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Propagation of gluons from a nonperturbative evolution equation in axial gauges
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We derive a nonperturbative evolution equation for the gluon propagator in axial gauges based on the
framework of Wetterich’s formulation of the exact renormalization group. We obtain asymptotic solutions to
this equation in the ultraviolet and infrared limits.@S0556-2821~99!06113-5#

PACS number~s!: 12.38.Mh, 12.38.Bx, 24.85.1p, 25.75.2q
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I. INTRODUCTION AND SUMMARY

Non-Abelian gauge theories, and in particular QCD,
nowadays fairly well understood in the short-distance~large-
momentum! regime where asymptotic freedom allows re
able calcuations within perturbation theory. On the other e
of the scale, in the long-distance~low-momentum! domain,
fundamental unanswered questions remain, linked intima
to the phenomenon of confinement~or the lack of detailed
knowledge thereof!, and posing severe infrared problem
that present a tough challenge for developing adequate
perturbative methods to perform practical calculatio
Whereas the non-perturbative effects on QCD Green fu
tions are small when all relevant momenta are large co
pared to the inverse confinement length, the properties of
vacuum, the dynamics of the QCD phase transition, or
formation of color-neutral hadronic excitations from color
quark and gluon fluctuations, are completely dominated
the non-perturbative infrared physics. Although lattice sim
lations provide to date the most rigorous non-perturba
studies of QCD, they suffer in one way or another from fin
lattice size effects and violation of translational or rotation
invariance. Moreover, the continuum limit of results o
tained on a discrete Euclidean space lattice is a difficult pr
lem itself.

A. Average effective action and non-perturbative evolution
equation

Therefore, it is clear that non-perturbative methods, f
mulated in continuous space and maintaining the symme
of translations and rotations, are of fundamental need
complement insight into the infrared properties of QC
Such a method has been developed@1–3# during the last few
years and has found diverse applications@4–6#. It embodies
the concept of theaverage effective actionin continuous
Euclidean or Minkowski space within the renormalizatio
group framework of quantum field theory. The basic idea
to study the theory within a volumeV}1/k4 and effectively
integrate out all quantum fluctuations that can be locali
within that volume, i.e., fluctuations with squared mome

tum q2 larger thank2. The average effective actionḠk is
formulated as a functional integral over the microsco
quantum fields, and can be shown to be equal to the u
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effective actionG for macroscopically averaged fields.1 The
vacuum properties are obtained in the limitk→0 where the
volumeV}1/k4 tends to infinity. In this paper, however, w
are interested in the non-perturbative infrared behavior
gluons propagating in an unconfined quarkless world. T
volume of such an idealized colored world cannot, of cour
be infinite, since in reality confinement limits it to be of th
size of a hadronic stateV;1 fm3. Hence, as we ignore th
existence of the QCD phase transition between the colo
and the hadronic world, we must cut out the long-distan
hadronic physics beyond distances of order 1 fm, and nee
restrictk to be larger than the mass scale of the QCD ph
transition:

k>kPT'200 MeV. ~1!

As we shall see, the introduction of a new scalek into the
theory is intimately related to the standard renormalizat
program of QCD, in which one needs to introduce a m
scale at which the Green functions are normalized~since
they are not normalizable at zero momentum, due to
infrared divergence!.

The dependence of the average effective actionḠk on the
variation of the scalek is controlled by an exact non
perturbative evolution equation@1,2#, which is very sensitive
to the infrared properties. It is of the generic form

k2
]

]k2
Ḡk5K@k2,Ḡk

(2)# ~2!

1In a sense this concept is analogous to a quasi-particle pictur
quantum fluctuations, wherein elementary excitations are ef
tively embodied in a quasi-particle with Compton wavelengthr c

}1/k: On distance scalesr .r c the particle appears as an eleme
tary object, but as one increases the resolution to shorter dista
by a largerk8.k, excitations with wavelengths}1/k8 reveal them-
selves as a substructure of the original quasi-particle. Vice vers
decrease of resolution by loweringk averages over fluctuation
with longer wavelengths, and yields a larger quasi-particle. Loos
speaking, in the extreme short-distance limitk→`, the quasi-
particle would be, for instance, a single elementary bare glu
while in the opposite limit of infinite volume,k→0, the quasi-
particle would correspond to our Universe. The variation of t
scalek therefore controls which, and how much, physics one
cludes in the panorama.
©1999 The American Physical Society12-1
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KLAUS GEIGER PHYSICAL REVIEW D 60 034012
where the kernelK depends explicitly only on the~exact!

2-point functionḠk
(2) , but not on higher-order Green func

tions ~which however implicitly enter in determining th

2-point function!. It has been shown@2# that Ḡk approaches
the classical action in the ultraviolet limitk→` and be-
comes the usual effective action in the infrared limitk→0.
A solution to the evolution equation~2! therefore interpo-
lates between the~short-distance! classical action and the

~long-distance! effective action. SinceḠk[(nḠk
(n) generates

the k dependent one-particle irreducible~1PI! Green func-

tions Ḡk
(n) ~such as the inverse propagator forn52, or the

vertex functions forn>3), the evolution equation forGk̄ is
equivalent to an infinite set of corresponding equations

the 1PI functionsḠk
(n) , which are the differential version o

the well-known Dyson-Schwinger equations@7#, however
with an additional infrared cut-off given byk. Just as in the
case of the infinite number of Dyson-Schwinger equation
truncation to a finite number of coupled equations is u
avoidable, if one wishes to find an explicit, but approxima
solution.

B. Evolution of the gluon propagator

The purpose of this paper is to demonstrate the powe

potential of the average effective actionḠk and its evolution
equation by studying the simplest non-trivial object in QC
without quarks, namely the gluon propagator.

Since the gluon propagatorDk is related to the inverse o

the 2-point functionḠk
(2) , we can obtain from the evolution

equation for Ḡk a corresponding equation forDk , which
determines how the propagator changes as the scalek is
lowered from some large initial value in the ultraviolet a
the way into the deep infrared regime. Unfortunately,
evolution equation forDk contains in addition the unknow

3-gluon and 4-gluon vertex functionsḠk
(3) and Ḡk

(4) , which
are themselves determined by similar, but even more c
plex equations, involving further higher-order functio

Ḡk
(5) , Ḡk

(6) , and so forth. However, by working within th
class of axial gauges, the evolution equation for the pro
gator becomes remarkably simple~at least formally!, because
the exact propagator is just the bare propagator times a re
malization functionZk ,

Dk~q!5Zk~q!Dk
(0)~q!, ~3!

and the evolution equation~2! translates to an evolution
equation forZk ,

k2
]

]k2
Z k

21~q!5K 8@k2,Dk ,Ḡk
(3) ,Ḡk

(4)#, ~4!

where the kernelK 8 explicitly depends on the exact prop

gatorDk and the exact 3- and 4-gluon vertex functionsḠk
(3)

and Ḡk
(4) . In the class of axial gauges, it is furthermore po

sible to project out all contributions of 4-gluon vertex fun
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tions, so that the remaining unknown object is the ex
3-gluon vertex. The latter can be eliminated by exploiting t
gauge symmetry properties of QCD, in particular t
Slavnov-Taylor identities, which provide a constraint equ

tion between the 3-gluon vertexḠk
(3) and the propagatorDk .

The strategy is then to construct an ansatz forḠk
(3) in terms

of Dk such that this constraint equation is identically sat
fied. As a result, one arrives at an evolution equation forDk
in terms of the propagator alone, which must be solved a
function ofk. The crucial point of success in this program

the choice forḠk
(3) . Although constrained by gauge symm

try, this choice is hardly unique. In the present paper
construct a particularly simple ansatz, since our main m
vation is to illustrate the concept and the techniques
volved.

C. Connection of propagator with gluon distribution function

An important point that one should bear in mind throug
out is, that the gluon propagatorDk(q), in general, is a
gauge-dependent object. Only in the ultraviolet regimeq
→`), where asymptotic freedom is approached, it reduce
a gauge-independent form as given by the perturbative o
loop formula @8#. In the infrared domain (q→0), on the
other hand, confinement should manifest itself in the beh
ior of the gluon propagator, but here the gauge-depende
foils an unambiguous assignment of confinement effe
Yet, the fact that the propagator is gauge-dependent does
imply that it does not contain physics; rather, it is that t
physics is obscure and difficult to extract.

Because of this problem it is desirable to relate the glu
propagator to gauge-invariant quantities, for example
Wilson loop or the gluon distribution function of hadron
measured in experiments. The latter is intimately connec
with the spectral density of gluon modes in the propaga
Therefore the evolution equation for the propagator can
transcribed, as we shall show, into a corresponding evolu
equation for the gluon distribution function. Indeed, in t
regime where the longitudinal~or energy! component ofq is
much larger than the invariantq2, one recovers the famou
DGLAP equation@9#, the perturbative evolution equation fo
the gluon distribution function. Such a physical scenario
realized, for example, certain hard processes occurring
high-energy hadron collisions or deeply inelastic lepton h
ron scattering where a hard gluon can be knocked out
initiate a gluon jet withq0'qz@q'@q2 that evolves by
means of fluctuating~real and virtual! gluonic offspring to-
wards lower and lower momenta.

D. Related literature

A large body of work concerning non-perturbative ana
ses of the gluon propagator exists in the literature@7#, which
may be subdivided into analytical and lattice studies.

Most analytical studies were carried out by attempting
solve the Dyson-Schwinger equation for the gluon propa
tor in pure SU~3! gauge theory without quarks, and in var
ous covariant and non-covariant gauges, for example in
Landau gauge@10–14#, the temporal and spacelike axia
2-2
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PROPAGATION OF GLUONS FROM A . . . PHYSICAL REVIEW D60 034012
gauge@15–19,21,20#, and the light-cone gauge@22,23#. The
non-covariant axial and light-cone gauges have the adv
tage that they are ghost-free and involve only the phys
gluon degrees of freedom, whereas in covariant gauges
faces a complex coupling between gluon and ghost variab
On the other hand, the structure of the propagator is m
complicated in the non-covariant gauges. In either case,
proximate solutions for the gluon propagator obtained in
literature from the Dyson-Schwinger equation vary wide
@24# in the infrared behavior of the gluon propagato
whereas the large-momentum behavior is dictated by
well-known perturbative result. Predictions for the depe
dence of the propagator in the small-momentum limit
clude an infrared enhancement}q24 or }q22(lnq2)21, in-
frared constant}q2, or infrared vanishing}q4. Recall
however, that the gluon propagator is a gauge-dependen
ject, so that these very different results are not, necessa
contradicting each other.

Lattice studies are at present equally obsure, since her~in
addition to the gauge-dependence! finite lattice size effects
make it difficult to penetrate the deep infrared where
gluon wavelength becomes close to or larger than the lin
lattice length. There have been a number of lattice simu
tions of the gluon propagator@25–27#, all of which used a
fixed lattice Landau gauge, and thus are plagued by Gri
ambiguities that can lead to significant systematic errors.
therefore not surprising that fits to the lattice results to d
are not unique and consequently do not allow, at present
a definite conclusion regarding the infrared behavior of
gluon propagator. Nevertheless, viewed as a whole, th
studies seem to suggest that the Landau-gauge gluon p
gator is finite and non-zero atq250, although a propagato
that vanishes atq250 has also been claimed@25# to be con-
sistent.

E. Strategy of procedure

A roadmap of our approach to arrive at a solution for t
gluon propagator within the framework of the average eff
tive action may be given by the following list of conceptu
steps:

~1! We consider the pure SU~3! gauge theory without
quarks in Minkowski space, and from the very beginning
choose to work in the class of axial gauges.

~2! We start from the corresponding vacuum persiste
amplitudeZ5exp(iW), which allows us to separate out th
ghost contribution so that in effect we deal with a ghost-f
theory involving solely the gauge fields.

~3! The generating functionalW52 i lnZ is then extended
to a scale-dependent versionWk by including an infrared
regulating source termRk5AmR k

mnAn that is quadratic in
the gauge fieldsA and depends on the momentum scalek,
such that only quantum fluctuations with momenta>k are
included and the limitk→0 recovers the full theory.

~4! From Wk we obtain then the corresponding sca
dependent effective actionGk which generates the one
particle irreduciblen-point functionsGk

(n) , such as the in-
verse propagator, the 3-gluon and 4-gluon vertex functio
all of which explicitly depend on the cut-off scalek.
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~5! Subtracting fromGk the infrared regulatorRk , and
averaging over all gauge field configurations with in the
fective volumeV}1/k4, we arrive at the average effectiv

actionḠk . Differentiation ofḠk with respect to itsk depen-
dence leads to the desired exact evolution equation.

~6! From the evolution equation forḠk[(nḠk
(n) we then

project out the quadratic termḠk
(2) that is related to the in-

verse gluon propagator. After decomposing the tensor st
ture of the inverse propagator, we obtain a set of coup
equations for two independent scalar functions,ak andbk .

~7! Next we focus our attention to the light-cone gauge
special case of the axial gauges, in which the functionak
drops out, so that we are left with a single evolution equat
for the dimensionless functionZk5q2/bk . Moreover, all
4-gluon vertex contributions can be eliminated, and con
quently only the 3-gluon vertex function survives in the d
termination ofZk .

~8! By constructing a specific ansatz for the 3-gluon v
tex function that obeys the constraint of the Slavnov-Tay
identity for the gluon propagatorDk , we obtain a closed
equation for theDk . The formal solution of this final evolu-
tion equation is simplyDk5Z kDk

(0) , whereDk
(0) is the bare

propagator.
~9! The remaining integration of the final evolution equ

tion for Zk must be done numerically, but in the ultraviol
and infrared limits, we are able to extract analytical so
tions, which depend~aside from the gluon momentumq) on
the scalek. In the limit k→0 one obtains then from
Zk50(q2) the full gluon propagator in the light-cone gaug
D(q)5Z0(q2)D (0)(q).

~10! In its spectral representation, the gluon propaga
can be related to the gauge-independent gluon distribu
function G(q,k) through the renormalization functio
Zk(q2), and the evolution equation forZk can be transcribed
into a corresponding evolution equation forG. In the high-
momentum limit we recover the perturbative Dokshitze
Gribov-Lipatov-Altarelli-Parisi ~DGLAP! evolution equa-
tion, and we find that our solution coincides with th
perturbative result.

F. Main results

Although the full solution to our evolution equation fo
the gluon propagatorDk(q)5Zk(q2)D (0)(q) in the light-
cone gauge requires a numerical analysis, we are abl
arrive at analytical solutions forZk in the extreme limits
q2/k2→` andq2/k2→0. In the former case, theultraviolet
limit, we obtain

Z k
21~q2! '

q2→`

12
11g2CG

48p2
lnS q2

k2D . ~5!

On the other end of the energy scale, in theinfrared limit, the
leading behavior turns out to be

Z k
21~q2! '

q2→0g2CG

48p2

q2

k2
. ~6!
2-3
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KLAUS GEIGER PHYSICAL REVIEW D 60 034012
The corresponding limiting behavior of the actual glu
propagator then follows as

Dk~q! }
q2→` 1

q2ln~q2/k2!
, Dk~q! }

q2→0k2

q4
. ~7!

The ultraviolet behavior is consistent with asymptotic fre
dom, corresponding to a screening of the color charge du
g0

2/g25Z k
21,1. The infrared solution would, on the othe

hand, correspond to a linearly rising potentialV(r )}r as r
→`, in accordance with the phenomenological picture
confinement. These results are certainly rather qualitat
first, because the inclusion of quark degrees of freed
which we left out here, may alter the details of the infrar
behavior and, secondly, because the weakest point of
analysis is the aforementionedansatzfor the 3-gluon vertex
function, which may not be all that good in the lon
wavelength limit. But even for our specific ansatz, an ex
numerical solution of the evolution equation for the prop
gator needs to be carried out before more robust conclus
can be drawn.

G. Organization of the paper

The reminder of the paper is structured in accorda
with the above list of procedural steps:

In Sec. II, we recall the necessary basics of the functio
formalism, which we then extend to its scale(k)-dependent
analogue. The effective actionGk for this scale-dependen
functional formulation, obtained as usual, is then related

the average effective actionḠk , which is the generating
functional for the Green functions in the presence of
cut-off k. We derive the desired exact evolution equation

the change ofḠk with a variation ofk.
Section III is devoted to applying the formalism to th

evolution of the gluon propagatorDk
mn . We first derive, from

the fundamental evolution equation forḠk , the general
equations that govern thek-variation of the propagator. Nex
we restrict ourselves to the light-cone gauge, and arrive
considerably simpler, single evolution equation for the ren
malization functionZk , the formal solution of which is
equivalent to the solution of the gluon propagator in t
light-cone gauge.

