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Propagation of gluons from a nonperturbative evolution equation in axial gauges
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We derive a nonperturbative evolution equation for the gluon propagator in axial gauges based on the
framework of Wetterich’s formulation of the exact renormalization group. We obtain asymptotic solutions to
this equation in the ultraviolet and infrared limif$0556-282(199)06113-5

PACS numbgs): 12.38.Mh, 12.38.Bx, 24.85.p, 25.75—q

[. INTRODUCTION AND SUMMARY effective actionl” for macroscopically averaged fieldg.he
Non-Abelian gauge theories, and in particular QCD, arevacuum properties are obtained in the limit-0 where the
nowadays fairly well understood in the short-distafleege-  volumeQ«=1/x* tends to infinity. In this paper, however, we
momentum regime where asymptotic freedom allows reli- are interested in the non-perturbative infrared behavior of
able calcuations within perturbation theory. On the other en@luons propagating in an unconfined quarkless world. The
of the scale, in the long-distan¢®w-momentum domain,  Vvolume of such an idealized colored world cannot, of course,
fundamental unanswered questions remain, linked intimatel€ infinite, since in reality confinement limits it to be of the
to the phenomenon of confinemefur the lack of detailed ~Size of a hadronic sta®@~1 fm®. Hence, as we ignore the
knowledge thereof and posing severe infrared problems €xistence of the QCD phase transition between the colored

that present a tough challenge for developing adequate no@nd the hadronic world, we must cut out the long-distance
perturbative methods to perform practical calculationsadronic physics beyond distances of order 1 fm, and need to

Whereas the non-perturbative effects on QCD Green funcr_estrictx to be larger than the mass scale of the QCD phase

tions are small when all relevant momenta are large comtransition:

pared to the inverse _confinement length, the properties of the K= Kkpp~200 MeV. 1)
vacuum, the dynamics of the QCD phase transition, or the

formation of color-neutral hadronic excitations from colored , i )

quark and gluon fluctuations, are completely dominated by*S We shall see, the introduction of a new scalénto the

the non-perturbative infrared physics. Although lattice simutheory is intimately related to the standard renormalization

lations provide to date the most rigorous non-perturbativé®o9ram of QCD, in which one needs to introduce a mass

studies of QCD, they suffer in one way or another from finiteSC@l€ at which the Green functions are normalizsuhce

lattice size effects and violation of translational or rotational"®y @ré not normalizable at zero momentum, due to the

invariance. Moreover, the continuum limit of results ob- infrared divergence _

tained on a discrete Euclidean space lattice is a difficult prob- The dependence of the average effective ackigron the

lem itself. variation of the scalex is controlled by an exact non-
perturbative evolution equatidi,2], which is very sensitive
to the infrared properties. It is of the generic form

A. Average effective action and non-perturbative evolution
equation

9 — —
Therefore, it is clear that non-perturbative methods, for- K —T =K< T?)] @

mulated in continuous space and maintaining the symmetries IK
of translations and rotations, are of fundamental need to
complement insight into the infrared properties of QCD.
Such a method has been developed3] during the last few  lin a sense this concept is analogous to a quasi-particle picture of
years and has found diverse applicatipis6]. It embodies quantum fluctuations, wherein elementary excitations are effec-
the concept of theaverage effective actioin continuous tively embodied in a quasi-particle with Compton wavelength
Euclidean or Minkowski space within the renormalization- «1/«x: On distance scales>r the particle appears as an elemen-
group framework of quantum field theory. The basic idea igtary object, but as one increases the resolution to shorter distances
to study the theory within a volum@ « 1/x% and effectively by a largerx’ > k, excitations with wavelengthsl/x’ reveal them-
integrate out all quantum fluctuations that can be localizeelves as a substructure of the original quasi-particle. Vice versa, a

within that volume, i.e., fluctuations with squared momen-decrease of resolution by lowering averages over fluctuations
with longer wavelengths, and yields a larger quasi-particle. Loosely

tum q2 larger than?. The a\{erage effective aC“QﬂK IS . speaking, in the extreme short-distance linkit>o, the quasi-
formulated as a functional integral over the microscopicparticle would be, for instance, a single elementary bare gluon,
quantum fields, and can be shown to be equal to the usuglhjie in the opposite limit of infinite volumex—0, the quasi-
particle would correspond to our Universe. The variation of the
scalek therefore controls which, and how much, physics one in-
*Deceased. cludes in the panorama.
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where the kernekC depends explicitly only on théexac)  tions, so that the remaining unknown object is the exact
2-point functionT"(?), but not on higher-order Green func- 3-gluon vertex. The latter can be eliminated by exploiting the

tions (which however implicitly enter in determining the 92uge symmetry properties of QCD, in particular the

2-point function. It has been showfg] that T". approaches $Iavnov Taylor identities, whlc_hg)prowde a constraint equa
the classical action in the ultraviolet limit— and be- 10N between the 3-gluon vertdX.” and the propagatak, .
comes the usual effective action in the infrared limit-0.  The strategy is then to construct an ansatzIfS‘r’ in terms

A solution to the evolution equatio(2) therefore interpo- of A, such that this constraint equation is identically satis-
lates between théshort-distance classical action and the fied. As a result, one arrives at an evolution equationAfor

(long-distancg effective action. Sincé‘_KEEnF(n) generates in terms of the propagator alone, which must be solved as a
the x dependent one-particle irreduciblPl) Green func- function of k. The crucial point of success in this program is

tions F(Kn) (such as the inverse propagator for2, or the the choice forl“ff). Although constrained by gauge symme-
try, this choice is hardly unique. In the present paper we

vertex functions fprr1_>_3), the evolution equation de'.‘ IS construct a particularly simple ansatz, since our main moti-
equivalent to an_lnflnlte set of corresponding equations fo(/ation is to illustrate the concept and the techniques in-
the 1PI functiond™(" , which are the differential version of volved.

the well-known Dyson-Schwinger equatiofig], however

with an additional infrared cut-off given by. Just asinthe ¢ connection of propagator with gluon distribution function
case of the infinite number of Dyson-Schwinger equations, a ) ] o

truncation to a finite number of coupled equations is un- AN important point that one should bear in mind through-

avoidable, if one wishes to find an explicit, but approximate@Ut is, that the gluon propagatar,(q), in general, is a
solution. gauge-dependent object. Only in the ultraviolet regime (

— ), where asymptotic freedom is approached, it reduces to
a gauge-independent form as given by the perturbative one-
loop formula[8]. In the infrared domain d—0), on the

The purpose of this paper is to demonstrate the powerfuther hand, confinement should manifest itself in the behav-

potential of the average effective actibi and its evolution  ior of the gluon propagator, but here the gauge-dependence
equation by studying the simplest non-trivial object in QCDfoils an unambiguous assignment of confinement effects.
without quarks, namely the gluon propagator. Yet, the fact that the propagator is gauge-dependent does not

Since the g|u0n propagat@rK is related to the inverse of Imply that it does not contain thSiCS; rather, it is that the
ey physics is obscure and difficult to extract.

. . 2 . .

the 2-point flﬂctlonl“f( ), we can obtain from the evolution Because of this problem it is desirable to relate the gluon
equation forl', a corresponding equation fak,, which  propagator to gauge-invariant quantities, for example the
determines how the propagator changes as the sca®  wilson loop or the gluon distribution function of hadrons
lowered from some large initial value in the ultraviolet all measured in experiments. The latter is intimately connected
the way into the deep infrared regime. Unfortunately, thewith the spectral density of gluon modes in the propagator.
evolution equation foA . contains in addition the unknown Therefore the evolution equation for the propagator can be
3-gluon and 4-gluon vertex functioﬂgff) and rf(“), which  transcribed, as we shall show, into a corresponding evolution
are themselves determined by similar, but even more confquation for the gluon distribution function. Indeed, in the
plex equations, involving further higher-order functions regime where the longitudin&br energy component ofj is

~(5) T much larger than the invarianf, one recovers the famous

(5) 1) i ithi
I, T, and so forth. However, by working within the DGLAP equatior{9], the perturbative evolution equation for

class of axial gauges, the evolution equation for the propa; S . . g
atzr becomesgrengnarl,(abl sin?pjt& Ieas?formallyobec?aupsepathe gluon distribution function. Such a physical scenario is
g y ’ realized, for example, certain hard processes occurring in

the exact propagator is just the bare propagator times a rengy: o s ;
malization functionz,,, igh-energy hadron collisions or deeply inelastic lepton had-

ron scattering where a hard gluon can be knocked out and
AK(Q):ZK(Q)A(O)(Q)a 3) initiate a gluon jet withgy~q,>q,>q? that evolves by
“ means of fluctuatingreal and virtugl gluonic offspring to-
and the evolution equatiof2) translates to an evolution wards lower and lower momenta.
equation forZ, ,

B. Evolution of the gluon propagator

D. Related literature

A large body of work concerning non-perturbative analy-
ses of the gluon propagator exists in the literaftfie which
may be subdivided into analytical and lattice studies.

where the kernek:’ explicitly depends on the exact propa- Most analytical stud_ies were ca_rried out by attempting to
—3) solve the Dyson-Schwinger equation for the gluon propaga-

gatorA . and the exact 3- and 4-gluon vertex functidi® o i, pure SUW3) gauge theory without quarks, and in vari-
andl“(K“). In the class of axial gauges, it is furthermore pos-ous covariant and non-covariant gauges, for example in the
sible to project out all contributions of 4-gluon vertex func- Landau gaugg10-14, the temporal and spacelike axial

J —_ . —
K¥—2Z NQ)=K'[«%A, T T, (4)
K
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gauge[15-19,21,2Q) and the light-cone gaud@2,23. The (5) Subtracting fromI", the infrared regulatofk,, and
non-covariant axial and light-cone gauges have the advaraveraging over all gauge field configurations with in the ef-
tage that they are ghost-free and involve only the physicalective _vqumercl/x“, we arrive at the average effective

gluon degrees of freedom, whereas in covariant gauges ongtionT . Differentiation ofT",, with respect to itsc depen-
faces a complex coupling between gluon and ghost variableglence leads to the desired exact evolution equation.
On the other hand, the structure of the i ; ; T oy 1l
, , ’ : propagator is more gy prom the evolution equation fdf =3 ,I'"™ we then
complicated in the non-covariant gauges. In either case, ap- —2) X )
.~ that is related to the in-

proximate solutions for the gluon propagator obtained in théroject out the quadratic ter _
literature from the Dyson-Schwinger equation vary WiderVerse gluon propagator. After decomposing the tensor struc-

[24] in the infrared behavior of the gluon propagator, ture O.f the inversc_a propagator, we obtain.a set of coupled
whereas the large-momentum behavior is dictated by th§auations for two mdependent_scalar fun_ctlo:m,sand b,
well-known perturbative result. Predictions for the depen- (7). Next we focus our attention t(.) the Illght-cone gauge, a
dence of the propagator in the small-momentum limit in_speual case of the axial gauges, in which the. funcaQn_
clude an infrared enhancementi # or «q~2(Ing?) %, in- ?rop; oudt_, o) th_at vlve artfa Ieft_wnhf s;r;gle evolution equielmon
frared constant=qg?, or infrared vanishing=q®. Recall [O' the dimensionless functiok,=q“/b,. Moreover, a
however, that the gluon propagator is a gauge-dependent Oé:gluon vertex contributions can be .ellmlnatfed, qnd conse-
ject, so that these very different results are not, necessaril ’uen_tly iny the 3-gluon vertex function survives in the de-
contradicting each other. ermination ofZ, . . o

Lattice studies are at present equally obsure, since(frere (8) By_ constructing a specific ansatz for the 3-gluon ver-
addition to the gauge-dependendimite lattice size effects tex fl_mctlon that obeys the constraint of the SIavnov-Taonr
make it difficult to penetrate the deep infrared where thddentity for the gluon propagato ., we obtain a closed
gluon wavelength becomes close to or larger than the linedfduation for thed .. The formal (SE)C))lu“on of t?ol)s_flnal evolu-
lattice length. There have been a number of lattice simulalion equation is simphA =2, A7, whereA ™ is the bare
tions of the gluon propagatd25—27, all of which used a Propagator. . _ _
fixed lattice Landau gauge, and thus are plagued by Gribov (9) The remaining integration _of the flnal_ evolution equa-
ambiguities that can lead to significant systematic errors. It i§ion for Z, must be done numerically, but in the ultraviolet
therefore not surprising that fits to the lattice results to daténd infrared limits, we are able to extract analytical solu-
are not unique and consequently do not allow, at present, fdfons, which dependaside from the gluon momentug) on
a definite conclusion regarding the infrared behavior of thdhe scalex. In the limit x—0 one obtains then from
gluon propagator. Nevertheless, viewed as a whole, thes&«-o(d°) the full gluon propagator in the light-cone gauge,
studies seem to suggest that the Landau-gauge gluon propa{d) = Zo(q%)A(q).
gator is finite and non-zero af=0, although a propagator (10 In its spectral representation, the gluon propagator

that vanishes ai?=0 has also been claiméds] to be con-  ¢an be related to the gauge-independent gluon distribution
sistent. function G(q,«) through the renormalization function

Z,.(9?), and the evolution equation fc&, can be transcribed
into a corresponding evolution equation 1@r In the high-

] . momentum limit we recover the perturbative Dokshitzer-
A roadmap of our approach to arrive at a solution for thegrihov-Lipatov-Altarelli-Parisi (DGLAP) evolution equa-
gluon propagator within the framework of the average effection, and we find that our solution coincides with the
tive action may be given by the following list of conceptual perturbative result.

steps:
(1) We consider the pure SB) gauge theory without
quarks in Minkowski space, and from the very beginning we
choose to work in the class of axial gauges. Although the full solution to our evolution equation for
(2) We start from the corresponding vacuum persistencéhe gluon propagaton (q) = Z,(q*)A°)(q) in the light-
amplitudeZ=exp(W), which allows us to separate out the COne gauge requires a numerical analysis, we are able to
ghost contribution so that in effect we deal with a ghost-freeaITive at analytical solutions fog, in the extreme limits

E. Strategy of procedure

F. Main results

theory involving solely the gauge fields. 9%/ k?— andq? k®>—0. In the former case, theltraviolet
(3) The generating function&/= —iInZ is then extended limit, we obtain

to a scale-dependent versiail, by including an infrared P 5 5

regulating source terfi, = A, R " A, that is quadratic in zZ Y q) ~ 1- 119°Ce In q_) (5)

the gauge fields4 and depends on the momentum scele « A87? K2

such that only quantum fluctuations with momenta are

included and the limit«— 0 recovers the full theory. On the other end of the energy scale, iniiffeared limit, the

(4) From W, we obtain then the corresponding scale-|eading behavior turns out to be
dependent effective actiof', which generates the one-
particle irreduciblen-point functionsI'{" , such as the in- 2 02 2
- - i -1 g g CG q
verse propagator, the 3-gluon and 4-gluon vertex functions, Z Y g?) ~ 2
all of which explicitly depend on the cut-off scale “ 4872 K2

(6)
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The corresponding limiting behavior of the actual gluonag(qg?), using standard renormalization group arguments,

propagator then follows as and then we relat&, via the spectral density, of the gluon
propagator, the gluon distribution functiag(qg,«) and its
a? e 1 6?02 evolution equation.
Alq) = T Alq) = T () Appendix A summarizes the notation and conventions

used in the paper. Appendix B recalls some basic formulas of

The ultraviolet behavior is consistent with asymptotic free—the functional formallsm In QCD.' and provides a list of reI_-
vant Green functions and vertices. In Appendix C, we dis-

dom, corresponding to a screening of the color charge due s the ab £ ahosts | ol llow: f
9%/g%= 2 *<1. The infrared solution would, on the other S!S € absence of gnosts in axial gauges, alowing a fac-

hand, correspond to a linearly rising potentiéfr)ocr asr torization of the generating functionals for the ghost and the

0, in accordance with the phenomenological picture c)fgluon fields. Appendix D elaborates the details of the general

confinement. These results are certainly rather uaIita'[iveStrUCture of the gluon propagator in axial gauges, and the
. ’ ; . y q simplifications that emerge when specifically using the light-
first, because the inclusion of quark degrees of freedom

which we left out here, may alter the details of the infraredCone ga;}uge.l Appendix E brleflydrek\:lewls the conneclztljon b_e-
behavior and, secondly, because the weakest point of Otween the g uon propagator and the giuon spectral density,

. ' i Yhe latter being related to the experimentally measurable
analysis is the aforemention@shsatzfor the 3-gluon vertex

function, which may not be all that good in the long- gluon distribution function.
' - y 9 9 Table | provides a summary list of the notation used in
wavelength limit. But even for our specific ansatz, an exac{h.
i ) . ) is paper.
numerical solution of the evolution equation for the propa-
gator needs to be carried out before more robust conclusions

can be drawn. Il. EFFECTIVE AVERAGE ACTION

IN NON-COVARIANT GAUGES

G. Organization of the paper This section is devoted to a brief review of the path-
éntegral formalism for QCD in non-covariant gauges, and its
application to the renormalization group evolution of the ef-
aﬁective action of QCD, as developed by Reuter and Wetter-
ich [2]. We refer to Appendices A and B, where our nota-
tional conventions are collected and to Table I, which
ummarizes the notation of basic quantities encountered in
he following.

