Dū~x!2Dd̄~x!#%dx

12E
0

1

@Dū~x!2Dd̄~x!#dx, ~154!

gA
(0)5E

0

1

$@Du~x!1Dd~x!#2@Dū~x!1Dd̄~x!#%dx

12E
0

1

@Dū~x!1Dd̄~x!#dx, ~155!

the first and the second terms of the above equation
respectively be interpreted as valence and sea quark co
e
s

e

e

FIG. 16. The theoretical predictions for th
proton and neutron spin structure function
g1

p(x,Q2) andg1
n(x,Q2) at Q254 GeV2 in com-

parison with the corresponding SLAC data. Th
solid and dashed curves in~a! respectively stand
for the prediction of the CQSM and that of th
naive MIT bag model forg1

p(x,Q2), whereas the
black circles are the E143 data@41#. The corre-
sponding theoretical predictions for theg1

n(x,Q2)
are shown in~b! together with the E154 data@42#.
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TABLE I. The theoretical predictions for the isovector and isoscalar axial charges as well as the
sponding tensor charges. The predictions of the MIT bag model and those of the lattice QCD@44# are also
shown together with some experimental data@45,46#.

CQSM MIT-bag Lattice QCD@44# Experiment

gA
(3) 1.41 1.06 0.99 1.25460.006@45#

~Q2-indep.!
gA

(0) 0.35 0.64 0.18 0.3160.07 @46#

(Q2510 GeV2)
gT

(3) 1.22 1.34 1.07 –
gT

(0) 0.56 0.80 0.56 –
gA

(0)/gA
(3) 0.25 0.60 0.18 0.24

gT
(0)/gT

(3) 0.46 0.60 0.52 –
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butions in the parton model. Since the sea quark degree
freedom is absent in the nonrelativistic framework, the d
ference between the axial and tensor charges is purely
tivistic. Still, one must clearly distinguish two types of rel
tivistic effect. The one is dynamical effects, which gener
sea quark polarization. The other is kinematical effec
which make a difference between the axial and ten
charges even though the sea quark degrees of freedom
totally neglected. The existence of this latter effect c
readily be convinced by comparing the prediction of tw
‘‘valence quark models,’’ i.e., the nonrelativistic~constitu-
ent! quark model and the MIT bag model. In fact, the no
relativistic quark model predicts

gA
(3)5gT

(3)5
5

3
, ~156!

gA
(0)5gT

(0)51, ~157!

while the prediction of the MIT bag model is given by

gA
(3)5

5

3
•E S f 22

1

3
g2D r 2dr,

~158!

gT
(3)5

5

3
•E S f 21

1

3
g2D r 2dr,

gA
(0)51•E S f 22

1

3
g2D r 2dr,

~159!

gT
(0)51•E S f 21

1

3
g2D r 2dr,

wheref andg are upper and lower components of the low
energy quark wave functions. For a typical bag radiusR
.4.0v1 /MN , which was used before, this gives

gA
(3).1.06, gT

(3).1.34, ~160!

gA
(0).0.64, gT

(0).0.80. ~161!

As is obvious from Eqs.~158! and~159!, the splittings of the
axial and tensor charges are due to the different sign of
lower component~p-wave! contributions@22#. One should
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however notice that there is one interesting feature share
both the nonrelativistic quark model and the MIT bag mod
The predictions of the both models for the ratio of the iso
calar to isovector axial charges as well as the ratio of
isoscalar to isovector tensor charges are just the same:

gA
(0)/gA

(3)5gT
(0)/gT

(3)53/5. ~162!

Although there is no experimental information yet for th
tensor charges, the above prediction for the ratio of the
axial charges obviously contradicts the EMC observation

Now we shall argue that the above prediction may
interpreted as showing the limitation of simple valence qu
models, which fail to properly incorporate chiral symmet
of QCD. To convince it, we compare in Table I the pred
tions of the NRQM and the MIT bag model with those of th
CQSM, which maximally incorporate chiral symmetry. F
the sake of reference, the predictions of the lattice QCD
also shown@44#. ~Here we have omitted the errors of th
lattice QCD calculation, for simplicity.! We first point out
that the predictions of the CQSM for the above ratios, i.e

gA
(0)/gA

(3).0.25, gT
(0)/gT

(3).0.46, ~163!

strongly deviate from the above predictions of the two v
lence quark models. What is remarkable here is that
CQSM predicts very small isoscalar axial charge in cons
tent with the EMC observation.~More meaningful compari-
son should be made after taking account of the scale de
dence of this quantity.! Its prediction for the isovector axia
charge is also qualitatively consistent with the experimen
value determined from the neutron beta decay.~The devia-
tion from the experimental value is only about 11%.! The
lattice gauge theory also predicts a very small isoscalar a
charge gA