In Sec. IV, we take pragmatic steps to actually solve
evolution equation, subject to a necessary assumption a
the form of the 3-gluon vertex function. The final mast
equation for the renormalization functionZk , and hence for
the propagatorDmn , can then be solved in closed form, an
we are able to obtain the above-quoted results in the u
violet and the infrared limits. A phenomenological formu
for the propagator that may be useful for parton model
plications, is constructed by interpolating between the t
extreme limits.

Section V applies the results for renormalization functi
Zk to illustrate two important phenomenological connectio
with experimentally measurable quantities, namely the Q
running couplingas(q

2) and the gluon distribution function
gk(q). First, we infer fromZk the running of the coupling
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as(q
2), using standard renormalization group argumen

and then we relateZk via the spectral densityrk of the gluon
propagator, the gluon distribution functiong(q,k) and its
evolution equation.

Appendix A summarizes the notation and conventio
used in the paper. Appendix B recalls some basic formulas
the functional formalism in QCD, and provides a list of re
evant Green functions and vertices. In Appendix C, we d
cuss the absence of ghosts in axial gauges, allowing a
torization of the generating functionals for the ghost and t
gluon fields. Appendix D elaborates the details of the gene
structure of the gluon propagator in axial gauges, and
simplifications that emerge when specifically using the ligh
cone gauge. Appendix E briefly reviews the connection b
tween the gluon propagator and the gluon spectral dens
the latter being related to the experimentally measura
gluon distribution function.

Table I provides a summary list of the notation used
this paper.

II. EFFECTIVE AVERAGE ACTION
IN NON-COVARIANT GAUGES

This section is devoted to a brief review of the pat
integral formalism for QCD in non-covariant gauges, and
application to the renormalization group evolution of the e
fective action of QCD, as developed by Reuter and Wett
ich @2#. We refer to Appendices A and B, where our not
tional conventions are collected and to Table I, whic
summarizes the notation of basic quantities encountered
the following.

A. QCD path-integral formalism for non-covariant gauges

We work in Minkowski space2 ~as opposed to the Euclid-
ean formulation of Ref.@2#!, and consider pureSU(3)c
Yang-Mills theory forNc53 colors in the absence of quar
degrees of freedom. Our starting point is the path integ
representation of the QCD vacuum persistence amplitu
Z@J#5^0u0&J in the presence of an external sourceJ. Em-

2In order to facilitate the correspondence between the functio
formalism in Euclidean space of Reuter and Wetterich@2#, and
the Minkowski space description in the present paper, we rec
the translation rules between Euclidean~subscript ‘‘E’’ !
and Minkowski ~subscript ‘‘M ’’ ! formulations with metricdmn

5diag(2,2,2,2) andgmn5diag(1,2,2,2), respectively,

xE
m5~x0,x!E↔~ ix0,x!M

A aE
m 5~A a

0 ,Aa!E↔~2 iA a
0 ,2Aa!M

DabE
m 5~Dab

0 ,Dab!E↔~2 iD ab
0 ,2Dab!M

W@K#E↔2 iW@K#M .

Notice that the convention for the four-potentialAm differs from
that of an ordinary four-vectorxm: the former is defined with com-
mon sign, whereas the latter has different signs of the timelike a
spatial components. This is chosen for convenience in order to
have to change the sign of the coupling constantg when translating
between Euclidean and Minkowski spaces.
2-4
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TABLE I. List of basic quantities encountered in the paper. Note that all quantities with subscrk
reduce to the standard forms whenk50. Also, note that the separation ofZk andWk into gauge field and
ghost field parts holds only in axial gauges.

Quantity Meaning

A m
a gauge fields

Ām
a average gauge field̂Am

a &

J m
a external gauge field current

ha,h̄a ghost fields

s̄a,sa external ghost field currents

k infra-red ‘‘cut-off’’ scale of dimension mass
Rk@A# infra-red regulator that suppresses propagation ofgluon

modes with momentaq,k.

Rk@h,h̄# infra-red regulator that suppresses propagation ofghost
modes with momentaq,k.

Zh@J,s̄,s#[Zk
(A)@J#Zk

(h)@s̄,s# vacuum-persistance amplitude, in presence of infra-re
cut-off

Wh@J,s̄,s#52 i ln Zk[Wk
(A)1Wk

(h) generating functional ofconnectedGreen functionsG k
(h)

Gk@Ā#5Wk
(A)@J#2J +Ā effective action, generating functional ofproper vertex

functionsGk
(h)

Ḡk@Ā#5Gk@Ā#2Rk@ ā# averageeffective action, with infra-red regulatorRk

subtracted

Dkmv
ab 5(G k

(2))mv
ab exact gluon propagator (Dmv

(0),ab5 bare gluon propagator!

(Dk
21)mv

ab5(Gk
(2))mv

ab inverse gluon propagator

@alternatively: (Gk
(2))mv

ab5(Pk
(0)1P̂k)mv

ab ]
V mvl

abc 5(G (3))mvl
abc exact 3-gluon vertex functions

(Vmvl
(0),abc5bare 3-gluon vertex!

W mvls
abcd 5(Gk

(4))mvls
abcd exact 4-gluon vertex function

(Wmvls
(0),abcd5bare 4-gluon vertex)
n

ra

in

m

, we

-

ploying the conventions of Appendix B, we define the ge
erating functional for the connected Green functionsW@J#
as usual byZ@J#5exp(iW@J#), with

W@J#[2 i ln Z@J#

52 iN ln F E DAdet~M !d~Fa@A# !

3exp~ iSYM@A#1Sext@A# !G , ~8!

with the normalizationN determined by the condition
W@0#50 @28#, and

SYM@A#52
1

4E d4xFmnF mn

Sext@A#5E d4xJmA m. ~9!

Here A m[TaA m
a denotes the gauge field, and theF mn

[TaF mn
a the corresponding field tensor. The path-integ
03401
-

l

measure in Eq. ~8! is short-notated as DA
[)x)m)adA m

a (x), and the gauge condition is embodied
d(Fa@A#),

Fa@A m
b ~x!#[FA

a ~x!50, for all a,b,m. ~10!

The gauge fixing determines the Jacobian det(M ) as the de-
terminant of the Faddeev-Popov matrix

Mab~x,y!5
dFA

a ~x!

dvb~y!
5

dFA
a

dA m
c

Dm
cbd4~x2y!, ~11!

where vb describes local gauge transformationsg@va#
[exp„2 iva(x)Ta…, under which the gauge fields transfor
as A m

a→A m
(v)a5g@va#A m

a g21@va#, so that F mn
a F mn

a is
gauge invariant.

Because of the practical advantages described before
choose to work with a non-covariant gauge@29,30#, for
which the gauge condition~10! reads

FA
a ~x!5nmA m

a ~x!50, ~12!

wherenm is a constant 4-vector, being either space-like (n2

,0), time-like (n2.0), or light-like (n250). The particular
choice of the vectornm is usually dictated by physical con
2-5
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KLAUS GEIGER PHYSICAL REVIEW D 60 034012
siderations or computational convenience, and distinguis
axial gauge(n2,0), temporal gauge(n2.0), and light-
cone gauge(n250). Among these gauges, the light-co
gauge is most often employed in the literature@29#. It is well
suited for describing high-energy QCD in theinfinite mo-
mentum frame@31#, since Lorentz contraction and time
dilation causes the quantum fluctuations to be concentr
in close proximity of the light-cone, the direction of whic
naturally suggests the choice of the gauge vectornm. For
these reasons we will later adopt the light-cone gauge
specifyingn250. For the time being, however, we keepnm

general, so that the considerations apply to the class of n
covariant gauges as a whole. As elaborated in Appendix
the gauge condition~12! implies, for the general case o
arbitrarynm,

det~M !5det~dacnm@da
b]m1g fd

cbA m
d # !5det~dabn•]!,

~13!

becausedFA
a /dA m

c 5dacnmd4(x2y) and n•A m
d 50. As a

consequence, the ghost degrees of freedom decouple,
det(M ) no longer depends on the gauge fieldA. We may
cast the generating functional~8! in a more practical form by
rewriting the Jacobi determinant det(M ) in terms of a Gauss
ian integral over ghost fieldsh̄,h,

det~M !5E Dh̄DhexpH i E d4xh̄a~x!Mabhb~x!J E Dh̄Dh

5expH i E d4xh̄a~x!~dabnm]m!hb~x!J , ~14!

and the functionald(FA
a ) as an exponential of a gauge-fixin

action,

DAd~Fa@A# !5DAexpH 2 i E d4x
1

2j
„FA

a ~x!…2J
5DAexpH 2

i

2jE d4x„n•A a~x!…2J .

~15!

The gauge parameterj allows here, just as in covarian
gauges, to specify a particular gauge within class the of n
covariant gauges, e.g. Feynman-type gauges withj51, or
Landau-type gauges witha50.3 Since det(M ) in Eq. ~14! is
independent of the gauge fieldsA, it can be pulled out of the
functional integral over the gauge field configurations in E
~8!, so that we can factor out the ghost field dependence
rewriting Eq.~8! as

W@J,s̄,s#52 i ln~Z(A)@J#Z(h)@s̄,s#!. ~16!

3Notice, however, thatj needs to be kept general at this point a
in the following: it may be fixed onlyafter the gluon propagator ha
been derived explicitly from inverting the terms quadratic inA in
Eq. ~8!.
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Here, and henceforth, we have set arbitrarily the normal
tion N appearing in Eq.~8! equal to unity, since it is an
irrelevant constant factor, and introduced the functionals

Z(A)@J#5E DA exp~ iSeff@A,J# !

Z(h)@s̄,s#5E Dh̄Dh exp~ iSeff@h̄,h,s̄,s#!

~17!

with the combined gauge field action

Seff@A,J#5SYM@A#1Srm f ix
(j) @A#1Sext@A,J#

SYM@A#52
1

4E d4xF mn
a F a

mn ~18!

Srm f ix
(j) @A#52

1

2jE d4x~nmA m
a !2

Sext@A,J#5E d4xJ m
aA a

m , ~19!

and the combined ghost field action

Seff@h̄,h,s̄,s#5Sghost@h̄,h#1Sext@h̄,h,s̄,s#

Sghost@h̄,h#5E d4xh̄a~dabnm]m!hb ~20!

Sext@h̄,h,s̄,s#5E d4x~ s̄aha1sah̄a!.

B. Generalization to scale-dependent formalism

On the basis of the generating functionalW@J# of Eq.
~16!, one can construct a correspondingscale-dependen
functional. Whereas in Eq.~8! quantum fluctuations with ar
bitrary momenta are to be included, the scale-depend
functional should only involve an integration over mod
with momenta larger than some infrared cut-offk. A varia-
tion of k describes then the successive integration over fl
tuations corresponding to different length scales with the a
to recover the full theory in the limitk→0. Following the
rationale of Ref.@2#, a scale(k)-dependent generalizationWk
of the functionalW in Eq. ~16! is defined as

Wk@J,s̄,s#[Wk
(A)@J#1Wk

(h)@s̄,s#

52 i $ ln~Zk
(A)@J# !

1 ln~Zk
(h)@s̄,s#!%. ~21!

Here the scale-dependent functionalsZk are related to the
usualk-independent vacuum amplitudesZ, Eq. ~17!, by add-
ing invariant infrared cut-offsRk for the gauge fieldA and
for the ghost fields, respectively,
2-6
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FIG. 1. Form of the infrared regulatorRk(q2), Eq.~32!, and its damping effect on the propagatorDk(q)}1/@q21Rk(q2)# at small values
of q2. The various curves illustrate the different choices ofk, with k50 corresponding to the case with no infrared cut-off at all.
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Zk
(A)@J#5E DA exp$ iSeff@A,J#%exp$ i Rk@A#%, ~22!

Zk
(h)@s̄,s#5E Dh̄Dh exp$ iSeff@h̄,h,s̄,s#%

3exp$ i Rk@h̄,h#%, ~23!

with Seff@A,J# andSeff@h̄,h,s̄,s# defined by Eqs.~19! and
~20!, respectively, and the infrared regulators

Rk@A#52
1

2E d4xA a
m@Rk~]2!#mn

abA b
n , ~24!

Rk@h̄,h#5E d4xh̄a@R̃k„~n•]!2
…#abhb , ~25!

with

@Rk~]2!#mn
ab5dabRk~]2!S gmn2

]m]n

]2
1

1

j

nmnn

]2 D ~26!

@R̃k„~n•]!2
…#ab5dabS 11

R̃k„~n•]!2
…

~n•]!2 D . ~27!

One may wonder about the form of the infrared regulat
Rk in Eqs. ~24! and ~25!. These have been constructed,
that they affect only the gluon and ghost propagators, res
tively, ask-dependent squared mass terms that regularize
infrared poles in the propagators. As we shall see in de
later, by combining the quadratic pieces ofSYM@A# with
Rk@A# and similarly the quadratic terms ofSghost@h̄,h# with
03401
s

c-
he
il

Rk@h̄,h#, the inverse gluon propagatorD21 and ghost
propagatorD21, respectively, are modified such that

D21}]2→Dk
21}]2Rk~]2! ~28!

D21}n•]→D k
21}n•]S 11

R̃k„~n•]!2
…

~n•]!2 D . ~29!

In general, the functionsRk andR̃k can be different, but their
specific forms are unconstrained. One may therefore take
freedom to choose their analytic form to be the same,

Rk~d2![Rk5R̃k , ~30!

but with different argumentsd2, namely the operators]2 and
(n•])2, respectively. The choice of the functional form fo
Rk specifies the details of how the fluctuations with eige
values of the operatorsd25]2 and d25(n•])2 larger than
k2 are integrated out in the computation of the path integ
~21!. For example, a convenient parametrization@after Fou-
rier transformation to momentum space withd2→p22, and
p25q2 or p25(n•q)2 # is ~see Fig. 1!4

Rk~p2!5p2
exp~2p2/k2!

12exp~2p2/k2!
, ~31!

4We shall later use a generalization of this form, which includ
an additional ultraviolet cut-offL@k, but which contains Eq.~31!
for L→`: Rk(p2)5p2 exp(2p2/k2)@exp(2p2/L2)2exp(2p2/k2)]21.
2-7
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which has the following limiting behavior in the ultraviole
and the infrared, respectively:

lim
p2/k2→`

Rk~p2!50 lim
p2/k2→0

Rk~p2!5k2. ~32!

Hence, the effect ofRk(q2) is vanishing in the high-
momentum limitq@k, but provides an infrared screening
q→0. Moreover, the original functionalW of Eq. ~16!, con-
taining all quantum fluctuations, is recovered fromWk of
Eq. ~21! in the limit k50,

Wk@J,s̄,s# →
k→0

W@J,s̄,s#. ~33!

The crux of the above discussion is the convenient dec
pling of the ghost degrees of freedom from the gluon degr
of freedom in Eq.~21! due to the choice of gauge~12!. Since
we are interested in the variation ofWk againstk with regard
to the physical gluon degrees, the first term in Eq.~21!, Wk

(h)

amounts to an irrelevant constant that does not affect
change ofWk

(A) and therefore may be absorbed in the ove
normalization. In other words, for the evolution of the phy
cal gluon fields with changing scalek, we can henceforth
omit the ghost contribution and restrict our attention
Wk

(A) . Then one can derive from Eq.~21!—with reference to
Appendix B—thek-dependent generalizationGk of the stan-
dard effective actionG[Gk50 by introducing theaverage
gauge field

Ām
a ~x![^A m

a ~x!&k5
dWk

(A)

dJ a
m~x!

U
J50

[„G k
(1)~x!…m

a , ~34!

where the subscriptk at ^A&k indicates that only field mode
that survive the infrared cut-off contribute to the mean val
The k-dependent effective actionGk is then defined as the
Legendre transformation ofWk

(A) ,

Gk@Ā#5Wk
(A)@J#2E d4xJ m

a Āa
m , ~35!

which amounts to a change of variables from$Jm%, the ex-

ternal source, to$Ām%, the average gauge field, and yields t
conjugate of Eq.~34! as

dWk
(A)

dJ a
m~x!

U
J50

[„G k
(1)~x!…m

a 5Ām
a ~x!

dGk

dĀa
m~x!

U
Ā5A0

[„Gk
(1)~x!…m

a 52J m
a ~x!.

~36!

Notice that switching off the external sourcesJ50 corre-
sponds to the extremum of the effective action atĀ5A0,
whereA0 is the mean value of the gauge field for which t
03401
u-
es

e
ll

.

effective action achieves its stationary extremum5 ~we take

Ā050 later!. As summarized in Appendix B, repeated fun
tional derivatives ofWk

(A)@J# with respect to the sourcesJ
generate the (k-dependent! connected n-point Green func-

tions, and functional differentiation ofGk@Ā# with respect to

the average fieldsĀ yields the one-particle irreducible
n-point vertex functions. In particular, the second function
derivatives determine the 2-point functions

2 id2Wk
(A)

dJ a
m~x!dJ b

n~y!
U
J50

[~G k
(2)!mn

ab5Dkmn
ab

d2Gk

dĀa
m~x!dĀb

n~y!
U

Ā5A0

[~Gk
(2)!mn

ab5~Dk
21!mn

ab ,

~37!

that is, G k
(2) is the exact gluon propagator, andGk

(2) is its
inverse, with

Dk, mn
ab ~x,y!52

d^A n
b~y!&k

dJ a
m~x!