The reminder of the paper is structured in accordanc
with the above list of procedural steps:

In Sec. Il, we recall the necessary basics of the function
formalism, which we then extend to its scatg¢{dependent
analogue. The effective actiof, for this scale-dependent
functional formulation, obtained as usual, is then related t

the average effective actioﬁK, which is the generating
functional for the Green functions in the presence of the A qcp path-integral formalism for non-covariant gauges
cut-off k. We derive the desired exact evolution equation for

— w k in Minkowski space d to the Euclid-
the change of", with a variation of«. e work in Minkowski space(as opposed to the Eucl

) . . . ean formulation of Ref[2]), and consider pureSU(3),
Sec_:t|on lll is devoted to applying the_ formal_|sm to the Yang-Mills theory forN.=3 colors in the absence of quark
evolution of the gluon propagatdr,”. We first derive, from  yoqrees of freedom. Our starting point is the path integral
the fundamental evolution equation fdr,, the general representation of the QCD vacuum persistence amplitude

equations that govern thevariation of the propagator. Next Z[ 7]=(0|0) s in the presence of an external soutZeEm-

we restrict ourselves to the light-cone gauge, and arrive at a

considerably simpler, single evolution equation for the renor-

malization function Z,, the formal solution of which is

gquivalent to the solution of the gluon propagator in theformalism in Euclidean space of Reuter and Wettefigh and

light-cone gauge. . the Minkowski space description in the present paper, we recall
In Sec. IV, we take pragmatic steps to actually solve thghe transiation rules between Euclideatsubscript ‘E")

evolution equation, subject to a necessary assumption aboyfiq Minkowski (subscript *M”) formulations with metrics,,,
the form of the 3-gluon vertex function. The final master = giag(-,—,—, ) andg,,,=diag(+,—,—,—), respectively,

equation for the renormalization functiafi, and hence for
the propagaton ,,, can then be solved in closed form, and
we are able to obtain the above-quoted results in the ultra- Abl=(AS A e (—1A2,—ADu
violet and the infrared limits. A phenomenological formula
for the propagator that may be useful for parton model ap-
plications, is constructed by interpolating between the two W K] —iW[ K]y .

ex”em‘? limits. . o .__Notice that the convention for the four-potentidl, differs from
Section V applies the results for renormalization functioninat of an ordinary four-vector: the former is defined with com-

Z, to illustrate two important phenomenological connectionsmon sign, whereas the latter has different signs of the timelike and
with experimentally measurable quantities, namely the QCQypatial components. This is chosen for convenience in order to not
running couplingas(q?) and the gluon distribution function have to change the sign of the coupling constawhen translating
g.(q). First, we infer fromZ, the running of the coupling between Euclidean and Minkowski spaces.

2In order to facilitate the correspondence between the functional

XE:(XOiX)EH(iXOlX)M

D%,e= (D3, Dap)e(—iD 3y, —Dap)u
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TABLE I. List of basic quantities encountered in the paper. Note that all quantities with subgcript

reduce to the standard forms wher0. Also, note that the separation &f. andW,, into gauge field and

ghost field parts holds only in axial gauges.

Quantity Meaning

A8 gauge fields

KZ average gauge fiel(:AZ)

ji external gauge field current

7,7 ghost fields

8,08 external ghost field currents

K infra-red “cut-off” scale of dimension mass

R, [A] infra-red regulator that suppresses propagatiogladn
modes with momentg< «.

R, [ ,7,;] infra-red regulator that suppresses propagatioghafst

modes with momentg< «.

Z,J.0,01=Z0 712 0,0]

Wr][\jv; ogl=—iln ZKE\/\&A) +W$<77)
L IAI=WLT] - T°A

I [A]=T [A]-R,[a]

vacuum-persistance amplitude, in presence of infra-red
cut-off
generating functional ofonnectedsreen functions; Eﬂ)
effective action, generating functional pfoper vertex
functionsT'{”)
averageeffective action, with infra-red regulat®®,
subtracted

Aab _ (g(Z))ab
(AK"_LLZ)I.)ab :K(F(LZLS)ab
k Jpv k Jpv

exact gluon propagatorr(?)2°= bare gluon propagatpr
inverse gluon propagator

Vabc — (F(S)) abc

MUN MUN

Wabcd — (F(4)) abcd

MUNT MUNT

[alternatively: {{?)30 = (11 + I1,) |

exact 3-gluon vertex functions

(V&P =pare 3-gluon vertex

exact 4-gluon vertex function

(W2be=bare 4-gluon vertex)

ploying the conventions of Appendix B, we define the gen-measure in

erating functional for the connected Green functia¥g7]

as usual byZ[ J]=exp(W[J]), with
W[ J=-ilnZ[J]

=—iNIn

f DAde(M)5(F3 A])
Xexp(iSYM[A]—FSext[A])}, (8)

with the normalization A/ determined by the condition
W[0]=0 [28], and

1
Sl 1= [ dbxr, 7o

Sod Al= f d*x T, A", (9)

Here AMETaAi denotes the gauge field, and ti#,,

Eq. (8) is short-notated as DA
EHXHMHadAZ(x), and the gauge condition is embodied in
S(FLA]),

FAAD(x)]=F3(x)=0, forall ab,u. (10

The gauge fixing determines the Jacobian Eet@s the de-
terminant of the Faddeev-Popov matrix

SFA(x)  OF3
SP(y)  SAS

Map(X,y) = DS (x—y),  (11)

where »® describes local gauge transformatiogfw?]

=exp(—iw?(x)T,), under which the gauge fields transform
as A2—A?=g[w?]A%0 [ w?], so that 73,73, is
gauge invariant.

Because of the practical advantages described before, we
choose to work with a non-covariant gau29,3q, for
which the gauge conditiofl0) reads

Fo()=n*A%(x)=0, (12)

wheren* is a constant 4-vector, being either space-liké (
<0), time-like (h?>>0), or light-like (n?=0). The particular

ETa}‘fw the corresponding field tensor. The path-integralchoice of the vecton” is usually dictated by physical con-
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siderations or computational convenience, and distinguishedere, and henceforth, we have set arbitrarily the normaliza-
axial gauge(n®<0), temporal gauge(n®>0), andlight- tion A appearing in Eq(8) equal to unity, since it is an
cone gauge(n?=0). Among these gauges, the light-cone irrelevant constant factor, and introduced the functionals
gauge is most often employed in the literat[28]. It is well
suited for describing high-energy QCD in tlfinite mo-
mentum frameg[31], since Lorentz contraction and time-
dilation causes the quantum fluctuations to be concentrated
in close proximity of the light-cone, the direction of which = — ) - —
naturally suggests the choice of the gauge veator For Ak [‘T'U]:f DnDn expiSer 17,7,0,0])
these reasons we will later adopt the light-cone gauge by (17
specifyingn?=0. For the time being, however, we keep

general, so that the considerations apply to the class of nonvith the combined gauge field action

covariant gauges as a whole. As elaborated in Appendix C,

the gauge conditior{12) implies, for the general case of Seil A, J1= Syl AT+ St il A1+ Sed A, J]
arbitraryn#,

Z(A)[.ﬂ:f DAexpiSe A, J1)

1
det M) =dei 5°n#[ 639, +gf5PA%]) = del 52°n- 9), SwmlAl=-7 f d*xF5, FL" (18
(13
becausesF?/ A7, = 5*n#s*(x—y) and n~AfL=O. As a SO [A]=— 2i§f d4x(nMAi)2

consequence, the ghost degrees of freedom decouple, since

det(M) no longer depends on the gauge fiedld We may

cast the generating function@) in a more practical form by S :f d4x 78 A » 19
rewriting the Jacobi determinant dit in terms of a Gauss- exl A, J] XTuAa (19

lan integral over ghost fieldg, 7, and the combined ghost field action

det(M)= f D?Dvexp[i f d“X?a<X>Ma"vb<X>] f DyDy Seil 7,,7,01= Synodl 7,71+ Sed 7,7,7,0
— 1= 4~ cab
=exp{i f d*x7,(x)(5%°n#9,,) nb(x)], (14) Sghost 7 7]= f d*x7a(8%°n*3,,) 1 (20
and the functionab(F?) as an exponential of a gauge-fixing - — :J' 4, _a —a
action, Sexd 7:1,0,0] d™%(oan%+ o,1%).
DA&(Fa[A])=DAeXp{ _ iJ d4X2i§(Ff‘4(x))2] B. Generalization to scale-dependent formalism

On the basis of the generating function&f 7] of Eg.
. (16), one can construct a correspondisgale-dependent
=DAexp{ _ '_f d4x(n~Aa(x))2]. fu_nctional. Whereas in Ed8) q_uantum fluctuations with ar-
2§ bitrary momenta are to be included, the scale-dependent
(19  functional should only involve an integration over modes
) ) ) with momenta larger than some infrared cut-effA varia-
The gauge parametef allows here, just as in covariant tjon of « describes then the successive integration over fluc-
gauges, to specify a particular gauge within class the of nony,ations corresponding to different length scales with the aim
covariant gauges, e.g. Feyn?an—type gauges #thl, or 4 racover the full theory in the limik— 0. Following the
Landau-type gauges witi=0." Since det¥) in Eq.(14)is  rationale of Ref[2], a scale)-dependent generalization,
independent of the gauge fields it can be pulled out of the ¢ the functionalW in Eq. (16) is defined as
functional integral over the gauge field configurations in Eg.

(8), so that we can factor out the ghost field dependence by W, [T, 0, 0]=WAL T]+ W[ ¢, 0]
rewriting Eq.(8) as ) “

=—i{In(z{1 1)
+In(Z 7o, o)} (22)

W[ J,0,0]=—i InZW[ 712 0,0]). (16)

3Notice, however, that needs to be kept general at this point and Here the scale-dependent functiondls are related to the
in the following: it may be fixed onlfter the gluon propagator has Usualx-independent vacuum amplitudésEq. (17), by add-
been derived explicitly from inverting the terms quadraticdrin ~ ing invariant infrared cut-off$s, for the gauge field4 and
Eg. (8). for the ghost fields, respectively,
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FIG. 1. Form of the infrared regulat®&,(g?), Eq.(32), and its damping effect on the propagatgn(q) = 11 g2+ R,(g?)] at small values
of gq2. The various curves illustrate the different choicescpfvith k=0 corresponding to the case with no infrared cut-off at all.

Z071- | DAxISA A Thexpli RIAT, (22

200,01~ | DyDyextiSul’7.7.0.0)
xexpli R 7,71}, (23

with See[ A,.7] and Sel 7, 7,0, 0] defined by Eqs(19) and
(20), respectively, and the infrared regulators

R [A]=— % J d*XAL[R (]2 A (24)
R 7, 7]= f d*x7[R.((n-3)2)] 7, (25)
with
a d,4, 1ln,n,
[RK<aZ>]M3=6abRK(a2>(gW— ’;2 t3 ‘Of;z ) (26)
-
[R.((n-3)?)]2= 5‘“’(1+M). (27)
(n-9)?

One may wonder about the form of the infrared regulators
R, in Egs.(24) and (25). These have been constructed, so

%K[;, n], the inverse gluon propagatak ! and ghost
propagatorD ~ 1, respectively, are modified such that

At 2 A Yo 2R (97) (28)

R.(n-9)?
BT (29)

Dlocn-ﬁ—>DKlocn~ﬁ<l+ .
(n-9)

In general, the functionR,, and~RK can be different, but their
specific forms are unconstrained. One may therefore take the
freedom to choose their analytic form to be the same,

R(d*)=R.=R,, (30)

but with different argumentd?, namely the operato® and
(n-3)?, respectively. The choice of the functional form for
R, specifies the details of how the fluctuations with eigen-
values of the operatord®= 9 and d?=(n-d)? larger than

«? are integrated out in the computation of the path integral
(21). For example, a convenient parametrizatiafter Fou-
rier transformation to momentum space with—p~2, and
p2=q? or p>=(n-q)? ] is (see Fig. 1*

exp( — p?/ k?)

_, 31
1—exp(— p?/ «?) @y

R(p?)=p?

that they affect only the gluon and ghost propagators, respec-
tively, ask-dependent squared mass terms that regularize the

infrared poles in the propagators. As we shall see in detail “We shall later use a generalization of this form, which includes

later, by combining the quadratic pieces $fyu[.A] with
R, [A] and similarly the quadratic terms 8fn.sf 7, 7] with

an additional ultraviolet cut-ofA> «, but which contains Eq:31)
for A—o: R, (p?) =p? exp(— pK)[exp(—pA%)—exp(—p% )] L.

034012-7
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which has the following limiting behavior in the ultraviolet effective action achieves its stationary extremume take
and the infrared, respectively: A,=0 lated. As summarized in Appendix B, repeated func-
tional derivatives o[ 7] with respect to the source$
generate the K-dependent connected fpoint Green func-
tions, and functional differentiation dTK[K] with respect to

Hence, the effect ofR,(g?) is vanishing in the high- the average fieldsA yields the one-particle irreducible
momentum limitg> «, but provides an infrared screening as n-point vertex functions. In particular, the second functional
g—0. Moreover, the original function of Eq. (16), con-  derivatives determine the 2-point functions

taining all quantum fluctuations, is recovered from, of

lim R.(p?»)=0 lim R(p?=«> (32

p2/K2~>°C p2//<2~>0

i imit k= _i s2\W(A)
Eqg. (22 in the limit x=0, i S2W: E(g(Z))ab:Aab
o STEVSTY W) | g T
W [J,o,0] — W[ J,0,0]. (33
2
T = (T(@yab_ A —1yab
The crux of the above discussion is the convenient decou- SAL(X) 5KV(_) B =) = (A s
pling of the ghost degrees of freedom from the gluon degrees a blY A=A,

of freedom in Eq(21) due to the choice of gaugé?). Since (37
we are interested in the variation\&f, againstx with regard
to the physical gluon degrees, the first term in &1), W(? .
amounts to an irrelevant constant that does not affect thifverse, with

change oincA) and therefore may be absorbed in the overall b

normalization. In other words, for the evolution of the physi- A (xy)=— KAUY) « =(A2(x)A°(y)) ., (39)
cal gluon fields with changing scale, we can henceforth o BPATE STH(X) m v

omit the ghost contribution and restrict our attention to

WY | Then one can derive from E(R1)—with reference to  where again the contributing field moddsare subject to the
Appendix B—thex-dependent generalizatidn, of the stan- infrared cut-off atk. Similar relations hold for the higher
dard effective actiol’=I",_q by introducing theaverage n-point functions(cf. Appendix B.

gauge field

that is, G® is the exact gluon propagator, ahf? is its

C. Renormalization issues
SW

K

_ =GWx)2, (34 The point of introducing the scale-dependent effective ac-
8TH(X) ) ’

tion I', satisfying Eq.(35) is that it allows us to vary the
scalek, say, from some large initial value corresponding to

where the subscript at(.A), indicates that only field modes (he perturbative domain down to very small values in the
non-perturbative regime. In effect, as we chargenore and

that survive the infrared cut-off contribute to the mean value.

