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Chiral symmetry and the nucleon spin structure functions
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We carry out a systematic investigation of twist-two spin dependent structure functions of the nucleon
within the framework of the chiral quark soliton mod€IQSM) by paying special attention to the role of chiral
symmetry of QCD. The importance of chiral symmetry is illustrated through the good reproduction of the
recent SLAC data for the neutron spin structure functi§(x,Q?). We also observe a substantial difference
between the predictions of the longitudinally polarized distribution functions and those of the transversity
distribution functions. That the chiral symmetry may be responsible for this difference is seen in the isospin
dependence of the corresponding first moments, i.e., the axial and tensor charges. The CQSM predicts
g\9/g¥)=0.25 for the ratio of the isoscalar to isovector axial charges, vef{iég{>=0.46 for the ratio of the
isoscalar to isovector tensor charges, which should be compared with the predjghim}®)=g{"/g{®
=3/5 of the constituent quark model or of the naive MIT bag model without proper account of chiral sym-
metry. Another prominent prediction of the CQSM is the opposite polarization ofitead d antiquarks,
thereby indicating the S(@) asymmetric sea quarlspin polarization in the nucleon.
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PACS numbgs): 13.60.Hb, 12.39.Fe, 12.39.Ki

[. INTRODUCTION three valence quarks and infinitely many Dirac sea quarks
moving in a slowly rotating M.F. of hedgehog shape. As a
Undoubtedly, the so-called “nucleon spin crisis” causednatural consequence, it automatically simulates cloud of
by the European Muon CollaboratidEMC) measurement pions surrounding the core of three valence quarks. Never-
in 1988 is one of the most exciting topics in the field of theless, since everything is described in terms of effective
hadron physic$l]. The recent renaissance of nucleon struc-quark fields only, we need not worry about a double counting
ture function physics is greatly indebted to this epoch-of quark and pion degrees of freedofiiVe recall that this
making finding. Naturally, the physics of nucleon structurekind of double counting occurs, for instance, in models of
functions has two different aspects. One is a perturbativéadrons based on the linear-sigma-quark-model type La-
aspect, while the other is a nonperturbative aspect. Becauggangian[7,8].) This also means that we do not need to use
of the asymptotic freedom of QCD, th@? evolution of  such an ambiguous procedure as convoluting the pion struc-
quark distribution functions can be controlled by the pertur-ture functions withpion probability function(or more pre-
bative QCD at least for large enou@f [2]. However, per- cisely a light-cone momentum distribution of the piamside
turbative QCD is entirely powerless for predicting distribu- the nucleor{9-11].
tion functions themselves. Here we need to solve Several group have already attempted to calculate nucleon
nonperturbative QCD in some way. Unfortunately, we havestructure functions within the CQSM or the Nambu—Jona-
no reliable analytical method for handling this aspect ofLasinio (NJL) soliton model. For instance, Weiget al. in-
QCD. For the present moment, we are then left with twovestigated the polarized as well as unpolarized structure
tentative choices. One is to rely upon lattice QCD, while thefunctions of the nucleon under the so-called “valence quark
other is to use effective models of QCD. If one takes the firs@pproximation”[12]. This is not an extremely bad approxi-
choice, one must first evaluate infinite towers of moments ofnation, but it is known to have several unpleasant features.
distribution functions, since the direct calculation of distribu- Probably, most serious would be the violation of positivity
tion functions does not match this numerical simulationcondition for the unpolarized antiquatkr sea quarkdistri-
method[3]. Here we take the second choice, which allows usbution functions. Although such an apparent disaster does
a direct calculation of quark distribution functions. Still, not happen for the spin dependent quark distribution func-
there are quite a lot of effective models of baryons. We adtions, a lesson learned from the above observation is that a
vocate that the chiral quark soliton mode6CQSM) is a  reliable prediction ofantiquark distributions would not be
unique model of baryons which has several appealing feasbtainable unless incorporating effects of Dirac sea quarks or
tures not possessed by other models of baryons, especiakguivalently vacuum polarization effects.
when applied to the physics of quark distribution functions. More consistent calculation including vacuum polariza-
First of all, it is an effective model of baryons maximally tion effects have been performed by Diakoreial.[13,14]
incorporating spontaneous chiral symmetry breaking of QCDand also by Tanikawa and Saitb5] with different regular-
vacuum[4-6]. The nucleon in this model is a composite of ization schemes, but by confining to the isosinglet unpolar-
ized as well as isovector longitudinally polarized distribution
functions, which have values at the leading order a1/
*Email address: wakamatu@miho.rcnp.osaka-u.ac.jp expansionor at the Oth order of the expansion in the collec-
TEmail address: kubota@kern.phys.sci.osaka-u.ac.jp tive angular velocityQ) of the hedgehog soliton Unfortu-
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nately, an abundance of interesting physics like the physics 1 dan

of “nucleon spin contents” is contained in the next order of fi(x)= " f 2—e”‘x<PS yLO) . (AN|PS), (1)

1/N. expansion[5]. This is easily understood because the v2p m

inclusion of O(QY) terms is the minimum condition for the g

collective quantization treatment of hedgehog solitons to 1 A

hold. Otherwise, the nucleon cannot have correct quantum gl(x)z‘/szr f ﬁew(PSJ ¥ (0) ysih. (AN)|PS,),

numberg4-6]. 2
We have recently reported the first calculation of the

0(QY) contributions to the isovector unpolarized quark dis- 1 d\

tribution function related to the physics of Gottfried s{ih6]
with full inclusion of the vacuum polarization effedts7]. It

was shown that the model can explain the excess ofdthe xe™(PS |4(0)y, ysips (AN)|PS,), )]
sea over theu sea in the proton very naturalljl7-19.

However, some of the treatments there were criticized in avherep* andn* are two lightlike(null) vectors, having the
recent paper by Pobylitsat al. [20]. In the process of ob- properties,

taining theoretical quark distribution functions, we need to
evaluate nucleon matrix elements of quark bilinear operators
which are nonlocal in time. Their criticism is that the calcu-

lation in [17] does not treat this nonlocality in time to the full ,, "c0 0SBl O the initial nucleon and the four-

extent. momentum transfeg” from a lepton to a nucleon have the

Now the purpose of the preselnt paper-is to carry out gy and the time components only. In this frarpé&,andn*
systematic calculation of all the twist-2 spin dependent qua”fake the form

distribution functions of the nucleon as consistently as pos-

sible. We evaluate both of th@(Q°) andO(Q?) contribu- P 1

tions with full inclusion of the vacuum polarization effects. p#=—(1,0,0,2, n*=——(1,0,0~1), (5)
The above-mentioned nonlocality effects are also carefully V2 v2p

taken into account. We believe that these unique features of | . u u
our theoretical analysis would give new and important im‘or-Whlle P# andq” are represented as

hy(x)= \f2—p+ >

p =0, nt=0, p?=n?=0, p-n=1. (4

Without loss of generality, one can choose a frame in which

mation on the nonperturbative aspect of the spin dependent M2
quark distribution functions including trentiquarkdistribu- P“=pt+ —nH, (6)
tions as well. 2

The plan of the paper is as follows. For completeness, we 1 1
give in Sec. Il a precise definition of twist-2 quark distribu- . _ 2 M20D) D 4 = (4 P2 M20O2)nH
tion functions which we shall investigate in the present d Vﬁ(v vEMQYP Z(V ve+M{Q7)n*,
paper. How to evaluate these quark distribution functions @)
within the framework of the CQSM is explained in Sec. ) ) o
lll. Section IV is devoted to the discussion of the numeri-With v=P-q andQ“=—g~. In the above definition of the

cal results. We then summarize what we have found irfwist-2 quark distribution functionsy, is a component of
Sec. V. the quark fieldys defined through the decomposition

p=P +P)y=y,+y_, ®

by the projection operatorsP.=31y"y* with y*
Most theoretical analyses of quark distribution functions=(1#/2) (y°*¥®). According to the authors 2], . is

of the nucleon are based on a field-theoretical formulatiorcalled the “good” component ofy, since it describes an

given by Collins and Sopef21]. As a natural extension, independent propagating degrees of freedom in the light-

Jaffe and Ji recently carried out a systematic classification ofone quantization schenj@3]. On the other handy_ is

quark distribution functions by including chiral-odd distribu- called the “bad” component, since it can be interpreted as

tion functions which do not appear in the formulas of deepquark-gluon composites. It is important to recognize that

inelastic scattering cross sectiof®2]. According to them, only the good component aof appears in the definition of

there are nine independent distribution functions, from twistwist-2 quark distribution functions in conformity with the

2 to twist 4. Here we are interested in the twist-2 distributionfact that they have simple parton model interpretation. In the

functions, which are known to have simple parton modelactual model calculation of these distribution functions, it is

interpretation. There are three twist-2 distribution functions,more convenient to rewrite the above expressions with use of

the spin independentor averagep distribution f,(x), the  the identities

longitudinally polarized distributiong,(x), and what is

called the transversity distributidm (x). Following the no-

tation of[22], they are represented as

II. DEFINITION OF QUARK DISTRIBUTION FUNCTIONS

1
Pi=P, =5 (1+7%), C)
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1 0.3
P+7’5P+:§(1+77)‘}’5- (10

1
PoyivsPe=5(1+y"7) 7 ys. (11

Since the distribution functions are in principle frame-
independent, it is also convenient to go to the nucleon rest

frame, in which one can seP=M/v2. Now using the
change of variable as

PHYSICAL REVIEW D60 034020

In the present study, we confine to spin-dependent distribu-
tion functions, so that we are to take

0,=(1+ 9% ys, 73(1+9°y)vs, (19

respectively for the isoscalar and isovector parts of the lon-
gitudinally polarized distribution functions, whereas

0a=(1+9°¥) vy vs, ma(1+7Y°y)y s, (20

for the isoscalar and isovector parts of the transversity dis-
tributions. We recall here the fact that, extending the defini-

1 tion of distribution functionq(x) to interval —1<x<1, the
Anf=\ M—N(l,O,O,— 1)=z*, (12 relevant antiquark distributions are given|[44]
we obtain ATUX)+Ad(X)=Au(—Xx)+Ad(—x) (0<x<1),
(21)
A A o _
o=y BTy~ "%, =0 (13 AU(X)—Ad(x)=Au(—x)—Ad(—x) (0<x<1),
N N
(22)
Noting that for the longitudinally polarized distributions, while
Joc dx ei“---=MNjw dz,e™Mnzo. .. (14 SU(X)+ 8d(x)= —[Su(—x)+ d(—x)] (0<x<1),
- - (23
we are then led to the following expressions: SU(X) — 55()(): —[Su(—x)—8d(—x)] (0<x<1),
. (24
- 0A~iXMyZ — T
f(x) 471'J dz’e"o(P=084"(0)(1 for the transversity distributionf22]. As explained in the
0 3 previous papefrl7], the basis of our analysis is the following
YY) h(2)|P=08)|z~ 7z -0, (15 path integral representation of a matrix element of an arbi-
trary (bilocal) quark bilinear operator between the nucleon
91(x) = %J d2PeMnzo(P=0.5,|1(0)(1 states with definite momenta:
o s (N(P)[#"(0)0.4(2)IN(P))
+ 7y ¥s(2)|[P=0S,)| -~ 2, ~0. (16) 1
=2j d3xd3ye“P'Xe‘P'Yf Duf DyDy"
1 .
- 0 AiXM 2z — T
0= 5= [ dzenmp-os, ls'(0)1 - g
. X In| 5 x| #1002 3| — 5.y
YY) ys(DP=0S)lz= 252, <0 (17)
xexp[i f d4xE(i/9—MU75)z//}, (25)
What is left for us now is to evaluate nucleon matrix ele-
ments of quark bilinear operators containing two space-timavhere
coordinates with light-cone distance. How to evaluate these —
matrix elements obilocal quark operators will be explained L=¢(id=MU”5(x)) i, (26)

in the next section. ) . ) .
with U75(x) =exfiys7 w(X)/f ] being the basic Lagrang-
Il. THEORY OF QUARK DISTRIBUTION FUNCTIONS lan of the CQSM, and

As shown in the previous section, the quark distribution
functions of our present interest can generally be represented
in the form

1 e a {ffn }
‘]N(X): N | € 1 NCI‘JJ:; T-:—\‘; l/jalfl(x). ..djaN fN (X)
c* ’ c Ve

(27)

is a composite operator carrying the quantum numbers
JJ;,TT; (spin, isospin of the nucleon, where; is the color

. . fqooeof . . L. .
index, whlleFEJl TTNC} is a symmetric matrix in spin-flavor
3 3

indicesf;. By starting with a stationary pion field configu-

1 (= :
a00= 5= [ dzoe*a(nip=0)
X[¢1(0)0ath(2)IN(P=0))| = 52, =0 (18)
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ration of hedgehog shapélgf’(x):exm vs7 TF(r)], the
path integral over the pion fieldd can be done in a saddle

PHYSICAL REVIEW D 60 034020

PYid—MAMUFOAT(1) = gp(i 0= H— Q) i,
(30)

point approximation. Next, we consider two important fluc-
tuations around the static configuration, i.e., the translational .