5^A m
a ~x!A n

b~y!&k , ~38!

where again the contributing field modesA are subject to the
infrared cut-off atk. Similar relations hold for the highe
n-point functions~cf. Appendix B!.

C. Renormalization issues

The point of introducing the scale-dependent effective
tion Gk satisfying Eq.~35! is that it allows us to vary the
scalek, say, from some large initial value corresponding
the perturbative domain down to very small values in t
non-perturbative regime. In effect, as we changek, more and
more gluon fluctuations are included in the effective actio
and at the same time will define the renormalized quanti
of the effective theory, i.e., the gauge fieldAm and the cou-
pling g. As the effective actionGk is a scalar quantity, the
infinities appearing in itmusttake the Lorentz-invariant form
of a scalar functionZ timesSeff@A#5SYM@A#1Rk@A#, i.e.,
SYM@A#5ZSYM@A0#, andRk@A#5ZRk@A0#. If we define
the renormalized fieldAm and the renormalized couplingg in
terms of the bare, unrenormalized quantititiesA0m andg0,

A 0m
a 5ZA

1/2A m
a g05Zgg, ~39!

then the bareF 0mn
a is renormalized by

F 0mn
a 5]mA 0n

a 2]nA 0m
a 1g0f bc

a A 0m
b A 0n

c

5ZA
1/2@]mA n

a2]nA m
a 1~ZA

1/2Zg!g fbc
a A m

bA n
c#

~40!

5For QCD in the absence of a medium,A050, because the
vacuum is colorless and Lorentz invariant, which does not allow
non-vanishinĝ A m

a &.
2-8
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and consequently the squared field strength tensor is

~F 0mn
a !25ZA@~]mA n

a2]nA m
a !2

1~ZA 1/2Zg!g fabc~]mAn,a!A b
mA c

n

1~ZAZg
2!g2f abcf ab8c8Am,bAn,cA b8

m A c8
n

#.

~41!

Clearly, this will only take on an invariant form of a scal
functionZ21 times (Fmn)2 provided that
e
a

e
y

o
ou

r

03401
ZA5Zg
22[Z21. ~42!

Indeed, as has been demonstrated originally by Kummer@32#
to orderO(g2) and later been proven in general@33#, this
equality of the renormalization factors for the gauge fiel
the 3-gluon coupling and the 4-gluon coupling is a uniq
property of non-covariant gauges, and therefore holds in
light-cone gauge employed in this paper. Similarly, the
frared cut-off for the gauge fields,Rk@A# of Eq. ~24! is
renormalized by
Rk@A0#5
1

2
A 0a

m @gmndabRk~]2!#A 0b
n 1

1

2 S 1

j
21D ~nmA 0b

m !F ~n•]!21Rk„~n•]!2
…

Rk„~n•]!2
…

]2dabG ~nnA 0b
n !

5
ZA
2
A a

m@gmndabRk~]2!#A b
n1

ZA
2 S 1

j
21D ~nmA b

m!F ~n•]!21Rk„~n•]!2
…

Rk„~n•]!2
…

]2dabG ~nnA b
n!. ~43!
-

ing

q.

to

-
ics
ded
Hence,

~F 0
mn!25Z21~Fmn!2, Rk@A0#5Z21Rk@A#, ~44!

and consequently the forms ofSeff@A#, Wk
(A) and the effec-

tive actionGk@Ā# are preserved under simple multiplicativ
renormalization. Notice that all the physics of the renorm
ization group is encoded in asingle scalar renormalization
functionZ, which is a function of the gluon momentumq as
well as of the infrared scalek, i.e.,

Z[Zk~q!5Zk~q2,n•q!, ~45!

where the last equality is true for the class of axial gaug
for which one can show@32# that theq-dependence can onl
enter in the combination of the two Lorentz invariantsq2 and
(n•q)2. This function Zk will thus be the key to the
k-evolution of the effective action and the associated glu
propagator. In particular, we shall exploit the advantage
property of axial gauges that~for specific choices of the
gauge vectorn and the gauge parameterj) the renormalized
gluon propagator is simply the renormalization functionZk
times the bare propagator,

Dk, mn~q!5Zk~q!Dk, mn
(0) ~q!, ~46!

and similarly, the renormalized running coupling is the ba
coupling constant multiplied byZ k

1/2:
l-

s,

n
s

e

g[g~q2!5Z k
1/2~q!g0 . ~47!

If we choose the mass scaleL as the point where we nor
malize the theory@cf. Eq. ~56!#, then

Zk~L!51 g05g~L2!. ~48!

The roadmap for the following is to derive ak-evolution
equation for the effective action, and extract a correspond
evolution equation for the renormalization functionZk ,
which then allows us to infer the exact propagator via E
~46!, the running coupling from Eq.~47!, subject to the nor-
malization condition~48!.

D. The average effective action

After these preliminaries, we are now in the position

derive anaverageeffective actionḠk from the effective ac-
tion Gk of Eq. ~35!, as well as anexactevolution equation

for this averageḠk within the renormalization group frame
work. This evolution equation determines how the phys
changes when more and more gluon fluctuations are inclu
in the functional by successively loweringk towards zero.

Theaverage effective actionḠk is defined@1,2# as the effec-
tive actionGk of Eq. ~35! minus the infrared regulatorRk ,
Eq. ~24!,

Ḡk@Ā#5Gk@Ā#2Rk@Ā#, ~49!

and reads in view of Eq.~35!,
2-9
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Ḡk@Ā#52 i lnF E DAexp$ i ~SYM@A#1Sfix
(j)@A#1Rk@A#2Rk@Ā#1Sext@A,J#2Sext@Ā,J# !%G

52 i lnF E DAexpH i E d4xS 2
1

2
A a

m~gmn]22]m]n!A na2
1

2j
~nmA m

a !~nnA na!

2
1

2
g fa

bc~]mA n
a2]nA m

a !A b
mA c

n2
1

4
g2f a

cef be
d A m

aA n
bA c

mA d
n2

1

2
~A a

mR kmn
ab A nb2Āa

mR kmn
ab Ānb!

1J m
a ~A a

m2Āa
m! D J G , ~50!

whereRk[Rk(]2) from Eq.~26!. Evaluating the functional integral, and settingĀ50, one sees that the classical contributi

to the actionS̄[@SYM1Sfix
(j)# Ā5050 vanishes, so that one arrives at@34#

Ḡk[Ḡk@Ā50#5Ḡk
(0)1 Ĝ̄k , ~51!

where theḠk
(0) is the ‘‘kinetic’’ part at Ā50,

Ḡk
(0)5

i

2E d4xd4y~Dk
(0)!21~x2y!Dk~y,x!, ~52!

and Ĝ̄ is the ‘‘interaction’’ part atĀ50,

Ĝ̄k5
1

8
g2E d4xd4yE d4x1d4y1W(0)~x,y,x1 ,y1!Dk~y1 ,x1!Dk~y,x!

1
i

12
g2E d4xd4yE )

i 51

2

d4xid
4yiV

(0)~x,x1 ,x2!Dk~x1 ,y1!Dk~x2 ,y2!V~y2 ,y1 ,y!Dk~y,x!

1
1

48
g4E d4xd4yE )

i 51

3

d4xid
4yiW

(0)~x,x1 ,x2 ,x3!Dk~x1 ,y1!Dk~x2 ,y2!Dk~x3 ,y3!W~y3 ,y2 ,y1 ,y!Dk~y,x!

1
i

96
g4E d4xd4yE )

i 51

2

d4xid
4yid

4ziW
(0)~x,x1 ,x2 ,x3!Dk~x2 ,z2!Dk~x3 ,z3!

3V~z3 ,z2 ,z1!Dk~z1 ,y1!Dk~x1 ,y2!V~y1 ,y2 ,y!Dk~y,x!. ~53!
ch
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Here we made use of the formulas of Appendix B, in whi
Dk denotes theexactproagator given by Eq.~B18!, while V
andW are theexactproper 3-gluon and 4-gluon vertex func
tions given by Eqs.~B20! and ~B24!, respectively. Corre-
spondingly,Dk

(0) is the bare propagator, andV(0), W(0) the
bare vertices, explicitly given by Eqs.~B22! and ~B26!, re-

spectively. The different contributions inĜ̄k correspond to
the diagrams of Fig. 2: the first term is the one-gluon lo
the second term is the tadpole contribution, the third term
the 2-gluon loop with exact 3-vertex, the fourth term is t
three-loop contribution with exact 4-vertex and the last te
is the three-loop contribution with two exact 3-vertices.

Notice that the infrared regulating termsRk in Eq. ~50!

affect only the contributions that are quadratic inA or Ā.
Hence, if we write in analogy to Eq.~51! for the effective
actionGk in the presence of the infrared regulator
03401
,
is

Gk[Gk
(0)1Ĝk , ~54!

we have in view of Eq.~49! the following mapping between

Ḡk andGk :

FIG. 2. Diagrammatic representation of the effective actionḠk

5Ḡk
(0)1 Ĝ̄k , Eqs. ~51!–~53!: the first term is the ‘‘kinetic’’ term,

the second term is the tadpole contribution, the third contributio
the 2-gluon loop with exact 3-vertex, the fourth term is the thre
loop contribution with exact 4-vertex and the last diagram is
three-loop contribution with two exact 3-vertices. The curly lin
represent theexactgluon propagator in the presence of the infrar
cut-off k, the dots arebare 3-gluon or 4-gluon vertices, while the
shaded circles~boxes! areexact3-gluon and 4-gluon vertices.
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G (0)5Ḡk
(0)1Rk Ĝk5 Ĝ̄k . ~55!

E. Evolution equation for the average effective action

Following Ref. @2#, one can derive an exact evolutio

equation for the average effective actionḠk defined by Eq.
~49!, which is a type of renormalization group equation go

erning the scale-dependence ofḠk as the infrared cut-offk is
varied. Let us introduce the dimensionless evolution va
able,

t[ lnS k

L D , dt5
dk

k
5

1

2

dk2

k2
, ~56!

whereL is some convenient mass scale at which the the
is normalized~Secs. IV and V!, and which may be chosen t
match a specific physics situation, e.g., the total invari
mass of a high-energy particle collision, or the large mom
tum transfer in a hard scattering process. Recalling Eq.~49!,
and introducing for abbrevation
03401
-

i-

ry

t
-

K@A,Ā,J#[exp@ i ~Seff@A,J#1Rk@A#2JsĀ!#, ~57!

one obtains for the derivative ofGk , using Eqs.~16!–~18!,
~21!, ~35!,

]

]t
Gk@Ā#5

]

]t
Wk

(A)@J#

52 i
]

]t
lnF E DAK@A,Ā,J#G

5

E DA1

2
AmS ]

]t
R k

mnDAnK@A,Ā,J#

E DAK@A,Ā,J#

uJ50

5
1

2
TrF S ]

]t
RkD ~G k

(2)1ĀsĀ!G , ~58!

while for the derivative of the second term on the right-ha
side of Eq.~49! one has
tracting
]

]t
Rk@Ā#5

1

E DAK@A,Ā,J#
S 1

2

]

]t
R k

mnD S E DAAmK@A,Ā,J#E DAAnK@A,Ā,J# DU
J50

5
1

2
TrF S ]

]t
RkD ~ĀmsĀn!G ,

~59!

where Tr@ . . . # stands for the trace over all internal indices, as well as an integration over continuous variables. Sub

Eq. ~59! from Eq. ~58!, utilizing that G k
(2)5(Gk

(2))215(Ḡk
(2)1Rk)21, whereḠk

(2) is the second functional derivative ofḠk

with respect toĀ, one arrives at the desired evolution equation for the effective average action~49!:

]

]t
Ḡk@Ā#5

1

2
TrF S ]

]t
RkD ~ Ḡk

(2)1Rk!21G[gk@Ā#. ~60!

III. THE EVOLUTION EQUATION FOR THE GLUON PROPAGATOR

Working henceforth in momentum space, we now take practical steps to solve the evolution equation~60! for the gluon
propagator. Recall that we defined the exact gluon propagator, respectively its inverse, as@cf. Eqs.~37!, ~38!#

Dk, mn
ab ~q!5„G k

(2)~q,2q!…mn
ab5^A m

a ~q!A n
b~2q!&k , ~61!

~Dk
21!mn

ab~q!5„Gk
(2)~q,2q!…mn

ab5„Ḡk
(2)~q,2q!…mn

ab1Rk, mn
ab ~q2!. ~62!

Our goal is now to infer from the general evolution equation~60! for the average effective actionḠk a corresponding evolution
equation forDk

21 , from which we can then determine the properties of the propagatorDk itself.
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A. The general case

We begin by rewriting Eq.~60! as

]

]t
Ḡk@Ā#5

1

2E d4q

~2p!4 S ]

]t
Rk~q2! D

mn

ab

~@Ḡk
(2)~q,2q!1Rk~q2!#21!ab

mn[gk@Ā#. ~63!

As this is anexactequation, any attempt to solve it in full is certainly out of the question, because it would require to

for an infinite number of the vertex functionsḠk
(n) which contribute to both sides of Eq.~63!. On the left-hand side, theḠk

(n)

enter through the series representation ofḠk@Ā#,

Ḡk@Ā#5 (
n50

`
1

n! E d4qn

~2p!4
. . .

d4q1

~2p!4
„Ḡk

(n)~q1 , . . .qn!…m1 . . . mn

a1 . . . an Āa1

m1~q1! . . . Āan

mn~qn!, ~64!
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while on the right-hand side of Eq.~63!, the Ḡk
(n) are implic-

itly encoded in the 2-point functionḠk
(2) . However, since we

are here interested in the behavior of only the gluon pro
gatorDk

mn5^A mA n&k , we do not need to solve Eq.~63! for

the average effective actionḠk@Ā# as a whole, but only for

its contributionsḠk
(2)@Ā# which are second order inĀ on the

left-hand side of Eq.~63!, and which are mapped on th
corresponding quadratic contributions on the right-hand s

denoted bygk
(2)@Ā#, being the second order term in the ser

gk@Ā#5 (
n50

`

gk
(n) . ~65!

That is, instead of Eq.~63! for the full Ḡk , we aim at the
corresponding evolution equation with respect tot5 lnk for
the 2-point contributions alone,

]

]t
Ḡk

(2)5gk
(2) . ~66!

We emphasize that Eq.~66! is still an exact equation: no
truncations have been imposed on the way from the orig
evolution equation~63!. If we were to knowgk

(2) exactly,
then it would be straightforward to solve for the evolution

Ḡk
(2) with k. Unfortunately, the functiongk

(2) on the right-
hand side is a tremendously complicated object, becau
implicitly contains all sorts of contributions of higher ord
in the gauge fields, which one would have to determine

solving corresponding equations forḠk
(3) , Ḡk

(4) , and so forth.
Fortunately, the gauge symmetries of QCD allow to rel
these higher-order contributions among each other via
Slavnov-Taylor identities, and it is possible, as we shall de
onstrate, to obtain a closed expression forgk

(2) without ex-
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plicit knowledge of the higher-order terms, but rather
their implicit inclusion through the constraint equations th
follow from first principles.6

1. Left-hand side of the evolution equation (66)

Returning to Eq.~63!, we pick out from the series repre

sentation ofḠk@Ā# in Eq. ~64! the contributionḠk
(2)@Ā# that

is quadratic inĀ, and then considerĀ50,

Ḡk
(2)[Ḡk

(2)@Ā50#

5
1

2E d4q

~2p!4
Āa

m~q!„Ḡk
(2)~q,2q!…mn

abĀb
n~2q!uĀ50 .

~67!