The «-dependent effective actioR, is then defined as the MOre gluon fluctuations are included in the effective action,
Legendre transformation /(9 “ and at the same time will define the renormalized gquantities
pag

of the effective theory, i.e., the gauge fielt, and the cou-
o L pling g. As the effective actiod”, is a scalar quantity, the
I JA]=W 71— J dxT5AL, (35  infinities appearing in imusttake the Lorentz-invariant form
of a scalar functiorZ timesSg[ A]=Sym[ Al +R. [ A], i.e.,
. . SymlAl=ZSymlAol, and R, [ A]=ZR,[ Ao]. If we define
which amounts toa change of varlables. fréa.}. th_e €X" " the renormalized fieldd,, and the renormalized couplirggin
ternal source, t¢A  }, the average gauge field, and yields theterms of the bare, unrenormalized quantititiés, andgp,
conjugate of Eq(34) as

AL(X)=(AL(X)),0

J=0

A%,=Z1%A% go=240, (39
(A) _
- =(GMx)2=A%X) then the barer,,, is renormalized by
STE) | g X
‘7:8,11.1/:(9#"481)_0V‘A3M+gofzc"40# 81/
ol
| =EPe0E=-Th. =230, A5— 0, A5+ (ZZ5)gfg AR AS
a(X) 5, (40)
(36)
Notice that switching off the external sourcgs=0_corre- SFor QCD in the absence of a medium,=0, because the

sponds to the extremum of the effective actionPat Ay,  vacuum is colorless and Lorentz invariant, which does not allow a
whereA, is the mean value of the gauge field for which the non-vanishing(.A%).
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and consequently the squared field strength tensor is zA:zazzz—l_ (42)
(Foun)?=Zul(9,A5—3,A%)?

Indeed, as has been demonstrated originally by Kunj8&r

to orderO(g?) and later been proven in genef&3], this

equality of the renormalization factors for the gauge fields,

+(Z4Z8) I Fapcf abr o Ay p Ay Al Al the 3-gluon coupling and the 4-gluon coupling is a unique
property of non-covariant gauges, and therefore holds in the

(41)  light-cone gauge employed in this paper. Similarly, the in-
frared cut-off for the gauge field$g,[.A] of Eq. (24) is
renormalized by

+(ZAY2Z ) gf a9, A, ) AFAL

Clearly, this will only take on an invariant form of a scalar
function Z~* times (F,,,)? provided that

1 b s L1 ) (n-9)*+R((n-0)? , |
mK[AO]_ZAga[g,uvﬁa Rx(az)]AOb—’_z g 1 (np,Agb RK((n-ﬁ)Z) aZaa (nVAOb)
Zy b o Zafl (n-9)?>+R(n-9)?) , . ,
_7,45[9,”5"" R.(d )]Ab+7 E_l (n AR R (-9 9262 (n,Ap). (43
[
Hence, 9=9(a>)=Z74a)go. (47)

(FEN?=2 " YF,)?% RJA]=Z2 R [A], (44 If we choose the mass scale as the point where we nor-
malize the theorycf. Eq. (56)], then

and consequently the forms 8f¢[.A], WY and the effec-

tive actionI",[A] are preserved under simple multiplicative
renormalization. Notice that all the physics of the renormal-
ization group is encoded in single scalar renormalization The roadmap for the following is to derive ~&-evolution
function Z, which is a function of the gluon momentugras equation for the effective action, and extract a Corresponding
well as of the infrared scale, i.e., evolution equation for the renormalization functiaf, ,
which then allows us to infer the exact propagator via Eq.
(46), the running coupling from Eq47), subject to the nor-
Z=Z.(q)=2(q%n-q), (45 malization condition(48).

Z(A)=1 go=0g(A?). (48)

where the last equality is true for the class of axial gauges, D. The average effective action

for which one can shoyB2] that theg-dependence can only  After these preliminaries, we are now in the position to
enter in the combination of the two Lorentz invariagtsand . . e .
derive anaverageeffective actionl”, from the effective ac-

(n-g)2. This function Z, will thus be the key to the . .
. . . . tion I',. of Eq. (35), as well as arexactevolution equation
x-evolution of the effective action and the associated gluon =

propagator. In particular, we shall exploit the advantageouéor this averagd’, within the renormalization group frame-
property of axial gauges thafor specific choices of the work. This evolution equation determines h_ow the phySICS
gauge vecton and the gauge paramet&)' the renorma"zed ChangeS when more and more gluon fluctuations are included
gluon propagator is simply the renormalization functigp  in the functional by successively lowering towards zero.

times the bare propagator, The average effective actiohi, is defined 1,2] as the effec-
tive actionI’,. of Eg. (35 minus the infrared regulatdR, ,
© Eq. (24),
A, w(=2Z(Q)A7,.(Q), (46) L _ B
I [A]=T [A]-R.[A] (49)

and similarly, the renormalized running coupling is the bare
coupling constant multiplied by ¥/2: and reads in view of Eq35),
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T JA]=—iln

f DAexp(i (Sym[ Al + SPLAT+ R, LA~ RIAT+ Sed A, T]— Sed A TD)}

=—iln

3

1 1
f DAexp{i f d4x(—EAé:(gwaz—aMaV)A"a—z—(nMAz)(nVAva)
1bc a a,uv12cedab;4v1 w ab vb_ ampab pAvb
— SO0, A% 0, AL AEAL -7 G AR AL AL A~ S (LR, AT~ AR, ATD)

+J:1<A§—K§>)H, (50

whereR, =R (%) from Eq.(26). Evaluating the functional integral, and settﬁgto, one sees that the classical contribution
to the actionS=[ Sy + S{&]1a_o=0 vanishes, so that one arrives[a4]

[ =T JA=0]=T+T,, (51)
where thel' is the “kinetic” part atA=0,
— i
rﬁ°>:§f d*xd*y(A@)"Y(x—y)A (y,%), (52)

andT is the “interaction” part atK=0,

- 1
ngng d“xd“yf d*%; d%y, WO(X,y, X1, Y1) A (Y1,X1) A (Y, X)

. 2
1
+1—2ng d“xd“yf [T d%d'yiVO0xx1 %2 A (1Y D ALKz YD U Y2, 1Y) A YY)

3
1
+4_894f d4xd4y Il:[l d4xid4in(0)(XyX1axz:Xs)AK(Xlvyl)AK(Xz-Y2)AK(X3,Y3)W(y3'Y2,y1-Y)AK(y,X)

. 2
|
+569° f d'xd?y [ TT d*id*yidZW0x,x1 %z %3) A (X2, 2) A (X5, 23)
=1

X V(Z?) 22 ’Zl)AK(Zl 1y1)AK(Xl 1y2)V(yl Y2 vy)AK(va)- (53)

Here we made use of the formulas of Appendix B, in which I =741
A, denotes thexactproagator given by EqB18), while V oo o
andW are theexactproper 3-gluon and 4-gluon vertex func- we have in view of Eq(49) the following mapping between
tions given by Eqgs(B20) and (B24), respectively. Corre- FK andl’, :

spondingly,A(? is the bare propagator, an&/(®), W(® the

bare vertices, explicitly given by EqgB22) and (B26), re- Lo = €M+ % . %Jr @Jr @

spectively. The different contributions i, correspond to

the diagrams of Fig. 2: the first term is the one-gluon loop, FIG. 2. Diagrammatic representation of the effective acﬁ;n
the second term is the tadpole contribution, the third term is —0) = _ . . T
the 2-gluon loop with exact 3-vertex, the fourth term is the =1« * T« Eas.(5D—(53): the first term is the “kinetic” term,

three-loop contribution with exact 4-vertex and the last terrﬁhe second term is _the tadpole contribution, the third c_ontnbuﬂon is
is the three-loop contribution with two exact 3-vertices. the 2-gluon loop with exact 3-vertex, the fourth term is the three-

. . . . loop contribution with exact 4-vertex and the last diagram is the
Notice that the infrared regulating terdi$, in Eq. (59 three-loop contribution with two exact 3-vertices. The curly lines

affect only the contributions that are quadratic.nor A.  represent thexactgluon propagator in the presence of the infrared
Hence, if we write in analogy to Eq51) for the effective  cut-off «, the dots arébare 3-gluon or 4-gluon vertices, while the
actionI", in the presence of the infrared regulator shaded circlegboxes are exact3-gluon and 4-gluon vertices.

(54)
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FO_TO ;T . (55 KLAA, J1=exili(Se A, J]+ R [ Al - JOA)], (57)
one obtains for the derivative df,, using Eqs.(16)—(18),
E. Evolution equation for the average effective action (21), (35)
Following Ref.[2], one can derive_an exact evolution K[A]__W(A)[‘j]
equation for the average effective actibry defined by Eg. at
(49), which is a type of renormalization group equation gov-
erning the scale-dependencelgf as the infrared cut-ofk is =—i _|” f DAK[AA, «7]}
varied. Let us introduce the dimensionless evolution vari-
able, fDAlA ( 572“”),4 K[AA,J]
K dc 1 d«? 2" Mot . o
K K f DAK[A,A,J]
whereA is some convenient mass scale at which the theory
is normalizedSecs. IV and VY, and which may be chosen to 1 d @)L T
match a specific physics situation, e.g., the total invariant =§Tr ﬁRK (G+HAOA) |, (58)

mass of a high-energy particle collision, or the large momen-
tum transfer in a hard scattering process. Recalling(8#9,  while for the derivative of the second term on the right-hand
and introducing for abbrevation side of Eq.(49) one has

R, [A]= —
f DAK[AA,TJ]

14 _ _ 1 [(a
(——Rw)(fDAA#K[A,A,ﬂfDAAVK[A,A,ﬂ ZETr[( )(A OA,,)}

it 2 dt o

(59

where Tf .. .] stands for the trace over all internal indices, as well as an integration over continuous variables. Subtracting
Eq. (59 from Eq. (58), utilizing thatG{?=(I'®) "1=(I'®+R,)~*, whereI'{?) is the second functional derivative bf,
with respect toA, one arrives at the desired evolution equation for the effective average é8on

J— — _ 1 J =2 il =
STIAl= ST | 2R, | TP+ R~ = 7, AlL (60

Ill. THE EVOLUTION EQUATION FOR THE GLUON PROPAGATOR

Working henceforth in momentum space, we now take practical steps to solve the evolution etf@tfon the gluon
propagator. Recall that we defined the exact gluon propagator, respectively its invdise Eas. (37), (38)]

A% (@) =(GP(a,—9)2=(A%(q) A2(—a))., (61)
(A D)= (q,—0)20=CP(q,—q)28+RP (). (62)

Our goal is now to infer from the general evolution equatié®) for the average effective actidi a corresponding evolution
equation forA _*, from which we can then determine the properties of the propaggtarself.
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A. The general case

We begin by rewriting Eq(60) as

d— — 1( d*q (0o ab s —
Sl dAl=5 f (27)4(a&(qZ))W([FS’(q,—q>+RK<q2>] Do =vLA] (63

As this is anexactequation, any attempt to solve it in full is certainly out of the question, because it would require to solve
for an infinite number of the vertex functiod¥™ which contribute to both sides of E¢63). On the left-hand side, thE(™
enter through the series representatiod gfA],

— — X1 d* d*
rA=3 LR

o) i .(ZW)4<F<K”>(q1, C AR ARG) L ARG, (64)

while on the right-hand side of E¢63), thel'™ are implic- plicit knowledge of the higher-order terms, but rather by

. . . .= _ their implicit inclusion through the constraint equations that
2
itly encoded in the 2-point functiof® . However, since we follow from first principles®

are here interested in the behavior of only the gluon propa-
gatorA%”=(A*A") ., we do not need to solve E(3) for

the average effective actidn,[A] as a whole, but only for Returning to Eq(63), we pick out from the series repre-
its contributionsl"ff)[A] which are second order ik on the A

left-hand side of Eq(63), and which are mapped on the _sentaﬂon 9ﬂﬂ_"[—AJ in Eq. (64 th? contributionl” [A] that
corresponding quadratic contributions on the right-hand side'S quadratic inA, and then consideh=0,
denoted byy!?)[ A], being the second order term in the series

1. Left-hand side of the evolution equation (66)

r@=r®a=0]

5 (n) L d'q AXa) (T abpv —
yK[A]=n§O ¥, (65) —gf (2m) AL @A, — )i As(— D) [a=o-

(67)

That is, instead of Eq(63) for the full FK, we aim at the
corresponding evolution equation with respecttolnx for
the 2-point contributions alone,

Now, the two-point function under the integral on the right-
hand side is related to the inverse gluon propagator by

@) 5This is analogous to the Bogoliubov-Born-Green-Kirkwood-
Y- (66) Yvon (BBGKY) hierarchy[35] of Green functions in field theory:
then-point Green functions are intimately coupled by an infinite set
of equations of motion. For example, the 1-point functitie mean

. . . . field) is determined by the Landau-Ginzburg equation, which con-
We emphasize that Ed66) is still an exactequation: no ins the 2-point functior(the propagatgr The 2-point function

tr“”C?t'O”S hav.e been imposed on the way fr((;gn the ONngiNGiself is the solution of the Dyson-Schwinger equation, which con-
evolution equation(63). If we were to knowy,” exactly,  tains the 3-point and 4-point functions. The 3-point and 4-point
then it would be straightforward to solve for the evolution of functions in turn are determined by even more complicated equa-
I'® with «. Unfortunately, the function/{?) on the right-  tions that contain higher-order Green functions. This scheme con-
hand side is a tremendous'y Compncated Object, because tjf]uesad Inflnltum The.hierarch.ynof the equations is exact, but in
implicitly contains all sorts of contributions of higher order Order to solve it approximately, itis usually truncated to a system of
in the gauge fields, which one would have to determine b);equatlons involving only the 1- or 2-point functions. To achieve

. . . —(3) T(4) self-consistency of the truncated set of equations at, e.gn 2
solving corresponding equations B>, I'{", and so forth. level, then=3 functions must be implicitly included by additional

Fortunately, the gauge symmetries of QCD allow to relateonstraint equations. For instance, in QCD the Slavnov-Taylor

these higher-order contributions among each other via thgeentities relate the 3-gluon vertex function to the propagator, and
Slavnov-Taylor identities, and it is possible, as we shall demcan be used to eliminate the 3-point function. We follow such a

onstrate, to obtain a closed expression ﬂﬁ&) without ex-  path later in this paper.