. . with
and rotational zero modes. To treat the translational zero-
modes, we use an approximate momentum projection proce-
dure of the nucleon state, which amounts to integrating over

all shift R of the soliton center-of-mass coordinaféd]:

(N(P)|4"(0)O,(z)|N(P))

— [ RGP0~ RIO(z0, 2 RINP).
(28)

The rotational zero modes can be treated by introducing
rotating meson field of the form
U7s(x,t) =AU (x)AT(t), (29)

whereA(t) is a time-dependerg U(2) matrix in the isospin
space. Note first the identity

! I 0 !

Here H is a static Dirac Hamiltonian with the background
pion fields Ug5(x), playing the role of a mean field for
quarks, whileQ) =3 7, is the SU2)-valued angular veloc-
gy matrix later to be quantized d3,—J,/I with | the mo-
ment of inertia of the soliton andl, the angular momentum
operator[4—6]. We then introduce a change of quark field
variablesy/— s, , which amounts to getting on a body-fixed
rotating frame. Denotings, anew asy for notational sim-
plicity, the nucleon matrix elemeri25) can then be written
as

<N(P)|¢T(0)oa¢(z)|N(P)>=%r{f}r{g}*f d3xd3ye—iP'XeiP'yf d3Rf DAD:,waexp[if d4x¢T(iat—H—Q)¢}

SUCERER

V(0. RIAT(0)OaA(Z) (20,2~ R 1]

N

wéj(‘;y)‘“(‘%”'

(32)

Now performing the path integral over the quark fields, we obtain

(NP (0)0, (2 IN(P) = STOTON, [ aixtye e [ ar [ DA

X 04A(Z9))y5° 5< Zy,2— R‘

—Tr(<zo,z—R

fi<§

X

|
iﬁt—H—Q’_
! 0,—R)AT(0)0.A T
iﬂt—H—Q ’ ( ) a’ (ZO) . 21X
1

T
fq E!X

|
ha o R> jao

2
2
91

-2,

|

T

E,y> -exgdNcSplogid,—H—Q)],
9i

(33

with TH =T A(T/2)]Ne etc. Here Tr is to be taken over spin-flavor indices. Assuming a slow rotation of the hedgehog
soliton, we can make use of an expansioflinSince() is known to be arO(1/N.) quantity, this perturbative expansion in
() can also be taken as aNlf expansion. For an effective action, this gives

1
Splogid—H—0)=Splogid—H)+i | f Q2dt.

(34

The second term here is essentially the action of a rigid rotor, which plays the role of the evolution operator in the space of
collective coordinates. We also use the expansion of the single quark propagator as
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T i T
fl<§’x m‘o’— R>7=fl<§’x 0.~ R>y

-
—f dzyd3z’ fl<§,x

|at_H

i
|19t_H

zé,z’> 10, 5(20) - <z(),z’ iat_|_|’0,—R> +---. (35
@ B Y

An important suggestion made in a recent paper by Pobibttsa. [20] is that one must also take account of the nonlocality
(in time) of the operatoA’(0)0,A(z,). Expanding this operator around O zy, one respectively obtains

AT(0)0,A(zg) =AT(0)0,4A(0) +2,AT(0)O,A(0) + -, (36)
or AT(0)0,A(zo) =AT(29) 04A(2o) — 2oAT(29) 0A(Zg) +- -+ . (37)

Since both choices are known to lead to the same ang@&rit is convenient to use a symmetrized form in the following
manipulation. This amounts to performing the following replacement:

T T 1 T 1 N T
AT(0)0,A(z0) ~ATOA+ 5 2o(ATO,AATA-ATAATOA),

~ 1 .
=0,+ iZOE{Q,Oa}, (38

in the process of collective quantization of the rotational motion. Here we have introduced the notation
0,=AT0,A, (39

for saving space. Equatiof88) means that the nonlocality of the operait(0)0,A(z,) causes a rotational correction
proportional to the collective angular velocit{2. After taking all these into account, we are then led to a perturbative series
in Q, which is also regarded as aNL/ expansion:

(N(P)|#7(0)0,4(2)IN(P)) =(N(P)| (0)O,4(2) IN(P))2°+ (N(P)| T(0) Oath(2) IN(P)) +- - -, w0
where
(N(P)|4/(0)0,4(2)|N(P))*’= ;T{f}f{g}TNc f dxdye PPy f R f DA,
(A K
X ; E’Xiﬂt—H 0,—R 7.5 ZO’Z_Riat—H —E,y .
i T . T
B T R B P e
5 Y f1 9,
N .
el /T LT odi0—H +'I—f(22dt "
><j:2 . 2'Xi¢9t—H 2y . -exp N¢,Splodid,—H) 5 2dt|, (41
i j
and
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(N(P)| /(0)O4h(2) IN(P)) 2"

=%T{f}F{9}*NC f d3xd3ye PxelPy f d°R f DA

PHYSICAL REVIEW D 60 034020

| @zdzi0,42) @' ©0)0.Az),,

T i i i
), < e 0R) [meRi| 2
fa a g Y g1
R e L R R e R I L e 2
5 X — 202 R=—7120.7 ) - (20,7 ||~ 35
f 27 1d;—H Y s idi—H o B idi—H| 2 0,
T i T R i . . i 0_R ) 196
f Exi&—H EJ -\ Zp,2 i%:qzwz . ZO,Zi{S't_H s ‘H%E{, Jﬁ
1 gy o a B Y
T i 0_R R i T
“ \2Xia=n (%R (2 RiGTR| T2
1 y 48 J1
R i 0_R T i T
N2 F RiG=R|07R) - (2% -a| 27
vy 1 91
i ! | ! N.Splogi H+'IJ’det 42
ijz f E,Xm _E’y . -expg NcSplogid,—H) IE adty. (42)
J

Let us first discuss the leadi@(Q°) term. As usua[4,5],

we introduce the eigenstatgm) and the associated eigenen-

ergiesk,, of the static Dirac Hamiltoniai, satisfying

H|m)=Eg|m). (43)

This enables us to write down a spectral representation of the ‘I’SJ)

single quark Green function as follows:

a<x,t x’,t’>
B

=0(t—t') X, e Emt=t) (xm)(m|x'),
m>0

|(9t_H

—6(t'—t) X, e Emt=t) (xm)(m|x') 4.
m<0
(44)
Using this equation together with the relation

(z—R/=(—R[e'P?, (45)

we can perform the integration ov&in Eq. (41). The re-
sultant expression is then put into E48) to carry out the
integration overz,. We then arrive at a formula, which pro-

a0600)= [ WERTEJOOTEW Pk [Ealdén, (46
where

2J+1
(€= \ 5z (-1 D5 (0, (47)

3l3
are wave functions, describing the collective rotational mo-
tion of the hedgehog soliton, while

N ~
o<°>[§A]=MN7°< 2 -2 )<nloaa<xMN—En—p3>|n>-
n<0 n>0
(48)
Using the identity

(E +2 )<n|6a5(XMN_En_p3)|n>:Ov (49

n<0 n>0

Eqg. (48) can be expressed in either of the following two
forms:

o<°>[§A]=MNNcn20 (n|0a8(xMy—E,—p®)[n)

vides us with a theoretical basis for evaluating the zeroth = —MuN nlo.s(xMu—E..—p3)In
order contributions in() to quark distribution functions of N CnZO< [0200xMy—En=p7)In),
the nucleon: (50
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i.e., as a sum over the occupied states or as a sum over the 1
nonoccupied states. As was emphasizeld #), it is better to (Oa)y'ﬁ’A;y’QaﬁAﬁ’b‘: or (7¢) aﬁ(oa)y’a’A;y'JcAé’ﬁ
use the first form foix>0, whereas the second form far
<0, for the purpose of numerical calculation. 1

Next we turn to th@(Ql) coptribution. In writing doyvn = E(Tc)aﬁ(oa)y,ﬁ,/_\;y,
Eq. (42), we have retained the time argumentg,@&ndz; in
A, A andQ, since we have to pay attention to the time order
of these collective space operators, which do not generally X
commute after collective quantization of the rotational zero-
energy modes. In the previous pap&r], motivated by the
physical picture that the time-scale of deep inelastic- — i(T ) [E(ATO Ar)
scattering processes is much shorter than that of collective 21 R 2 arttelyo
rotational motion of the soliton, we dropped special time-
order Qiagramg in which .the Coriolis qouplilﬁybetween the; + (ATOaA)y(’)\]c}v (56)
collective rotational motion and the intrinsic quark motion
operates in the time interval betwerpand 0. However, this o _
procedure was criticized by Pobyliteaal.in a recent paper Where we have used E¢G4). Similarly, by using Eq(55),
[20]. According to the them, there is little reason to assumé®N€ may obtain an alternative expression
approximate degeneracy of 0 anglin AT(0)0,A(z,), since T
the deep-inelastic scattering processes are not necessarily  (Oa)ysA,, QupAss
short distance phenomena. Taking this nonlocality in time

1
E(ATC)ﬁ/ﬁ—‘r Aafﬂc}

) . : 1 1
arguments more seriously, one should retain all the possible = (o) up 5 (TATOLA) 5+ I(ATOLA) ya}_
time-order diagrams. In doing so, we must pay attention to 21 2
the time order of collective space operatésand (). By (57)
ordering these operators according to their time orders, we
are led to the replacement In the following manipulation, we find it convenient to take

an average of these two expressions as
Q45(20) (AT(0)0.A(20)) 5

1
~ t - +
—[6(z4,020)+ 0(2,29,0)1Q 50,5 (Oa)y sAy Qaphsr 5= gy (Te) apl (A OaATe) 15
+[60(0.29,25) + 0(29,020)10,5Q o5 +(7AT0A) 5]
+6(02),20)(0a) y 5AL Qo pAs 5

1
+ H(Tc) a,B[(ATOaA) 'yé‘JC
+0(29,2,0)(04) 5 A5 o upAl . (5D)

+J(ATO,A) 5. (59)

Here the third and the fourth terms are new ones discarded ilq \v. The first is th
the treatment of17]. In order to handle these somewhat 'OV W€ must treat two cases separately. The firstis the case

peculiar terms, we first recall the rule of collective quantiza-IN Which the operato©, contains an isospin factar, as
tion: B
0,=1,0. (59)

1 1 _
Q=§Qa7'a—> EJaTaa (52 In this case, using the relatioA’O,A=D,,7,0, we can
rewrite as

whereJ, is the total angular momentum operator satisfying

the commutation relation&CR) as follows: (ATOaATE) 5t (7ATOGA) 5= Dap(( o7+ TCTb)a)“/‘S

_ =2Dai(0) 5. (60)
[Ja,Jp]=l€apcdcs (53
On the other hand, i©, contains no isospin factor as
1 _
[J..A]= 5ATa, (54) 0,=0, (61
we obtain
[J,,AT]=— 1 AT (55) _
2 (ATOAT) 5+ (TATOA) 15=2(7c0) 5. (62)
Using these CR, one can show that Unifying the two cases, we can then write as
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1 D,.O. 1 D,.O.
! =7 ac_ ’)/6 rs! ’ T = - - ac_ 76
(Oa)yrorAyy Qo a=; (Tc)“B[ <Tcom} (Oa)y A5 oflaphyy =~ ] (Tc)“ﬁ{ <Tco>ya}
1 ) 1 ,
+ 51005, (ATOA) 5} (69) + 510, (AT0A) 5} (64

A similar manipulation for the fourth term in E¢51) leads  Retaining all these possible time order diagrams,Qii&?)
to contribution to the distribution function now becomes

(NP0, O)IN(P) = STITON [ atxatye e [ %R [ pa

><[i f dsz’dza<[0<za,0zo>+e(za,zo,0>]9aﬁ<6a>y§+[0<o,zo,z5>+a(zo,o,zan

- 1 ~ 1 D,O.
X(Oa)'yb\(laﬁ—i_ 0(012(,)120)|:§{‘Q’aﬁa(oa)y6}++E(Tc)aﬁ[ = 75] +0(Zo,26,0)
(700)75