(0).0.18. However, this prediction may not b
taken as a final one since it largely underestimates the
ovector axial charge. At any rate, one can observe qualita
similarities between the predictions of the CQSM and tho
of the lattice QCD. Both predicts quite a small number f
the ratio of the isoscalar to isovector axial charges as c
pared with the predictiongA

(0)/gA
(3)50.6 of the NRQM or the

MIT bag model. On the other hand, the predictions of bo
models for the ratio of the isoscalar to isovector charge
not extremely different from the predictiongT

(0)/gT
(3)50.6 of
0-29
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M. WAKAMATSU AND T. KUBOTA PHYSICAL REVIEW D 60 034020
the latter valence quark models. In our opinion, the obser
deviation from the valence quark picture indicates an imp
tance of chiral symmetry as a generator of ‘‘dynamical s
quark effect,’’ and the predicted feature is expected to
confirmed by future measurements of tensor charges.

To compare the theoretical first moments of the spin d
tribution functions with the existing data for the longitudin
case and with yet-to-be-observed ones for the transve
case, we must take account of the scale dependence o
relevant moments. As is well known, the first moment of t
isovector longitudinal distribution functions, i.e., the isove
tor axial charge is scale independent, i.e., it does not evo
gA

(3)(Q2)5gA
(3)(Qinit

2 ). This is due to the conservation of th
flavor nonsinglet axial-vector current@52#. This is not gener-
ally the case for the flavor singlet~isoscalar! axial charge
owing to the so-called axial anomaly of QCD@47,48#. ~Still,
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one can take a scheme called the chiral invariant factor
tion scheme in which the flavor singlet axial charge is ind
pendent ofQ2 @49#. Here, we take more standard gauge
variant factorization scheme@50#.! In the singlet sector, the
nth moments of the longitudinally polarized distributio
functions are coupled with the corresponding gluon con
butions. The evolution of these nth moments is governed
the anomalous dimension matrix

g (p)n[S gqq
(p)n gqg

(p)n

ggq
(p)n ggg

(p)nD , ~164!

whereg (0) and g (1) are 1- and 2-loop contributions to th
anomalous dimensions. An analytic solution to this coup
evolution equation of the NLO is given in the matrix form
@51,52#:
e all
ed

e of the
evolution
tru and

quation
Gn~Q2!5S DSn~Q2!

DGn~Q2! D , ~165!

Gn~Q2!5H S as~Q2!

as~Qinit
2 ! D

L2
n /2b0F P2

n 2
1

2b0

as~Qinit
2 !2as~Q2!

4p
P2

n gnP2
n

2Xas~Qinit
2 !

4p
2

as~Q2!

4p S as~Q2!

as~Qinit
2 ! D

(l1
n

2l2
n )/2b0C P2

n gnP1
n

2b01l1
n 2l2

n G1~1↔2 !J Gn~Qinit
2 !. ~166!

Hereas(Q
2) is the QCD running coupling constant at the next-to-leading order withMS scheme,b0 andb1 are the 1- and

2-loop QCD beta functions, respectively, and

gn5g (1)n2
b1

b0
g (0)n. ~167!

P6
n are 232 projection matrices defined by

P6
n 56~g (0)n2l7

n 1̂!/~l1
n 2l2

n !, ~168!

with 1̂ being a 232 unit matrix and with

l6
n 5

1

2
@gqq

(0)n1ggg
(0)n6A~gqq

(0)n2ggg
(0)n!214gqg

(0)nggq
(0)n#, ~169!

the eigenvalues of the 1-loop anomalous dimension matrixg (0)n. Since the necessary anomalous dimension matrices ar
given in @52#, it is easy to calculate theQ2 evolution of the first moment of the flavor singlet longitudinally polariz
distribution functions, i.e., the isosinglet axial charge.

Because of its chiral-odd nature, the moments of the transversity distributions do not couple with gluons, irrespectiv
flavor quantum numbers, which especially means that isovector and isoscalar tensor charges follow the same
equation. The anomalous dimension of the transversity distribution at the leading 1-loop order was first given by Ar
Mekhfi @53#, while the corresponding 2-loop contributions have recently been given by three groups independently@54–56#.
Once the relevant anomalous dimensions are known, it is easy to obtain an analytical solution of the NLO evolution e
for the nth moment of transversity distribution. Here, we use the form given by Hayashigakiet al. @55# as

dq1
(n)~Q2!

dq1
(n)~Qinit

2 !
5S as~Q2!

as~Qinit
2 ! D

gh
(0)n/2b0S b01b1

as~Q2!

4p

b01b1

as~Qinit
2 !