9—
—r@=
ot x
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(A )_ F(z) +R, since F(z) _F(z) R 2. Right-hand side of the evolution equation (66)
K wy M K,

K, MV K, MV
andl'?), —(Q(z));p—(AK),w We may therefore, param-  Similar as above, we need to extract from[A] in Eq.
etrlzel“(z) , according to the most general tensor decompo(63) the contr|but|ony(2)[A] that is quadratic irfA and then
sition of the inverse propagatoﬂ(() that is compatible  ¢ota=0. We first notice that
with the constraining Ward |dent|t|es for the class of axial
gauges. This requires two independent scalar functions,

a,(q) andb,(q), in which theg-dependence can only in- V= YK[KZ 0]
volve [32] the two invariantg?/ A? andn?g?/(n-q)?. Intro-
ducing the variable _1f d'q d'q’ Sq+ ,)(aR( z))ab
@mt @m0
nZq? X ([T P(a,a0]1 M5 (72
=x(n.Q)= q . 69 (7,91 %),
(n-q)

whereR .(q) is the Fourier transform of Ed26),

the dependence af, andb, on g andn appears as,(q)
=a,(9%x), b(q)=b.(9%x). Hence, we can represent

T i .
Iy in the following form:

a,d,
R, (a)= RK(qZ)c?ab(gW K )

=R ()5 (P,,+Q,,). (73

T@(q,~ )20 =5"@,(0% x)P,.(0)
Next, we decomposéFff) in Eq. (72 into a kinetic term

+b, (0% X)Q,.(a)), 69 (119 and an interaction termil,),
. P (2)\ab " — (110 1T \ab '
with the orthogonal projection operatérs (I 5(a,9") = (L7 +11,)7,(d,97). (74

From the relation$54), we infer
9.9, nuqy+qﬂnu+ n,n,

Puv(q):g,uv_i_ 1_X q2 n.q X n2
52F(0)
(70 H(Ko)aby(q,q’)——
- SAL(Q)SAR(A") |+
d.9,  Nud,+0un, 5r<°>
Qu,(@)=— - =2i¢*
M -X q2 n-q (q CI) A/“/b( )
(1—x)n?|n,n, .
- —5— =% (7D P
gq n Hib ,LLV(q q,):_—_,
OAZ(A)SAG(A") [,
which have been constructed from the available vedagrs [
n, and fromg, in the spacen,P*’=0=n,Q**. In the =2is*q+q ) . (75)
absence of interactions, the bare parameters would be Kab(Q)

—q?+R, andb,—g?+R,. In general, however, the scalar

functionsa, andb, in Eg. (69) embody the full information  Applying these to the formulag50)—(53), after Fourier
about the running of @ and, hence, of the gluon propagator transformation to momentum space, we obtain for the kinetic

which is determined by the inverse Biz’, as we shall show ©™M
below.
q.d, 1n
1103 (g, — ) = 8ap(@2+ R, (62))| 9, — — ”+ il
"Here and in the following, negative powers wfq are under- d

stood in the principal value sen$29], which ensures unitarity. (76)
Notice, that the last termin 2 in bothP,, and inQ,,, is actually
x(n-q)~2, as is evident from the deflnltlon of, Eq. (69). while the interaction term gives
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ab g d4k (0),abcd, \o,cd
HK o ,—Q):?f mwﬂyxg (a,k, =k, —aq) AL (k)

_E d4k V(O),acd(q —k —k,)AM"r cC’(k)A(r(r” dd’(k,)Vdfc/b(k/ K _q)
R Rrrrhl G RE . oK

L9 d*k d*p , o o
f (2m)* (2m)* WL e, —k, =K', =p)A " S (AT I (k')
v

g d*k d“p
(O) acde(q k k/ -p )

XATT,' Wdrcrb kk’
K A ( p q) (2 )4 (2 )4 ,u,)\(TT

X AT AT e (VT (K, —p) A T (p) AR e (oW (pp, ), (77)

p"p'p

with k' =q—k in the second ternk’ =q—k—p in the third  where the dots refer to higher-order terms which are cubic
term, andk’=g—k—p’, p’=q—p in the last term. Figure and higher in the gluon fields and therefore contribute only
3 depicts diagrammatically the inverse propagafff) ., , to the 3-point, 4-point functions, etc., but not to the gluon
Eq. (74), in terms of the contribution§l?), Eq. (52), and ~ Propagator or its inverse. Now, the first term in H§O)
HK, Eq. (53). amounts to an irrelevant constant which may be dropped in

Now let us define a partial derivati that acts only on view of Eq. (76), so that we finally arrive at

the t=Inx dependence ofl!®), but not onil,, 1J dq
(

(2)_ *ryrab _ —L\vp,
Y« 2 277)4at Hi, ,uv(q! q)(HK )bg( an)]

~ J
FTPe=gr MO+ =5 P=—1,  (78) g gt
1J d*q d%p

- (27T)4 (2 )4(9t K, ,u)\(q p)(H 1)

so that we may write the right-hand side of E§3) in a
form that is reminescent of the derivative of a one-loop ex-

pression, but which is exact, ><(—p,p)1'[ﬂe o P ,—q)(l‘[;l)gg‘(—q,q)]. (81
y =Ef d4q a*[In F(z)ﬂa(q )]=1Tr ilnr(z)} 3. The master equations for the gluon propagator
© 2] (2m* t ) ’ 2 ot Now we have collected all the ingredients for the evolu-

79 tion equation(66): I''*) appearing on the left-hand side, is
From this representation of, we extract now the contribu- given by Eqs(67)—(70), and'?) on the right-hand side, is
tion which corresponds to terms quadratic in the gluon fieldsgletermined by Eq(81) together with Eqs(76) and (77). In
and therefore is relevant for the evolution of the gluon propaorder to infer from this evolution equation two independent,
gator: We utilize coupled scalar equations for the two unknown functians
R andb,, we project Eq.66) with P,, andQ,,, given by
Tr ¥ InC @] =Tr{ InITo]+ Tr[ o7 (I, 19 1)] Egs. (71) and (70), respectlvely Usmg PuPl= PM,,,
1 ) ) QuQl=Q,,, and P,,Q}=0, as well asn“(II}""%),,
- ETr[&Z‘(HKHf(O)‘ll'IKHf(O)_l)]+ o =0, g#(Il,),,,=0, we obtain after some algebra

(80) d , 1 X n,n, ‘9‘;w B
—tak(q X)=5 gﬂﬁﬁ -z EHK (q,—q)

e Qo Oy ®

n.n, (9A

FIG. 3. Diagrammatic representation of the inverse propagator ib (qz Y)=— X =
K L
T®),,=MO+11,),,, Eqs.(74-(77). The first term is the con- at 1-x n2 dt

wribution from the ‘kinetic partH(O) while the remaining terms
arise from the ‘interaction parﬂK. The curly lines represent the

 (d,—q). (83

We remind the reader of the complexity of these equations,

exactgluon propagator in the presence of the infrared cutkothe vvthChEareGeGQUIvaIIent lto th66)’ 'I?fr:d Eence ogjlr Corbnments
dots arebare 3-gluon or 4-gluon vertices, while the shaded circles & ter Eq.(66) apply also here. e key Pro eém becomes
(boxes areexact3-gluon and 4-gluon vertices. clear in view of Eq.(77), which shows thatl, contains not
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only the exact propagatdy, , but also the exact 3-gluon and

4-gluon vertex function®, respectively/V. In principle, one

would therefore have to solve even more complicated equa-

tions forV andW, and then plug the solutions inﬁ)K of Eq.
(77). Then EQgs.(83) and (82 would contain on the right-
hand sides only the unknowh, , the solution of which we

are after. However, as we show in the next subsections, it is +

possible to get rid of the explicit dependenceldand WV by
(i) eliminating the 4-gluon vertices an@) expressing the
3-gluon vertices through the propagatby alone. Then we

can evaluateﬁ,(, Egs.(83) and(82) serve to determine the

functionsa, and b, which, in turn, would give a unique
solution to the exact gluon propagator from E@4),

b _(1(2)-1yab _ 0)L 11 1-1 ab
AR L (@)=TP™H2(a,—a)=(NO+11,]7 .
(84)
Decomposing the propagator analogous to (&§),

A% (@)= 6"(A (G2, X)S,(Q) + B, (a2 ) T,.(Q)),

(85)
with the projectors
1 Q.9
S, (@)=0,,+—| x(1+&q>) -~
@) =0, T | XA £05) 0
n,d,+q,n, n,n,
ng X2 (86)
1 4.9,
T,,(q)=——| x(1+ &)~
D= =7 | x(1+&a0) o2
 n.G,+4g.n, n.n,

and invertingIl1{®+11, on the right-hand side of Eq84),
one finds(cf. Appendix D that the function®\, andB, are
related toa, andb, by

1
AK(qziX): N BK(qZIX): (88)

X
a.(a?,x) b.(a%x)

In the limit of vanishing couplingg—0, we havea,— g?
+R, andb,—q?+R,, so that thebare propagatorA(®,
respectively its inversél(®) are

A (qy=2rt X uw
o 9>+ R.(9?)
_ 1 g _an,,+anV
g’ +R.(a?) | " n-q
+<n2+§q2)q“—q”2] (89
(n-q)

PHYSICAL REVIEW B0 034012

19 (4, —9)=(@?+R(a))(P,,+Q,,)

4.9,
= (q2+ RK(qZ))|: g,uv_ ;2

1
ng®+ —)

£ (90

nﬂnv]
(n-q)2|’

and, sinceA (9= (11(?) =1, the following inversion property
holds: A, W(ITQ+11,)3=g,,.

B. The casexy—0

The system of evolution equatiori82) and (83) for the
functionsa,, b,., and hence foA,., B,, is still immensely
difficult to solve, because, as is evident from E@7), the

self-energy tensoﬁk contains products of exact propagators
A, (the solution of which we do not know yawith the exact

3-gluon and 4-gluon vertex functiong and W (which are
themselves unknown combinations of propagatokow-
ever, we can make substantial progress, if we can eliminate
the explicit y-dependence, by considering=n?g?/(n-q)?
=0: There are two possibilities to achieve this conditioi:
choosingn®—0, or (ii) consideringg®/(n-q)?>—0. The first
possibility corresponds to choosing, among all the axial
gauges with arbitrary?, the light-cone gauge with®=0.
The second possibilityg?/(n-q)2—0, holds for anyn?, and
corresponds to thguasi-reallimit, by which we mean the
kinematic regime in which the gluon energy is large as
compared to the virtual masgqg® so that the gluons are
practically on-shell. Specifically, we require for the gluon
four-momentumg = (qo,q, ,q,) that
do~az>0q’>q. (9D
This situation is typical for high-energy particle collisions
with (gluon) jet production, for example, hadronic collisions
with center-of-mass enerdy,,, =100 GeV, where the gluon
(and quark fluctuations in the colliding hadrons have highly
boosted longitudinal momentum along the beam axis, and
comparably very small transverse momentum. Bearing this
physics picture in mind, it is then suggestive to choose the
vectorn,, along the preferred longitudinadirection that is
dictated by the collision geometry, i.e., to chowsgin thet-
z plane, parametrized as

n,=(u+v,0, ,u-v) n?=4up. (92)
The two assertion§91) and (92) imply
2

n-g~2vq, and 0. (93

(n~q)2:

Consequently, from Eqs68) and (88), we have forg?/
(n-g)?>—0 orn?-0 (assuming the functions, andb, are
finite for all q)
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) Q —o0, or more preciselyg?— A2 with the normalization scale
n 0y = n? x e Ny Ty X,& A? k?>— o [cf. Eq. (56)]:
R qZHAZ
FIG. 4. Diagrammatics of the contractian,II’"n,: Only the a. (9% x) — 93 (98

tadpole contribution(proportional ton?) and the 3-gluon vertex
contribution(proportional ton,,n,) survive. All the terms drop out which implies that the gluon propagator becomes the bare

upon contraction witm,, andn,,. propagator at the renormalization point,
q2—>A2
x—0, B=p-—0, (94) Ada) — AP(). (99
K

. ) As we move away from the asymptotic normalization scale
so that we are left with only one unknown functigi. A the full gluon propagato(85) remains proportional to its
=1/a,. We find that in this limit Eqs(82) and (83) coin-  pare counterpart, modulo the functidn = 1/a, , which en-
cide, since codes all effects of including softer and softer gluon fluctua-

tions in the evolution equatio(®6),

~ ~ n v
guiirr=ily=—apl i 9 1 @+ R(@)
A @) =——=—8, (@)= —————|AL,(a),
. a, (9% x) b.(9% x)
and therefore only the tensor structurgn IT*” appears in (100

both equations. Using E¢95) together with the definition of

A with S/ given by Eq.(86) at the valuey=0, i.e.,
x, Eq. (68), and the expressiofi7) for II, we obtain the uv 9 y Eq.(89 X

master equatiorfor a, in the limit (94) n,d,+d,n,
S =0~ —— (101)
‘q
—b.(d? —_Lw —TI*"(q —
t (A5x)= 1-x p2 \at« (a,~a) Hence, the bare propagator and its inveits&ing now and
henceforthé—0) reads
- n,d,+q,n,
(n-q)z—nzqz) A® ()= A 102
4 Sl D= e |G g (102
1 d*k d
X[Eng 2 4n2(ﬁw(k)) 0,9
(2m) H&O)#V(q,—q)=(q2+Rk(qz)){gw— gz”l,
[ d*k
+5 zf n-(k—k’)n” (103
29° ) i k)

and the inversion property, noted after Eg0), is modified
for 54’0 AK, }L}\(HscO)+HK)I)::g}LV_ n,uqvl(n'q)'

(? !
X E[Aﬁ"(k)A‘K’, x(k’)Vm/y(k’,k,—q)])],
(96) C. Remarks
Let us summarize the conceptual steps of the preceding
wherek’=q—k, and we have utilized the form of the bare subsections. From the general form of the evolution equation
3-gluon vertexV(?, as given by Eq(B23). Notice that Eq.  (66) for the quadratidin the average gauge figldontribu-
(96) contains only the tadpole contribution and the 3-gluontions of the average effective action, we inferred a coupled
vertex contribution, as diagramatically represented in Fig. 4set of equation$82) and(83) that determine the exact form
all the other 4-gluon terms that are presenﬂ]gy of Eq.  Of the gluon propagator via E5) and(88) in terzms of t?e
(77) vanish identically upon contraction with, andn,, scalar functions, andb,. In the case of=n’q*(n-q)?,
because\ . is orthogonal ta, which is a direct consequence W€ could eliminate the dePe”dence on the funcbign and
. ~ arrive at the master equati@@6) for a, alone, the solution
of the orthogonality ofll with respect toq due to current ¢ \yhich determines the full gluon propagator by simply
conservatlen(bo(tor; prope(rg)es hold, of course, also for the mutiplying the bare propagator with the single functip.
bare functionsA,” and1L,”), The presumptiony—0 can be achieved either by lettimg
R R —0, or by consideringi?/(n-q)2—0. The former possibil-
n*A, ,,=0=A, ,n" g, ,,=0=II, ,.q" ity corresponds to going over to the light-cone gauge, while
(97)  the latter possibility is fulfilled in the kinematic regin@1)
The initial conditions for the evolution equatid@6) are  of “quasireal” gluons. In either case, we have the condition
dictated by asymptotic freedom in the ultraviolet limit@as (94), under which the master equati®6) is an exact equa-
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tion in the sense that it contains the full non-perturbativein which now only the 3-gluon contribution with the exact

evolution associated with the functicm, in general axial
gauges specified by the vectoy and the gauge parametgr

vertex function) and exact propagators, is present, while
the tadpole contribution, i.e., the first term on the right-hand

side of Eq.(96), vanishes since it is proportional t&. The
solution of Eq.(107) then determines the full gluon propa-
gator in terms ofZ, ., so that we have instead of E{.00

IV. SOLUTION FOR THE GLUON PROPAGATOR
IN THE LIGHT-CONE GAUGE

Recall that Eq.(96) holds for the class of axial gauges
(12) in general, viz. for any choice of , with finite n? and
arbitrary gauge parametét For n?#0, the expression on
the right-hand side of this equation is then still very difficult \yjth the bare propagatax!® given by Eq.(102.
to integrate, as has been discussed, e.g., in[R8f.for the “
casée® n,= (1,0,0,0)n?=1, andé=0. On the other hand, for
n?=0, which we will consider in the following, the right-
hand side of Eq(96) simplifies considerably, so that an ex-
act (numerica) integration is straightforward. Moreover, we

A w(@=Z(0)AD  (9), (108

B. The spectral representation of propagator and vertex
function

will show that it is even possible to integrate E§6) in
closed form by utilizing the methods of RéR2], with the

The evolution equatior§107) still contains the unknown
exact 3-gluon vertex functiol, which, as one would expect,

result being expressible in terms of elementary functions. would have to be determined first, by solving a correspond-

A. Evolution of the renormalization function 2, for n>=0

ing evolution equation for, itself involving higher-order
vertex functions. Luckily, the gauge symmetry properties of
QCD imply the Slavnov-Taylor identities, which are the

The light-cone gauge can be specified by choosing, in thyarg identities of QCD relating the vertex functions to the

parametrizatior(92), the constant vectan,, such that it is
directed along the forward light-cone in the z plane. Set-
ting in Eg.(92) u=0 andv=1, we have

n,=(10,,-1) n?=0. (104)

It follows then thaty=0, and if we introduce instead @f,
the dimensionless renormalization function

2
a,(g%0)

with initial condition (98) at the normalization scalé?
> k2 in the ultraviolet:

Z(q%)= , (105

G2 A2

Z(9®) — 1, (106

then we may rewrite the evolution equati(@6) as

b1 algdo)
Mz (qt) Nt @

- nMnV ((91:[,(1,1/ _ )
- (n'q)z E K (q’ q)

i L[ d% nk-k)
29 J(277)4 (n-q)?