1 = 1 Dac6y6
X E{Qaﬁv(oa)'yﬁ}Jr_E(Tc)aﬁr(TCE)yﬁ
y T i . . i 0_R R i T

BT T i A R TP T SR E i (P R
Y HRENS Y RN RN RS

—,XT 7 . Zy,Z— TZO,Z . Zy,Z |3 — -5,y
f12|(9tH y s idi—H « B idi—H 2gl

(|2, (e R e | (o]
- \sXe—o1-35Y) - (20.z2R-—72.7 ) - (20,7 |=—0,—
fl2 iogg—H| 2 9, o id;—H « B idi—H y
1 ~ T i T
+|20§{Q,Oa}75 E,XMTH 0—R) - ZO'Z_Rié’—H —E,y

f1 t vy 6 t 91
R i 0_R T i T
5 ZO,Z |(9t_H ' f nylﬁt—H E,y
y 1 91

N¢
x 1 <I,x. ' —I,y> ~exr{NCSplogiat—H)+il—fdit}. (65)
o2 |\ 2 liaH | 2 2

After stating all the delicacies inherent in the structure function problem, we can now proceed in the samd ivanad
[24]. Using the spectral representation of the single quark Green fun@ibriogether with the relatiofd5), we can perform
the integration oveR,z’, andz;. The resultant expression is then put into Ei) to carry out the integration ovex,. We

then arrive at a formula, which gives a theoretical basis for evaluatin@(6E") contributions to quark distribution functions
of the nucleon

a0 = [ WEFTEIOM W) [£alde, (66
where
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oW ga1=0P+ 0+ 0N+ 0, (67)

with

Of)=My—" —=—[(n[Oa( 8y + 8) IM)(m[ [ n) +(n| Qm)(m[Oy( 8, + S In) ], (68)
2 m>0,n<0 Em En
" N, 1 - ~
OB :MN_ - E — [<n|oa(5n_5m)|m><m|Q|n>+<n|9|m><m|oa(5n_5m)|n>]y
4 m=0,n=<0 n>0m>0 Em En
(69)
1 D,.0
o =Myzs -~ n|re/my{(m|{ ~*< H (8= 8m)|n), 70
o' Mg | 2~ 2 gl m)mi -0 | (%o~ omln) (70
o= 255 5 Yo, 0150 7
¢ dx 4 \7=0 n>o ar e
In the above equations, we have used the notation
Om=0(xMy—E—p?%), and 8,=8(xMy—E,—p°®) (72

for saving space. Het®4) is the contribution from the diagram in whidj is later(or earliey than both of 0 and,. As was
emphasized ih17], this term contains transitions between the occupied and nonoccupied single quark levels so that it is not
in conflict with the Pauli principle. On the other har(d(Bl) and O(Bl,) are the contributions from diagrams in whieh lies
between 0 and,. Although these terms appear to contain Pauli-violating transitions between the occupied levels themselves
or the nonoccupied ones, we take here the viewpoint advocaf@fjimhat there is no compulsory reason to drop them since

we are here dealing with operators which are nonlocal in time. Fin@l@’, is the O(Q1) contribution resulting from the
nonlocality of the operatoA(0)0,A(z,), i.e., the second term of EG38). In deriving O, use has been made of the
identity

1 e . . = .3 1 d
lewdzo'Zoe'(XMN En—p )20=——X§(XMN—En—p3). (73

My @

As will become clear shortly, it is convenient to tre@f" andO4" in a combined way. To see it, first note that, after a
simple change of summation indicéé,(,f) can be rewritten as

[(n]Oa8,m){m[Q[n)+(n|Qm)(m|O,8,n)]

N
O(l)= M _C
A N 2 m>0,n<0 Em_En

- >

m<on>0 Em—Eq [<m|6a5n| n><n|Q| m) + <m|Q| n><n|6a5n| m];. (74

From now on, we treat the two cases separately. First, assume that the relevant dpgiantains an isospin factar, in

such a form a®,= Taa In this case, in view of the relatior®,=AT0,A= Dabrb6 andQ = (1/21) J. 7., we must carefully
treat the noncommutativity of the two collective space operdigisandJ.. By keeping the order d,, andJ., O(Al) can
generally be divided into two piecég4] as
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N¢ 1
O =Mz E{Dab,Jch[m >

——=[(n|m,08,|m)(m|rc|n)+(n| 7| m)(m| 7,08, n)]
>0,n=<0 Em En

- >

= — N: 1
<=0 Em—En [{n| 7O &, m){m| 7¢[n) +(n[ 7¢[m){m| Tb05n|n>]+ +M NZ E[Daba\]c]

X [{n[ 750 8| m)(m| 7c|n) —(n| 7o|m)(m| 7,08, )]

m>0,n=<0 Em_ En

- [<n|rb65n|m><m|rc|n>—<n|rc|m><m|rb65n|n>]}, (75
m=0n>0 Emy n

which contains symmetric and antisymmetric combinations of the two collective space op&rgianadJ.. On the other
hand, it can be easily verified th&{" term contains symmetric combination only:

[<n| 7'baé\n| m><m| 7'c| n)+ <n| Tc|m><m| 7'b65n|n>]

N. 1
(1) — _c=
Og MN4| Z{Dabr\]c}+[ m>02ﬂ§0 E__E.

- >

m=0,n>0 Em_ En [<n| Tb65“| m><m| TC| n>+ <I’l| 7'c|m><m| Tb65n| n)]} . (76)

CombiningOY" and 0§ terms, we then obtain for the isovector case

O +08)=0{Rs, + O g (77)
where
N. 1
Ofe=Mngr 5{DanJet+| 2 — + -
’ 4] 2 m>0n<0 m=0h>0 m=0h<0 m>0n>0
1 — _
><E _E [<n|7b05n|m><m|Tc|n>+<n|Tc|m><m|7b05n|n>] (78
m n

[<n| Tb65n|m><m| Tc|n> - <n| 7'c| m><m| 7'b65n| n>] (79

N, 1
1) —M— =
O[A,B] MN4| 2 [Dabi‘JC]( m>02'n§0 +m502,n>0 )Em_ En

The situation is much simpler for isoscalar operatogs 0. Since@azA*OaAzAT6A:6, we have only to replace both
of D4, and 7, by 1 in the above manipulation, thereby leading to

[<n|66n|m><m| 7'c|n> + <n| 7'c| m><m|65n|n>],
(80)

N
oRy-tgrd T -3+ 3 -

m>0n<0 m=<O0n>0 m=<0h<O0 m>0,n>0)Em_En

OfRg =0. (81)

One notices that only the symmetric combination of the matrix elements survives for this isoscalar case. This should be
contrasted to the isovector case in which either of the symmetric part or the antisymmetric part survives, depending on the
symmetry property of the relevant single quark matrix elements appearing ifysand(79). As we shall discuss later, the
symmetric part contributes to the isoscalar polarized distribution functiofx) + Ad(x) and su(x)+ 8d(x) at theO(Q?1),
whereas the antisymmetric part plays an important role inQf@?) term of the isovector polarized distribution functions
Au(x)—Ad(x) or Su(x)— &d(x) [24].

Now we shall investigate the case of our interest in more detail for obtaining explicit formulas, which can be used for
numerical calculation of polarized distribution functions of the nucleon.

A. Au(x)+Ad(x)
The relevant operator in this case is

0,=AT(1+ 99 ysA=(1+y°9%)¥". (82
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Since theO(Q°) contribution toAu(x)+Ad(x) vanishes due to the hedgehog symmetry, the leading contribution to this
distribution function arises from th@(Q') terms. Due to the symmetry property of the relevant single quark matrix elements,
only the symmetric combination <®(1)+ O(l) survives. The totaD(Q?) term therefore consists of three p|ec@§A B} Og:

and O(l) Using the general formulas obtained so far, the contributions of these three tefmgxpt+ Ad(x) are given as

m=all,n<0  m=all,n>0 ) En—En

X[(N[(1+5°y®) ysSplm)y(m| 75|n) +(n| 7ol m)(m[(1+y°¥) y5 85I n) 1, (83

N, !
[AU() +Ad(x)1{Xey=(Ia)py - MNH( o

En<n| 7ol MM 7e(1+7°¥%) v5( 8= Sm)In), (84

N
[Au(x)+Ad(X)](1)_<1>pT MN8| ( zgo _m> n>0 ) Em—

d

[AU(X)+Ad(X <Js>m dXMN4| (z E (n[73(1+9°9%) y56,/n). (85)

In the above equations(),; denotes a matrix element of a collective space operatwith respect to the proton in the spin
up state along the-axis, i.e.,

<O>m:f v ig)(UZ)[gA]O"F (i (86)
In deriving Eq.(83), we have used the relation
~ 1 1
<{Oa,9}+>m:<[(1+ 7073)75,5%%} > =7 (Ja)pr a1+ Y% ys. (87)
lopt

One may notice that the collective space operator contained in the[mlm(rx)+Ad(x)](l) is 1 and it is different froml;

contained in other two terms. The appearance of this term seems to be inconsistent, since it does not change sign in contrast
to the other two terms when the direction of the proton spin is reversed. Fortunately, it can be shown that this potentially
dangerous term vanishes identically due to the symmetry of the double sum of the single quark matrix element:

[Au(x)+Ad(x)]=0. (89)

We are then left with the two terms, i.dAu(x)+Ad(x) {2 and[Au(x)+Ad(x)]&’, which both have required state
dependence. For the purpose of numerical calculation, it is convenient to rewrite the above two terms slightly further. A key
relation in this manipulation is the following identity:

+

m=all,n<0 m=all,n>0 Em_

E. [(n[(1+5°%°) ys8al m)(m| 7a|n) +(n[ 75| m)(m|(1+ ¥°¥°) y58,In)]=0. (89

That this identity holds can be seen as follows. We first point out that, after separating from the double suB9fteg.sum
over terms withE,,=E,, we can rewrite it as

0=2

1 d
—(n|73|m)(m|(1+9°¥%) y58,|n) + —— E (n|g|m)(m|(1+°¥®) ys5,[n).  (90)
m(=EaII,nE:§:1II Em En M dX (E E )aII
m# n —&n

This essentially coincides with EA18) given in Appendix A of[20] except that the operatorg and7,(1+ y°y°) there are
replaced here by; and (1+y°y°%) ys, respectively. The proof given in Appendix (0] then holds without any essential
modification. (For assurance, we shall later try to check to what extent this identity holds in our numerical calculation.
Assuming the validity of the above identi(g9), [ Au(x) +Ad(X)]{A g} can be expressed in either of the following two forms:
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1
Em_En

N
[AU(X) +Ad(X) 1R ey = (232)p: - My >
4] m=all,n<0

X[(n[(1+5°y®) ysplm)(m| 75|n) +(n| 7ol m)(m[(1+ ¥°¥®) y5 8,4 )]

1
= —(233) 1 - My
(233)py N4l m=&Th=0 En—Ep

X[(N|(1+¥°¥®) ys Salm)(m| 7|n) +(n| 75| m)(m| (1 + ¥°*) y55,|n)]. (9

As advocated irf20], it is convenient to use the first expression given as a sum over the occupied states for the numerical
calculation of distribution functions in the regior> 0, while to use the second one given as sum over the nonoccupied states
whenx<0, since one can thus avoid vacuum subtraction, i.e., subtraction of the corresponding sums over vacuGnitfevels
U=1). Following [20], we also separate thHe,,=E, contribution from the above sum over the single quark levels. This can

be done by noting the identities

>

1
E_E [(n[(1+9°¥®) ysSalmy(m| 73|n) + (| 7a|m)(m|(1+ 1°¥®) y5 8, n) ]

m=0n=<0
1 0.3 0.3
:Em < o E.—E [<n|(1+7 Y )75(5n_5m)|m><m|73|n>+<n|7'3|m><m|(l+7 Y )75(5n_5m)|n>]7 (92
=0n= m n
and
. d(XMy—E,—p*)— 8(xMy—E,—p?) . 1 d 5
E:TEH E_E, =0 (XMy—Ep—p )—M—N&5(XMN—En—p ). (93
From Eq.(91), we can then readily obtain
1
C
[AU00+AdOONRey=(2dhp - Mugy 2 E—¢

(Em*Ep)

d N,
X[(n[(1+¥°¥®) ys Salm)(m| 3|n) +(n| 73| m)(m|(1+ ¥°*) y55nIn) ]+ (I3)p; - el

X ms%<0 [(n](1+9°9%) ysSalm)(m| 73|n) + (0| 73| m){m| (1 + y°¥%) 580 n)], (94)
(Em=Ep)

and a corresponding expression given as sums over non-occupied levels. The remaininguetm- Ad(x)](cl) can simi-
larly be expressed in either of the two equivalent forms as

d N
[AUC0 +Ad(0]E=(23a)p; - g 77 2 (Pl 7a(1+7°7) ys8nln)

d N
=—(233)p;- d—4—°2 (n|73(1+ ¥°¥®) y53,/n). (95

>0

Inserting the complete set of single quark states into the first expression and separafipg-thg andE,=E, terms in this
sum, we obtain

d N 0.3
[AUCO+AdOOID=(23a)pr - G gy 2 (nl7alm)(mi(1+579%) ysdyln)
(Em¢En)

d N
231 g ar 2o (nl7almXml(L+9°9) ys0,lm), (96)
(Em=Ep)
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and a corresponding expression given as sums over nonoccupied states. Just as §2flidorithe case of the unpolarized
distribution function u(x)—d(x), E,=E, contribution in the double sums irﬁAu(x)+Ad(x)]§,§?B} and [Au(x)
+Ad(x)]) precisely cancel each other. After regrouping the terms in such a way that this cancellation occurs at the level of
analytical expressions, th@(Q?!) contribution to the distribution functiou(x)+Ad(x) can finally be written in the
following form:

[AUC)+Ad00) D =[Au(x) +Ad(X)]{) g, +[AUX) +Ad(X)]E) (97)
where
(1) Ne 0,3
[AU(X)+Ad(X)]{A,B}':<2\]3>m'Mij%%:rKo E_E (n|(1+9°y°) ys8n|lm){m|75/n), (98)
En?E)
NC 0,3
:_<2\]3>pT'Mij:§n>o g (Nl(1+°y?) yson|m)(m[ 75[n), (99
EntEp
and
(1) d N 0.3
[AUCO +Ad00TE = (23a)pr - g gy 2 (nl7alm)(mi(1+579%) ysdyln), (100
(Em*En)
d N o 3
= (3o gy gy 2 lmElm)(ml (14 4°7%) ysoilm). (100
(Em*En)

These expressions will be used in the numerical calculation.