Now, the two-point function under the integral on the righ
hand side is related to the inverse gluon propagator

6This is analogous to the Bogoliubov-Born-Green-Kirkwoo
Yvon ~BBGKY! hierarchy@35# of Green functions in field theory
then-point Green functions are intimately coupled by an infinite
of equations of motion. For example, the 1-point function~the mean
field! is determined by the Landau-Ginzburg equation, which c
tains the 2-point function~the propagator!. The 2-point function
itself is the solution of the Dyson-Schwinger equation, which co
tains the 3-point and 4-point functions. The 3-point and 4-po
functions in turn are determined by even more complicated eq
tions that contain higher-order Green functions. This scheme c
tinuesad infinitum. The hierarchy of the equations is exact, but
order to solve it approximately, it is usually truncated to a system
equations involving only the 1- or 2-point functions. To achie
self-consistency of the truncated set of equations at, e.g., then52
level, then>3 functions must be implicitly included by additiona
constraint equations. For instance, in QCD the Slavnov-Tay
identities relate the 3-gluon vertex function to the propagator,
can be used to eliminate the 3-point function. We follow such
path later in this paper.
2-12
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(Dk)mn
215Ḡk, mn

(2) 1Rk, mn , since Ḡk, mn
(2) 5Gk, mn

(2) 2Rk, mn

andGk, mn
(2) 5(G k

(2))mn
215(Dk)mn

21 . We may, therefore, param

etrizeḠk, mn
(2) according to the most general tensor decom

sition of the inverse propagator (Dk)mn
21 that is compatible

with the constraining Ward identities for the class of ax
gauges. This requires two independent scalar functio
ak(q) and bk(q), in which theq-dependence can only in
volve @32# the two invariantsq2/L2 andn2q2/(n•q)2. Intro-
ducing the variable

x[x~n,q!5
n2q2

~n•q!2
, ~68!

the dependence ofak and bk on q and n appears asak(q)
5ak(q2,x), bk(q)5bk(q2,x). Hence, we can represen

Ḡkmn
(2) in the following form:

„Ḡk
(2)~q,2q!…mn

ab5dab
„ak~q2,x!Pmn~q!

1bk~q2,x!Qmn~q!…, ~69!

with the orthogonal projection operators7

Pmn~q!5gmn1
1

12x Fx
qmqn

q2
2

nmqn1qmnn

n•q
1x

nmnn

n2 G
~70!

Qmn~q!52
1

12x Fqmqn

q2
2

nmqn1qmnn

n•q

1S x2
~12x!n2

jq2 D nmnn

n2 G , ~71!

which have been constructed from the available vectorsqm ,
nm and from gm in the spacenmPmn505nmQmn. In the
absence of interactions, the bare parameters would beak
→q21Rk andbk→q21Rk . In general, however, the scala
functionsak andbk in Eq. ~69! embody the full information

about the running ofḠk
(2) and, hence, of the gluon propagat

which is determined by the inverse ofḠk
(2) , as we shall show

below.

7Here and in the following, negative powers ofn•q are under-
stood in the principal value sense@29#, which ensures unitarity
Notice, that the last term}n22 in bothPmn and inQmn , is actually
}(n•q)22, as is evident from the definition ofx, Eq. ~68!.
03401
-
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2. Right-hand side of the evolution equation (66)

Similar as above, we need to extract fromgk@Ā# in Eq.

~63! the contributiongk
(2)@Ā# that is quadratic inĀ and then

set Ā50. We first notice that

gk[gk@Ā50#

5
1

2E d4q

~2p!4

d4q8

~2p!4
d4~q1q8!S ]

]t
Rk~q2! D

mn

ab

3~@Gk
(2)~q,q8!#21!mn

ab ~72!

whereRk(q) is the Fourier transform of Eq.~26!,

Rk, mn
ab ~q!5Rk~q2!dabS gmn2

qmqn

q2 D
5Rk~q2!dab~Pmn1Qmn!. ~73!

Next, we decomposeGk
(2) in Eq. ~72! into a kinetic term

(Pk
(0)) and an interaction term (P̂k),

~Gk
(2)!mn

ab~q,q8!5~Pk
(0)1P̂k!mn

ab~q,q8!. ~74!

From the relations~54!, we infer

Pk, mn
(0)ab ~q,q8!5

d2Gk
(0)

dĀa
m~q!dĀb

m~q8!
U

Ā50

52id4~q1q8!
dGk

(0)

dDkab
mn ~q!

P̂k, mn
ab ~q,q8!5

d2Ĝk

dĀa
m~q!dĀb

m~q8!
U

Ā50

52id4~q1q8!
dĜk

dDkab
mn ~q!

. ~75!

Applying these to the formulas~50!–~53!, after Fourier
transformation to momentum space, we obtain for the kine
term

Pk, mn
(0)ab ~q,2q!5dab„q

21Rk~q2!…S gmn2
qmqn

q2
1

1

j

nmnn

q2 D ,

~76!

while the interaction term gives
2-13
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P̂k, mn
ab ~q,2q!5

g2

2 E d4k

~2p!4
Wmnls

(0),abcd~q,k,2k,2q!Dk
ls,cd~k!

2
ig2

2 E d4k

~2p!4
Vmls

(0),acd~q,2k,2k8!Dk
ll8, cc8~k!Dk

ss8, dd8~k8!Vs8l8n
d8c8b

~k8,k,2q!

1
g4

6 E d4k

~2p!4

d4p

~2p!4
Wmlst

(0),acde~q,2k,2k8,2p!Dk
ll8, cc8~k!Dk

ss8, dd8~k8!

3Dk
tt8, ee8~p!Wt8s8l8n

e8d8c8b
~k,k8,p,2q!1

g4

24E d4k

~2p!4

d4p

~2p!4
Wmlst

(0),acde~q,2k,2k8,2p8!

3Dk
sr8, d f8~k!Dk

tr9, e f9~k8!Vr9r8r
f 9 f 8 f

~k,k8,2p!Dk
rl8, f c8~p!Dk

ls8, cd8~p8!Vl8s8
c8d8 ~p,p8,2q!, ~77!
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-
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with k85q2k in the second term,k85q2k2p in the third
term, andk85q2k2p8, p85q2p in the last term. Figure
3 depicts diagrammatically the inverse propagator (Gk

(2))mn ,
Eq. ~74!, in terms of the contributionsPk

(0) , Eq. ~52!, and

P̂k , Eq. ~53!.
Now let us define a partial derivative] t* that acts only on

the t5 lnk dependence ofPk
(0) , but not onP̂k ,

] t* Gk
(2)
ª] t* ~Pk

(0)1P̂k!5] t* Pk
(0)5

]

]t
Pk

(0) , ~78!

so that we may write the right-hand side of Eq.~63! in a
form that is reminescent of the derivative of a one-loop
pression, but which is exact,

gk5
1

2E d4q

~2p!4
] t* @ lnGk

(2)
ma
ma~q,2q!#5

1

2
TrF]*

]t
lnGk

(2)G .
~79!

From this representation ofgk we extract now the contribu
tion which corresponds to terms quadratic in the gluon fie
and therefore is relevant for the evolution of the gluon pro
gator: We utilize

Tr@] t* lnGk
(2)#5Tr@ lnP0#1Tr@] t* ~P̂kPk

(0)21!#

2
1

2
Tr@] t* ~P̂kPk

(0)21P̂kPk
(0)21!#1 . . . ,

~80!

FIG. 3. Diagrammatic representation of the inverse propag

(Gk
(2))mn5(Pk

(0)1P̂k)mn , Eqs.~74!–~77!. The first term is the con-
tribution from the ‘kinetic part’Pk

(0) , while the remaining terms

arise from the ‘interaction part’P̂k . The curly lines represent th
exactgluon propagator in the presence of the infrared cut-offk, the
dots arebare 3-gluon or 4-gluon vertices, while the shaded circl
~boxes! areexact3-gluon and 4-gluon vertices.
03401
-

s,
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where the dots refer to higher-order terms which are cu
and higher in the gluon fields and therefore contribute o
to the 3-point, 4-point functions, etc., but not to the glu
propagator or its inverse. Now, the first term in Eq.~80!
amounts to an irrelevant constant which may be dropped
view of Eq. ~76!, so that we finally arrive at

gk
(2)5

1

2E d4q

~2p!4
] t* @P̂k, mn

ab ~q,2q!~Pk
21!ba

nm~2q,q!#

2
1

4E d4q

~2p!4

d4p

~2p!4
] t* @P̂k, ml

ac ~q,2p!~Pk
21!cd

ls

3~2p,p!P̂k, st
de ~p,2q!~Pk

21!ea
sm~2q,q!#. ~81!

3. The master equations for the gluon propagator

Now we have collected all the ingredients for the evo

tion equation~66!: Ḡk
(2) appearing on the left-hand side,

given by Eqs.~67!–~70!, andgk
(2) on the right-hand side, is

determined by Eq.~81! together with Eqs.~76! and ~77!. In
order to infer from this evolution equation two independe
coupled scalar equations for the two unknown functionsak
and bk , we project Eq.~66! with Pmn and Qmn , given by
Eqs. ~71! and ~70!, respectively. UsingPmlPn

l5Pmn ,
QmlQn

l5Qmn , and PmlQn
l50, as well asnm(Pk

(0)21)mn

50, qm(P̂k)mn50, we obtain after some algebra

]

]t
ak~q2,x!5

1

2 S gmn1
x

12x

nmnn

n2 D ]

]t
P̂k

mn~q,2q!

~82!

]

]t
bk~q2,x!52

x

12x

nmnn

n2

]

]t
P̂k

mn~q,2q!. ~83!

We remind the reader of the complexity of these equatio
which are equivalent to Eq.~66!, and hence our comment
after Eq. ~66! apply also here. The key problem becom

clear in view of Eq.~77!, which shows thatP̂k contains not

or
2-14
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only the exact propagatorDk , but also the exact 3-gluon an
4-gluon vertex functionsV, respectivelyW. In principle, one
would therefore have to solve even more complicated eq

tions forV andW, and then plug the solutions intoP̂k of Eq.
~77!. Then Eqs.~83! and ~82! would contain on the right-
hand sides only the unknownDk , the solution of which we
are after. However, as we show in the next subsections,
possible to get rid of the explicit dependence onV andW by
~i! eliminating the 4-gluon vertices and~ii ! expressing the
3-gluon vertices through the propagatorDk alone. Then we

can evaluateP̂k , Eqs.~83! and ~82! serve to determine the
functions ak and bk which, in turn, would give a unique
solution to the exact gluon propagator from Eq.~74!,

Dk, mn
ab ~q!5~Gk

(2)21!mn
ab~q,2q!5~@Pk

(0)1P̂k#21!mn
ab .

~84!

Decomposing the propagator analogous to Eq.~69!,

Dk, mn
ab ~q!5dab

„Ak~q2,x!Smn~q!1Bk~q2,x!Tmn~q!…,
~85!

with the projectors

Smn~q!5gmn1
1

12x Fx~11jq2!
qmqn

q2

2
nmqn1qmnn

n•q
1x

nmnn

n2 G ~86!

Tmn~q!52
1

12x Fx~11jq2!
qmqn

q2

2
nmqn1qmnn

n•q
1

nmnn

n2 G , ~87!

and invertingPk
(0)1P̂k on the right-hand side of Eq.~84!,

one finds~cf. Appendix D! that the functionsAk andBk are
related toak andbk by

Ak~q2,x!5
1

ak~q2,x!
, Bk~q2,x!5

x

bk~q2,x!
. ~88!

In the limit of vanishing couplingg→0, we haveak→q2

1Rk and bk→q21Rk , so that thebare propagatorDk
(0) ,

respectively its inversePk
(0) are

Dk, mn
(0) ~q!5

Smn1xTmn

q21Rk~q2!

5
1

q21Rk~q2!
Fgmn2

nmqn1qmnn

n•q

1~n21jq2!
qmqn

~n•q!2G ~89!
03401
a-

is

Pk, mn
(0) ~q,2q!5„q21Rk~q2!…~Pmn1Qmn!

5„q21Rk~q2!…Fgmn2
qmqn

q2

1S n2q21
1

j D nmnn

~n•q!2G , ~90!

and, sinceDk
(0)5(Pk

(0))21, the following inversion property

holds:Dk, ml(Pk
(0)1P̂k)n

l5gmn .

B. The casex˜0

The system of evolution equations~82! and ~83! for the
functionsak , bk , and hence forAk , Bk , is still immensely
difficult to solve, because, as is evident from Eq.~77!, the

self-energy tensorP̂k contains products of exact propagato
Dk ~the solution of which we do not know yet! with the exact

3-gluon and 4-gluon vertex functionsV̂ and Ŵ ~which are
themselves unknown combinations of propagators!. How-
ever, we can make substantial progress, if we can elimin
the explicit x-dependence, by consideringx5n2q2/(n•q)2

50: There are two possibilities to achieve this condition:~i!
choosingn2→0, or ~ii ! consideringq2/(n•q)2→0. The first
possibility corresponds to choosing, among all the ax
gauges with arbitraryn2, the light-cone gauge withn250.
The second possibility,q2/(n•q)2→0, holds for anyn2, and
corresponds to thequasi-real limit, by which we mean the
kinematic regime in which the gluon energyq0 is large as
compared to the virtual massAq2 so that the gluons are
practically on-shell. Specifically, we require for the gluo
four-momentumqm5(q0 ,q' ,qz) that

q0
2'qz

2@q'
2 @q2. ~91!

This situation is typical for high-energy particle collision
with ~gluon! jet production, for example, hadronic collision
with center-of-mass energyEcm*100 GeV, where the gluon
~and quark! fluctuations in the colliding hadrons have high
boosted longitudinal momentum along the beam axis,
comparably very small transverse momentum. Bearing
physics picture in mind, it is then suggestive to choose
vectornm along the preferred longitudinalz-direction that is
dictated by the collision geometry, i.e., to choosenm in the t-
z plane, parametrized as

nm5~u1v,0' ,u2v ! n254uv. ~92!

The two assertions~91! and ~92! imply

n•q'2vq0 and
q2

~n•q!2
.0. ~93!

Consequently, from Eqs.~68! and ~88!, we have forq2/
(n•q)2→0 or n2→0 ~assuming the functionsak andbk are
finite for all q)
2-15
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x→0, Bk5
x

bk
→0, ~94!

so that we are left with only one unknown functionAk
51/ak . We find that in this limit Eqs.~82! and ~83! coin-
cide, since

gmnP̂mn5P̂m
m523

x

12x

nmnn

n2
P̂mn, ~95!

and therefore only the tensor structurenmnnP̂mn appears in
both equations. Using Eq.~95! together with the definition of

x, Eq. ~68!, and the expression~77! for P̂, we obtain the
master equationfor ak in the limit ~94!

]

]t
bk~q2,x!52

x

12x

nmnn

n2 S ]

]t
P̂k

mn~q,2q! D
52S q2

~n•q!22n2q2D
3H 1

2
g2E d4k

~2p!4
n2S ]

]t
Dk

ll~k! D
1

i

2
g2E d4k

~2p!4
n•~k2k8!nn

3S ]

]t
@Dk

ls~k!Dk, l
s8 ~k8!Vss8n~k8,k,2q!# D J ,

~96!

wherek85q2k, and we have utilized the form of the ba
3-gluon vertexV(0), as given by Eq.~B23!. Notice that Eq.
~96! contains only the tadpole contribution and the 3-glu
vertex contribution, as diagramatically represented in Fig

all the other 4-gluon terms that are present inP̂mn of Eq.
~77! vanish identically upon contraction withnm and nn ,
becauseDk is orthogonal ton, which is a direct consequenc

of the orthogonality ofP̂ with respect toq due to current
conservation~both properties hold, of course, also for th
bare functionsDk

(0) andPk
(0)),

nmDk, mn505Dk, mnnn qmP̂k, mn505P̂k, mnqn.
~97!

The initial conditions for the evolution equation~96! are
dictated by asymptotic freedom in the ultraviolet limit asq

FIG. 4. Diagrammatics of the contractionnmP̂k
mnnn : Only the

tadpole contribution~proportional ton2) and the 3-gluon vertex
contribution~proportional tonmnn) survive. All the terms drop out
upon contraction withnm andnn .
03401
:

→`, or more precisely,q2→L2 with the normalization scale
L2/k2→` @cf. Eq. ~56!#:

ak~q2,x! →
q2→L2

q2, ~98!

which implies that the gluon propagator becomes the b
propagator at the renormalization point,

Dk~q! →
q2→L2

Dk
(0)~q!. ~99!

As we move away from the asymptotic normalization sc
L, the full gluon propagator~85! remains proportional to its
bare counterpart, modulo the functionAk51/ak , which en-
codes all effects of including softer and softer gluon fluctu
tions in the evolution equation~96!,

Dk, mn~q!5
1

ak~q2,x!
Smn8 ~q!5S q21Rk~q2!

bk~q2,x!
D Dk, mn

(0) ~q!,

~100!

with Smn8 given by Eq.~86! at the valuex50, i.e.,

Smn8 ~q!5gmn2
nmqn1qmnn

n•q
. ~101!

Hence, the bare propagator and its inverse~taking now and
henceforthj→0) reads

Dk, mn
(0) ~q!5

1

q21Rk~q2!
Fgmn2

nmqn1qmnn

n•q G ~102!