(9 !
Sl (0AY A<k'>vwrv<k',k,—q)]),

nV

X

(107

8This case would correspond to choosing v =1/2 in Eq.(92).

propagator. In general these relations are non-trivial, how-
ever, in the class of axial gauges, the Slavnov-Taylor identi-
ties have a simple form. For example, the 3-gluon vertex
functionV can be expressed in terms of the propagatpas

Vo0 KK DATHO AT (K) =A% (K') — AR (K)
(109

where k’'=qg—k). This Slavnov-Taylor identity suggests
the following strategy(i) construct an ansatz fof, in terms

of A, such that Eq(109) is identically satisfied, andji)
insert this ansatz into the evolution equatid®7?) for Z,,
upon which one obtains a closed equation for the propagator
A .., because of Eq$108) and(102). To do so, we adopt the
elegant method of Delbourgd 6] and represent the exact
propagator in terms of its spectral representation

P, (W?)
@2+ R, (q%)—W?’
(110

Al @)=S,(a) f w2

whereS, ,(q) is defined by Eq(101), and the singularity at
W2=q?+R, in the denominator is to be evaluated with the
usual ie prescription. The form(110) includes the bare
propagator(102, A, =S /(a®+R,(g?), upon setting
p(W?)=8(W?). The physical interpretion of Eq110) is
very intuitive: It expresses the propagator for a gluon with
momentumq and subject to the infrared cut-off scale
through the weightedpectral density,(W?) which corre-
sponds to the number density of virtual gluon fluctuations
with an effective massV. The case ,(W?) = §(W?) corre-
sponds then to a massless, non-interacting on-shell gluon
(W=0). This notion of the spectral densipy, is very remi-
nescent of the gluon distribution function which is measured
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in lepton-hadron or hadron-hadron collisions, and which detjon for the 3-gluon vertex functiob? in terms of the spectral
scribes the substructure of a gluon in terms of virtual fluc-densityp, . SinceA, andp, are not known at this point, we
tuations. We will return to this issue in the next section.  must make an ansatz fov that is compatible with the
Inserting the spectral representatidiO) for A, into the  Slavnov-Taylor identity. A possible forfil6] that satisfies
Slavnov-Taylor identityf109), one obtains an implicit equa- the identity(109), is the following spectral ansatz:

S'EN@)S "I(k)S PT(k )V (g,k,k")

NoT

1
A’K‘A(Q)AZ”(k)A’ZT(k’)VmT(q,k,k’)=§f dW2p (W?) :
[(@%+ R, (%)~ W2 (K*+ R ,((k2) = W[ (K 2+ R, (K'2)) — W?]

(111

The integrand on the left-hand side is the symmetrical prodwhere

uct of three propagators;, /[ (p*+R,(p?))—W?] and the A

bare 3-gluon verte/(?), weighted by the spectral density P(a%,W?)=q,S M (q)I1 . (02, WAn”
p.(W?). Notice that the combination of propagators and ver- =

tex function is just what is required to solve the identity R e ) 2 \\2\ 0¥

(109, and moreover, it respects Bose symmetry, because all n-q NIl (amWAn®, - (113
three legs are represented symmetrically. Also, the appear-

ance of the bare vertex on the right-hand side of @41  and

doesnotimply that we are limiting ourselves to lowest order
perturbation theory: on the contrary, the propagatbfsat-
tached toV(® are the full propagators that embody the dy-
namics from thegperturbative ultraviolet regime all the way
into the (non-perturbative infrared domain. Nevertheless, X S M ee()goo’ ddijery

Eq. (111 is just an ansatz, and hardly unique: one may think

of constructing a different form that is also compatible with xvfro,)x‘,"yc'b(k’,k, -q) (114)
Eq. (109 but has a richer structure.

. ig? [ d%
/ 2 ZA N (0),acd L !
I, (9% W9) 5 f—(Zﬂ-)“V”M (9,—k,—k")

is the self-energy functiofto orderg?) of an intermediate
C. Solution for the spectral densityp,. and the renormalization virtual gluon with massw. The remarkable feature of this
function 2, equation is that it is novinear in the spectral density, of
Putting the pieces together, we first multiply E407) by ~ the propagator, in contrast to the previous equatibdi)
—(n-g)?=—(n-g)g,n’, so that both sides of the equation which involved a prodlzjct ofzpropagat_ors. After integration of
are proportional ton”. Next, we multiply both sides by Ed- (112 ov_erdt=di<l/.(2;<) as defined by Eq(56), the
A ,,(9), in order to bring the right-hand side to the form formal solution forZ, ~ is
A A AV, as required by Eq11d). Finally, we insert the
spectral representatiofi10 and (111 for the propagators 1 1
A, respectively forA, A, A, V. As the result of these ma- Z.(q?) _cho)(qz)
nipulations, we obtain the following equation, which corre-

sponds to Eq(107): (W2
+f 5 P (2 ) ——Pd?W?).
2 (@°+R(q9)—W+ie
9 1 9 > p(W?) PEWD)
Mz ) @R -WErie 0 (115
(112

Here the first term is determined by the initial condition
(106) that Z,(g?) =1 at the normalization poinh. As g2
—AZ2, the contribution Z{®"! must reproduce the bare
9Atkinson et al. [19] have conjectured that the fortd11) does propagator with spectral density,(W?)— §(W?) in the

not necessarily comply with the Slavnov-Taylor identity, becausgjmit g—0 due to asymptotic freedom, i.e.,

the indexx of V, ., is contracted with thg-propagator, so that it is

not possible to isolate a contraction of the vertex function with 1 p (Wz)

Instead a more complex ansatz is proposedl1@ which avoids —:q2f dwW?2 K —. (119

this asymmetry. However, in the light-cone gaude- 0, the ansatz Z(K")(qz) (q2+ Rk(qz))_Wz+ le

of Atkinson et al. coincides with Eq(111) for n>=0, so that one

may conclude that in the light-cone gauge these subtle ambiguitie¥/hat remains to be done is to compute the second term in
are absent. Eq.(115. Thus, we insert the explicit expressions &jy, of
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Eq. (109, andvﬁfy)fbc of Eq. (B23) of Appendix B, into Eq.  which discourage an analytical evaluation. We intend to in-

(114 for IT/ (W2 g), and after some algebra, we arrive at thevestigate solutions to E§118) in the near future by integrat-

following expression fofP, : ing Eq.(117) numerically, using the infrared regulatdrl9).
2ig2C D. Asymptotic behavior of the gluon propagator

Pk(qz,wz):_ngf 4K _ Yy p- 9- propag -
(2m)* Notwithstanding an exact numerical study of E#18), it

is desirable to obtain at least an approximate analytical solu-
n-(k—k")n-k’ tion in the ultraviolet and the infrared limits. This may elu-
cidate the behavior in these two extreme limits of the gluon
propagatorAK=ZKA(K°) within our specific approximate ap-
2C proach. Furthermore, it may serve as a check for an exact
29_G| (G2 W2), (1170  numerical treatment. In order to extract the behavior of
8t Z.(9? for g°>—0 andg®—x, we note that the dominant
contribution tol (g, W?) of Eq. (117 arises from fluctua-
wherek’=q—k ?”d the factolCq=N.=3 results from the  tjons at smalk or k' =g—k; only the presence of the infra-
color tracef?°f ;= 6""C¢ . We have abbreviated the inte- red regulatoR, prevents a divergence. Hence, the integrand
gral (including a factor 1) as!,(q%W?) for later conve- in Eq.(117) is substantially enhanced in the infrared region,

X

[(K2+R,(k?))— W[ (K %+ R, (k'?))—W?]

=-q

nience. Hence, Eq115 becomes wherek? k' 2< k2, and where from Eq(32), R,— x2. When
0. (W2) on the other han#?,k 2> k2, the effect of the infrared regu-
5 =qu dwo— K2 — lator vanishes according to E(B2): R,—0. Thus, we may
Z,.(9°) (@°+R(Q%))—W+ie replaceR, by
2c 2) L (p=a.kK'
x| 1— 98 fIK(quWZ) . (118) RK(p )_’K (p q,k,k )1 (120)
aw

which is independent g2, as desired, but which has quali-
In order to evaluaté,(q2,W2), we must now finally commit tatively the same effect &,(p?) on the propagator, in both

ourselves to a specific form of the infrared reguld@g¢p?).  the infrared and the ultraviolet,
In general, a closed analytic solution is not possible as long

2 2

asR, varies strongly withp?/«?, so that a humerical solu- 1 - 1 _>[ Up® for p—e (121)
tion must be found on a computer. Specifically, we would p2+R(p?) p2+x2 |Uk* for p°—0.
like to use a slight generalization of the for(31) suggested
in Sec. I, Substituting Eq(120 in Eq. (117, we obtain

—p?/ K2 1 n-(k—=k’)n-k’

RK(DZ): p2 exq p Ik ) ’ (119) IK(qZ,WZ)~ __f d4k ( )
exp(— p?/A?)—exp — p?/ «?) !

[(K?+ k) —W2I[(K 2+ k) — W2t]
which includes an additional ultraviolet cut-off>« and (122
which contains Eq(31) for A—. Such a form introduces a which can be evaluated exactly, by using the standard Feyn-

non-linear p?-dependence in the denominatorg(p? man parametrizatiof86], and integrating over the momenta
+R,(p?)—W?]" ! that appear in Eq$118) and(117), k=g—k’' in a space ofl=2w dimensions,

n-(k—=k’)n-k’

I E(w)(q2yw2) :%f dZwk
[(K2+ &%) = W2 (K % ?) — WP

J jdz 3(n k)(n-q)—2(n-k)*>—(n-q)?
—2xk- q+xq?+ k?—W?]?

:Wwefiwwr(Z—w)foldx(l—x)(ZX—1)(x(1_x)q2+Kz_Wz)wfz_
(123

The remaining integral can be reduced to integrals of the Mmeo&‘l(l—x)”‘l(x—y)‘w which are integral representa-
tions of the hypergeometric functida(w,u;u+uv;1/y), so that the result for, can be cast in the following forrf22]:
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I&w)(qzlw2) — Wwefiﬂ'w(KZ_WZ)w721"(2_ (1))

. . I . . I
_F 2_(1), 21 _,W __F :2_(1), L= W )

The expressionl22) is singular ind=4 dimensions due to the pole of the Gamma funclig2 — w) which arises from the
usual ultraviolet divergence of Feynman integrals of the 9. If we were able to analytically compute of the original
integral (117) with R, given by Eq.(119), instead of the approximate forti22) with R, replaced byx?, this divergence
would be avoided due to the exponential suppression of montgnta in Eq. (119). The result(124) of the approximate
integral (122 therefore has to be regularized by hand, which we achieve by making a subtraction at some mag$ scale
< A?, which we choose ag?=«?,

129 g2, W2) = lim [10°9)(q2,W?) — 1092, k2)]. (125

w—2

This regularized form (®9(g?,W?) is then finite, because, from the following property of the imaginary part of the hyper-
geometric functiorF(«, B; v;X),

27T (y)6(x—1)
F(a) (BT (1+y—a—p)

(x=1)"" " PE(y—a,y=B; 1+y—a—pB; 1-X),
(126)

F(a,B;y:x+ie)—F(a,B;y;Xx—i€)=

one readily infers that the factdl(2— w) in Eq. (124) cancels in the imaginary part of the regularized expresdiaf), while
the real part is finite. Hence, the limit—2 is now well defined, and Eq125 can be evaluated in terms of elementary
functions, by using some transformation properfigg| of the hypergeometric function. The result is

11992, W?) = Rel {*9(q2, W?) +i Im 1 1°9(g2, W?) (127

with the real part,

Rel (®9(g2, W3) = — 1(1—42)3’2|n e 6(1—4z)— 1(4z— 1)3’2arctar( ! ) 6(4z—1)+ ﬂ(z— 1)
. ' 6 1+\1-4z 3 Vaz—1 3
11 [ z¢f T
+ Eln 7 + ﬁ (128
the imaginary part,
Im 10°9)( g2, W2) = — %(1—42)3’20(1—42), (129
where
W2_ K2
7= — (W?= k?). (130
q
Substituting Eq(127) in Eq. (118 for Z_*, we get
1 * pK(WZ) QZCG
~?[“awe 1- =219 g2 W) . (131
Z(9) 0 (qP+KD)-Wtie gt

Upon taking the discontinuity aj?=W?— «?, using the principal-value prescriptioy£ie) 1= P(1/y)= i d(y), and cal-
culating the imaginary part of E§131), one arrives at the following integral equation foy:

Im 1 (%92 W?). (132

2 2 2
5(q ) g CGJq2/4+K2dW2 pK(W )

+
Z(q®) 8w ) (9%+ k%) —W?

9°Cq
p(@%)| 1+ ——Rel(*q? 0%+ K7)
8m
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For the casg)?=0, we recover, as anticipated, the free so-

lution for the spectral density,

2_.0

g
p(a%) = (g%

920

Z(9®) = 1, (133

which corresponds to a single bare on-shell gluon.

For the casg®+0, we note that on the left-hand side of

Eq. (132, Rd (™ is to be evaluated from Eq128 at W?
=02+ 2, i.e. z=1, while on the right-hand side of Eq.
(132 the 6-function in Iml {®9 from Eq. (129 cuts off the
upper integration limit az= 1/4, or, W?=q?/4+ k2. Further-
more, if we consideq?= «? (keeping in mind to lek>—0
at the engl and subtract the “single-gluon” contribution
(133, to define the “multi-gluon” contribution of virtual
fluctuations,
pla)=pa®)—p(d?), pP(a)=8(d?),
(134

we find after insertion of the expressiofls28)—(130 into
Eq. (132

. L] 11g%ce q_ZH
p«(0) 1+—487T2 In( 2
2w\ 32
S Fee-
. 9°Cq (%4, , q )
o 48772f0 q%—w? P,
(139

where we have shifted the variable of integration on the

right-hand sidey?—w?=W?— k2. Notice the characteristic
feature of the integral ovewr?: it is dominated by the con-
tributions from the regiomv?~q?, provided thatp, is finite
and well-behaved in that region. From Ed.35, we now
can extract the asymptotic behavior @f in the ultraviolet
q2—o and the infrared)>—0.

(@) The ultraviolet limitg?>—A? (A?>—x): In the large-

g? limit, the logarithm in the brackets of the left-hand side of and (142), by utilizing the relation between

Eqg. (135 dominates, so that approximately

. 119°C¢. [ 9?

2 . 2 In| —

a°p.(9°) 282 (K2

°Cg (o -
~— i%‘j foq “dinwwp (w?).  (136)
It is easy to see, that the form
- 1 Co 11g°Cg
(P)==| ———|, cl=——+, (13

PLA) q2<ln2(q2/;<2)) 4872 (137

is a consistent ultraviolet solution when substituted in Eq.

(136).

PHYSICAL REVIEW B0 034012

(b) The infrared limitg®?— 0 (k>—0): Wheng?~ «? with
«? tending tokpr, Eq.(1), we can drop the logarithm on the
left-hand side of Eq(135), so that

L 4w?
2 T2
- g%Cg ([ q2adw? q -
Codd) ==~ f e Wp(w).
s
(138
An approximate solution in this case is
~ 1 C0K2 -~ gZCG
p (%)~ g( _qz ) , Co'= 482" (139

which is consistent with Eq(137) in the infrared, whew?

2
~Q“—0.

The actual gluon propagatdr, ,,(q) is now obtained
by inserting the spectral densif§34) into the spectral rep-
resentation(110), using the expressions for the ultraviolet
limit and the infrared region, Eq$137) and (139, respec-
tively:

-1

S, 11g%C 2

Alc,uv(q)~ £ (q) 1+ g Gln q—)

' q2+ K2 487 K?
for %> «?, (140

S.(d)| . 9°Ce?|
A, L (q)~—L= — for q°—0,
) g2+ k2 487° Kk b

(141

WhereS/’w(q) is defined in Eq(101). In the ultraviolet limit
gq°—», we recover the famous logarithmic dependence
*1/g°In(g?), while in the infrared limitg?>— 0, the leading
behavior is a power-law 1/g*.