4p

D ~1/2!(gh
(1)n/b12gh

(0)n/b0)

, ~170!
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CHIRAL SYMMETRY AND THE NUCLEON SPIN . . . PHYSICAL REVIEW D60 034020
where the relevant anomalous dimensionsgh
(0)n andgh

(1)n are
all given in @55#. Figure 17 show the calculatedQ2 depen-
dence of the axial and tensor charges. For obtaining it,
start with the theoretical first moments given at the init
energy scaleQinit

2 50.25 GeV:

gA
(3)~Qinit

2 !51.41, ~171!

gA
(0)~Qinit

2 ![DS~Qinit
2 !50.35,

~172!

DG~Qinit
2 !50, ~173!

gT
(3)~Qinit

2 !51.22, ~174!

gT
(0)~Qinit

2 !50.56. ~175!

One sees that theQ2 dependence of the flavor singlet axi
charge is very small~it is almost constant except in the ve
low Q2 region!. A characteristic prediction of the CQSM fo
the axial charges, i.e., large isovector charge and small i
calar charge appears to be qualitatively consistent with
corresponding experimental data at the relevant energy s
As was pointed out by many authors@39,53–56#, the Q2

dependence of the tensor charges are sizably large. Altho
there is no experimental information for these latter qua
ties, thisQ2 dependence must be taken seriously when co
paring the theoretical prediction of low energy models w
future experimental date.~Note, however, that the ratio
gT

(0)/gT
(3) is Q2 independent.!

Because of the coupling between the flavor singlet a
charge~the longitudinal quark polarization! and the gluon
polarization in the evolution equation, nonzero gluon pol
ization appears at highQ2 even if we have assumedDG
50 at the initial energy scale ofQ0

250.25 GeV2. We show
in Fig. 18 theQ2 evolution ofDG in comparison with that of

FIG. 17. The scale dependence of the axial and tensor cha
The evolution equations at the next-to-leading order are solved
der the initial conditions gA

(3)(Qinit
2 )51.41, gA

(0)(Qinit
2 )

[DS(Qinit
2 )50.35, gT

(3)(Qinit
2 )51.22, gT

(0)(Qinit
2 )50.56, and

DG(Qinit
2 )50 at Qinit

2 50.25 GeV2.
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DS5gA
(0) . One sees that the gluon polarization rapid

grows with increasingQ2. Already atQ2.2 GeV2, DG is
seen to be larger thanDS. As explained in@50#, the growth
of the gluon polarization withQ2 can be traced back to th
positive sign of the anomalous dimensiongqg

(0)1 at the leading
order (gqg

(0)152). The positivity of this quantity means that
polarized quark is preferred to radiate a gluon with helic
parallel to the quark polarization. Since the net quark s
component in the proton is positive, it follows thatDG.0 at
least for the gluons perturbatively emitted from quarks@50#.
It is hoped that the direct information onDg(x,Q2) from the
di-jet asymmetry analyses at HERA in conjunction with t
precise NLO analyses ofg1(x,Q2) will soon provide us with
an accurate determination of the polarized gluon distribut
as well as its first moment@57#.

V. SUMMARY

In summary, we have shown that the CQSM natura
explains qualitative behavior of the experimentally measu
longitudinally polarized structure functions of the proton a
the neutron. As was shown in our previous papers, the mo
also reproduces an excess ofd̄ sea over theū sea in the
proton very naturally@17–19#. ~More complete theoretica
treatment of the Gottfried sum has recently been given
@20#.! Furthermore, it predicts qualitative difference betwe
the transversity distribution functions and longitudinally p
larized distribution functions. For example, in simple valen
quark models like the NRQM or the MIT bag model, th
ratios of the isoscalar to isovector charges are just the s
for both of the axial charges and the tensor charges. On
contrary, in the CQSM or in the lattice gauge theory, th
ratio turns out to be much smaller for the axial charges th
for the tensor charges. In our viewpoint, what makes t
difference is ‘‘dynamical sea quark effects’’ dictated by t
spontaneous chiral symmetry breaking of the QCD vacuu

es.
n-

FIG. 18. The scale dependence of the flavor singlet axial cha
~or the quark polarization! and the gluon polarization. The initia
conditions for the evolution equation are the same as given in
17.
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M. WAKAMATSU AND T. KUBOTA PHYSICAL REVIEW D 60 034020
Another noteworthy prediction of the CQSM is the oppos
~spin! polarization of theū and d̄ sea quarks, thereby indi
cating SU~2! asymmetric sea quark polarization. These o
servations then indicate that nonperturbative QCD dynam
due to the spontaneous chiral symmetry breaking wouldsur-
viveand manifest itself in the isospin~or flavor! dependence
of high energy spin observables, especially in that of
polarized ~as well as unpolarized! antiquark distribution
functions.
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