Pk, mn
(0) ~q,2q!5„q21Rk~q2!…Fgmn2

qmqn

q2 G ,

~103!

and the inversion property, noted after Eq.~90!, is modified

for j→0: Dk, ml(Pk
(0)1P̂k)n

l5gmn2nmqn /(n•q).

C. Remarks

Let us summarize the conceptual steps of the preced
subsections. From the general form of the evolution equa
~66! for the quadratic~in the average gauge field! contribu-
tions of the average effective action, we inferred a coup
set of equations~82! and ~83! that determine the exact form
of the gluon propagator via Eqs.~85! and~88! in terms of the
scalar functionsak andbk . In the case ofx5n2q2/(n•q)2,
we could eliminate the dependence on the functionbk , and
arrive at the master equation~96! for ak alone, the solution
of which determines the full gluon propagator by simp
mutiplying the bare propagator with the single functionak .
The presumptionx→0 can be achieved either by lettingn2

→0, or by consideringq2/(n•q)2→0. The former possibil-
ity corresponds to going over to the light-cone gauge, wh
the latter possibility is fulfilled in the kinematic regime~91!
of ‘‘quasireal’’ gluons. In either case, we have the conditi
~94!, under which the master equation~96! is an exact equa-
2-16
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tion in the sense that it contains the full non-perturbat
evolution associated with the functionak in general axial
gauges specified by the vectornm and the gauge parameterj.

IV. SOLUTION FOR THE GLUON PROPAGATOR
IN THE LIGHT-CONE GAUGE

Recall that Eq.~96! holds for the class of axial gauge
~12! in general, viz. for any choice ofnm with finite n2 and
arbitrary gauge parameterj. For n2Þ0, the expression on
the right-hand side of this equation is then still very difficu
to integrate, as has been discussed, e.g., in Ref.@18# for the
case,8 nm5(1,0,0,0)n251, andj50. On the other hand, fo
n250, which we will consider in the following, the right
hand side of Eq.~96! simplifies considerably, so that an e
act ~numerical! integration is straightforward. Moreover, w
will show that it is even possible to integrate Eq.~96! in
closed form by utilizing the methods of Ref.@22#, with the
result being expressible in terms of elementary functions

A. Evolution of the renormalization function Zk for n250

The light-cone gauge can be specified by choosing, in
parametrization~92!, the constant vectornm , such that it is
directed along the forward light-cone in thet2z plane. Set-
ting in Eq. ~92! u50 andv51, we have

nm5~1,0' ,21! n250. ~104!

It follows then thatx50, and if we introduce instead ofak
the dimensionless renormalization function

Zk~q2![
q2

ak~q2,0!
, ~105!

with initial condition ~98! at the normalization scaleL2

@k2 in the ultraviolet:

Zk~q2! →
q2→L2

1, ~106!

then we may rewrite the evolution equation~96! as

]

]t

1

Zk~q2!
5

]

]t

ak~q2,0!

q2

52
nmnn

~n•q!2 S ]

]t
P̂k

mn~q,2q! D
52

i

2
g2E d4k

~2p!4

n•~k2k8!

~n•q!2
nn

3S ]

]t
@Dk

ls~k!Dk, l
s8 ~k8!Vss8n~k8,k,2q!# D ,

~107!

8This case would correspond to choosingu5v51/2 in Eq.~92!.
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in which now only the 3-gluon contribution with the exa
vertex functionV and exact propagatorsDk is present, while
the tadpole contribution, i.e., the first term on the right-ha
side of Eq.~96!, vanishes since it is proportional ton2. The
solution of Eq.~107! then determines the full gluon propa
gator in terms ofZk , so that we have instead of Eq.~100!

Dk, mn~q!5Zk~q2!Dk, mn
(0) ~q!, ~108!

with the bare propagatorDk
(0) given by Eq.~102!.

B. The spectral representation of propagator and vertex
function

The evolution equation~107! still contains the unknown
exact 3-gluon vertex functionV, which, as one would expect
would have to be determined first, by solving a correspo
ing evolution equation forV, itself involving higher-order
vertex functions. Luckily, the gauge symmetry properties
QCD imply the Slavnov-Taylor identities, which are th
Ward identities of QCD relating the vertex functions to t
propagator. In general these relations are non-trivial, ho
ever, in the class of axial gauges, the Slavnov-Taylor ide
ties have a simple form. For example, the 3-gluon ver
functionV can be expressed in terms of the propagatorDk as

qlVlst~q,k,k8!Dk
sm~k!Dk

tn~k8!5Dk
mn~k8!2Dk

mn~k!

~109!

where (k85q2k). This Slavnov-Taylor identity suggest
the following strategy:~i! construct an ansatz forV, in terms
of Dk , such that Eq.~109! is identically satisfied, and,~ii !
insert this ansatz into the evolution equation~107! for Zk ,
upon which one obtains a closed equation for the propag
Dk , because of Eqs.~108! and~102!. To do so, we adopt the
elegant method of Delbourgo@16# and represent the exac
propagator in terms of its spectral representation

Dk, mn~q!5Smn8 ~q!E dW2
rk~W2!

„q21Rk~q2!…2W2
,

~110!

whereSmn8 (q) is defined by Eq.~101!, and the singularity at
W25q21Rk in the denominator is to be evaluated with th
usual i e prescription. The form~110! includes the bare
propagator~102!, Dk, mn

(0) 5Smn8 /„q21Rk(q2)…, upon setting
rk(W2)5d(W2). The physical interpretion of Eq.~110! is
very intuitive: It expresses the propagator for a gluon w
momentumq and subject to the infrared cut-off scalek,
through the weightedspectral densityrk(W2) which corre-
sponds to the number density of virtual gluon fluctuatio
with an effective massW. The caserk(W2)5d(W2) corre-
sponds then to a massless, non-interacting on-shell g
(W50). This notion of the spectral densityrk is very remi-
nescent of the gluon distribution function which is measu
2-17
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in lepton-hadron or hadron-hadron collisions, and which
scribes the substructure of a gluon in terms of virtual flu
tuations. We will return to this issue in the next section.

Inserting the spectral representation~110! for Dk into the
Slavnov-Taylor identity~109!, one obtains an implicit equa
od

y
er
ity
e
e

er

y-

,
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ith

n

m

-
e-

s

iti
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tion for the 3-gluon vertex functionV in terms of the spectra
densityrk . SinceDk andrk are not known at this point, we
must make an ansatz forV that is compatible with the
Slavnov-Taylor identity. A possible form@16# that satisfies
the identity~109!, is the following spectral ansatz:
Dk
ml~q!Dk

ns~k!Dk
rt~k8!Vlst~q,k,k8!5

1

3E dW2rk~W2!
S8ml~q!S8ns~k!S8rt~k8!Vlst

(0) ~q,k,k8!

@„q21Rk~q2!…2W2#@„k21Rk~k2!…2W2#@„k821Rk~k82!…2W2#

.

~111!
s

of

n

e

in
The integrand on the left-hand side is the symmetrical pr
uct of three propagatorsSmn8 /@„p21Rk(p2)…2W2# and the
bare 3-gluon vertexV(0), weighted by the spectral densit
rk(W2). Notice that the combination of propagators and v
tex function is just what is required to solve the ident
~109!, and moreover, it respects Bose symmetry, becaus
three legs are represented symmetrically. Also, the app
ance of the bare vertex on the right-hand side of Eq.~111!
doesnot imply that we are limiting ourselves to lowest ord
perturbation theory: on the contrary, the propagatorsDk at-
tached toV(0) are the full propagators that embody the d
namics from the~perturbative! ultraviolet regime all the way
into the ~non-perturbative! infrared domain. Nevertheless
Eq. ~111! is just an ansatz, and hardly unique: one may th
of constructing a different form that is also compatible w
Eq. ~109! but has a richer structure.9

C. Solution for the spectral densityrk and the renormalization
function Zk

Putting the pieces together, we first multiply Eq.~107! by
2(n•q)252(n•q)qnnn, so that both sides of the equatio
are proportional tonn. Next, we multiply both sides by
Dk, mn(q), in order to bring the right-hand side to the for
DkDkDkV, as required by Eq.~111!. Finally, we insert the
spectral representation~110! and ~111! for the propagators
Dk , respectively forDkDkDkV. As the result of these ma
nipulations, we obtain the following equation, which corr
sponds to Eq.~107!:

]

]t

1

Zk~q2!
5

]

]tE dW2
rk~W2!

„q21Rk~q2!…2W21 i e
Pk~q2,W2!,

~112!

9Atkinson et al. @19# have conjectured that the form~111! does
not necessarily comply with the Slavnov-Taylor identity, becau
the indexl of Vlst is contracted with theq-propagator, so that it is
not possible to isolate a contraction of the vertex function withql .
Instead a more complex ansatz is proposed in@19# which avoids
this asymmetry. However, in the light-cone gaugen250, the ansatz
of Atkinson et al. coincides with Eq.~111! for n250, so that one
may conclude that in the light-cone gauge these subtle ambigu
are absent.
-

-

all
ar-

k

where

Pk~q2,W2!5qlS8lm~q!P̂k, mn8 ~q2,W2!nn

52
q2

n•q
nmP̂k, mn8 ~q2,W2!nn, ~113!

and

P̂k, mn8 ~q2,W2!52
ig2

2 E d4k

~2p!4
Vmls

(0),acd~q,2k,2k8!

3S8ll8,cc8~k!S8ss8,dd8~k8!

3Vs8l8n
(0),d8c8b

~k8,k,2q! ~114!

is the self-energy function~to orderg2) of an intermediate
virtual gluon with massW. The remarkable feature of thi
equation is that it is nowlinear in the spectral densityrk of
the propagator, in contrast to the previous equation~107!
which involved a product of propagators. After integration
Eq. ~112! over dt5dk2/(2k2) as defined by Eq.~56!, the
formal solution forZ k

21 is

1

Zk~q2!
5

1

Z k
(0)~q2!

1E dW2
rk~W2!

„q21Rk~q2!…2W21 i e
Pk~q2,W2!.

~115!

Here the first term is determined by the initial conditio
~106! that Zk(q2)51 at the normalization pointL. As q2

→L2, the contributionZ k
(0)21 must reproduce the bar

propagator with spectral densityrk(W2)→d(W2) in the
limit g→0 due to asymptotic freedom, i.e.,

1

Z k
(0)~q2!

5q2E dW2
rk~W2!

„q21Rk~q2!…2W21 i e
. ~116!

What remains to be done is to compute the second term
Eq. ~115!. Thus, we insert the explicit expressions forSmn8 of

e

es
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Eq. ~107!, andVmnl
(0)abc of Eq. ~B23! of Appendix B, into Eq.

~114! for Pk8(W2,q), and after some algebra, we arrive at t
following expression forPk :

Pk~q2,W2!52q2
2ig2CG

~2p!4 E d4k

3
n•~k2k8!n•k8

@„k21Rk~k2!…2W2#@„k821Rk~k82!…2W2#

[2q2
g2CG

8p4
I k~q2,W2!, ~117!

wherek85q2k and the factorCG5Nc53 results from the
color tracef acdf cd

b 5dabCG . We have abbreviated the inte
gral ~including a factor 1/i ) as I k(q2,W2) for later conve-
nience. Hence, Eq.~115! becomes

1

Zk~q2!
5q2E dW2

rk~W2!

„q21Rk~q2!…2W21 i e

3F12
g2CG

8p4
I k~q2,W2!G . ~118!

In order to evaluateI k(q2,W2), we must now finally commit
ourselves to a specific form of the infrared regulatorRk(p2).
In general, a closed analytic solution is not possible as l
as Rk varies strongly withp2/k2, so that a numerical solu
tion must be found on a computer. Specifically, we wou
like to use a slight generalization of the form~31! suggested
in Sec. II,

Rk~p2!5p2
exp~2p2/k2!

exp~2p2/L2!2exp~2p2/k2!
, ~119!

which includes an additional ultraviolet cut-offL@k and
which contains Eq.~31! for L→`. Such a form introduces a
non-linear p2-dependence in the denominators@„p2

1Rk(p2)…2W2#21 that appear in Eqs.~118! and~117!,
03401
g

which discourage an analytical evaluation. We intend to
vestigate solutions to Eq.~118! in the near future by integrat
ing Eq.~117! numerically, using the infrared regulator~119!.

D. Asymptotic behavior of the gluon propagator

Notwithstanding an exact numerical study of Eq.~118!, it
is desirable to obtain at least an approximate analytical s
tion in the ultraviolet and the infrared limits. This may elu
cidate the behavior in these two extreme limits of the glu
propagatorDk5Z kDk

(0) within our specific approximate ap
proach. Furthermore, it may serve as a check for an e
numerical treatment. In order to extract the behavior
Zk(q2) for q2→0 and q2→`, we note that the dominan
contribution toI k(q2,W2) of Eq. ~117! arises from fluctua-
tions at smallk or k85q2k; only the presence of the infra
red regulatorRk prevents a divergence. Hence, the integra
in Eq. ~117! is substantially enhanced in the infrared regio
wherek2,k82<k2, and where from Eq.~32!, Rk→k2. When
on the other handk2,k82@k2, the effect of the infrared regu
lator vanishes according to Eq.~32!: Rk→0. Thus, we may
replaceRk by

Rk~p2!→k2 ~p[q,k,k8!, ~120!

which is independent ofp2, as desired, but which has qual
tatively the same effect asRk(p2) on the propagator, in both
the infrared and the ultraviolet,

1

p21Rk~p2!
.

1

p21k2
→H 1/p2 for p2→`

1/k2 for p2→0.
~121!

Substituting Eq.~120! in Eq. ~117!, we obtain

I k~q2,W2!'
1

i E d4k
n•~k2k8!n•k8

@~k21k2!2W2#@~k821k2!2W2t#
,

~122!

which can be evaluated exactly, by using the standard Fe
man parametrization@36#, and integrating over the moment
k5q2k8 in a space ofd52v dimensions,
-

I k
(v)~q2,W2!5

1

i E d2vk
n•~k2k8!n•k8

@~k21k2!2W2#@~k821k2!2W2#

5
1

i E0

1

dxE d2vk
3~n•k!~n•q!22~n•k!22~n•q!2

@k222xk•q1xq21k22W2#2

5pve2 ipvG~22v!E
0

1

dx~12x!~2x21!„x~12x!q21k22W2
…

v22.

~123!

The remaining integral can be reduced to integrals of the type*0
1dxxu21(12x)v21(x2y)2w which are integral representa

tions of the hypergeometric functionF(w,u;u1v;1/y), so that the result forI k can be cast in the following form@22#:
2-19
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I k
(v)~q2,W2!5pve2 ipv~k22W2!v22G~22v!F1

3
FS 22v, 2;

5

2
;

q2

4~W22k2!
D 2

1

2
FS 22v, 1;

3

2
;

q2

4~W22k2!
D G .

~124!

The expression~122! is singular ind54 dimensions due to the pole of the Gamma functionG(22v) which arises from the
usual ultraviolet divergence of Feynman integrals of the type~122!. If we were able to analytically compute of the origin
integral ~117! with Rk given by Eq.~119!, instead of the approximate form~122! with Rk replaced byk2, this divergence
would be avoided due to the exponential suppression of momentaq.L in Eq. ~119!. The result~124! of the approximate
integral ~122! therefore has to be regularized by hand, which we achieve by making a subtraction at some mass sm2

!L2, which we choose asm25k2,

I k
(reg)~q2,W2!5 lim

v→2
@ I k

(reg)~q2,W2!2I k
(reg)~k2,k2!#. ~125!

This regularized formI (reg)(q2,W2) is then finite, because, from the following property of the imaginary part of the hy
geometric functionF(a,b;g;x),

F~a,b;g;x1 i e!2F~a,b;g;x2 i e!5
2p iG~g!u~x21!

G~a!G~b!G~11g2a2b!
~x21!g2a2bF~g2a,g2b; 11g2a2b; 12x!,

~126!

one readily infers that the factorG(22v) in Eq. ~124! cancels in the imaginary part of the regularized expression~125!, while
the real part is finite. Hence, the limitv→2 is now well defined, and Eq.~125! can be evaluated in terms of elementa
functions, by using some transformation properties@37# of the hypergeometric function. The result is

I k
(reg)~q2,W2!5ReI k

(reg)~q2,W2!1 i Im I k
(reg)~q2,W2! ~127!

with the real part,

ReI k
(reg)~q2,W2!52

1

6
~124z!3/2lnU12A124z

11A124z
Uu~124z!2

1

3
~4z21!3/2arctanS 1

A4z21
D u~4z21!1

4

3
~z21!

1
11

6
lnS zq2

k2 D 1
p

2A3
~128!

the imaginary part,

Im I k
(reg)~q2,W2!52

p

6
~124z!3/2u~124z!, ~129!

where

z5
W22k2

q2
~W2>k2!. ~130!