B. Au(x)—Ad(x)
The relevant operator for the isovector longitudinally polarized distribution function is

Oa—3=AT73(1+ Y°y®) ysA=Dap7p(1+ ¥°¥%) v5. (102

The main contribution to this distribution function comes from the Oth order terfd.iA simple manipulation gives

[Au(x)—Ad(X)]©=(Dag)p- MNNcngo (n| 731+ ¥°¥®) y56,|n)

=—(Dag)p- MNNcgO (n|7s(1+7°9%) y55,n). (103

The O(Q!) contribution toAu(x) —Ad(x) is far more complicated. It generally consists of 4 ter@§’, 0%, 0% and
o). As was already mentioned, the symmetric part of the su@{f andO{" vanishes for this particular operator, owing
to the symmetry of the single quark matrix elements. Using the familiar commutation relation

[Jc:Dapl=i€cheDses (104

the antisymmetric part a®{+ 0" becomes
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N
[Au(x)— Ad(X)]Exlx),B] =(D33)p;-M N8_|C [ €3ch >

1
— [<n|Tc|m><m|Tb(1+')’073)75(5n+5m)|n>
>0,n=<0 Em En

—(n|7(1+ ¥2¥®) y5( 8+ 8) |M)(m| 7| n)]

N¢

1 Ont Om
:_<D33>pT'MN|_ (n|7+1|m>(n|7-+1(y5+23)Tlm)

2 m>0,n=<0 Em_ En

Ot O
—(n|7_q|m){n[7_1(ys+23) > |m>}, (105

with the standard definition. = = (7, =i 7,)/v2 andX3;=y°y3y5. Next, from Eq.(70) with the case of isovector operator,
we find that

N,
[AU(0)—Ad(X) ) =(Dagp - Mgy

>

(méO,nSO m>0,n>0

1
g (Nl7alm)(ml(1+ 979 y5(6h— Sm)[n). (106

One should notice that the state dependence of this somewhat peculiar contribution is nothing different from that of the main
term, which implies that there is no reason for this term to vanish. In fact, the single quark matrix element appearing in the
above double sum is essentially the same as that appearing in the expressito(for+Ad(x)]™.

The last but potentially important contribution comes from the nonlocality correction (fl%?n First note that

~ 1
{Oa=3vQ}+={D3bTb(l+ 7073) V5 ﬂJcTc]

+

1 1 0.3 0.3
= 51| 51Da Jct+ [7o(1+ 77 y") ys7et memn(1+ 777" ¥s]

+}[D Il 71+ 7°¥?) vs7e— memn(1+ ¥°7%) 6]
5[Dab Il 7(1+ ¥y ¥57e= 7eb(14 ¥°¥%) v

1 )
= 57 {Dac, Jch+ (1+¥°y%) s+ i€ped Dan Jel 7e( 1+ ¥°¥%) vs). (107)

The first term of the above equation does not contribute, since

> (n[(1++%9%) 755n|n>+n§0 (n|(1+9°¥%) ys58,|n)=0. (109

n<0
Simplifying the second term by using the GR04), we finally obtain

d N,
[Au(x)—Ad(x)]E)=— (D o (

ax al > _nZO ><n|73(1+ Y’y ¥ 8 n). (109

n<0

For the same reason as before, it is convenient to consider these term in a combined way. To this end, we first rél@®e Eq.
by inserting a complete set of single quark states and by separatirtg, th€&,, contributions from the resultant double sum.
The result can be expressed in two alternative forms as

d N
[Au()~Ad()1E= ~(Dsgy - 4—,°( DD
' )

) (n| 73lm)(m|(1+ y°y®) y58,/n)
(En*E))  (Em=Ep

m=all,n>0 m>0,n>

d N,
=<Dsg>m'd—xﬂ( S 43 o)<n|rs|m><m|<1+«y%3>~y5(sn|n>. (110
Em#Ep, Em=En

To rewrite theB’ term, we first separatg,,= E,, contributions in the double sum of EGLO5 as
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N
[Au(x)—Ad(x)]5)=(D3g)p-M NZT - (n| 73lm)(m|(1+ y°y®) y58,|n)

msoz,nso —m>02,n>0 ) Em_E

d N
+(Dapr- war| > — 2 |{nlzglm)(ml(1+9°%®) ys8,|n). (112)
dx 8l | m<Gn<o m=0n>o0
(Em=En) (Em=En)
Next, we notice the identity
1 1 d 0 3
0= > <n|73|m><m|(1+7 ) Y5 8nlN) + 51— 2 <n|73|m><m|(1+77)3/55n|n>- (112
m(=EaII,nE=;:1II En— 2My de(EaII E)
m# n —En

Using this identity, Eq(111) can be rewritten in either of the following two forms:

N
[Au(x) = Ad(0) ) =(Dadp; - Mz

1
2 X + 2+ X ——(n|m3lm)(m|(1+1°¥®) ys8,|n)
m<0n=0 m>0n=0 m<on>0 |Em—En
(Em#Ep)

d Ng 0 3
+(D33)p;- &ﬂms%so (n]mzlm)(m[(1+ ¥°y>) ys8,/n)

(Em=Ep)

2 >+ >+
m>0,n>0 m>0n=<0 m=<0,n>0
(Em#Ep)

N, 1 0 3
=—(Dag)p;-Mn7r ——(n|3|m)(m|(1+ y°y°) y56,|n)
41 E —E,

d N
~(Pador grar 2 NIzl mXmi(L+579%) ysdyn). (113

>0,n>0
(Em=En)

Comparing Eqgs(110 and(113), one notices that thE,,= E, pieces in the double sums cancels precisely betvizgdeand C
terms.(This is true for both of the occupied and nonoccupied expressidifier some manipulation by taking care of this
cancellation, the sum of these two terms can finally be expressed as

£ (75l m)(m[(1+%7%) y56,In)
n

N
_ (l)
[AU(X) Ad( ) B’+C <D33>DT MN2| [mall,nso Em_

(EmsﬁEn)
L0 S rmdm L 5 vesin)
2My de:aII,nsO 3 son
(Em#:En)

E g (Nmslmml(d+ Pyt
m>0n<0 Em—

|n>]

= (75l m)(m[(1+ y%9%) y56,|n)
n

D M e
(Dag)p;- N21 ) m=4Tn>0 Em—
(Em#Ep)

1 d
" M O > . (n| 73lm){m|(1+ ¥°y*) y58,|n)

=all,n>
(Em#Ep)

m=<0,n>

1 S+ O
- 3 im0y |n>]. 114

For numerical calculation, we shall use the first form Xo¥ 0, while the second form fox<0.
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C. du(x)+ éd(x)

Since the evaluation of the transversity distribution can be done in a completely parallel way as the longitudinally polarized
distribution functions, we shall show below only the final results. T{€°) contribution tosu(x) + dd(x) vanishes: i.e.,

[ Su(x)+ 8d(x)]@=0. (115

The O(QY) contribution consists of two pieces as

[8u(x)+ 8d(x)] D= 8u(x) + 8d(x) 1R g, +[ Su(x) + 8d(x)]E), (116
where
[5U(X)+5d(x)]{A,B}f:<2‘]x>pr'Mij=§n<0 E_E <n|(7’ Ys— 1Yy )5n|m><m|7'l|n>
Em*E)
N, 1 L
=—(230ps Mgy 2 m—p(nl(y'ys =197l m)(mlmn), (117
(Em#E)
and

d N, .
[Au(x)+Ad(x) (clr)=—<2Jx>ps;$(ﬂm > (n|mmy(m|(y'ys—iy?) 8,In)

=all,n=0
(Em*Enp)
d N 1 i a2
:<2‘]x>psk' d_XHm:a;n>0 (n[ro|m}{m[(y*ys—iy*) &ln). (118
(Em#Ep)
Here(Jy),s, is defined by
(3)ps,=(PSIIPS). (119

D. du(x)—éd(x)
The O(Q°) contribution is given by

[u(x) = 8d(x)]@=(D3p)ps - M NNCnZ:O (n|73(¥*y5= 9% 83n)=—(D3p)ps - M NNCn§>)O (nl7s(¥*ys—i7%) 8nln).

(120
The O(Q1) contribution consists of two pieces as
[8u(x)— 8d(x) 1V =[ su(x) — 8d(x) |{Rg; +[ Su(x) — 8d(X) 157, (121)
where
[Su(x)— 8d(x)1{Ag;=(Da)ps, - M e > !
[AB] SUpSe N8| 63Cbm>0,ns0 Em_En
X[(n] 7| my(m| 7p( ¥ Y5 =i ¥%) (8n+ 8m) [N+ (N[ 7p( ¥ ¥5—197) (Sn+ Sm) [M)(M| 7[N) ]
B 1 N, 1 o Ontdnm
=—(Dspps Mn 2 o E_E. (nf7ealminl7ea(y ys =iy —5—[m)
B
=(nl7_alm)(nl 7y (yhys=i9%) =5 m) |, (122

and
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1, _i,2
oo B, (ImamXml(y ys—iv%) dnln)

N
[8u(x) = 54001, = (Daps, Muzr
(Em#Ep)

SIS (n|7alm)(m|(y*ys—i¥?) 8,|n)
2My dXm=aT.n<0 3 ° n
(Em#Ep)

S+ O
(n|rslmy(m[(y*ys—iy?) 5 |n>],

m>0n=<0 Em_ En

(n|z3|my(m[(y*ys—iy?) &y|n),

m=all,n>0 Em_ En

Nc
= _<D31>psx‘ MN?

(Em*En)
e 2 S (nlrdmymi(rys— i) 50)
2My de:aII,n>O 3 ° ne
(Em#Ep)
.. Opt 4
- —=(nlralmy(ml(y*ys—iy*) —5—Im . (123
m=<0,n>0 Em En 2
|
IV. NUMERICAL RESULTS AND DISCUSSION Here the coefficient of the pion kinetic term given by
Before showing the results of numerical calculations, we ( d*k M?
briefly discuss the parameters of our effective model speci- |2(M)E|f 2 (KK=M?)?" (129

fied by the Lagrangiafi26). Fixing f . to its physical value,
i.e., f,=93MeV, only one parameters of the model is the contains logarithmic divergence. Clearly, this divergence can
constituent quark mass M, which plays the role of the coube removed by introducing a regularized actgfj? by

pling constant between the pion and the effective quark

fields. There is some argument based on the instanton picture reg_gm _ [
of the QCD vacuum that the value of this mass parameter eff ==eft | Mpy
should not be extremely far from 350 Me\25]. Phenom- "

enological analyses of various static baryon observableblereS ;" denotes the effective meson action obtained from
based on this model prefer a slightly larger valueMbfoe-  SM. by replacing the dynamical quark mass M with the
tween 350 MeV and 425 MeY5,6]. In the present analysis, pauli-Villars masMpy,. In fact, this replaces,(M) with

we use the valueM =375MeV favored from analyses of
various static observables of baryons. Actually the model
contains ultraviolet divergences so that it must be regularized

2

Syl (126)

M 2 2 M|23V
|f2995|2(M)_<M_PV> |2(MPV):WIOQW’

by introducing some physical cutoff. In the case of static 127
nucleon observables, most frequently used regularization, . = . . . . .
scheme is the one based on Schwinger’s proper-time reprg‘fh'.Ch IS C'.earr'gfgf'”'te- Demanding furthfer that the pion k"
sentation[5,6]. Unfortunately, how to generalize this regu- netic term inS.;{ has the correct normalization, one obtains
larization scheme in the evaluation of nucleon structure func- N, M2,

tions is an open problem. For evaluating quark distribution e M?2 Iongff,. (128

functions, Diakono\et al. then proposed to use the so-called
Pauli-Villars regularization scheme, which they claim hasgor M =375 MeV, for instance, this givell py=562 MeV.
several nice properties as compared with the energy cutothther observables like quark distribution functions, which
scheme like the proper-time regularization schefi. The  contains logarithmic divergence, can similarly be regularized
basic idea of this regularization scheme is very simple. Usingg

the derivative(gradieni expansion, one can evaluate the ef- )

fective meson action corresponding to the original effective reg_ /(\\M_ M M

quark Lagrangiari26) as (0)"*9=(0) Mpy (0)7rv. (129

S{U]=—iNSplodid—Me'7s™™x] For the sake of consistency, a soliton solution should also be
obtained in the same regularization scheme. The starting-
point of soliton construction is the mean field equation