The corresponding ultraviolet and infrared behavior of the
renormalization functiorZ,(g?) can be read off Eqg140)
« pvandz,,
Eqgs.(108 and(102. These asymptotic results may be com-
bined into a phenomenological, but hardly unique formula
which interpolates smoothly between the ultraviolet and the
infrared limit:

2

AK,/.LV(q)_qu’_KZZK(q )! (142)
with
2 2~

= 9°Ce q

Z(99)=(1-C(g?))| 1+ —

(@9)=@1-C(q%)) 182 2

119%Cs [ 2| ]

+C(g?)| 1+ In| — 143
(9°) 187 (KZ (143
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FIG. 5. Left panel: The inverse renormalization funct%]jl, Eq. (143 versusg? for different values ofk, for different choices ofk.
Right panel: the corresponding gluon propagatqr, Eq. (142), in contrast to the bare propagatbff)).

Here the prefactors -4 C andC interpolate between the in- mate the infrared regulatd®,(q?) by its asymptotic behav-
frared and the ultraviolet limits, witlC tending to 1 agj®> ior in the limits g?>— andq®—0, respectively.
—A? and approaching 0 a$’—0, e.g. C(g?)=2[1 The ultraviolet result140 for Z, is characterized by the
—A%(g?+A?)]. logarithmic behavior consistent with asymptotic freedom,
since the ratio of bare and renormalized coupling constants
gS/gZ=Z;1<1, corresponding anti-screening of the color
charge, i.e., the bare charge is larger than the renormalized
one (as opposed to QED, wheé/e2>1, implying screen-
ing of the electric charge due to virtual pair creajion
The infrared solution forZ,, Eq. (141), on the other
hand, exposes ad? behavior, which would correspond to a
linear static potentiaV/(r)ccr asr—oo, as expected for con-
Let us summarize the strategy that has led to the maifinement in the long-wavelength limias opposed to QED,
result of this paper, namely the asymptotic light-cone-gaugevhere the infrared behavior is1/q?, corresponding to the
solutions of the renormalization functiafi, for g>—« and  classical Coulomb potentiaf(r)=1/r]. Although the gluon
g°—0, Egs.(140), (141) and(143. We derived an evolution propagatorA . uv» and thusz, , is a gauge-dependent ob-
equation(107) for Z, that involves only the exact propagator ject, its gauge-invariant physics content may be extracted by
A, ., and the exact 3-gluon verteX,,, , but no higher- relating it to the gauge-invariant Wilson lo¢p8].
order vertex functions. To obtain a closed equation for the

In Fig. 5a, we plot this form of, in comparison with the
asymptotic result§137) and(139), for different choices ok.
Figure 5b shows the corresponding gluon propagatpin
contrast to the free propagataf® .

E. Remarks

gluon propagator alone, the 3-gluon vertex function was re- V. PHENOMENOLOGICAL APPLICATIONS
lated to the propagator via the Slavnov-Taylor identit9) ) ]
and anansatzwas constructed fov,,, , Eq. (111, which In this section, we apply our results to tkedependent

obeys the constraining Slavnov-Taylor identity. The necestenormalization functionz,(q®) to illustrate two important
sity of making a particulafnon-unique ansatz is clearly the phenomenpl_oglcal connections with expenmenta_lly measur-
weakest point in our approach, yet it seems to be the onible quantities, namely the QCD running coupliag(q?)

way to trade in the unknows,, in order to obtain a closed and the gluon distribution functio(q). First we infer from
equation. The resulting evolution equatitiri2) for Z, then 2« the running of the coupling(q©), using standard renor-
contains solely the gluon propagator in terms of its spectrainalization group arguments, and then we rel&fevia the
densityp,., and thus expresses the intimate relation betweefiPectral densityp, of the gluon propagator, to the gluon
the renormalization function and the full gluon propagtmm  distribution functionG(q, ) and its evolution equation.

the basis of the specific ansatz for the 3-gluon vertéke
final equation(112) for Z, could be solved analytically in
terms of elementary functions in the asymptotic ultraviolet Recall that the renormalized gluon propagator, respec-
q?—o and the deep infrared>— 0, provided we approxi- tively the renormalized coupling, satisfgf. (46)]

A. Renormalization group equation and running coupling
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9(a%) = Z (9% "7,,
(144

where the scalar propagator functian.(q?) is related to
Ay, u(Q) by

A (91 =Z(a>)A(g?)

A w(D)=4(0%S,,(q) (145)

with S, given by Eq.(101). As in Eq.(48), we specify the
initial conditions at the scald>1 GeV where we normalize
the theory, such that aj?=A?, it coincides with the bare
one,

(0)

K, uv

ZK(AZ):]_, (A2)1 gO:g(AZ)

(146)

In order to invoke the renormalization group formalism
for the light-cone gauge representation &f(q), Z.(g?),
and g(g?), it is convenient to introduce the dimensionless
propagator functiod through

A (AD)=A

q2

D e

(147

K

g(AZ)) =q%A,(q?).

How the physics changes when we varywith (« fixed) is
described by the renormalization group equationDor: If

we change the scalk, e.g. byA2—\A?, then the renormal-
izability of the theory requires that this is equivalent to a
rescaling ofD . by the factorZ,, that is,

2 2

q q
DK(P, Q(AZ))ZZK e g(A?), A)
q° X
XD, | —.g(\A?) |, (149
where we have written
q2
ZK(QZ)EZK(P, g(A?), A) (149

in order to expose the implick-dependence i, . Now let
us define the variable

_ (q2
7=—In
and differentiate Eq(148 with respect to. Then, setting

— (150
K
A =1 yields the standard renormalization group equation:

2

D.(7,9)=0, (151

J
E_—’—BK(Q)—’— 7]1((7-19)

where

J
IBK(g)Eﬁg()\AZH)\:l! (152)

PHYSICAL REVIEW B0 034012

|

with B, denoting theCallan-Szymanzik functian the pres-
ence of the cut-off scale, and 5, theanomalous dimension
7, also being«-dependent. The solutidid51) to the renor-
malization group equation fdD, is obviously

q2
e g(A?), A , (153

A=1

0
77K( T, g)=5|nZK<

DK( 7, gO) = DK(O’ g( - T))

xexp{ — fonT, 7.7, 9(—=7"))

(154

o]

2 2
a q
> 9(a?)
K

re 9(A?)

:DK

|

2dq2

Xex _J TP
P q’2

q'2
— o

K

|

which shows, sinceD,=q%A,, that the evolution of the
gluon propagator is simply governed by the multiplicative
factor Z,. involving the integrated anomalous dimensigp.

In view of Eq. (148 we therefore can make the identifica-

tion,
"2
s -
2

q? dq
J=
q
(156)

In order to find the large? behavior, we return to the
approximate solutiorﬁ;l of Eq. (1493, and invert it by ex-
panding in a power series o,

Q'z)) ,

(155

2

1 1
, 9(g9?)

o

q q

K2

In ZK(

2

11C
Z() c

3

9
(4)?

+0(g%. (157

2
q
2

In the largeg? limit, substitution of Eq(157) into Eq.(152)
then yields the asymptotic behavior of ti# -function to
orderO(g®):

1
(4)?

11C¢
3

B.(9)=-BOg*+0(g®) pO=

(158

The solution of Eq(152) together with Eq(158) then yields
the (gauge-invariantlargeq? form of running coupling
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o g2 ing with momentun® ", with the gluon fluctuations carrying
9°%(9?)= +0(gh a fractionx=q*/P* in an intervaldx and transverse mo-
11Cq 202 2 menta in a range?q, [39]:
59°In(q*/ k%)
3(4)
1 . .-
1 G(x,q,)= +J dr-d?r, el@r -arr)
= , (159 xP
ICe 1 ) L
Yt a7 AGeo) X (P|F 0y~ ,F)Er~,00F(0,0,0)|P).
_ (163
with Adcp=k’exi] —1/(8©g?)] andg=g(«?). Equivalent _ _
to Eq. (159 is the running couplingrs=g2/(4m) at 1-loop ~ Here the path-ordering exponential
order, -
é‘(rz,rl)EPexp{ingzdr'Ag(O,r',OL)Ta
(1) 2y _ 127 r
as’(q9)= (160 (164

11Cq In(g?/Adcp)

makes the definition(163) with the non-local operator

- . . - 2 . . .
Similarly, the solution of Eq(153) in the largeg* limit gives FH(rD)F(r;) fully gauge-invariant, as it orders the

the (gauge-dependenanomalous dimension,(q?) to order

2. gauge-field operatorsl ; T2 along the line-integral between
O(9°): i + , . .
r; andr, . Moreover, it provides the link to compute the
9?2 11C gluon distribution function in different gauges.
77(qZ)z_z_Gjuo(g“)_ (161 We adopt the general definition to our choice of light-
(4m)? 6 cone gauge, for which in terms of light-cone variables the

S ) choice of the gauge vectar, , Eq. (104 reads,
The largeq” estimates(158—(161), resulting from our ap-
proximate solutionZ, of Eq. (143, agree with the standard - -
results obtained within perturbation theory for the pure n,=(n",n",n;)=(0,1,0,) (169
gauge theory42]. ,

so that the gauge constraifi2) becomes

B. Evolution of the gluon distribution function

— + —
The gluonic substructure of a hadron can be measured in n-A=A"=A_=0. (166

experiments, for instance in deep-inelastic lepton hadro . . .
scattering or high-energy hadronic collisions, through theq-hus’ the facto€ in Eq. (163 is equal to unity. Futhermore,

gluon distribution function. The gluon distribution function :/_vehtnote that Sp?glﬂca”y in the axial gaugescluding the
is defined[39] as the density of gluon fluctuations inside a ight-cone gauge
hadron, that is, in terms of matrix elements in a hadron state ‘
of specific operators that count the number of gluons carry- FrrEI=0t AN A), (167
ing a certain fractionx of the hadron momentur®. The
natural choice for such a number operator wouldfeA*,  where a summation over the transverse comporients2 is
however, in QCD this is not a gauge-invariant object. In-understood, and~=4d/dr*. This simple relation involves
stead, one uses the gauge-invariant oper#lgy7*". The only the transverse gauge field§, which has its physics
precise definition of the gluon distribution function is most origin in the fact that in the axial gauges only the physical,
conveniently expressed in thefinite momentum framén  transverse gluon degrees of freedom propagate, whife
which the hadron moves in the—t plane along the light vanishes and4~ is a pure gauge which decouples. As a
cone. Employing the standard light-cone representation ofonsequence, the gauge-invariant definitid63 of the
four-vectors, gluon distribution takes the following form in the light-cone
. . gauge:
vhP=wt v v,), vi=v=0%%+03 v, =0v?),

_ > .
V=NV, 1%The only non-vanishing components of the gauge-field tensor
FHY=—F"* are
1 -
v2=vtv —v?, UMW'I‘L:E(U+W_+U_W+)_UJ_-WJ_ , Fr-=—9"A~, Fri=gt Al

Fl=g Al-d A" —ig[A~, A",
the gluon distribution function is then the average number of S _
gluons at light-cone time* =0 in a hadron statéP) mov- Fl=9' Al-d' A'—ig[A', A'].
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G(x,q,)=xP* J drd?r el@ -an) p(q?)= f dxcRq, p(x,q, ,97), 175

X(P|A'(0r~,r)A4(0,0,0)|P), (168 e see from Eqs(170—(175 that the spectral density

summed over the transverse componeéntd,2. In order to p(X,0.,0%) can be identified with the gluon distribution

extend this expression to accommodate our scale-depende%'zo)’
formalism of Sec. 11 B, in which the gluon 2-point functions ) 5
carry an explicitc-dependence due to the infrared regulator Pe(X,0,,9%)=0,(X,q,,99), (179
R#E", EQ.(26), we generalize Eq.168 by
as one may intuitively expect, since the gluon distribution

_ N Ri,j(az) _ R.(%)| . measures the density of gluonic fluctuations which is nothing
AlA— A N ——— A=A 1+ —— | A'A;, else but the “level density” of gluon states described by the
a a : . )
(169 spectral density. Accordingly, the bare dens;olS? , in the
absence of interactions, just
with R, given by Eg. (31) or Eg. (119. Thus, the
x-dependent gluon distribution may be defined as pO(x,q, ,0%)=09(x,q, ,9%)=8(1—x)%(q,)8(g?),
177
xP* s (
G ’ ’ 2 E—Jd —d2 iQr —q.-r;) ) )
«(X,0.,07) 1+R.(9%)/q? rarne corresponds to single bare gluon carrying the full momentum

‘ R . fractionx=1. We remark that the densit76) satisfies the
x{P|A'(0r~,r )A(0,0,0)|P). (170  following sum rule[21]:

Now, as discussed in Appendix E, the expectation value of 1
the gluon number operatod'A4; on the right-hand side is f dxxp(x,q, ,0%)=1. (178
essentially the gluon spectral density that enters the spec- 0
tral representatiofil 10) of the gluon propagator. Precisely, it
is the transverse spatial componenf)'=p11(*) 4 p22(H) As an immediate consequence of the above identification
of the causal correlation function of p, with the gluon distributiong,, the evolution of the
latter is governed again by the renormalizati(%(rjl) functign
(+) _ 4y Aig-r P v Since the gluon propagatdr, AQ)=Z(9HAY) (q), we
P ) fd et (PIAKNATOIP),  A7D see from Eq.(110 that alsog,((qz):ZK(qz)pf( Ng?). To
derive the precise form of the evolution equation dqr, let

+ = i i -- i i . . .
atr"=0. Similarly, the anti-causal correlator is defined as us consider the transverse-momentum integrated density,

Pl = [ dire (PLAY0) A4(1)IP). (172
pk(xqu)EJ dqupK(quL qu)l (179)
The spectral density is the sum of both contributions,

1 and introduce th&&-moments
Pr wl @D =50 (@ + 0L, (@)]=pL", (),

(173 = (N.GP)= J S Tp (0, q?). (180
0

where the latter equality holds only if translational invari-
ance is preservedin which case the crossing relation
p'",,==p\",,=p),, existy, while it is invalid in phys-
ics situations where one encounters a spatially inhomog- _ _

enous medium. In the present context, we are interested in P (01 =p(1,01)=Z(0%)p V(107 (181
the gluon distribution of a physical hadronic state in free

space, so that we may use H473) to relate the spectral Expressingz, in terms of the anomalous dimensian , Eq.
density to the gluon distribution. To do so, we first note that(15¢),
in the light-cone gauge, the tensor stuctureppf,, is iden-

tical to that of the propagatdcf. Appendix B,

The first moment is just

2

1 q2 dq , ,
- 2 pHv T AR v N kS 2
pK,,uV(q)_pK(q ) g,uv_ n-q _PK(q )SW(Q) q
(174 o .
the N-th moment generalization of E¢L81) may be written
Defining the density,(x,q, ,q%) through as
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where p{? is defined in Eq.(177). Multiplying by x and

~ 1 q2 dq/2 , , :
5 (N,g2)=exp| — _J — 7.N,q'2 g(q'?) integrating ovex from 0 to 1 yields on account of the sum
2) 2 rule (178 an integral equation fog, in terms of the prob-
ability P,
XpO(N,g)
= 2N, p(N,6?). I G s M ik j d2P(2,9(0'2) 2 H(?).
The evolution withg? of the spectral density itN-space is (190

therefore governed by the evolution equation

P 1 This equation is reminescent of E4.18 encountered in the
2 =5 (N,g?)=— = 7(N,q?, 25 (N,g2). context of the evolution of the gluon propagator, reflecting
P(N00) 27 (N.a” 9(@™)pu(N.a%) the universal role of the renormalization functiéf) in the
(184 light-cone gauge.

If we define a probability distributio®(x,g(q?)) as

ACKNOWLEDGMENTS
f dxx¥"1P(N,g(g?))=— 177 (N,g% g(g?), This work was supported in part by the U.S. Department
27 of Energy under contract DE-AC02-98CH10886.
(189
we can express E184) as follows: APPENDIX A: DEFINITIONS AND NOTATION

5 dz This appendix gives a summary of the basic quantities
2_ | 2< 2 encountered in the paper, and the various notations used.
g2t )= f P.g(a")p.(x.a%). (189 Throughout the paper pur8U(3). Yang-Mills theory in
Minkowski space is considered, witi.=3 colors and the
This evolution equation has the form of the DGLAP masterabsence of quark degrees of freedom.
equation[9], however, with the essential difference that it Our conventions for placing indices and labels are the
contains the non-perturbative infrared physics as well, whildollowing:

the DGLAP equation corresponds to the perturbative limit of ~Lorentz vector indiceg, v, .. . may be raised or lowered
Eq. (186). This is easily realized by expanding the probabil-according to the Minkowski metrig,,=diag(1-1,—1,
ity function P in power ofg?, —1), and the usual convention for summation over repeated
indices is understood.
9%(e?) (qz) 2(?) 2 Similarly, color indicesa,b, ... may be raised or low-
P(x,9(g%)= PO(x) 5 M(x) ered according to the commutation rules of 8g(3) gen-
8w erators, Eq(A7).