Substituting Eq.~127! in Eq. ~118! for Z k
21 , we get

1

Zk~q2!
5q2E

0

`

dW2
rk~W2!

~q21k2!2W21 i e
H 12

g2CG

8p4
I k

(reg)~q2,W2!J . ~131!

Upon taking the discontinuity atq25W22k2, using the principal-value prescription (y6 i e)215P(1/y)6p id(y), and cal-
culating the imaginary part of Eq.~131!, one arrives at the following integral equation forrk :

rk~q2!F11
g2CG

8p2
ReI k

(reg)~q2,q21k2!G5
d~q2!

Zk~q2!
1

g2CG

8p3 Ek2

q2/41k2

dW2
rk~W2!

~q21k2!2W2
Im I k

(reg)~q2,W2!. ~132!
034012-20
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For the caseg250, we recover, as anticipated, the free s
lution for the spectral density,

rk~q2! 5
g2→0

d~q2! Zk~q2! 5
g2→0

1, ~133!

which corresponds to a single bare on-shell gluon.
For the caseg2Þ0, we note that on the left-hand side

Eq. ~132!, ReI k
(reg) is to be evaluated from Eq.~128! at W2

5q21k2, i.e. z51, while on the right-hand side of Eq
~132! the u-function in ImI k

(reg) from Eq. ~129! cuts off the
upper integration limit atz51/4, or,W25q2/41k2. Further-
more, if we considerq2>k2 ~keeping in mind to letk2→0
at the end!, and subtract the ‘‘single-gluon’’ contribution
~133!, to define the ‘‘multi-gluon’’ contribution of virtual
fluctuations,

r̂k~q2![rk~q2!2rk
(0)~q2!, rk

(0)~q2!5d~q2!,
~134!

we find after insertion of the expressions~128!–~130! into
Eq. ~132!

r̂k~q2!F11
11g2CG

48p2
lnS q2

k2D G
52

g2CG

48p2E0

q2/4
dw2

S 12
4w2

q2 D 3/2

q22w2
r̂k~w2!,

~135!

where we have shifted the variable of integration on
right-hand side,W2→w25W22k2. Notice the characteristic
feature of the integral overw2: it is dominated by the con
tributions from the regionw2'q2, provided thatrk is finite
and well-behaved in that region. From Eq.~135!, we now
can extract the asymptotic behavior ofrk in the ultraviolet
q2→` and the infraredq2→0.

~a! The ultraviolet limit q2→L2 (L2→`): In the large-
q2 limit, the logarithm in the brackets of the left-hand side
Eq. ~135! dominates, so that approximately

q2r̂k~q2!F11g2CG

48p2
lnS q2

k2D G
'2

g2CG

48p2E0

q2/4
dlnw2w2r̂k~w2!. ~136!

It is easy to see, that the form

r̂k~q2!'
1

q2 S c`

ln2~q2/k2!
D , c`

215
11g2CG

48p2
, ~137!

is a consistent ultraviolet solution when substituted in E
~136!.
03401
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~b! The infrared limitq2→0 (k2→0): Whenq2'k2 with
k2 tending tokPT, Eq. ~1!, we can drop the logarithm on th
left-hand side of Eq.~135!, so that

q2r̂k~q2!'2
g2CG

48p2E0

q2/4dw2

w2

S 12
4w2

q2 D
12

w2

q2

3/2w2r̂k~w2!.

~138!

An approximate solution in this case is

r̂k~q2!'
1

q2 S c0k2

q2 D , c0
215

g2CG

48p2
, ~139!

which is consistent with Eq.~137! in the infrared, whenw2

'q2→0.
The actual gluon propagatorDk, mn(q) is now obtained

by inserting the spectral density~134! into the spectral rep-
resentation~110!, using the expressions for the ultraviol
limit and the infrared region, Eqs.~137! and ~139!, respec-
tively:

Dk,mn~q!'
Smn8 ~q!

q21k2 F11
11g2CG

48p2
lnS q2

k2D G21

for q2@k2, ~140!

Dk,mn~q!'
Smn8 ~q!

q21k2 F11
g2CG

48p2

q2

k2G21

for q2→0,

~141!

whereSmn8 (q) is defined in Eq.~101!. In the ultraviolet limit
q2→`, we recover the famous logarithmic dependen
}1/q2ln(q2), while in the infrared limitq2→0, the leading
behavior is a power-law}1/q4.

The corresponding ultraviolet and infrared behavior of t
renormalization functionZk(q2) can be read off Eqs.~140!
and ~141!, by utilizing the relation betweenDk, mn andZk ,
Eqs.~108! and~102!. These asymptotic results may be com
bined into a phenomenological, but hardly unique formu
which interpolates smoothly between the ultraviolet and
infrared limit:

Dk,mn~q!5
Smn8 ~q!

q21k2
Z̄k~q2!, ~142!

with

Z̄k~q2!5„12C~q2!…F11
g2CG

48p2

q2

k2G21

1C~q2!F11
11g2CG

48p2
lnS q2

k2D G21

. ~143!
2-21
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FIG. 5. Left panel: The inverse renormalization functionZ̄k
21 , Eq. ~143! versusq2 for different values ofk, for different choices ofk.

Right panel: the corresponding gluon propagatorDk , Eq. ~142!, in contrast to the bare propagatorDk
(0) .
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Here the prefactors 12C andC interpolate between the in
frared and the ultraviolet limits, withC tending to 1 asq2

→L2 and approaching 0 asq2→0, e.g. C(q2)52@1
2L2/(q21L2)#.

In Fig. 5a, we plot this form ofZ̄k in comparison with the
asymptotic results~137! and~139!, for different choices ofk.
Figure 5b shows the corresponding gluon propagatorDk in
contrast to the free propagatorDk

(0) .

E. Remarks

Let us summarize the strategy that has led to the m
result of this paper, namely the asymptotic light-cone-ga
solutions of the renormalization functionZk for q2→` and
q2→0, Eqs.~140!, ~141! and~143!. We derived an evolution
equation~107! for Zk that involves only the exact propagat
Dk, mn and the exact 3-gluon vertexVmnl , but no higher-
order vertex functions. To obtain a closed equation for
gluon propagator alone, the 3-gluon vertex function was
lated to the propagator via the Slavnov-Taylor identity~109!
and anansatzwas constructed forVmnl , Eq. ~111!, which
obeys the constraining Slavnov-Taylor identity. The nec
sity of making a particular~non-unique! ansatz is clearly the
weakest point in our approach, yet it seems to be the o
way to trade in the unknownVmnl in order to obtain a closed
equation. The resulting evolution equation~112! for Zk then
contains solely the gluon propagator in terms of its spec
densityrk , and thus expresses the intimate relation betw
the renormalization function and the full gluon propagtor~on
the basis of the specific ansatz for the 3-gluon vertex!. The
final equation~112! for Zk could be solved analytically in
terms of elementary functions in the asymptotic ultravio
q2→` and the deep infraredq2→0, provided we approxi-
03401
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t

mate the infrared regulatorRk(q2) by its asymptotic behav-
ior in the limits q2→` andq2→0, respectively.

The ultraviolet result~140! for Zk is characterized by the
logarithmic behavior consistent with asymptotic freedo
since the ratio of bare and renormalized coupling consta
g0

2/g25Z k
21,1, corresponding anti-screening of the col

charge, i.e., the bare charge is larger than the renormal
one ~as opposed to QED, wheree0

2/e2.1, implying screen-
ing of the electric charge due to virtual pair creation!.

The infrared solution forZk , Eq. ~141!, on the other
hand, exposes a 1/q2 behavior, which would correspond to
linear static potentialV(r )}r asr→`, as expected for con
finement in the long-wavelength limit@as opposed to QED
where the infrared behavior is}1/q2, corresponding to the
classical Coulomb potentialV(r )}1/r #. Although the gluon
propagatorDk, mn , and thusZk , is a gauge-dependent ob
ject, its gauge-invariant physics content may be extracted
relating it to the gauge-invariant Wilson loop@38#.

V. PHENOMENOLOGICAL APPLICATIONS

In this section, we apply our results to thek-dependent
renormalization functionZk(q2) to illustrate two important
phenomenological connections with experimentally meas
able quantities, namely the QCD running couplingas(q

2)
and the gluon distribution functionG(q). First we infer from
Zk the running of the couplingas(q

2), using standard renor
malization group arguments, and then we relateZk via the
spectral densityrk of the gluon propagator, to the gluo
distribution functionG(q,k) and its evolution equation.

A. Renormalization group equation and running coupling

Recall that the renormalized gluon propagator, resp
tively the renormalized coupling, satisfy@cf. ~46!#
2-22
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Dk~q2!5Zk~q2!Dk
(0)~q2! g~q2!5Zk~q2!1/2g0 ,

~144!

where the scalar propagator functionDk(q2) is related to
Dk, mn(q) by

Dk, mn~q![Dk~q2!Smn8 ~q! ~145!

with Smn8 given by Eq.~101!. As in Eq.~48!, we specify the
initial conditions at the scaleL@1 GeV where we normalize
the theory, such that atq25L2, it coincides with the bare
one,

Zk~L2!51, Dk, mn~L2!5Dk, mn
(0) ~L2!, g05g~L2!.

~146!

In order to invoke the renormalization group formalis
for the light-cone gauge representation ofDk(q), Zk(q2),
and g(q2), it is convenient to introduce the dimensionle
propagator functionD through

DkS q2

L2
, g~L2!D [q2Dk~q2!. ~147!

How the physics changes when we varyL with (k fixed! is
described by the renormalization group equation forDk : If
we change the scaleL, e.g. byL2→lL2, then the renormal-
izability of the theory requires that this is equivalent to
rescaling ofDk by the factorZk , that is,

DkS q2

L2
, g~L2!D 5ZkS q2

L2
, g~L2!, l D

3DkS q2

lL2
,g~lL2!D , ~148!

where we have written

Zk~q2![ZkS q2

L2
, g~L2!, l D ~149!

in order to expose the implicitl-dependence inZk . Now let
us define the variable

t[2 lnS q2

k2D , ~150!

and differentiate Eq.~148! with respect tol. Then, setting
l51 yields the standard renormalization group equation

F ]

]t
1bk~g!1hk~t,g!GDk~t,g!50, ~151!

where

bk~g![
]

]l
g~lL2!ul51 , ~152!
03401
hk~t, g![
]

]l
lnZkS q2

L2
, g~L2!, l D U

l51

, ~153!

with bk denoting theCallan-Szymanzik functionin the pres-
ence of the cut-off scalek, andhk theanomalous dimension
hk , also beingk-dependent. The solution~151! to the renor-
malization group equation forDk is obviously

Dk~t, g0!5Dk„0, g~2t!…

3expF2E
0

t

dt8hk„t8, g~2t8!…G ,
~154!

or,

DkS q2

L2
, g~L2!D 5DkS q2

k2
, g~q2!D

3expF2E
k2

q2dq82

q82
hkS q82

k2
, g~q82!D G ,

~155!

which shows, sinceDk5q2Dk , that the evolution of the
gluon propagator is simply governed by the multiplicati
factorZk involving the integrated anomalous dimensionhk .
In view of Eq. ~148! we therefore can make the identifica
tion,

lnZkS q2

k2
, g~q2!D 52

1

2 E
k2

q2 dq82

q82
hkS q82

k2
, g~q82!D .

~156!

In order to find the large-q2 behavior, we return to the
approximate solutionZ k

21 of Eq. ~143!, and invert it by ex-
panding in a power series ing2,

Z̄k~q2!512
g2

~4p!2

11CG

3
lnS q2

k2D 1O~g4!. ~157!

In the large-q2 limit, substitution of Eq.~157! into Eq. ~152!
then yields the asymptotic behavior of thebk-function to
orderO(g3):

bk~g!52b (0)g31O~g5! b (0)5
1

~4p!2

11CG

3
.

~158!

The solution of Eq.~152! together with Eq.~158! then yields
the ~gauge-invariant! large-q2 form of running coupling
2-23
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ḡ2~q2!5
g2

11
11CG

3~4p!2
g2ln~q2/k2!

1O~g4!

5
1

11
11CG

3~4p!2
ln~q2/LQCD

2 !

, ~159!

with LQCD
2 5k2exp@21/(b (0)g2)# andg5ḡ(k2). Equivalent

to Eq. ~159! is the running couplingas5ḡ2/(4p) at 1-loop
order,

as
(1)~q2!5

12p

11CG ln~q2/LQCD
2 !

. ~160!

Similarly, the solution of Eq.~153! in the large-q2 limit gives
the~gauge-dependent! anomalous dimensionhk(q2) to order
O(g2):

h~q2!5
g2

~4p!2

11CG

6
1O~g4!. ~161!

The large-q2 estimates~158!–~161!, resulting from our ap-

proximate solutionZ̄k of Eq. ~143!, agree with the standar
results obtained within perturbation theory for the pu
gauge theory@42#.

B. Evolution of the gluon distribution function

The gluonic substructure of a hadron can be measure
experiments, for instance in deep-inelastic lepton had
scattering or high-energy hadronic collisions, through
gluon distribution function. The gluon distribution functio
is defined@39# as the density of gluon fluctuations inside
hadron, that is, in terms of matrix elements in a hadron s
of specific operators that count the number of gluons ca
ing a certain fractionx of the hadron momentumP. The
natural choice for such a number operator would beAmA m,
however, in QCD this is not a gauge-invariant object.
stead, one uses the gauge-invariant operatorFmnF mn. The
precise definition of the gluon distribution function is mo
conveniently expressed in theinfinite momentum frame, in
which the hadron moves in thez2t plane along the light
cone. Employing the standard light-cone representation
four-vectors,

vm5~v1,v2,vW'!, v65v75v06v3, vW'5~v1,v2!,

v'5AvW'
2 ,

v25v1v22v'
2 , vmwm5

1

2
~v1w21v2w1!2vW'•wW ' ,

~162!

the gluon distribution function is then the average numbe
gluons at light-cone timer 150 in a hadron stateuP& mov-
03401
in
n
e

te
-

-

of

f

ing with momentumP1, with the gluon fluctuations carrying
a fractionx5q1/P1 in an intervaldx and transverse mo
menta in a ranged2q' @39#:

G~x,q'![
1

xP1E dr2d2r'ei (q1r 22qW'•rW')

3^PuF1n~0,r 2,rW'!E~r 2,0!F n
1~0,0,0W'!uP&.

~163!

Here the path-ordering exponential

E~r 2
2 ,r 1

2![P expH igE
r 1

2

r 2
2

dr82A a
1~0,r 82,0'!TaJ

~164!

makes the definition~163! with the non-local operator
F1n(r 1

2)F n
1(r 2

2) fully gauge-invariant, as it orders th
gauge-field operatorsA a

1Ta along the line-integral betwee
r 1

1 and r 2
1 . Moreover, it provides the link to compute th

gluon distribution function in different gauges.
We adopt the general definition to our choice of ligh

cone gauge, for which in terms of light-cone variables t
choice of the gauge vectornm , Eq. ~104! reads,

nm5~n1,n2,nW'!5~0,1,0W'! ~165!

so that the gauge constraint~12! becomes

n•A5A15A250. ~166!

Thus, the factorE in Eq. ~163! is equal to unity. Futhermore
we note that specifically in the axial gauges~including the
light-cone gauge!,10

F1nF n
15~]1A i !~]1Ai !, ~167!

where a summation over the transverse componentsi 51,2 is
understood, and]65]/]r 6. This simple relation involves
only the transverse gauge fieldsAi , which has its physics
origin in the fact that in the axial gauges only the physic
transverse gluon degrees of freedom propagate, whileA1

vanishes andA2 is a pure gauge which decouples. As
consequence, the gauge-invariant definition~163! of the
gluon distribution takes the following form in the light-con
gauge:

10The only non-vanishing components of the gauge-field ten
F mn52F nm are

F1252]1A2, F1 i5]1A i ,

F2 i5]2A i2] iA22 ig@A2,A i #,

F i j 5] iA j2] jA i2 ig@Āi ,A j #.
2-24
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G~x,q'![xP1E dr2d2r'ei (q1r 22qW'•rW')

3^PuA i~0,r 2,rW'!Ai~0,0,0W'!uP&, ~168!

summed over the transverse componentsi 51,2. In order to
extend this expression to accommodate our scale-depen
formalism of Sec. II B, in which the gluon 2-point function
carry an explicitk-dependence due to the infrared regula
R k

mn , Eq. ~26!, we generalize Eq.~168! by

A iAi→AiS d i j 1
R k

i j ~]2!

]2 DAj5A iS 11
Rk~]2!

]2 DA iAi ,

~169!

with Rk given by Eq. ~31! or Eq. ~119!. Thus, the
k-dependent gluon distribution may be defined as

Gk~x,q' ,q2![
xP1

11Rk~q2!/q2E dr2d2r'ei (q1r 22qW'•rW')

3^PuA i~0,r 2,rW'!Ai~0,0,0W'!uP&. ~170!