(124) ()9 sinF (r)= (i ys )% cosF(r), (130

4N, 1 )
:f—2|2(|\/|)-§(o7’u17) +eee
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obtained under the assumption of the static hedgehog comonsistent solutions are only slightly different from those of
figuration the naive single-subtraction scheme, except when discussing
some special quantities as pointed out ab@Vais analysis
#(r)="f FE(r). (131  Will be reported elsewheneConsidering the fact that the
calculation of the structure functions are very time-
Here(yy)"®9" and(yi ys7- )¢9 are the regularized scalar consuming, we shall then use here the single-subtraction

and pseudoscalar densities in the Pauli-Villars subtractioffauli-Villars scheme, keeping in mind that some particular
scheme : observables are out of the application of this regularization

scheme. Finally, as for the nucleon mass, we prefer to using
M the theoretical soliton madd y=1102 MeV rather than the
(J@[GG'E(J@?"—(M—) <$¢>:\"PV, (132 physical mass, since it respects the energy-momentum sum
PV rule at the energy scale of the model.
For evaluating quark distribution functions at tBéQ?),

— L red — Y we must perform infinite double sums over all the single-
(PysT-Py) %9 =(hiysm T, — (M_pv) quark orbitals which are eigenstates of the static Hamiltonian
o H given by Eq.(31). As far as static nucleon observables, a
X{ i y5r~fzp):"PV. (133)  numerical technique for carrying out such double sums was

established i5]. On the other hand, several new subtleties
Recently, self-consistent solutions of this equation of motiorarising in the evaluation of quark distribution functions have
has been obtained [26] with use of the Kahana-Ripka basis been explained ifi17]. In the actual numerical calculation,
[27]. (Essentially the same equation was solved[28]  the expression of each physical quantity is divided into two
within the framework of the Nambu—Jona Lasinio modelpjeces, i.e., the contribution of what we call the valence
with an ad hocnonlinear constraint.However, one should quark level(it is the lowest energy eigenstate of the static
use this regularization scheme with some care. In fact, it iyjrac HamiltonianH, which emerges from the positive en-
known that the single subtraction is not enough to get rid ofergy continuurh and that of the Dirac sea quarker the

linear divergences, for instance, containt_—zd ir_1 thg expressiovnacuum polarization contributioras explained if17]. The
of_the Yacuum_quark condgnsa{t@S], which implies that regularization is introduced into the latter part only.
()% and (yiys7-Fyp)°® also contain convergences.  As was stated in the paragraph below E80), our nu-
Why could the authors of Reff26,28 obtain self-consistent merical analysis relies crucially upon the assumed equiva-
solutions then? The reason is in the way of solving the equagnce of distribution functions given as sums over the occu-
tion of motion(129) in the nonlinear model. Given an appro- pieq and nonoccupied quark orbitals. In view of its important
priate initial form of F(r), one can evaluatéy);°® and role played in our whole analysis, it is desirable if we can
<% yST.f,p){eg/ by using the Kahana-Ripka plane-wave ba-Verify this equivalence also numerically. The identity which
sis as long as the box size D and the maximum momenture Want to show numerically is E¢90), or equivalently
Kmax are finite. A newr(r) can then be obtained from
'< <% 75T~f1ﬂ>:eg,) A(X)+B(x)=0, (135
F(r)=arctan) ———— (134
()0
with

AS Knay increases, both ofyy)®9" and (i ysr- fi)'eY
tend to diverge. We numerically find that both quantifies

increases at the same ratel@s,, increases so that the re- N, 1

sultantF(r) is quite insensitive to the value &f,,, for large A(xX)=M NT E_E

enoughk,,.,. This is the reason why stable soliton solutions m(:Ean:'g;”E:)e‘" m—=n

could be found in the above mentioned single-subtraction

Pauli-Villars regularization scheme. The existence of finite X {n| 3l mym|(1+9°¥3) y55,/n), (136)

energy soliton could also be inferred from the derivative ex-

pansion analysis of the nonlinear Lagrangia@4) with van-

ishing current quark masses. Nevertheless, one should keep

in mind that it is not a completely satisfactory scheme in the (X)= i
sense that its predictions for some special quantities like the dx
vacuum quark condensate contain divergences. For obtaining
satisfactory answers also for these special quantities, the % (n| 75| my(m|(1+ y°¥®) y58,4/n).
single-substraction Pauli-Villars scheme is not enough. We m=all,n=all

found that more sophisticated Pauli-Villars scheme with two (Em=En)

substraction meets this requirement, and that its self- (137

1 N,
21 2
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Using the well-established identifyt 3,14 2(a) respectively stand for the bare results for the valence
and vacuum polarization contributions to tHe\u(x)
0= (n|7s(1++°y®) ys8,/n) +Ad(x)]&)’8}, term in Eq.(97), obtained with use of the
n=all

discretized momentum basis of Kahana and Ripka, while the
two curves in Fig. tb) represent the corresponding contribu-
= > (n| 75| my(m|(1+ %2 %) y58,/n) tions to the[Au(x)+Ad(x)]E:1,) term before the numerical
m(:EanL' fE:n?” derivative overx. (We recall that the discontinuous behavior
of the shown distribution functions comes from the use of
the discretized Kahana-Ripka basis. The physical distribution
+m=a%=a” ([l m)(mi(2+5°7) ysSiln), functions, which are conti?mous functionz x);f can be ob-
(Em=En) tained by using either of the smearing method advocated in
(139  [13,14 or the least-square-fitting procedure usefllifi|. The
numerical derivative ovex in [Au(x)+Ad(x)]E:l,) term be-

B(x) can also be expressed as comes practicable only after this procedui/e first notice

d 1N that there is no significant fluctuation in the vacuum polar-
C . . . .
B(x)=— X2l ?m_a%_a” (n|73lm) ization contribution to th@Au(x)JrAd(x)](Cl,) term. Further-
(Em*Ep) more, even the fluctuation of the vacuum polarization contri-

bution to [Au(x)+Ad(x)]{)s, is seen to have much
smaller amplitude as compared with the one observed in Fig.

In the actual numerical calculation B{x), we use this latter 1(0). Itis in fact much smaller than unity, the typical scale of
form given as a derivative of a double sum over the singlethe relevant distribution function, provided by the contribu-
quark orbitals, since the effect of working in a finite model t|on_of the dlsg:retellevel. We therefore expect.that, although
space(i.e., with finite values ok,,, andD) can be reduced the important identity(135 cannot _be .pro'ved with Fhe same
by using this latter expression rather than Et37). The numerical accuracy, the total distribution function them-
numerical derivative here is performed after calculating theS€lves can be evaluated with some reliable accuracy, once
double sum by using the method explainedid]. The solid ~ Ed- (139 is assumed. _
and dash-dotted curves in Figal respectively stand for the ~ Summarizing the above argument, although our numerical
numerical results forA(x) and B(x), while their sum is Proof shown in Fig. 1 is far from complete, the observed
shown by the dotted curv§This sum is shown also in Fig. cancellation of the two terms, which have nontriviale-

1(b) with a different scald.One sees that the two termA¢x) pendences, cannot be accidental. We also recall that the
andB(x) are nearly cancelled. Unfortunately, eachAgk) ~ €duivalence of the occupied and nonoccupied expressions
andB(x) has quite a large absolute value and their sum turnfollows basically from the anticommutation relation of the
out to have a fluctuating behavior around zero with the amduark fields at spacelike separation and this anticommutation
plitude of the order of quark distributions which we want to 'elation is not affected by the regularization with use of the
obtain. The fluctuation is especially violent neas0. Un- ~ Pauli-Villars subtractiorj13,14,2Q. We therefore assume it

doubtedly, the best we can say on the basis of the preseffiroughout the following numerical analysis with the hope
numerical analysis is that the sum Afx) and B(x) is not that more cqmp[ete numerical proof will be provided by near
inconsistenwith zero. However, we find that such a fluctu- fUture investigations. _

ating behavior with large amplitude also appears when we NOW we start to show the results of our numerical calcu-
evaluate the corresponding distribution function using théation for polarized quark d|str|bgt|on functions of the
theoretical formula given as a occupied sumxer0 and a  nucleon. Shown in Fig. 3 are tH@({1") contributions to the
nonoccupied sum fox>0. This is due to a delicate cancel- isovector longitudinally polarization dlstrlbgtlon functions
lation of two large numbers, i.e., the main contribution andAu(x) —Ad(x) (solid curveg and Au(x) —Ad(x) (dashed
the corresponding vacuum subtraction tefobtained with ~ curves, which was first calculated by Diakonat al. [14].
U=1). This should be contrasted to the case of using théiere Fig. 3a) represents the contributions of the discrete
theoretical expression given as an occupied sumxfe0  Vvalence quark level, while Fig.(B) is the vacuum polariza-
and a nonoccupied sum far< 0. (Note that one can always tion contribution to the same quantities. Sum of these two
rewrite the formulas for the distribution functions in either of contributions are shown in Fig(&. As shown by Diakonov
the occupied or nonoccupied form, once the above identity i€t al, the O(Q° vacuum polarization contributions to
assumed.In this case, the vacuum subtraction term identi-Au(x) —Ad(x) and Au(x)—Ad(x) are fairly large.[The
cally vanishes and there is no necessity of handling delicatiarge and positive longitudinal polarization of the isovector
cancellation of large numbers. This is the reason why weombination of the antiquark distributions seems to be a
always want to rewrite the formulas for distribution func- characteristic prediction of the CQSM, which can in prin-
tions in either of the occupied form or the nonoccupied formciple be tested by the improved phenomenological analyses
according to the sign ok by assuming the above identity. of polarized parton distribution functions in the near future.
We illustrate in Fig. 2 the merit of evaluating distribution More detailed discussion on this point will be given after
functions in this way. The solid and dotted curves in Fig.finishing the evaluation of th©(Q?) contribution to the

X(m[(1+ y°y®) y53,/n). (139
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—Ad(x) and Au(x) —Ad(x), which will be shown later to-
gether with the final answer for the isoscalar longitudinal
distribution functionsAu(x)+Ad(x) and Au(x)+Ad(x).
Before showing those, we give in Fig. 5 the result for the
0(Q1) contributions to the isoscalar longitudinally polarized
distribution functions Au(x)+Ad(x) and Au(x)+Ad(x).
[We recall that there is n@(Q°) contribution to these dis-
tribution functions] Figures %a), 5(b) and 5c) respectively
stand for the contributions of the discrete valence quark
level, those of the vacuum polarization contributions, and
their sums. One sees that the vacuum polarization contribu-
tions to the distribution functionsAu(x)+Ad(x) and

AU(X)+AE(X) are much smaller than those of the corre-

(b) sponding isovector distributionsu(x) —Ad(x) and Au(x)
3.0 ' - ' —Ad(x). Now we show in Fig. 6 the final answers for
20 L Afx) + B(x) | Au(x)—Ad(x) andAu(x) —Ad(x), which are the sums of

the O(Q°) andO(Q*) contributions, in comparison with the
final answers foAu(x) +Ad(x) andAu(x)+Ad(x) arising
from theO(Q') terms alone. We observe quite a big differ-
ence between the isovector distributions and the isoscalar
one. The overall magnitude oAu(x)+Ad(x) is much
smaller than that ofAu(x)—Ad(x), which denotes that

1.0
00 H

-1.0

-2.0 i 1 u-quark is positively polarized, while the-quark is nega-
30 . . . tively polarized to the direction of proton spin.
210 05 0.0 0.5 1.0 At this stage, it may be interesting to compare our theo-
x retical predictions for the longitudinally polarized quark dis-

tribution functions with some of the semiphenomenological
equivalence of the occupied and nonoccupied expressions for t arametrization. The parametrlza-tlon glveh by MUReYa’

. AN S . tratmann, and VogelsaGRSV) is especially convenient
polarized quark distribution functions is based. The solid and dashf- r th ; f hand mparisf8d], since the normal
dotted curves ina) respectively stand for the numerical results for or th€ purpose o ~a y comparis » Since the normal-

A(x) andB(x) in Eqg. (135, while their sum is shown by the dotted 'Z‘?lt'on point Qjy;;=0.34 GeV) of their para_metnzatlon IS
curve in(a) and also in(b) with a different scale. fairly close to the energy scale of our effective quark model

(M%V:0.32 GeVf). Figure 7 shows this comparison. The
same distribution function as well as that of the isoscalaffilled squares in Fig. (& and Fig. 7b) stand for the GRSV

FIG. 1. Numerical check of the identit{135 on which the

longitudinally polarized distribution functioris. parametrizations for the quark distribution functions
Next, we show in Fig. 4 th@©(Q') contribution to the x(Au(x)+AE(x)+Ad(x)+Ad(x)) and x(Au(x)+Au(x)
same distribution functionsAu(x)—Ad(x) and Au(x)  —Ad(x)—Ad(x)), respectively. Of the two theoretical

—Ad(x). Figures 4a), 4(b) and 4c) respectively stand for curves in each figure, the solid curve is the answer of the
the O(QY) contributions of the discrete valence quark level, present calculation, whereas the dashed curve is obtained by
those of the Dirac sea quarker the vacuum polarization using the old treatment used ihi7], which amounts to drop-
contributions, and their sums. One sees that @g)') con-  ping some of the nonlocality effects in time. One observes
tributions to the isovector longitudinally polarized distribu- that the nonlocality corrections newly introduced in the
tion function are far from negligible as compared with thepresent analysis are quite important especially for the isos-
IeadingO(QO) contributions. This could be expected since calar distributiorx(Au(x) + Au(x) + Ad(x) + Ad(x)), while

the first moment of this distribution functions gives the is-it is less important for the isovector distributiof{Au(x)

ovector axial coupling constant of the nucleon +AU(X)—Ad(X)—AE(X)). [This is probably because the
) nonlocality corrections appearing at t§Q?) are masked
P . 0 . . . .
(3)_ A _A FTATO0 — A by the dominanO (") contribution in the case of isovector
9a Jo {[Au(x)—Ad(x)]+[Au(x)—Ad(x)]}dX, polarized distribution functionsBy comparing the two the-