(187) All other labels that do not refer to internal degrees of
freedom, as e.gl;, or I'?, are consistently placed either as

and substituting in Eq186). It is now evident thaP(®) must subscripts or Superscripts.

coincide with the DGLAP probability for gluon splittingy In order to avoid “inflationary labeling” with sub- or
—99[9], superscripts, we often choose to suppress the color indices of
1 vectors or tensors, when the color labels correspond to the
P(O)(x) = PDELAP ) ZCG( X +—X+z(1 x)) Lorentz indices, e.g],“z'j}(q,g’)zl“w '
1- X Furthermore, the following shorthand notations are em-

(189 ployed:

Hence, one may regafd0] P(x,g(g%)) as a generalization

of the DGLAP probability to all orders ig2/8m2, or ay/27. A-B=A,g""B AOBEJ d*xA, (X)BA(x) (A1)
The integral form of the evolution equati¢h86) can now H” . ”

be expressed as

pe(x,0%) = Z(02)p P (x,0%) + Z(0?) (AB)-C=A"B'C,,,

K z

<[ ‘fd—ffold;p(z,g<q'2>)pk(§,qZ)z1(“—7 (AB)-C= [ dixaty(A0B Y)C, %) (A2

(189 We use the symbol Tr for the trace over discrete indices,
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A2(x)B2(y)g#'8?P5%(x—y)  in space-time,

TI{AB]= X (A3)
Az(k)BV(k’)g’”ﬁbé“(k— k') in momentum space.

Similarly, we use the symbol Sp for tracing over discrete indices as well as integrating over continuous variables,

fd“xd“yTr[A(x)B(y)] in space-time,

SHAB]= e dhe (A4)

(2m)* (2m)*

T Ak)B(k")] in momentum space.

The gauge fields denoted by4,(x)=T2A%(x), and the ~ gauges and focus our attention on the gauge field sector. Our

correspondinggauge field tensoland covariant derivative formulation is in complete analogy with the usual path-
are defined as integral formalism of QCD, except for the presence of the

infrared scalec which effectively truncates the theory to one
which includes only field modes with momentax. In the

—_Tara —
FunG)=TEF (0 (—ig)[D#’ D.] limit «— 0 the full quantum theory is recovered, whereas the
opposite limitk— oo corresponds to the pure classical Yang-
D,(x)=4d,—igT*AL(X)=0d,—igA,(x), Mills theory.
(A5) The scale-dependent vacuum persistance amplitude
S Z,[J1=(0|0) s, in the presence of an external soutgand
or, explicitly in color components, the infrared regulatof®, (with lim, ,%,=0) is defined as

Fo,=0,A%=a,A%+gf2 ADAS
zK[J]=/\/7f DAde(M)S(F[A])

D2P= 609, —gfa A, . (AB)
X exfi(Sym[ A]+ T A) lexpi R, [A]),

The derivatived,,=d/ 9x* acts on the space-time argument B

XH= (x°,>?), and the generators of ti&U(3) color group are
the traceless Hermitian matricdg with the structure con- 4 the expectation values tine-orderedproducts of field

b . .
;ta;n;r;;i ¢, as matrix elementsa(b, ... running from 1 to operatorg(in the presence dR,) are given by
C
Tr(Ta,Tb)chﬁab, [Ta,Tb]Z +ifab°Tc, <A211(X1) o A::(Xn)%(
(T?)pe= —if3,= —ifae (A7) =(0| T[Af}l(xl) L AR (x0)1]0) «

For example, thevang-Mills actionreads then with these
conventions: K[o]

X exfi(Sym[A]+T°A)]
x exp(i R, [A]) T[Aj;l(xl) . .Aj‘;n(xn)].
fd“x{(a A2)2= (9, A% (3" A" ) (B2)

f DAde(M)S(F[A])

_ _J’ d4X.7:a ,uv, a(X)

+ 9 apd 9, AD AR DAY Here t_he functipnal integration i_s over all gauge field con-
figurations with the path-integral measureDA
+g2fabepab’ei gb qeqm by (A8)  =ILLILAAL(X), and Syu[Al=—3/d*F,,F*". The
determinant det{l) is the Faddeev-Popov determinant for
the matrixM p(x,y) = SF3(x)/ Sw®(y) with the gauge con-
straint for non-covariant gaugeS® A(x)]=n-.A43(x)=0
(n* being a constant 4-vecforAs discussed in Sec. Il, the
Here we recollect the formulas for the various functionals factor detM) 8(F[.A]) can be converted into a ghost field
Green functions and vertex functions that we refer to in thecontribution to the action in the exponential of EB1). The
paper. We restrict ourselves to the case of non-covariargreat advantage of non-covariant gauges is the decoupling of

APPENDIX B: SCALE-DEPENDENT GENERATING
FUNCTIONALS AND n-POINT FUNCTIONS
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the ghost degrees of freedom from the gauge field, so thdactors out when generating the gluon Green functions from

Eqg. (B1) can be written as a sum of a ghost contribution andEq. (B3) via

a gauge field contribution,
2] 7.0,01=2J1+2{"[0,0], (B3)
where[cf. Egs.(17)—(20)],

ZW1 7= fDAexp{ fd“ (

(n”A )2+ 72 A“)]exmmk[A])

4]-'2,,.7-'“V

2¢
(B4)

ZMo,0]= f DAeXP[i f d*X(7a(6°°N#3,) mp+ T
o7 el R L), ®5)

whereR [ A] andR [ 5, 5] are given by Eqs(24) and(25),

respectively. Concerning the dynamics of the gluon gaugéation values of time-orderedr{ . .

repeated functional differentiation
Z.1016"2,[J,0,01 8T"| /=5 s—0o- For the same reason,
the normalization\’ in Eq. (B1) is irrelevant. Hence we
focus on the pure gauge field functior&lV , Eq. (B4), and
define for convenience

Sef‘f[A!j]EJ d4 <_Z‘/T2Vf'uy_—§(nlu¢4 )2+jaAM

(B6)

1. The functional Z [ J]

We write the gauge-field part of the scale-dependent
vacuum persistence amplitude as

2191 [ DAeXTI(SA AT+ RIAD). (B7)

The gluonn-point Green function@K (including both con-
nected and disconnected pawse then defined as the expec-
.}) products ofn gauge

fields, the ghost contribution amounts to a constant term thdtelds in the presence of the infrared regulaity,

G, X))o = (AR (x) AT (%)
(=" "ZLT)
ZOLT) 0T 00) 0Ty M=) - 0T 10) |
Z(A) o | PAeiSUA N RLIADITAL ) A} @9
[ J=0
such that the Volterra series representatio oéads
ZOLTN= 2 o] d%n @G0 xa))E T TR - TaN()- (B9)
2. The functional W [ 7]
Corresponding to EqB7), we define the scale-dependent connected Green functional as
WAL 7= —i InzZ[ 7= —i |nUDAexp[i(seﬁ[A,ﬂ+mK[A]>] . (B10)
W, generates connectedpoint Green functiong, in the presence of the infrared regulafay,,
G (xq, .. n))al o —<Aa1(xl) an(Xn)>(C)
S"WA
:(_i)n_l n n-1 - [‘Il 1
5‘7;“()(”)5‘7;,1()(”_1) e 5j§1(X1) 7=0
st —i) oz
=(=)"* 1 2 EA) i Kl[bﬂ ’ (B11)
ST (Xg) ST H X 1) + - STe2(X0) | ZOUT) 6T52 ) | |
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which generate the Volterra series

*© jn—1
WAL 7= Z A% - A% (G (Xg, X)) TR L TR (). (B12)
M - M a; a,
|
3. The effective actionI’ [A] and average effective action Legendre tranforn]"K[K]. The derivative oﬂ“K[K] with re-
r.JA] spect to A gives the Legendre conjugate relation

The effective action is the generating functional for the sr [A]/gAﬂ(x)_ — J%(x). Repeated functional derivatives
proper vertex functions. It is obtained as usual from Leg-

endre transformation of EqB10), by defining the average of FK[A] generate the one-particle wredumhﬂegomt func-
gauge fieldA (as opposed to the gauge fieldof the quan- tions, or proper vertices, at theitationary point A, that
tum  fluctuationy Aa(x) M(A)[ﬂngﬂ(X) (A (x)). maximizes the effective action, [ A], corresponding to van-
Then, the transformation AWV, yields the scale- dependent ishing sources7=0

vertex functional’ ., i.e., the effectlve action in the presence

of the infrared regulatoii,,

= 5T [A]
I A=W~ 7oA SALN(xq) SALT 1(xy 1) . . OALH(Xy) |
_ ! A=Ag
=—i In[fDAexp[i(S [AJ+RJLA]D— TA].
eff =T M(xq, .. .xn))f;1 in (B14)
(B13)
One may think of Eq(B13) as a change of variables from ) _
— i ) The series representation fbr, reads then
{J(xX)} to {A(x)}, the latter being the natural variable of the
SR | _
TJAI=2 — f A% A TP, X))o ARG L ART(Xy)., (B15)
n=0 I'l: n
|
Finally, the average effective actidn, is defined as the (gil)(x))i:<A2(X)>E<C):X‘;(X)
effectiv_e actionl”,, of Eq. (B13) minus the infrared regulator
N, atA, TOx)2=—T3(x). (B17)

- _ _ The 2-point functions are given by
FK[A]:FK[A]_mK[A] ~2) ab - B
GAYNE=(AZ0ANY)) = AT, (x,Y) +AL)AL(Y)

- '”U DAexH (Serl A, 7] GP(x,y) = (A0 A%(Y)I=A (x,y)

~ PA+RIAD-RIA]]l.  (B16) T (x,y))2=[A,185(x.y), (B18)

where the exact gluon propaga®@f? and its inversd™(?),

. . . r fined, r ivel
4. n-point Green functions and proper vertices forn<4 are defined, respectively, as

Using the above definitions of the generating functional Ai,?u;( xy)=—Ii ) <A5(y)>,(
Z., W,, T, andT,, we list below the associated Green 0T 5(X)
functlonsgf(“), g™ 1™ andr'™ forn=1...4. Cab _ X
The 1-point functions read [A (X y)=i ij(y). (B19)
a K
(GP(x))2=(A%X)) = A%(X) For the 3-point functions one obtains
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o
0T (%)

(G2 (x,y,2)208 = (A2 () AS(Y) AL(2)) = (—1) APy, 2)+ (A% (X Y)(AS(2)) + AR, (7, 2)(AZ(X))

+ AR LZX(ALY) )+ (ALX)) (AUY)) (AR(2)) o
(3) abc _ a b c (€)—( _; bc
(G (%,Y,2)) 5 = (AL ANY)AX(2)), 7 =( ')Mg(x)A“(y’z)
CO(x,y,2)305= Vi (x.y,2), (B20)
where the functiorV is the exact proper 3-gluon vertex,
—igVs(x,y,2)=—igVgys (x.y,2) +O(g®), (B21)

which, to lowest order in the coupling constaptreduces to the bare 3-gluon vertey,
Vore(%,Y.2) =120, (3= 0,),6%(x,2) 6*(y,2)
+0,(3,— A\ (Y, X) 8H(2,%) + g (dx— d7) . 8% (X, Y) 8*(Z.y)}. (B22)
In momentum space, it reads
Vioru(Ke Ko ka) = =120, (ki —Ko) QKo — kel + G (Ks—Ka) ). (823
Finally, the 4-point functions have the following forms:
G0y, 2z W)= (AL ANY AR (D AG(W)) o
=(—i)25—2A§§’,(Z.W)+(—i) ° a,
STH(X)Tp(Y) 6T (X)

AR LZ XA )T (A LX) LAYUY)) (AR D) L AG(W)) o

(XY)(AS(D)),+ A%, (v, 2)(AL(X)

62
(4) abcd _ a b c d ©—(_j Z—ACd
(gK (va!ZlW))MV)\(T <AM(X)~A V(y)A)\(Z)AU(W)>K ( I) 6jg(x)j;(y) )“T(Z’W)

P06y, W50 = WS (xy,.zw), (B24)
with the function)V denoting the exact proper 4-gluon vertex,
—gPWRRTe(X.Y. 2 W) = —gPWEXeS (x.y,z,w) + O(g"), (B25)
which, to lowest order in the coupling, defines the usual bare 4-gluon véfgex
ng;(ig(x,y,z,w) __ {(facefbde_ fadefcbe)g)\#gvg_’_ (fabefede_ fadefbce)g)wgw
+(facefdbefabefedeyg, g, 1% (x,y) 8% (z,w) 8%(y.2). (B26)
In momentum space, it reads

Wabcd (kl ,k2,k3 ,k4) — _{(facefbde_ fadebee)g)\,ugva'l' (fabefcde_ fadefbce)g)\vglua_l_ (facefdbe_ fabefcde)g)\ggylu}_

ONuvo
(B27)
|
APPENDIX C: FADDEEV-POPOV DETERMINANT AND (12), and it is shown that ghost degrees of freedom are in-
DECOUPLING OF GHOSTS IN THE LIGHT-CONE deed absent, reducing the general non-linear dynamics of
GAUGE QCD essentially to a linear QED type dynamics. We men-

In this appendix the standard procedure of gauge fieldion that an alternative, non-standard method was originally
quantization is applied to the class of non-covariant gaugesuggested and carried out in detail by Kumrf&2], which
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elegantly avoids the ghosts altogether and instead introduces To obtain the final form o, as quoted in Eq(16), one

a Lagrange multiplier field that carries the fictitious degreesarries out the functional integration over the arbitrary fun-
of freedom. For an excellent review and bibliography, sedions g2(x) introduced in Eq.(C4), by choosing, e.g., a
Ref.[29]. Recall that under local gauge transformations  Gaussian weight functional

a = H a a |
L= expig mOOT: © wigl=o] - 5 [ aip0r], (o
the gauge fields transform as
with the real-valued parametér upon which the Faddeev-

A2— ADR=g 0¥ A%g Y 67], (C2  Popov determinant de¥{) can be rewritten in a more suit-
able way:
implying that 73,72 = 7927 ("2 "and thereby ensuring _
the gauge invariance of the Yang-Mills actid®y[.A] _f _'_J Lot pasor12
= —;Jd*xF,,F**. However, a source term of the forgi de(M)= D,Bl;l eXP 3 d*x[B(x)]

oA is not gauge invariant under the transformatid@). (0a
Consequently, the functional X 8(n*A 7% (%) — BA(X)). (C9

, In order to calculate the determinant, it is sufficient to inte-
Z(K”a"’e)=f DAexdi(Sym[A]+ T°A)lexpi R [A]) grate overd? in a small vicinity where the argument of the
(c3  o-function passes through zero at givert?? and 2. For
infinitesimal gauge transformations

is also not a gauge invariant quantity. As is well known, this

can be remedied by applying the formal Faddeev-Pdgay

procedure and integrating in the path-integfal over all

possible gauge transformatiogg6®) subject to the linear

subsidiary condition AS— A+ OAS,  SAS=gffPAS+0,06° c1

gl 63]— 6g[ #*]1=1+ig 63 (x)T?, (C10

the gauge fields transform as

AP ]=n"AD2(x) - B3(x) =0 (C4  so that one obtains

with normalized space-like vector* and 8%(x) an arbitrary ~ 3(n“A{P%(x) - B(x))= 8(n* A P?(x) + g f.6°n#.A ()°
weight function. The Faddeev-Popov trick is to implement

. “w a_ pa
the constraintC4) in the non-invariant functionat("a"® py +n%9, 6% B%)

multiplying with =8(gfp.0°B°+n*3,6%), (C12
(93— g2 This latter expression is evidently in-