Now, as discussed in Appendix E, the expectation value
the gluon number operatorA iAi on the right-hand side is
essentially the gluon spectral densityrk that enters the spec
tral representation~110! of the gluon propagator. Precisely,
is the transverse spatial componentrk i

(1) i5rk
11(1)1rk

22(1) ,
of the causal correlation function

rk, mn
(1) ~q!5E d4reiq•r^PuA m~r !A n~0!uP&, ~171!

at r 150. Similarly, the anti-causal correlator is defined a

rk, mn
(2) ~q!52E d4reiq•r^PuA n~0!A m~r !uP&. ~172!

The spectral density is the sum of both contributions,

rk, mn~q!5
1

2
@rk, mn

(1) ~q!1rk, mn
(2) ~q!#5rk, mn

(1) ~q!,

~173!

where the latter equality holds only if translational inva
ance is preserved~in which case the crossing relatio
rk, mn

(1) 52rk, nm
(1) 5rk, mn

(2) exists!, while it is invalid in phys-
ics situations where one encounters a spatially inhom
enous medium. In the present context, we are intereste
the gluon distribution of a physical hadronic state in fr
space, so that we may use Eq.~173! to relate the spectra
density to the gluon distribution. To do so, we first note th
in the light-cone gauge, the tensor stucture ofrk,mn is iden-
tical to that of the propagator@cf. Appendix E#,

rk,mn~q!5rk~q2!S gmn2
nmqn1qmnn

n•q D5rk~q2!Smn8 ~q!.

~174!

Defining the densityrk(x,q' ,q2) through
03401
ent

r

f

g-
in

t

rk~q2![E dxd2q'rk~x,q' ,q2!, ~175!

we see from Eqs.~170!–~175! that the spectral density
rk(x,q' ,q2) can be identified with the gluon distributio
~170!,

rk~x,q' ,q2!5gk~x,q' ,q2!, ~176!

as one may intuitively expect, since the gluon distributi
measures the density of gluonic fluctuations which is noth
else but the ‘‘level density’’ of gluon states described by t
spectral density. Accordingly, the bare densityrk

(0) , in the
absence of interactions, just

rk
(0)~x,q' ,q2!5gk

(0)~x,q' ,q2!5d~12x!d2~q'!d~q2!,

~177!

corresponds to single bare gluon carrying the full moment
fraction x51. We remark that the density~176! satisfies the
following sum rule@21#:

E
0

1

dxxrk~x,q' ,q2!51. ~178!

As an immediate consequence of the above identifica
of rk with the gluon distributiongk , the evolution of the
latter is governed again by the renormalization functionZk :
Since the gluon propagatorDk,mn(q)5Zk(q2)Dk,mn

(0) (q), we
see from Eq.~110! that alsork(q2)5Zk(q2)rk

(0)(q2). To
derive the precise form of the evolution equation forgk , let
us consider the transverse-momentum integrated density

rk~x,q2![E d2q'rk~x,q' ,q2!, ~179!

and introduce thex-moments

r̃k~N,q2![E
0

1

dxxN21rk~x,q2!. ~180!

The first moment is just

rk~q2!5 r̃k~1,q2!5Zk~q2!r̃k
(0)~1,q2!. ~181!

ExpressingZk in terms of the anomalous dimensionhk , Eq.
~156!,

Zk~q2!52
1

2Ek2

q2 dq82

q82
hk„q82, g~q82!…, ~182!

the N-th moment generalization of Eq.~181! may be written
as
2-25
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r̃k~N,q2!5expH 2
1

2Ek2

q2 dq82

q82
hk„N,q82, g~q82!…J

3 r̃k
(0)~N,q2!

[Zk~N,q2!r̃k
(0)~N,q2!. ~183!

The evolution withq2 of the spectral density inN-space is
therefore governed by the evolution equation

q2
]

]q2
r̃k~N,q2!52

1

2
hk„N,q2, g~q2!…r̃k~N,q2!.

~184!

If we define a probability distributionP„x,g(q2)… as

E
0

1

dxxN21P„N,g~q2!…[2
1

2
hk„N,q2, g~q2!…,

~185!

we can express Eq.~184! as follows:

q2
]

]q2
rk~x,q2!5E

x

1dz

z
P„x,g~q2!…rk~x,q2!. ~186!

This evolution equation has the form of the DGLAP mas
equation@9#, however, with the essential difference that
contains the non-perturbative infrared physics as well, wh
the DGLAP equation corresponds to the perturbative limit
Eq. ~186!. This is easily realized by expanding the probab
ity function P in power ofg2,

P„x,g~q2!…5S g2~q2!

8p2 D P(0)~x!1S g2~q2!

8p2 D 2

P(1)~x!1•••,

~187!

and substituting in Eq.~186!. It is now evident thatP(0) must
coincide with the DGLAP probability for gluon splitting,g
→gg @9#,

P(0)~x!5Pg→gg
DGLAP~x!52CGS x

12x11
12x

x
1z~12x! D .

~188!

Hence, one may regard@40# P„x,g(q2)… as a generalization
of the DGLAP probability to all orders ing2/8p2, or as/2p.

The integral form of the evolution equation~186! can now
be expressed as

rk~x,q2!5Zk~q2!rk
(0)~x,q2!1Zk~q2!

3E
k2

q2dq82

q82
E

0

1dz

x
P„z,g~q82!…rkS x

z
,q2DZ k

21S q82

z
D ,

~189!
03401
r

e
f
-

where rk
(0) is defined in Eq.~177!. Multiplying by x and

integrating overx from 0 to 1 yields on account of the sum
rule ~178! an integral equation forZk in terms of the prob-
ability P,

Z k
21~q2!511E

k2

q2 dq82

q82
E

0

1

dzP„z,g~q82!…Z k/Az
21 ~q2 !.

~190!

This equation is reminescent of Eq.~118! encountered in the
context of the evolution of the gluon propagator, reflecti
the universal role of the renormalization functionZk in the
light-cone gauge.
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APPENDIX A: DEFINITIONS AND NOTATION

This appendix gives a summary of the basic quantit
encountered in the paper, and the various notations u
Throughout the paper pureSU(3)c Yang-Mills theory in
Minkowski space is considered, withNc53 colors and the
absence of quark degrees of freedom.

Our conventions for placing indices and labels are
following:

Lorentz vector indicesm,n, . . . may be raised or lowere
according to the Minkowski metricgmn5diag(1,21,21,
21), and the usual convention for summation over repea
indices is understood.

Similarly, color indicesa,b, . . . may be raised or low-
ered according to the commutation rules of theSU(3) gen-
erators, Eq.~A7!.

All other labels that do not refer to internal degrees
freedom, as e.g.,Gk or G (2), are consistently placed either a
subscripts or superscripts.

In order to avoid ‘‘inflationary labeling’’ with sub- or
superscripts, we often choose to suppress the color indice
vectors or tensors, when the color labels correspond to
Lorentz indices, e.g.,Gmn

ab(q,q8)[Gmn .
Furthermore, the following shorthand notations are e

ployed:

A•B[AmgmnBn , A+B[E d4xAm~x!Bm~x! ~A1!

~AB!•C[AmBnCmn ,

~AB!+C[E d4xd4y„Am~x!Bn~y!…Cmn~x,y!. ~A2!

We use the symbol Tr for the trace over discrete indices
2-26
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Tr@AB#5H Am
a ~x!Bn

b~y!gmndabd4~x2y! in space-time,

Am
a ~k!Bn

b~k8!gmndabd4~k2k8! in momentum space.
~A3!

Similarly, we use the symbol Sp for tracing over discrete indices as well as integrating over continuous variables,

Sp@AB#55 E d4xd4y Tr@A~x!B~y!# in space-time,

E d4k

~2p!4

d4k8

~2p!4
Tr@A~k!B~k8!# in momentum space.

~A4!
nt

ls
th
ia

Our
h-
he
e

the
g-

de

n-

or

ld

g of
The gauge fieldis denoted byAm(x)[TaA m
a (x), and the

correspondinggauge field tensorand covariant derivative
are defined as

Fmn~x![TaF mn
a ~x!5

1

~2 ig !
@Dm , Dn#

Dm~x![]m2 igTaA m
a ~x!5]m2 igAm~x!,

~A5!

or, explicitly in color components,

F mn
a 5]mA n

a2]nA m
a 1g fbc

a A m
bA n

c

Dm
ab5dab]m2g fc

abA m
c . ~A6!

The derivative]m[]/]xm acts on the space-time argume
xm5(x0,xW ), and the generators of theSU(3) color group are
the traceless Hermitian matricesTa with the structure con-
stantsf abc, as matrix elements (a,b, . . . running from 1 to
Nc) with

Tr~Ta,Tb!5Ncd
ab, @Ta,Tb#51 i f abcTc ,

~Ta!bc52 i f bc
a 52 i f abc. ~A7!

For example, theYang-Mills actionreads then with these
conventions:

SYM52
1

4E d4xF mn
a ~x!F mn, a~x!

52
1

2E d4x$~]mA n
a!22~]mA n

a!~]nA n, a!

1g fabc~]mA n
a!A m, bA n, c

1g2f abcf ab8c8A m
bA n

cA m, b8A n, c8%. ~A8!

APPENDIX B: SCALE-DEPENDENT GENERATING
FUNCTIONALS AND n-POINT FUNCTIONS

Here we recollect the formulas for the various functiona
Green functions and vertex functions that we refer to in
paper. We restrict ourselves to the case of non-covar
03401
,
e
nt

gauges and focus our attention on the gauge field sector.
formulation is in complete analogy with the usual pat
integral formalism of QCD, except for the presence of t
infrared scalek which effectively truncates the theory to on
which includes only field modes with momenta*k. In the
limit k→0 the full quantum theory is recovered, whereas
opposite limitk→` corresponds to the pure classical Yan
Mills theory.

The scale-dependent vacuum persistance amplitu
Zk@J#5^0u0&J,k in the presence of an external sourceJ and
the infrared regulatorRk ~with limk→0Rk50) is defined as

Zk@J#5N8E DA det~M !d~F@A# !

3exp@ i ~SYM@A#1J +A!#exp~ i Rk@A# !,

~B1!

and the expectation values oftime-orderedproducts of field
operators~in the presence ofRk) are given by

^Am1

a1 ~x1! . . .Amn

an ~xn!&k

[^0u T@Am1

a1 ~x1! . . .Amn

an ~xn!#u0&k

5
N8

Zk@0#
E DA det~M !d~F@A# !

3exp@ i ~SYM@A#1J +A!#

3exp~ i Rk@A# ! T@Am1

a1 ~x1! . . .Amn

an ~xn!#.

~B2!

Here the functional integration is over all gauge field co
figurations with the path-integral measureDA
[)x)m)adA m

a (x), and SYM@A#52 1
4 *d4xFmnF mn. The

determinant det(M ) is the Faddeev-Popov determinant f
the matrixMab(x,y)5dFA

a (x)/dvb(y) with the gauge con-
straint for non-covariant gaugesFa@A(x)#5n•A a(x)50
(nm being a constant 4-vector!. As discussed in Sec. II, the
factor det(M )d(F@A#) can be converted into a ghost fie
contribution to the action in the exponential of Eq.~B1!. The
great advantage of non-covariant gauges is the decouplin
2-27
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the ghost degrees of freedom from the gauge field, so
Eq. ~B1! can be written as a sum of a ghost contribution a
a gauge field contribution,

Zk@J,s̄,s#5Zk
(A)@J#1Zk

(h)@s̄,s#, ~B3!

where@cf. Eqs.~17!–~20!#,

Zk
(A)@J#5E DAexpH i E d4xS 2

1

4
F mn

a F a
mn

2
1

2j
~nmA m

a !21J m
aA a

mD J exp~ i Rk@A# !

~B4!

Zk
(h)@s̄,s#5E DAexpH i E d4x„h̄a~dabnm]m!hb1s̄aha

1sah̄a
…J exp~ i Rk@h̄,h#!, ~B5!

whereRk@A# andRk@h̄,h# are given by Eqs.~24! and~25!,
respectively. Concerning the dynamics of the gluon ga
fields, the ghost contribution amounts to a constant term
03401
at
d

e
at

factors out when generating the gluon Green functions fr
Eq. ~B3! via repeated functional differentiatio
Zk

21@0#dnZk@J,s̄,s#/dJ nuJ5s̄5s50. For the same reason
the normalizationN8 in Eq. ~B1! is irrelevant. Hence we
focus on the pure gauge field functionalZk

(A) , Eq. ~B4!, and
define for convenience

Seff@A,J#[E d4xS 2
1

4
F mn

a F a
mn2

1

2j
~nmA m

a !21J m
aA a

mD .

~B6!

1. The functional Zk†J‡

We write the gauge-field part of the scale-depend
vacuum persistence amplitude as

Zk
(A)@J#5E DAexp@ i ~Seff@A,J#1Rk@A# !#. ~B7!

The gluonn-point Green functionsG̃k ~including both con-
nected and disconnected parts! are then defined as the expe
tation values of time-ordered (T$ . . . %) products ofn gauge
fields in the presence of the infrared regulatorRk ,
„G̃k
(n)~x1 , . . .xn!…m1 . . . mn

a1 . . . an [^Am1

a1 ~x1! . . .Amn

an ~xn!&

5
~2 i !n

Zk
(A)@J#

dnZk
(A)@J#

dJan

mn~xn!dJan21

mn21~xn21! . . . dJa1

m1~x1! U
J50

5
1

Zk
(A)@J#

E DAexp@ i ~Seff@A,J#1Rk@A# !#T$Am1

a1 ~x1! . . .Amn

an ~xn!%U
J50

, ~B8!

such that the Volterra series representation ofZ reads

Zk
(A)@J#5 (

n50

`
i n

n! E d4xn . . . d4x1„G̃k
(n)~x1 , . . .xn!…m1 . . . mn

a1 . . . an , J a1

m1~x1! . . .J an

mn~xn!. ~B9!

2. The functional Wk†J‡

Corresponding to Eq.~B7!, we define the scale-dependent connected Green functional as

Wk
(A)@J#52 i lnZk

(A)@J#52 i lnH E DAexp@ i ~Seff@A,J#1Rk@A# !#J . ~B10!

Wk generates connectedn-point Green functionsGk in the presence of the infrared regulatorRk ,

„G k
(n)~x1 , . . .xn!…m1 . . . mn

a1 . . . an [^Am1

a1 ~x1! . . .Amn

an ~xn!& (c)

5~2 i !n21
dnWk

(A)@J#

dJan

mn~xn!dJan21

mn21~xn21! . . . dJa1

m1~x1! U
J50

5~2 i !n21
dn21

dJan

mn~xn!dJan21

mn21~xn21! . . . dJa2

m2~x2! S ~2 i !

Zk
(A)@J#

dZk
(A)@J#

dJa1

m1~x1!D U
J50

, ~B11!
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which generate the Volterra series

Wk
(A)@J#5 (

n50

`
i n21

n! E d4xn . . . d4x1„G k
(n)~x1 , . . .xn!…m1 . . . mn

a1 . . . an , J a1

m1~x1! . . .J an

mn~xn!. ~B12!
he
g

t
ce

e

n

s

3. The effective actionGk†Ā‡ and average effective action

Ḡk†Ā‡

The effective action is the generating functional for t
proper vertex functions. It is obtained as usual from Le
endre transformation of Eq.~B10!, by defining the average

gauge fieldĀ ~as opposed to the gauge fieldA of the quan-

tum fluctuations!, Ām
a (x)[dWk

(A)@J#/dJa
m(x)5^A m

a (x)&.
Then, the transformation ofWk yields the scale-dependen
vertex functionalGk , i.e., the effective action in the presen
of the infrared regulatorRk ,

Gk@Ā#5Wk
(A)2J+Ā

52 i lnH E DAexp@ i ~Seff@A,J#1Rk@A# !2J+Ā#J .

~B13!

One may think of Eq.~B13! as a change of variables from

$J(x)% to $Ā(x)%, the latter being the natural variable of th
r

na

n

03401
-

Legendre tranformGk@Ā#. The derivative ofGk@Ā# with re-

spect to Ā gives the Legendre conjugate relatio

dGk@Ā#/dĀa
m(x)52J m

a (x). Repeated functional derivative

of Gk@Ā# generate the one-particle irreduciblen-point func-

tions, or proper vertices, at the stationary pointĀ5A0 that

maximizes the effective actionGk@Ā#, corresponding to van-
ishing sourcesJ50:

dnGk@Ā#

dĀan

mn~xn!dĀan21

mn21~xn21! . . . dĀa1

m1~x1!U
Ā5A0

5„Gk
(n)~x1 , . . .xn!…m1 . . . mn

a1 . . . an . ~B14!