(140 oretical curves fox(Au(x) +AU(x) +Ad(x) + Ad(x)) with
the corresponding GRSV parametrization, one finds that the
while we already know from the previous analyses that thenew treatment leads to a better agreement. Especially im-
O(QY) contribution togf) is large enough to resolve the pressive is that the new treatment reproduces the negative
longstandingg, problem in the hedgehog soliton model sign of the GRSV distribution function in the smallberre-
[29,30,24. Adding thisO(Q1) contribution to the leading gion, although one should not forget the fact that the GRSV
0(Q% contribution, we obtain final answers faku(x) parametrizations are not experimental data themselves. We
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FIG. 2. The solid and dotted curves (@ respectively stand for the bare results for the valence and vacuum polarization contributions
to the[Au(x)+Ad(x)]§,%\?B}, term in Eq.(97), obtained with use of the discretized momentum basis of Kahana and Ripka, while the two
curves in(b) represent the corresponding contributions to[tha(x) +Ad(x)](cl,) term before the numerical derivative overThe vacuum
polarization contributions have been evaluated by using the occupied expressiondaand the nonoccupied one fex 0.

point out that the most important factor leading to this quali-The isospin symmetric polarization is also assumed in the
tative difference between the old and new treatments of thanalysis by Gluok, Reya, Stratmann and Vo#1]. We com-
quark distribution functions is the nonlocality correction aris-pare in Fig. 8 our prediction for theAU(x) and XAE(X)

infg fro:n thl‘? second ter]:'nhof EG8), ;:T'&g;eop,g\(zpe)r account with the GRSV parametrization, which assumes that
of nonlocality in time of the operat aZo). XAU(X) =xAd(x)[=xAq(x)]. Naturally, one finds qualita-
dic;g:]r;mf%rbacek ta%tlizl%afli lSits?r?bISt?gr?sCti;hiwg]riotrjeetgﬁl IC"A\rr?'tive difference between the theoretical distributions and the
) . q . . . GRSV parametrization. Still, it is interesting to see that the
interesting feature is that, in most region &f AU(X)  juerage of the two theoretical distributionsATi(x) and
—A_d(x)>0_ and AU(X)+AE(X)<0 _W'th the reIa_tpn XAE(X) is not extremely different from the corresponding
|AU(X) ~Ad(x)[>[Au(x) +Ad(x)|. This denotes thatl is GRSV parametrizatiowAG(x). As for the unpolarized dis-
strongly polarized in the opposite direction to the protontibytion functions, the breakdown of the assumption of
spin, whileu is weakly polarized in the same direction to the gy2) symmetric sea has already been confirmed by the New
proton spin. This appears to be a prominent prediction of thuon CollaboratiofNMC) measuremeritl6]. By the same
CQSM, which is worthy of special mention. In fact, it token, there is no compelling reason to believe that the spin
sharply contradicts the assumption of @Usymmetric sea  gependent antiquarksea quark distributions are isospin
quark polarizatiomu(x)=Ad(x), which is frequently used symmetric. In fact, our previous analyses based on the same
in semiphenomenological analyses of parton distributionsmodel shows that the isospin asymmetry of the unpolarized

@ (b) (©)
2.0 2.0 2.0
descrete valence level Dirac sea total

FIG. 3. TheO(Q% contributions to the is-
ovector longitudinally polarized distribution
functions Au(x)—Ad(x) (solid curve$ and
Au(x) —Ad(x) (dashed curves Here the three
figures(a), (b), and(c) correspond to the contri-
butions of the discrete valence level, those of the
Dirac sea quarks, and their sums, respectively.
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(@ )
0.8 0.8
discrete valence level Dirac sea
0.6 [(du-aan™ 0.6 o )
FIG. 4. TheO(QY) contributions to the is-
ovector longitudinally polarized distribution
04 04 functions Au(x)—Ad(x) (solid curve$ and
Au(x) —Ad(x) (dashed curvgsThe meaning of
0.2 02} [du-ad® the three figuresa), (b), and(c) is the same as in
wi-ad® //\[AM] Fig. 2.
0.0 |- __,,\-* """"" 0.0 p=Z sofl.
0.0 05 1.0 0.0 05 1.0 0.0 05 1.0
X X X

sea quark distributions can be explained very naturally asalueg(AO):O.35 obtained in the present calculation is a little

combined effects of two ingredients, i.e., the apparently exsmaller than the previous one. The cause of this difference
isting flavor asymmetry of valence quark numbers in thecan be traced back to the qualitative change of the self-
nucleon and the spontaneous chiral symmetry breaking afonsistent soliton solution obtained in the new regularization
QCD vacuum(17-19. It is just the same mechanism that is scheme. As a general trend, the Pauli-Villars regularization
responsible for the opposite longitudinal polarization ofdhe gcheme cuts off high momentum components more weakly

andd quarks. than the energy-cutoff scheme like the proper-time one,
~ The above-mentioned fairly big difference between thethereby leading to soliton solutions with stronger distortion.
isovector and isoscalar longitudinally polarized distribution|ncidentally, owing to the nucleon spin sum rulé )
functions manifests itself also in their first moments, i.e., the, 1¢s y=1 proved in[5], the rest of the nucleon spin is
isovector and isoscalar axial charges given as carried by the orbital angular momentum of the effective
1 quark fields.(Naturally, this is true only at lowQ? corre-
g(AS):f {[Au(x)—Ad(x)]+[AT(X) — Ad(x) ] }dx=1.41, sponding to the energy scale of our effective model. It will
0 be shown later that an increasing portion of the nucleon spin
(14D s carried by gluons a®? increases.A soliton with stronger
) distortion gives larger orbital angular momentum, and con-
0 — — sequently smaller quark spin fracti¢f].
oR’= fo {[Au() +Ad()]+[Au(x) +Ad(x)]}dx=0.35. gl’he czaracterisgc featul?e of the@agaove theoretical predic-
(142 tion, i.e., larger isovector charge and smaller isoscalar one
seems also consistent with the ideaNyf counting or 1N,
The resultant large isovector axial charge and small isoscalaxpansion of QCD. For understanding it, we just recall the
(flaver-singlel one seem to be qualitatively consistent with fact that the collective angular velocify scales as N, so
the observation. Especially interesting here is the flavorthat the leading contributions to the isovector and isoscalar
singlet axial charge identified with the quark spin content ofpolarized distribution functions are respectively of the
the nucleon. In the context of the CQSM, this quantity wasO(N?) andO(N?). The detailed comparison of the theoret-
first investigated in5] with use of the self-consistent soliton ical first moments with the corresponding experimental data
solution obtained in the proper-time regularization schemewill be given later after taking account of the scale depen-
The value ofg{®’=(3.;) obtained there ranges from 0.4 to dence of them.
0.5 corresponding to the variation of the dynamical quark Now we show the results of our numerical calculation for
massM from 425 MeV to 375 MeV. One may notice that the transversity distributions. Figure 9 shows 0©¢Q°) contri-

(a) b) ()
descrete valence level Dirac sea total
1.0 [Au+Ad]‘“ 1.0 1.0 [Au+Ad]‘1)
FIG. 5. TheO(Q') contributions to the iso-
scalar longitudinally polarized distribution func-
05 05 05 tions Au(x)+Ad(x) (solid curve$ and AU(x)
{awsAd]™ +Ad(x) (dashed curvgs The meaning of the
o0 o o0 three figurega), (b), and(c) is the same as in Fig.
: ——== 0 : / —== 2
< r s
[A+Ad)" [aisad” S0 Iiad)®
-05 -05 -05
0.0 05 1.0 0.0 05 1.0 0.0 05 1.0
X X X
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3.0 quantitative support by our explicit calculation of the Dirac
sea contribution. Note, however, that their calculation for
Su(x) — 8d(x) cannot be taken as a final one, which can be
compared with some phenomenological distribution. This is
because it has not yet included potentially impori@gf)?)
contributions discussed below. Now, we show in Fig. 10 our
result for theO(QY) contributions to the same transversity
distribution functions su(x) — &d(x) and Ssu(x)— d(x).
Also for theseO(Q ) terms, the vacuum polarization contri-
butions turn out to be very small as compared with the con-
tributions of the discrete valence quark level. However, one
should note that the valence level contribution at @{g)?)
0.0 0.2 0.4 0.6 0.8 1.0 is far from small as compared with the leadi®g(°) con-
tributions, and should not be discarded. Next we show in Fig.
FIG. 6. The final predictions of the CQSM for the longitudinally 11 the theoretical isoscalar transversity distributions result-
polarized distribution functionsAu(x)—Ad(x) and Au(x) ing at theO(Q?1). One sees that vacuum polarization contri-
—Ad(x) given as the sums of t@(Q2°) andO(Q1) contributions, ~ bution is quite small again. The final predictions of the

in comparison with those for the isoscalar Iongituﬂnally polarizedCQSM for su(x) — 8d(x) and u(x)— 5E(x), which are the
distribution functionsAu(x) +Ad(x) and Au(x)+Ad(x) coming  sums of theO(Q°) andO(Q?) contributions, are shown in
from theO(Q") terms. Fig. 12, in comparison with the final answers féu(x)
+68d(x) and su(x)+ &d(x) arising from theO(Q?) terms.
butions to the isovector transverSity diStr@Ution fUnCtionSOne again sees that the magnitudes of the isoscalar distribu-
Su(x)—8d(x) (solid curve$ and Su(x)— od(x) (dashed tions are much smaller than those of the isovector distribu-
curves. Here Fig. 9a) stand for the contributions of the tions in consistency with thé&l, counting rule. Remember
discrete valence level, while Fig(l9 represent the vacuum the similar observation made before for the longitudinally
polarization contributions to the same quantities. The sumpolarized distribution functions. To see it in more detail, we
of these two contributions are shown in FigcP One finds  find that the ratio of the isoscalar to isovector distribution is
that the vacuum polarization contributions to these distribumuch smaller for the longitudinally polarized distribution
tion functions are fairly small. Incidentally, within the con- than for the transversity one. We shall come back later to this
text of the CQSM, the isovector transversity distribution point when discussing the corresponding first moments of
function was investigated by Pobylitsa and Polyakov for thethese spin dependent quark distribution functions.
first time[32]. Our answer shown in Fig.(8) is qualitatively The transversity distribution functions have also been in-
consistent with their result which takes account of the convestigated by Gambergt al. [12] based on the Nambu—
tribution of the discrete valence level only. They also gaveJona—Lasinio soliton model with aad hocnonlinear con-
some argument in favor of the suppression of the Dirac constraint, which is essentially equivalent to the CQSM. In view
tinuum contribution todu(x)— 8d(x) by using the knowl- of the above observation that the Dirac sea contributions play
edge of the derivative expansion together with the first mono significant role at least for the transversity distributions, it
ment sum rule. Now it appears that their conjecture gaingppears that their calculation carried out under the “valence

(a) (b)
0.4 0.8
x(Au+A u+Ad+Ad) X(Au+A u-Ad-Ad)

FIG. 7. The theoretical predictions for the

03 0.6 theory without longitudinally polarized distribution functions,
nonlocally corr. X(Au(X)+AT(X) +Ad(x) +Ad(x)) and
02 X(Au(x)+Au(x) —Ad(x)—Ad(x)), are com-

pared with the corresponding  semi-
phenomenological parametrization given by
Gluck, Reya, Stratmann and Vogelsagf]. Of

the two theoretical curves in each figure, the solid
curve is the answer of the present calculation,
whereas the dashed curve is obtained by using the

0.4

0.4 theory without
’ nonlocality corr.

0.2
0.0 w old treatment used if17], which amounts to
T“""“ dropping some of the nonlocality effects in time.
theory
GRSV

-041 0.0
0.1 1 0.1 1
X X
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when one adopts a particular ordering of the operators in the
collective space and that in the case of the isovector axial
charge,gt®), the introduction of the corresponding term
leads to a significant violation of PCA@artial conservation
of axial vector currentrelation. That this claim is not justi-
fied was already discussed [i84] to the full extent, so that
we do not repeat it here. We just want to mention that the
introduction of thisO(Q?) correction also seems to be re-
quired by phenomenology. In fact, as admitted by them-
selves, dropping of this contribution leads to sizable under-
estimation of the isovector axial charg&”. This in turn
indicates that it would also lead to a considerable underesti-
mation of the isovector tensor charge. To sum up, by com-
paring the numerical results of our analysis and theirs, they
naturally share many qualitative features in common. To see
it in more detail, however, there appear to be some quantita-
tive differences especially for the transversity distribution for
d-quark. The above-mentioned differences of the two theo-
retical analyses, i.e., th@(Q') contribution to the isovector
transversity distribution and the nonlocality correction in
time to the isoscalar one are likely to be the main cause of
these quantitative discrepancies.