1= | Dol 8(47 AV deM), cy Decausad, = P y

J I;I ($7ALD) detM) €5 dependent of4?, . Therefore, when substituted into HE9)

and the integrations carried out,
where the determinant is the Jacobian for the change of vari-

ablesg?— 62, de(M)=del( 6°n#[ 859, +gf5PA%]) = del 5%n- 9),
(C13
S AN . . .
de( M) =def ———~= one sees that dé¥() is also independent of the gauge fields,
56° #3040 and hence can be pulled out of the path-inte@raland ab-
M

sorbed in the overall normalization. The final result is then

-1
:Uml;[ 5(¢a[,4£f>])] . (co ZK=Nf DAexpli( Sy AT+ SO0 A]

Following this procedure one arrives at + Jo A+ R, [A]D}, (C19

ZK:f DA de(M)];[ 5(¢a[“4,u]) where, from Eq(C9),

i
(£) = - 4 . 2
X exeli (Syul Al + JeA)Jexpli R, AD),  (C7) Six [”'A]—ex"[ 2gf d*x[n- A%0)] ] (€19
which is now a gauge invariant expression due to the propein conclusion, the property of gauge field independence of
account of the subsidiary conditiq4) that guarantees the the Faddeev-Popov determinant proves that there are indeed
correct transformation properties of the gauge fields in theno ghost fields coupling to the gluon fields, hence the formu-

presence of the sources lation is ghost-free.
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APPENDIX D: GLUON PROPAGATOR AND 1 [q,9 n,q,+q,n
POLARIZATION TENSOR IN THE AXIAL GAUGES, AND QW(Q): — Ry __#v mv
IN THE LIGHT-CONE GAUGE 1=x| ¢? n-q
1. The general case (1=x)n?\n,n,
) - +ly——
In order to find the explicit form of the gluon propagator £g? n2 |’ 08

A,.=G?  we first evaluate its invers&?=(G?) ", from
the second functional derivative bf, with respect toA, and  which are orthogondiin the space transverse ¢ and obey
then invert it. With the conventions of Appendix B, we have, the relationsP ,, p?}: Puv QM)\TQZ Quv. pM)\szo_ The

for the inverse of thexactgluon propagaton invariant functionsa, andb, depend in general og? and
on the variable

B 52T [A] 2i 6T, [A=0]
AK 1 y :FS(Z)V: pr— K_ = K ,
( )MV(X y) ® 5AV(Y) 5A’“(X) o 6A ,,M(y,X) n2q2
(D1) x=x(n,q)= W’ (D9)

where the explicit form of the effective actioh,[A] is  pecause the inverse propagat®7) requires a scaling in-
given by Egs.(54) and (55) together with the expressions yariance under the change,—\n,,. In a similar way, one
(51)—(53). The exactpropagatorA, is related to thebare  may parametrize the propagator itself as

propagatorAf(O) and the proper self-energy tensdi,

through the Dyson-Schwinger equation
g Y gered A2 (@)= 8(A (6% X)S,, (@) +B(a2X) T, (1)),
R - D10
(A=A, + 1L, =17), + 11y, (D2) (019
with different projection operatorsS,,=S,, and T,,
where, in the class of axial gauges, the propagator is trans=T,,,,
verse to the gauge vectar,,
1 4.9
n,A'=0=A%"n,, (D3) Sl =Gt 7| x(1+ fqz)—gz
while the polarization tensor is strictly transverse with re- n,d,+q.n, n,n,
spect to the external momentu (the conjugate of,,), - n-q X 2 (D11)
9, 11#"=0=g 11", D4
Il . (04 1 , 8,0,
Tw(Q):_ 1— X(1+§q ) 2
and both are symmetric under interchange of indices and X a
arguments, naq,+a.n,  non
el (D12)
n-q n?

ABY=AZE, AP =T12E, (D5)

K !

In order to infer the general form of the exact propagatorVNich are again orth;)gon(ibut now in the space transverse
to q), satisfyingS,,S,=S,,, T,,\T,=T,,, S,T,=0, and

A, we apply Eq.37) to Egs.(51)—(53), and carry out the Py PR v Su '
Fourier transformation to momentum space. Then one ognoreovem*s,,=0=n*T,,. Using Eqs(D7)—~(D10) in
serves that the axial-gauge representation of the inverse

gluon propagator(D2), A *=T1@+1I,, can be decom- N !
posed into two independent Lorentz tensor componé&ik A, (@A () =0, (D13
(AU = (@ @2 X)Pu@) +b, (a2 X)Q,,(q)),  tis straightforward to derive
(D6) L
i i = = AK(qzvX):—r Bk(qz!X):X—'
with the projectors,,=P,, andQ,,=Q,,,, a (92 x) b.(92x)
(D14)
1 q,uqv nuqv+qunv n/J,nV
P =g,,+ —~ + .
p(A) =0y 1| X o n-q X2 The bare propagatax(?) corresponds tdI=0 in Egs.(D2)

(D7)  and(D6), which yieldsa,=b,=q?+R,(q)?, and so,
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b
A&")a:’(q):L[s S XT ]
“ P®+R(9®) a
B 520 n,d,+q,n,
TR nd
+(n2+ §q2)—q“q”2] : (D15)
(n-q)

while the inverse 4(?) ~1=11 reads

(AD7H20 ()= 6*(q*+ R (4P P, + Q]

.9,
=aab(q2+RK(q2)){gw— =
q
1\ n,n
+| n?g2+ - | —X—=|. D16
at (0.0 (D16)

In order to derive expressions for the exact propagator
and its inverseA !, in correspondence to EqgD15) and
(D16), it is useful to inspect in more detail the structure of

the polarization tensoﬂK, and which of its contributions
are dominant. Let us define the dimensionless scalar func-

tions

a,(g?,x)

I8 gqy=1 - 47
= R

aK(qz’X)_ bK(qz’X)
9%+ R.(9?)

@ (q)= , (D17)

and rewrite Eq(D6), on account of Eq(D2) as

Hk,uv(qa_q):(A;l_AE?)_l)MV
=(A -1 )

K,V

~ qﬂqy) 1w

mv qz
0.9y N9y,
q2 n-q

2
iﬁﬁﬁwn
(n-q)?

+

+(n’g?+¢7
(D18)

which implies the relations

1 n,n
nd=>g V+(n2q2+§1)"—”)
2\ (n-q)?

nen@=3n®-1+ . (D19)

PHYSICAL REVIEW B0 034012

In view of Eq. (D18), one realizes thall, consists of a
covariant piecexII!) plus a non-covariant pieceI1(®.
Furthermore, comparing with E¢D16), it is obvious that it
is solely the covariant contribution that survives in the limit
of vanishing couplingg=0, because thera,=b,=q?
+R,, so thatlI{¥=0.

From Egs(D16) and(D18), we read off the inverse of the
exact gluon propagatdgoing over toé—0),

(AZh)2(g) = 6ab<q2+RK<q2>){ ( 0, :“—3) (1-T1®)

q/.LqV _n/.LqV+qp.nv

+ q2 n-q

242
L &ﬂgng
(n-q)? n?

and the actual gluon propagator is readily obtained by invert-
ing Eg. (D20),

(D20)

5ab

1 n,q,+q,n
ab (q)= _ ey Auy
Bl D=2 R (o) ( 1—H(K1’)

g,uv n-q

(D21)

qu0,( n°0° )
+
o | (n-q)? 1- (P -1?)

2. The casex—0

Inspection of the expressio®20) and(D21) exhibit the
relative importance of the contributionslI{*) andI1®: If
the terms involvingl1®) could be droppped, then both Egs.
(D20) and(D21) would become simply the bare counterparts
(D15) and (D16) for £é—0, modulo the factors 4+ 11V, re-
spectively 1/(+IIY). Now, there is no immediate argu-
ment why I1{? itself should be negligable as compared to
1Y so that the only way th&l(?-term in the propagator
(D21) could be small or even vanishing, is when

2~2

n-q
X(n q)zﬂo, (D22
which implies
q2
( )2*)0 or n’-0. (D23
n-q

The first condition corresponds to very large momentum
component along the direction af, for example, ifn is
chosen along the-axis, theng,—c would do the job. The
second condition, on the other hand, corresponds to picking,
out of the class of axial gauges, specifically the light-cone
gauge. Under either of these conditions, one arrives the very
simple forms for Eqs(D20) and (D21):
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_ 4.9,
(A’ 22<q>=6ab(q2+RK<q2>><1—Hl>(gw— =
q
(D24)
b 1 n,g,+q,n
A ()= ( )( _)
KMV(q) q2+RK(q2) 1_1-[1 g,uv n.q
(D25)

One sees that now the effect of gluon self-interactions are
encoded multiplicatively, so that we can express liothand

(©) respectively A1,
modulo2 a scalar renormalization functioEK(qz,X)|XH0
=Z.(9%,

A.' as the bare counterparts(®

—1\ab — (0), —1\yab
(A H30(a) Zk(qz)mk )20(q)
b q2+RK(q2))( _qﬂqv)
Z,(9?) og?
(D26)
A (@)= Z(02)(AD)2(q)
Z.(9?) ( n,q,+q ny)
—gab T v )
q2+RK<q2>) I " g
(D27)

where the renormalization functiafi,(g?) is related to the

gluon self-energy1!) by

Z(9%)=—i, D28
(@ 1-1M(q) (029
with initial condition atg?=A2—,

Z(9®)|ge=p2=1, (D29)

so to ensure that the full propagator equals the bare one

the asymptotic freedom regime wheéH» ,11®)—0.

APPENDIX E: SPECTRAL REPRESENTATION OF THE
GLUON PROPAGATOR IN THE AXIAL GAUGES

In this appendix we discuss in more detail the relation

between the gluon propagatar, and its spectral density, ,

as introduced in Sec. Ill, Eq110. Recall, that the gluon

propagator is formally defined, according to E@@2), (B11)

PHYSICAL REVIEW D 60 034012

Analogously we define now the gluon correlation function as
the non-time ordered 2-point function which describes the
correlation between two gluon fields a@andy, irrespective

of their time history and spatial origin:

P2, (%) =(O|[A%(x)A(y)1|0),. (E2)

In momentum space, we write EqE1) and(E2) as

AK,MV(Q)=f d*x€9I7A, ,,(X,0) (E3)

pK,,MV(q):f d4erqXpK,,LLV(X’0)' (E4)

We recall that both the propagator and the correlator depend
on g andn, more precisely om? andn-q. Let us now focus

on the correlation functiorp, ,, and then work our way
back to the propagatak, ,,. Following [21], we take the
commutator in Eq.E2) apart and defindsuppressing the
color indices, as they are in parallel with the Lorentz indices

Pl = [ deTH(014,004,000), (€9

P L@ =— [ X014, (0 4,0(0),. (€9
Hence,
— () + (=)
P D= pic (D) Py (D)
- [ e oz 4%0)10),., (€D
and we have the following properties:
PK,W(Q):_PK,,W(_Q) (E8)
pla@=—pl ) (—a). (E9

Now, recall that in the axial gauges tlgedependence of
{oth the propagatohk, and the correlatop, can enter only
in terms of the two invariantg® and (- q)?2. It is therefore
useful to introduce a notation for the decomposition of an
arbitrary four-vectow* into its longitudinal ¢{*) and trans-
verse componentw ) with respect to the gauge vectot':
vi'=(n-v)n*, (E10

vh=v#—v{
with vZ=(n-v)?n?, v2=v2-v?, and n-v,=n-v;=0.
Thus, theg-argument inp,, for instance, reads with this

and (B18), as the connected 2-point Green function in theNotation

presence of the infrared cut-off involving thetime-ordered

product of two gauge fields at space-time poixtndy:t!

AL 6Y) =(O[TLAS(X).AY)][0) (E1)

K, (v

we suppress here the superscript (c) for “connected.”

P (D) =P un(A%,00). (E11)

In order to derive the relation between the time-ordered
product of gauge field$E1) in the propagato\, and the
non-time-ordered producfE?) in the correlation function
p., we proceed now as follows. L@kN)}HG denote a com-

plete set of states which spans the Hilbert spageof all
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possible gluon configuration®ne of which is the vacuum

PHYSICAL REVIEW B0 034012

(0| T[AZ(x).A5(0)1]0),,

state|0)). Inserting then this complete set of gluon states

into Eq. (E5) gives

Ploa @ =2 (OLA,IN)(NIA,J0)(2m)*5*(a—py),
(E12

and requiregjo=py=0. Inserting Eqs(E12) into (E5) and
inverting the Fourier transform, one readily finds

4

d _
<0|A,L(X)AV(0)|0>K=f( e*0(do)pu, (%01

2m)*

d4q —iq-x
:f(zﬂ-)“e 470(do)

X f dyLeiQL‘YLZK’ ,uv(qzvyL)v

(E13

wherep . (g2,y,) is the longitudinal transform of EqE11).
Introducing the advanced and retarded functiak;’ and
AE(_), respectively,

4

d .
: 2;4e-'“e(q0> 8(c? K?),

AP )=+ f (E14)

one can express E¢ELJ) as

(0]A,(x)A,(0)[0)

- "0 [ ayptayon -y,

(E15

Similarly, from the crossing relationéE8) and (E9), one
obtains for the reversed product of the gauge fields,

(0]4,(0)A,(x)[0)

:fo dcffﬁ dyLBK,MV(qZ!yL)Aﬁi)(_X+yL)'

(E16)

With the above relations we can now express the time-
ordered product of the gauge fields, which determines the

propagatorA . via Eq. (E1), as?

SR RSN CESISS e

+0(—x) AL (x—y)]. (E17)

If the gauge vector is chosen to be space-like or light-like,
i.e., n?<0, then causality allows us to replad¥x,) by
0(xo—YL), in which case Eq(E17) together with Eq(E1)
yields

AK,,MV(XIO): JO quJ',‘ dyL’;)K,W(qszL)A&F)(X_YL)
(E18
whereAP) is the standard Feynman function,
AP ()= 0(x) A () + 0(—x0) AL (). (E19

In momentum space, EQE18) reduces to the well-known
spectral(or Lehmann representation,

=y Pl @500
Aple)= [ Taqz LS e
q2_q 2
If we decompose the tensor structuredof ,, as in Sec. Il

Eq. (85), or Appendix D, Eq(D10),

A (D =AL0%X)S,(@) +B (0% x)T .. (a),
(E21)

with y=n?g%/(n-q)? as before, and analogously, for the
correlation functionp, ,, ,

P (D) = pR(A%,X) S, (@) + po(A2 X) T (),
(E22)

then Eq.(E200 may be written agnoting that y=n?qg?/
(n-9)’=n’g’/q; , i.e. x=q.’]

Ar 2
= P05 x)
AK,W(Q):SMV(Q)L dq Zﬁ
a—q
" B/ 2
iy )f q 15 P97 X) (E23
0 qz_q 2

In the casey— 0, corresponding tqf—m, the second term
in Eq. (E23 tends to zero, as discussed in Appendix D.

'2To be precise, here the indice$=1,2,3 should be restricted to  Thys. with

the spatial components of the gauge fielland ofp, , because in

the coordinate representation, the tensor structuge, of,, [cf. Eq.
(E22) below] leads to space-time derivativeg acting on theA "

functions, which causes the time-ordering operation not to commute
with the time derivatives arising from the time components of

Pr,pv -

0 x—0
—

v
P2 x) — p(ad)  p2aix) — 0  (E29

we are left with
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. pK(q’2) states of momentung’ with virtuality q'zand with level
A ,W(Q):S,'W(Q)f dg? - (E25  density p,(q'), and weighted with the phase-space factor

9°=q? 1/(9?—q'9. For a bare gluon with momentum— in the
which is precisely Eq(110 with the substitutiong?— g2 uItrayioIet, n(? virtual fluctuations would be present, so that
+R, in the denominator. p.(q?=35(q?. On the other extreme, an infrared gluon

The Spectra' representatic(523) or (E25) has a rather with m0mentumq—>0 is dl’ess/ed by a dense cloud of soft
intuitive physics interpretation: The propagator for a gluonvirtual fluctuations, so that,(q 2 can be a very broad dis-
of momentumg is a sum over all intermediate virtual gluon tribution.
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