Roughly speaking, the quark distribution functions evalu-

FIG. 8. The predictions of the CQSM for the polarized antiquarkated here corresponds to the energy scale of the order of the
distributions xAT{x) and xAd(x) are compared with the corre- Pauli-Villars cutoff mas$/ p,=0.56 GeV. TheQ? evolution
sponding GRSV parametrization, which assume$25dymmetric
sea quark polarizatioxAT(x) =xAd(x)[ =xAG(X)].

must be taken into account in some way before comparing
them with the observed nucleon structure functions at high
Q2. Recently, Saga group provided a Fortran program,

quark approximation” might be justified and that their re- Which gives numerical solution of Dokshitzer-Gribov-
sults should essentially coincide with ours. However, severafltarelli-Parisi(DGLAP) evolution equations at the next-to-
important differences between their analysis and ours shoult§ading ordeXNLO) for the polarized as well as unpolarized
not be overlooked. The first concerns the nonlocality correcstructure functions of the nucled@3-35. We shall make
tion in time, which was propeﬂy taken into account in our use of their Fortran programs to evaluate the polarized dis-
present analysis but was totally neglected in their treatmentribution functions at larg®? [34,35. The question here is
Note that the most important piece of it is included in Eq.What value we should take for the initial energy scale of this
(118 for éSu(x)+aod(x) and in Eqg. (123 for éSu(x)
— 8d(x). As was already shown in the case of the isoscalaf5€V is anyhow questionable, one may take this initial en-
longitudinally polarized distributionAu(x)+Ad(x), this
nonlocality correction in time plays quite an important role fixed by adjusting the observed structure functions at high
even under the “valence quark approximation.” Secondly,€nergy region. Here we have tried to see the effect of varia-
in the calculation of the isovector transversity distributiontion of Q% in a small range 0Q? around the model energy
function, they have included only th@(Q°) contribution
and dropped theD(Q?!) term intentionally. The reason is =0.25Ge\f obtained from this analysis will be used
based on their claim that th®(Q?) contribution arises only

2.0

@

2.0

(b)

(©

Q? evolution. Since the use of perturbative QCD below 1

ergy scaleQ?,, as an adjustable parameter, which would be

scale of M3,~(0.56 GeV}. The valueQ?,=(0.5GeVy

throughout the following investigation. Before showing the
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FIG. 9. TheO(Q° contributions to the is-
ovector transversity distribution functiori(x)
—&d(x) (solid curvey and Su(x)— &d(x)
(dashed curves Here the three figure&), (b),
and(c) correspond to the contributions of the dis-
crete valence level, those of the Dirac sea quarks,
and their sums, respectively.
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1.0 1.0 1.0
discrete valence level Dirac sea total

0.8

0.6 FIG. 10. TheO(Q?Y) contributions to the is-
ovector transversity distribution functiorii(x)
—od(x) (solid curveg and Su(x)— od(x)
(dashed curvgsThe meaning of the three figures
(®, (b), and(c) is the same as in Fig. 2.

0.4

0.2

[Su—ﬁd]m
0.0 ,/‘4 0.0 & S
-‘\8,;_6;](1)
0.2 0.2 -0.2
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
x x x

results ofQ? evolution, we want to make a short comment. tions are rather small in magnitude, we are to use a simple
One notices from the figures given so far, the distributioncutoff procedure as follows. That is, we obtain modified dis-
functions evaluated in our effective model have unphysicatribution functions, which can be used as input distributions
tails beyondx> 1, although they are not so significant. Theseof the above Fortran program, from the original theoretical
unphysical tails of the theoretical distribution functions comedistribution functions by multiplying the&-dependent cutoff
from an approximate nature of our treatment of the solitorfactor (1—x%. (This special cutoff factor is invented from
center-of-motion(as well as the collective rotational mo- the requirement that only the tails of the distribution func-
tion), which is essentially nonrelativistic. A simple proceduretions are modified. Figure 13 illustrates the effect of this
to remedy this defect was proposed by Jaffe based on thentative cutoff procedure. The solid curve here is the theo-
(1+1) dimensional bag moddI36] and recently reinvesti- retical distribution functionAu(x)—Ad(x) given as a sum
gated by Gambergt al. within the context of the NJL soli- of the O(Q°) and O(Q?!) contributions. We point out that
ton model[37]. According to the latter authof87], the ef-  this distribution function is the worst case in the sense that
fect of Lorentz contraction can effectively be taken into the tail beyond=1 is most significant as compared with the
account by first evaluating the distribution functions in theother distributions. The dashed curve in the same figure is
soliton rest framéas we are doing herand then by using a obtained by using the above cutoff procedure. One sees that
simple analytical transformation that preserves first momentg leaves the distribution function fox<0.7 almost intact.

of distribution functions, as far as th@(Q°) contributions  Naturally, this cutoff procedure alters the values of integrals
to the distribution functions are concerned. Such a simplef the distribution functions, i.e., the first moments. How-
relation may not be expected however if we consider thesver, it turns out that the reduction is less than 2% even in
rotational motion of the soliton, which are anyhow three di-the above worst case. We therefore expect that the tentative
mensional. In fact, a comparison with the corresponding phenature of the above procedure hardly affects the following
nomenological distribution functions seems to indicate thagualitative analyses of scale dependence of the quark distri-
the above procedure based on the 1) dimensional dynam- bution functions.

ics tends to overestimate the effect of Lorentz contraction. In  For the sake of comparison, we have carried out a similar
the present investigation, we therefore decided not to usevolution procedure also for the initial distributions given by
their procedure. Still we want distribution functions which the MIT bag model. The distribution functions of theaive
vanish outside the range<x<1 so that we can use the MIT bag model are already known and they are given ana-
Q2-evolution Fortran program provided by Saga grouplytically as follows[22]. The isoscalar longitudinally polar-
[34,35. Since the unphysical tails of our theoretical distribu-ized distribution functions are given by

(@) (b) ©

discrete valence level Dirac sea total
1.5 1.5

[6,“_&”(1;
FIG. 11. TheO(QY) contributions to the iso-
scalar transversity distribution functionsu(x)

+48d(x) (solid curves and Su(x)+ sd(x)

1.0 1.0

05 05 (dashed curvgsThe meaning of the three figures
(@, (b), and(c) is the same as in Fig. 2.
[5u+5¢1]m
0.0 o= 0.0
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3.0 3.0

before cutoff

——————— after cutoff

FIG. 12. The final predictions of the CQSM for the transversity =~ FIG. 13. The solid curve represents the theoretical distribution
distribution functionssu(x)— &d(x) and Su(x) — 55()() given as functionsAu(x) —Ad(x), whereas the dashed curve is a modified
the sums of thed(Q2°) and O(Q1) contributions, in comparison ©ne obtained from it by multiplying x-dependent cutoff factor
with those for the isoscalar transversity distribution functions(1—x9).

Su(x)+ 8d(x) and su(x) + 5E(x) coming from theO(Q1) terms.

5
Su(x)— &d(x)= =[ du(x)+ od(x)]. 146
s st (R0 ()= 8d(x)=z[Su()+8d(x)]. (146
u(x X)= .
2m(w1=1)jg(w1) In Egs.(137) and(138), M\, andR respectively stand for the
" nucleon mass and the bag radius, whilgis the nth root of
x: f dyy{té(wl,y) the bag eigenvalue equation as
Ymin
t “n (147)
i anw,=— ——,
+2t0(w1'Y)t1(w1yy)(yr;m) “n wp—1
2 andy,in=XMyR— w;. The functiont|(w,,y) is defined by
2 Ymin
+t1(wl,y)(2< y ) _1)”, 1
t|(wn.y)=Joh(uwn)h(uy)uzdu. (148

(143

. . o . . The bag radiuRR is only one free parameter of this simple
whereas the isoscalar transversity distribution functions IShodel. In the numerical calculation. we adopt the value used
given as by Jaffe and Jj22], i.e.,

(MNR)wq MyR=4.0w,, (149

ou(x)+6d(x)= 2m(w1—1)j§(w1)

wherew,=2.043 is the lowestdimensionlesseigenvalue of

3 the bag equation.
X{ f dW[tS(wlyy) To get a rough idea about the scale dependence, we show
[Yimin in Fig. 14 and Fig. 15 the theoretical polarized quark distri-
Yimin bution functions before and aft€? evolution. HereAu(x)
+2to(w1,y)t1(w1,Y)( y ) and su(x) in Fig. 14a) respectively stand for the longitudi-

nal and transversity distributions forquark. In our model,
Ymin! 2 the difference between the two distributions are sizable even
y ) H (144 at the initial low energy scale. A comparison with the exist-
ing and yet-to-be-obtained high energy data must be done

with care, since the way of evolution of these two distribu-
&ions are pretty different and the deference between the two
becomes larger and larger @3 increases. A general trend is
5 a rapid growth of smalk component of the longitudinally

_ _ 2 polarized distribution due to the coupling with gluons. A
Au) Ad(x)—3[Au(x)+Ad(x)], (149 similar tendency is also observed for the corresponding

+ti(w1,y>(

On the other hand, the isovector distribution functions ar
simply related to the isoscalar ones as
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3 N /7 twist-2 spin dependent quark distribution func-
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d-quark distributions shown in Fig. 14). We can also give initial distribution given by the CQSM and also by the MIT
some predictions for the polarized antiquark distributionbag model. The solid and dashed curves in Figall@spec-
functions. As one can see in Fig. 15, even the signs argéively stand for the prediction of the CQSM and that of the
different for the longitudinal and transversity distributions. MIT bag model. A remarkable feature of the CQSM as com-
(This is the case for both afandd quarks) The twist-2 spin ~ pared with the MIT bag model is the enhancement of the
dependent distribution functions were calculated by severadtructure function at smalk region, i.e., large sea quark
authors based on various effective models of baryongomponents. One also observes that a clear peak of
[12,32,38—-40 As for the polarized quark distribution func- gh(x,Q?) aroundx=0.3 predicted by the MIT bag modé&
tions, the predictions of various models give more or lesgelativistic valence quark modeis not seen in the experi-
similar shape of distributions assuming that they take acmental structure function. On the other hand, one can say
count of the dominant nature of the valence quark contribuna; the prediction of the CQSM reproduces qualitative fea-
tion as well as the effects of pion cloud in some effectivey o of the ohserved structure function in the whole range of
way. The situation is quite different for the polarizadti- x. Figure 16b) shows the theoretical prediction of the

quark distributions. The transversity distribution functions CQSM (solid curve and that of the MIT bag modétiashed
for the antiquarks have, for instance, been evaluated by Ba{:'urve for the neutron spin structure functiagf(x,Q?) in
one et al. within the chiral chromodielectric moddI39]. P ’

) , o _ — i comparison with the E154 daf42]. One clearly sees that
Comparing their predictions fofu(x) and 6d(x) with ours

— _ _ NP, the neutron spin structure functigf(x,Q?) predicted by the
shown in Fig. 15, we find that their model givés(x)>0, w1 hag model is negligibly small in magnitude even after

while ours doessu(x) <0. The shapes ofu(x) and 5d(x)  evolution. We recall that at the initial energy scale the naive
are also quite different in both models. In consideration of\|T bag model predicg’(x) =0, which is a necessary con-
the fact that the polarized antiquark distributions are quitesequence of a model that does not properly incorporate chiral
sensitive to the detailed dynamics of the model, it is verysymmetry. On the other hand, the prediction of the CQSM
important to get precise phenomenological information forg, 97(x,Q?) is seen to be large and negative especially in
them. - , . the smallx region in good agreement with the experimental
Next we show in Fig. 1@) the thegretlcalzpredlctlons observation. Then, this agreement may be regarded as a
for the proton structure functiogf(x,Q?) at Q*=5GeV*  manifestation of the importance of chiral symmetry in the
in comparison with the corresponding experimental datghysics of high-energy deep-inelastic scattering.
given by E143 Collaboratiopd1]. The theoretical curves are ~ as is widely known, the simplest but the most important
obtained as follows. Starting with the initial distributions qyantities characterizing the quark distribution functions are
Au(x)+Ad(x), Au(x)+Ad(x) and Au(x)—Ad(x), the associated first moments. Here we are interested in the
AU(X)—AE(X) or equivalently Au(x),Au(x) and first moments of the longitudinally polarized distribution
Ad(x),Ad(x) given at Qiznit20.25 GeV [we assume functions and of the transversity ones, which are respectively

As(X)=AS{x)=0 andAg(x)=0 at this energy scalewe called the axial and tensor charges defined as

solve the NLO evolution equation to obtain the distribution

functions atQ?=5 Ge\2. These distribution functions are )

then convoluted with the relevant quark and gluon coeffi- ggs):J {[Au(x)—Ad(x)]+[AU(x)—AE(x)]}dx,
cient functions at the NLO within the framework of pertur- 0

bative QCD. These procedures have been carried out for the (150
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© 1 o _ Consequently, the sea quarks do not contribute to the tensor
Oa :fo {[Au(x)+Ad(x)]+[Au(x)+Ad(x)]}dx, charge.(This does not necessarily means vanishing trans-
(151) verse polarization of antiquarks, howeyeOn the other
hand, the axial charge counts the number of quatis an-
1 . tiquarks of opposite helicity. In fact, by rewriting Eq4.52)
o= fo {[su(x)— 8d(x)]—[ su(x) — 5d(x) 1}dx, and (153 as

(152 1 T,
gi)= foﬁAu(x)—Ad(x)]—[AU(x)—Ad<X>]}dX

o= f [ su(x)+ 5d(x)]— [ ST(x) + 5000 Ty dx. )
0 S JE—
(153 +2f0 [Au(x)—Ad(x)]dx, (154

Before discussing the prediction of the CQSM for these L

guantities, it may be instructive to remember some basic (o)zf —TAT( T

properties of thosgWe recall that the first calculation of the 9a 0 (AU +Ad0O ] [AuG) +AdGo Jrdx

tensor charge in the CQSM was given[#8].) As empha-

sized by Jaffe and Ji22], there is a remarkable difference +2f1[AU(X)+AE(X)]dX, (155
between the axial and tensor charges originating from the 0

charge conjugation properties of the relevant operators. For

each flavor, the tensor charge counts the number of valendee first and the second terms of the above equation can
quarks (quarks minus antiquark$ of opposite transversity. respectively be interpreted as valence and sea quark contri-

CQsM Q’=5GeV’

¢ Ei43 00
r FIG. 16. The theoretical predictions for the
proton and neutron spin structure functions
gP(x,Q? andgf(x,Q? atQ?=4 Ge\? in com-
parison with the corresponding SLAC data. The

T [ (n) 2
T g, (xQ) solid and dashed curves {a) respectively stand

for the prediction of the CQSM and that of the

05| ¢ /%
naive MIT bag model fog§(x,Q?), whereas the
black circles are the E143 daf41]. The corre-
L cQsM . ) e 2
¥ MIT_Bag sponding theoretical predictions for t8(x,Q?)
E E154 are shown in(b) together with the E154 daf42].
0'=5GeV
00 0.1 1
(a) (b) x
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TABLE I. The theoretical predictions for the isovector and isoscalar axial charges as well as the corre-
sponding tensor charges. The predictions of the MIT bag model and those of the lattic4@|Gide also
shown together with some experimental dat8,46|.

CQsSM MIT-bag Lattice QCO44] Experiment
N 1.41 1.06 0.99 1.2540.006[45]
(Q?-indep)

g® 0.35 0.64 0.18 0.3t0.07[46]
(Q%=10GeV)

g 1.22 1.34 1.07 -

g{® 0.56 0.80 0.56 -

g9 0.25 0.60 0.18 0.24

g{9rg®® 0.46 0.60 0.52 -

butions in the parton model. Since the sea quark degrees dbwever notice that there is one interesting feature shared by
freedom is absent in the nonrelativistic framework, the dif-both the nonrelativistic quark model and the MIT bag model.
ference between the axial and tensor charges is purely reld@he predictions of the both models for the ratio of the isos-
tivistic. Still, one must clearly distinguish two types of rela- calar to isovector axial charges as well as the ratio of the
tivistic effect. The one is dynamical effects, which generateisoscalar to isovector tensor charges are just the same:
sea quark polarization. The other is kinematical effects,

which make a difference between the axial and tensor g9 =gP1gP=3/5. (162
charges even though the sea quark degrees of freedom are

totally neglected. The existence of this latter effect canAlthough there is no experimental information yet for the
read"y be convinced by Comparing the prediction of twotensor ChargeS, the abOVe pl’edICtlon fOI’ the ratio Of the two
“valence quark models,” i.e., the nonrelativisticonstitu- ~ @xial charges obviously contradicts the EMC observation.
end quark model and the MIT bag model. In fact, the non- Now we shall argue that the above prediction may be

relativistic quark model predicts interpreted as showing the limitation of simple valence quark
models, which fail to properly incorporate chiral symmetry
3)_ (3)_5 of QCD. To convince it, we compare in Table | the predic-
9a =07 =3 (156 tions of the NRQM and the MIT bag model with those of the
CQSM, which maximally incorporate chiral symmetry. For
gV=g®=1, (157  the sake of reference, the predictions of the lattice QCD are
also shown[44]. (Here we have omitted the errors of the
while the prediction of the MIT bag model is given by lattice QCD calculation, for simplicity.We first point out
. that the predictions of the CQSM for the above ratios, i.e.,
3) _
95)‘5[ (fz_ §gz)r2dr' 0gP=0.25, g©/gP~0.46, (163
(158

5 1 strongly deviate from the above predictions of the two va-
Q(T3)=§'f (f2+ §92>r2df, lence quark models. What is remarkable here is that the
CQSM predicts very small isoscalar axial charge in consis-
1 tent with the EMC observatiorfMore meaningful compari-
g9=1. f (fz— §gz) radr, son should be made after taking account of the scale depen-

dence of this quantity.lts prediction for the isovector axial
1 (159 charge is also qualitatively consistent with the experimental
Q(TO):l'f 24 —gz>r2dr, value determined from the neutron beta dedd@ye devia-

3 tion from the experimental value is only about 11%he
wheref anda are upper and lower components of the Iowestlattice gauge theory also predicts a very small isoscalar axial
energy qua?k wavgpfunctions For a rfypic:al bag radris charge gS*O)z.O'm' Hovyever., this prediction may not be.
— 4 Oms /M~ . which was used.before this aives taken as a final one since it largely underestimates t_he is-

LN ’ 9 ovector axial charge. At any rate, one can observe qualitative

g}f‘):l.OG, 9%3):1.34' (160) similaritieg between the predigtions qf the CQSM and those
of the lattice QCD. Both predicts quite a small number for
0i9~0.64, g{9=0.80. (161  the ratio of the isoscalar to isovector axial charges as com-

pared with the predictioggo)/ggs)=0.6 of the NRQM or the
As is obvious from Egs(158 and(159), the splittings of the MIT bag model. On the other hand, the predictions of both
axial and tensor charges are due to the different sign of thenodels for the ratio of the isoscalar to isovector charges is
lower componentp-wave contributions[22]. One should not extremely different from the predictiat®/g{®=0.6 of
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the latter valence quark models. In our opinion, the observedne can take a scheme called the chiral invariant factoriza-
deviation from the valence quark picture indicates an importion scheme in which the flavor singlet axial charge is inde-
tance of chiral symmetry as a generator of “dynamical segpendent ofQ? [49]. Here, we take more standard gauge in-
quark effect,” and the predicted feature is expected to bevariant factorization schem0].) In the singlet sector, the
confirmed by future measurements of tensor charges. nth moments of the longitudinally polarized distribution

To compare the theoretical first moments of the spin disfunctions are coupled with the corresponding gluon contri-
tribution functions with the existing data for the longitudinal butions. The evolution of these nth moments is governed by
case and with yet-to-be-observed ones for the transversithe anomalous dimension matrix
case, we must take account of the scale dependence of the o (o)
relevant moments. As is well known, the first moment of the (PN Yaa  Yag
isovector longitudinal distribution functions, i.e., the isovec- Y yPn o (oin J
tor axial charge is scale independent, i.e., it does not evolve: 94 99
93(Q?)=g3(Q2,,). This is due to the conservation of the where 3@ and y) are 1- and 2-loop contributions to the
flavor nonsinglet axial-vector curref#2]. This is not gener- anomalous dimensions. An analytic solution to this coupled
ally the case for the flavor singléisoscalay axial charge evolution equation of the NLO is given in the matrix form
owing to the so-called axial anomaly of QGB7,48. (Still, [51,52:

(164)

; N(Q?)
(Qz):(AGn(QZ))’ (165
n _ aS(QZ) A2 12ko n 1 aS(let) as(Qz) s
F(QZ)_’(“s(Qiznit)) [P_ 230 4w P-
as( Q%) as(Q?) [ ay(@?) <A”+“l>/2ﬁo) P" P .
_( 4w aw (aS(Q?mo) 2Bornt | )T Qinw)- (166

Here a4(Q?) is the QCD running coupling constant at the next-to-leading ordeerﬁnschemeﬁo and 8, are the 1- and
2-loop QCD beta functions, respectively, and

Y= (N % MO (167
P are 2<2 projection matrices defined by
Pl==(yO"- A1)/ -AD), (168
with 1 being a 2<2 unit matrix and with
[7(0)” YO [y O 2 O O (169

the eigenvalues of the 1-loop anomalous dimension maffiX'. Since the necessary anomalous dimension matrices are all
given in [52], it is easy to calculate th®? evolution of the first moment of the flavor singlet longitudinally polarized
distribution functions, i.e., the isosinglet axial charge.

Because of its chiral-odd nature, the moments of the transversity distributions do not couple with gluons, irrespective of the
flavor quantum numbers, which especially means that isovector and isoscalar tensor charges follow the same evolution
equation. The anomalous dimension of the transversity distribution at the leading 1-loop order was first given by Artru and
Mekhfi [53], while the corresponding 2-loop contributions have recently been given by three groups indepdiderih.

Once the relevant anomalous dimensions are known, it is easy to obtain an analytical solution of the NLO evolution equation
for the nth moment of transversity distribution. Here, we use the form given by Hayaskigak{55] as

a(Q) W2 (" B1= 9" Bo)

saM(02 2y \ ¥ 2, Bot b
q;”(Q%) ( a(s(Q ) )yh 0 (170

(n)(let) ag Qiznit) as(Qinit) ,
Bot BlT
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FIG. 17.‘ The sca_le dependence of the a_mal and tensor charges. FIG. 18. The scale dependence of the flavor singlet axial charge
The evolution equations at the next-to-leading order are solved un-

o " (or the quark polarizationand the gluon polarization. The initial
der the initial conditions g{(Q%,)=1.41, g (Q%:) y . . TR
conditions for the evolution equation are the same as given in Fig.
=A3(QR0)=0.35, gf(Q%)=122, ¢{(Q%)=056, and q g g

AG(QZ,)=0 atQ?,=0.25 GeV. 1
where the relevant anomalous dimensioff8" andy{"" are
all given in[55]. Figure 17 show the calculate@? depen-
dence of the axial and tensor charges. For obtaining it, w
start with the theoretical first moments given at the initial

A3 =g One sees that the gluon polarization rapidly
grows with increasing?. Already atQ?=2 Ge\?, AG is
Seen to be larger thahX. As explained in50], the growth

of the gluon polarization wittQ? can be traced back to the

energy SC&'*Qizmt: 0.25GeV: positive sgigl]n of the anomg!oius dime_nsi@g%)llat the leading
order (y{))*=2). The positivity of this quantity means that a
g(Q2,)=1.41, (171  polarized quark is preferred to radiate a gluon with helicity
parallel to the quark polarization. Since the net quark spin
0(Q?,)=A3(Q2,,)=0.35, component in the proton is positive, it follows th®& >0 at

(172 least for the gluons perturbatively emitted from quars8].
It is hoped that the direct information ag(x,Q?) from the

AG(Qizmt)zo, 173 di-jet asymmetry analyses at HERA in conjunction with the
precise NLO analyses af; (x,Q?) will soon provide us with
Q%) =1.22, (174  an accurate determination of the polarized gluon distribution

as well as its first momen67].
9f(Q}hi)=0.56. (179

One sees that th®? dependence of the flavor singlet axial
charge is very smaliit is almost constant except in the very  In summary, we have shown that the CQSM naturally
low Q? region. A characteristic prediction of the CQSM for explains qualitative behavior of the experimentally measured
the axial charges, i.e., large isovector charge and small iso$angitudinally polarized structure functions of the proton and
calar charge appears to be qualitatively consistent with théne neutron. As was shown in our previous papers, the model
corresponding experimental data at the relevant energy scalgigq reproduces an excess afsea over thel sea in the
As was pointed out by many authof89,53-56, the Q>  proton very naturally17—19. (More complete theoretical
dependence of the tensor charges are sizably large. Althougheatment of the Gottfried sum has recently been given in
there is no experimental information for these latter quanti{20].) Furthermore, it predicts qualitative difference between
ties, thisQ? dependence must be taken seriously when comihe transversity distribution functions and longitudinally po-
paring the theoretical prediction of low energy models with|arized distribution functions. For example, in simple valence
future experimental date(Note, however, that the ratio guark models like the NRQM or the MIT bag model, the
979 is Q? independent. ratios of the isoscalar to isovector charges are just the same
Because of the coupling between the flavor singlet axiafor both of the axial charges and the tensor charges. On the
charge(the longitudinal quark polarizatigrand the gluon  contrary, in the CQSM or in the lattice gauge theory, this
polarization in the evolution equation, nonzero gluon polar-ratio turns out to be much smaller for the axial charges than
ization appears at higkp? even if we have assumefiG  for the tensor charges. In our viewpoint, what makes this
=0 at the initial energy scale ®§=0.25 Ge\t. We show difference is “dynamical sea quark effects” dictated by the
in Fig. 18 theQ? evolution of AG in comparison with that of spontaneous chiral symmetry breaking of the QCD vacuum.

V. SUMMARY
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Another noteworthy prediction of the CQSM is the opposite ACKNOWLEDGMENTS
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