The series representation forGk reads then
Gk@Ā#5 (
n50

`
1

n! E d4xn . . . d4x1„Gk
(n)~x1 , . . .xn!…m1 . . . mn

a1 . . . an Āa1

m1~x1! . . . Āan

mn~xn!. ~B15!
Finally, the average effective actionḠk is defined as the
effective actionGk of Eq. ~B13! minus the infrared regulato

Rk at Ā,

Ḡk@Ā#5Gk@Ā#2Rk@Ā#

52 i lnH E DAexp@ i ~Seff@A,J#

2J+Ā1Rk@A# !2Rk@Ā##J . ~B16!

4. n-point Green functions and proper vertices for n<4

Using the above definitions of the generating functio

Zk , Wk , Gk and Ḡk , we list below the associated Gree

functionsG̃k
(n) , G k

(n) , Gk
(n) , andḠk

(n) for n51 . . . 4.
The 1-point functions read

„G̃k
(1)~x!…m

a 5^A m
a ~x!&k5Ām

a ~x!
l

„G k
(1)~x!…m

a 5^A m
a ~x!&k

(c)5Ām
a ~x!

„Gk
(1)~x!…m

a 52J m
a ~x!. ~B17!

The 2-point functions are given by

„G̃k
(2)~x,y!…mn

ab5^A m
a ~x!A n

b~y!&k5Dkmn
ab ~x,y!1Ām

a ~x!Ān
b~y!

„G k
(2)~x,y!…mn

ab5^A m
a ~x!A n

b~y!&k
(c)5Dkmn

ab ~x,y!

„Gk
(2)~x,y!…mn

ab5@Dk
21#mn

ab~x,y!, ~B18!

where the exact gluon propagatorG k
(2) and its inverseGk

(2) ,
are defined, respectively, as

Dkmn
ab ~x,y![2 i

d

dJ a
m~x!

^A n
b~y!&k

@Dk
21#mn

ab~x,y!5 i
d

d^A a
m~x!&k

J n
b~y!. ~B19!

For the 3-point functions one obtains
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„G̃k
(3)~x,y,z!…mnl

abc 5^A m
a ~x!A n

b~y!A l
c~z!&k5~2 i !

d

dJ a
m~x!

Dnl
bc~y,z!1„Dkmn

ab ~x,y!^A l
c~z!&k1Dknl

bc ~y,z!^A m
a ~x!&k

1Dklm
ca ~z,x!^A n

b~y!&k…1^A m
a ~x!&k^A n

b~y!&k^A l
c~z!&k

„G k
(3)~x,y,z!…mnl

abc 5^A m
a ~x!A n

b~y!A l
c~z!&k

(c)5~2 i !
d

dJ a
m~x!

Dnl
bc~y,z!

„Gk
(3)~x,y,z!…mnl

abc 5V mnl
abc ~x,y,z!, ~B20!

where the functionV is the exact proper 3-gluon vertex,

2 igV lmn
abc ~x,y,z!52 igV0lmn

abc ~x,y,z!1O~g3!, ~B21!

which, to lowest order in the coupling constantg, reduces to the bare 3-gluon vertexV0,

V0lmn
abc ~x,y,z!5 f abc$glm~]y2]x!nd4~x,z!d4~y,z!

1gmn~]z2]y!ld4~y,x!d4~z,x!1gnl~]x2]z!md4~x,y!d4~z,y!%. ~B22!

In momentum space, it reads

V0lmn
abc ~k1 ,k2 ,k3!52 i f abc$glm~k12k2!n1gmn~k22k3!l1gnl~k32k2!m%. ~B23!

Finally, the 4-point functions have the following forms:

„G̃k
(4)~x,y,z,w!…mnls

abcd 5^A m
a ~x!A n

b~y!A l
c~z!A s

d~w!&k

5~2 i !2
d2

dJ a
m~x!J b

n~y!
Dls

cd ~z,w!1~2 i !
d

dJ a
m~x!

„Dkmn
ab ~x,y!^A l

c~z!&k1Dknl
bc ~y,z!^A m

a ~x!&k

1Dklm
ca ~z,x!^A n

b~y!&k…1^A m
a ~x!&k^A n

b~y!&k^A l
c~z!&k^A s

d~w!&k

„G k
(4)~x,y,z,w!…mnls

abcd 5^A m
a ~x!A n

b~y!A l
c~z!A s

d~w!&k
(c)5~2 i !2

d2

dJ a
m~x!J b

n~y!
Dls

cd ~z,w!

„Gk
(4)~x,y,z,w!…mnls

abcd 5W mnls
abcd ~x,y,z,w!, ~B24!

with the functionW denoting the exact proper 4-gluon vertex,

2g2W lmns
abcd ~x,y,z,w!52g2W0lmns

abcd ~x,y,z,w!1O~g4!, ~B25!

which, to lowest order in the coupling, defines the usual bare 4-gluon vertexW0,

W0lmns
abcd ~x,y,z,w!52$~ f acef bde2 f adef cbe!glmgns1~ f abef cde2 f adef bce!glngms

1~ f acef dbe2 f abef cde!glsgnm%d4~x,y!d4~z,w!d4~y,z!. ~B26!

In momentum space, it reads

W0lmns
abcd ~k1 ,k2 ,k3 ,k4!52$~ f acef bde2 f adef cbe!glmgns1~ f abef cde2 f adef bce!glngms1~ f acef dbe2 f abef cde!glsgnm%.

~B27!
e
ge

in-
s of
n-

ally
APPENDIX C: FADDEEV-POPOV DETERMINANT AND
DECOUPLING OF GHOSTS IN THE LIGHT-CONE

GAUGE

In this appendix the standard procedure of gauge fi
quantization is applied to the class of non-covariant gau
03401
ld
s

~12!, and it is shown that ghost degrees of freedom are
deed absent, reducing the general non-linear dynamic
QCD essentially to a linear QED type dynamics. We me
tion that an alternative, non-standard method was origin
suggested and carried out in detail by Kummer@32#, which
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elegantly avoids the ghosts altogether and instead introd
a Lagrange multiplier field that carries the fictitious degre
of freedom. For an excellent review and bibliography, s
Ref. @29#. Recall that under local gauge transformations

g@ua#[exp„igua~x!Ta
…, ~C1!

the gauge fields transform as

A m
a→A m

(u)a5g@ua#A m
a g21@ua#, ~C2!

implying thatF mn
a F mn

a 5F mn
(u)aF mn

(u)a , and thereby ensuring
the gauge invariance of the Yang-Mills actionSYM@A#
52 1

4 *d4xFmnF mn. However, a source term of the formJ
+A is not gauge invariant under the transformations~C1!.
Consequently, the functional

Zk
(naive)5E DAexp@ i ~SYM@A#1J +A!#exp~ i Rk@A# !

~C3!

is also not a gauge invariant quantity. As is well known, t
can be remedied by applying the formal Faddeev-Popov@41#
procedure and integrating in the path-integralZk over all
possible gauge transformationsg(ua) subject to the linear
subsidiary condition

fa@A m
(u)#[nmA m

(u)a~x!2ba~x!5
!

0 ~C4!

with normalized space-like vectornm andba(x) an arbitrary
weight function. The Faddeev-Popov trick is to impleme
the constraint~C4! in the non-invariant functionalZk

(naive) by
multiplying with

15E Du)
a

d~fa@A m
(u)# ! det~M !, ~C5!

where the determinant is the Jacobian for the change of v
ablesfa→ua,

det~Mab!5detS dfa@A m
(u)#

dub D
fa[A

m
(u)] 50

5H E Du)
a

d~fa@A m
(u)# !J 21

. ~C6!

Following this procedure one arrives at

Zk5E DA det~M !)
a

d~fa@Am#!

3exp@ i ~SYM@A#1J +A!#exp~ i Rk@A# !, ~C7!

which is now a gauge invariant expression due to the pro
account of the subsidiary condition~C4! that guarantees th
correct transformation properties of the gauge fields in
presence of the sourcesJ.
03401
es
s
e

t

ri-

er

e

To obtain the final form ofZk as quoted in Eq.~16!, one
carries out the functional integration over the arbitrary fu
tions ba(x) introduced in Eq.~C4!, by choosing, e.g., a
Gaussian weight functional

w@ba#5expH 2
i

2jE d4x@ba~x!#2J , ~C8!

with the real-valued parameterj, upon which the Faddeev
Popov determinant det(M ) can be rewritten in a more suit
able way:

det~M !5E Db)
a

expH 2
i

2jE d4x@ba~x!#2J
3d„nmA m

(u)a~x!2ba~x!…. ~C9!

In order to calculate the determinant, it is sufficient to in
grate overua in a small vicinity where the argument of th
d-function passes through zero at givenA (u)a and ba. For
infinitesimal gauge transformations

g@ua#→dg@ua#511 igua~x!Ta, ~C10!

the gauge fields transform as

A m
a→A m

a 1dA m
a , dA m

a 5g fbc
a ubA m

c 1]mua,
~C11!

so that one obtains

d„nmA m
(u)a~x!2ba~x!…5d„nmA m

(u)a~x!1g fbc
a ubnmA m

(u)c

1nm]mua2ba
…

5d~g fbc
a ubbc1nm]mua!, ~C12!

becausenmA m
(u)a5ba. This latter expression is evidently in

dependent ofA m
a . Therefore, when substituted into Eq.~C9!

and the integrations carried out,

det~M !5det~dacnm@da
b]m1g fd

cbA m
d # !5det~dabn•]!,

~C13!

one sees that det(M ) is also independent of the gauge field
and hence can be pulled out of the path-integralZk and ab-
sorbed in the overall normalization. The final result is the

Zk5NE DAexp$ i ~SYM@A#1Sfix
(j)@n•A#

1J +A1Rk@A# !%, ~C14!

where, from Eq.~C9!,

Sfix
(j)@n•A#[expH 2

i

2jE d4x@n•A a~x!#2J . ~C15!

In conclusion, the property of gauge field independence
the Faddeev-Popov determinant proves that there are in
no ghost fields coupling to the gluon fields, hence the form
lation is ghost-free.
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KLAUS GEIGER PHYSICAL REVIEW D 60 034012
APPENDIX D: GLUON PROPAGATOR AND
POLARIZATION TENSOR IN THE AXIAL GAUGES, AND

IN THE LIGHT-CONE GAUGE

1. The general case

In order to find the explicit form of the gluon propagat
Dk5G k

(2) , we first evaluate its inverse,Gk
(2)5(G k

(2))21, from

the second functional derivative ofGk with respect toĀ, and
then invert it. With the conventions of Appendix B, we hav
for the inverse of theexactgluon propagatorDk ,

~Dk!mn
21~x,y!5Gkmn

(2) 5
d2Gk@Ā#

dĀn~y!dĀm~x!
U

Ā50

5
2idGk@Ā50#

dDnm~y,x!
,

~D1!

where the explicit form of the effective actionGk@Ā# is
given by Eqs.~54! and ~55! together with the expression
~51!–~53!. The exact propagatorDk is related to thebare
propagator Dk

(0) and the proper self-energy tensorPk

through the Dyson-Schwinger equation

~Dk
21!mn5~Dk

(0)21!mn1P̂k,mn5Pk,mn
(0) 1P̂k,mn , ~D2!

where, in the class of axial gauges, the propagator is tr
verse to the gauge vectornm ,

nmDk
mn505Dk

mnnn , ~D3!

while the polarization tensor is strictly transverse with
spect to the external momentumqm ~the conjugate of]m),

]mP̂k
mn505]nP̂k

mn , ~D4!

and both are symmetric under interchange of indices
arguments,

Dk
mn5Dk

nm, Pk
mn5Pk

nm . ~D5!

In order to infer the general form of the exact propaga
Dk , we apply Eq.~37! to Eqs.~51!–~53!, and carry out the
Fourier transformation to momentum space. Then one
serves that the axial-gauge representation of the inv

gluon propagator~D2!, Dk
215Pk

(0)1P̂k , can be decom-
posed into two independent Lorentz tensor components@32#,

~Dk
21!mn

ab~q!5dab
„ak~q2,x!Pmn~q!1bk~q2,x!Qmn~q!…,

~D6!

with the projectorsPmn5Pnm andQmn5Qnm ,

Pmn~q!5gmn1
1

12x Fx
qmqn

q2
2

nmqn1qmnn

n•q
1x

nmnn

n2 G
~D7!
03401
,

s-

-

d

r

b-
se

Qmn~q!52
1

12x Fqmqn

q2
2

nmqn1qmnn

n•q

1S x2
~12x!n2

jq2 D nmnn

n2 G , ~D8!

which are orthogonal~in the space transverse toq) and obey
the relationsPmlPn

l5Pmn , QmlTn
l5Qmn , PmlQn

l50. The
invariant functions,ak andbk depend in general onq2 and
on the variable

x[x~n,q!5
n2q2

~n•q!2
, ~D9!

because the inverse propagator~D7! requires a scaling in-
variance under the changenm→lnm . In a similar way, one
may parametrize the propagator itself as

Dk,mn
ab ~q!5dab

„Ak~q2,x!Smn~q!1Bk~q2,x!Tmn~q!…,

~D10!

with different projection operatorsSmn5Snm and Tmn

5Tnm ,

Smn~q!5gmn1
1

12x Fx~11jq2!
qmqn

q2

2
nmqn1qmnn

n•q
1x

nmnn

n2 G ~D11!

Tmn~q!52
1

12x Fx~11jq2!
qmqn

q2

2
nmqn1qmnn

n•q
1

nmnn

n2 G , ~D12!

which are again orthogonal~but now in the space transvers
to q), satisfyingSmlSn

l5Smn , TmlTn
l5Tmn , SmlTn

l50, and
moreovernmSmn505nmTmn . Using Eqs.~D7!–~D10! in

Dk, ml~q!Dk, n
l ~q!5

!

gmn , ~D13!

it is straightforward to derive

Ak~q2,x!5
1

ak~q2,x!
, Bk~q2,x!5x

1

bk~q2,x!
.

~D14!

The bare propagatorDk
(0) corresponds toP̂50 in Eqs.~D2!

and ~D6!, which yieldsak5bk5q21Rk(q)2, and so,
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Dk,mn
(0)ab~q!5

dab

q21Rk~q2!
@Smn1xTmn#

5
dab

q21Rk~q2!
Fgmn2

nmqn1qmnn

n•q

1~n21jq2!
qmqn

~n•q!2G , ~D15!

while the inverse (Dk
(0))215Pk

(0) reads

~Dk
(0)21!mn

ab~q!5dab
„q21Rk~q2!…@Pmn1Qmn#

5dab
„q21Rk~q2!…Fgmn2

qmqn

q2

1S n2q21
1

j D nmnn

~n•q!2G . ~D16!

In order to derive expressions for the exact propagatorDk

and its inverseDk
21 , in correspondence to Eqs.~D15! and

~D16!, it is useful to inspect in more detail the structure

the polarization tensorP̂k , and which of its contributions
are dominant. Let us define the dimensionless scalar fu
tions

Pk
(1)~q![12

ak~q2,x!

q21Rk~q2!

Pk
(2)~q![

ak~q2,x!2bk~q2,x!

q21Rk~q2!
, ~D17!

and rewrite Eq.~D6!, on account of Eq.~D2! as

P̂k,mn~q,2q!5~Dk
212Dk

(0)21!mn

5~Dk
212Pk,mn

(0) !

5S gmn2
qmqn

q2 D Pk
(1)

1S qmqn

q2
2

nmqn1qmnn

n•q

1~n2q21j21!
q2nmnn

~n•q!2 D Pk
(2) ,

~D18!

which implies the relations

Pk
(1)5

1

2 S gmn1~n2q21j21!
nmnn

~n•q!2D
P̂k

mnPk
(2)53Pk

(1)2P̂k,m
m . ~D19!
03401
f

c-

In view of Eq. ~D18!, one realizes thatP̂k consists of a
covariant piece}Pk

(1) plus a non-covariant piece}Pk
(2) .

Furthermore, comparing with Eq.~D16!, it is obvious that it
is solely the covariant contribution that survives in the lim
of vanishing coupling g50, because thenak5bk5q2

1Rk , so thatPk
(2)50.

From Eqs.~D16! and~D18!, we read off the inverse of the
exact gluon propagator~going over toj→0),

~Dk
21!mn

ab~q!5dab
„q21Rk~q2!…H S gmn2

qmqn

q2 D ~12Pk
(1)!

1S qmqn

q2
2

nmqn1qmnn

n•q

1
n2q2

~n•q!2

nmnn

n2 D Pk
(2)J ~D20!

and the actual gluon propagator is readily obtained by inv
ing Eq. ~D20!,

Dkmn
ab ~q!5

dab

q21Rk~q2!
S 1

12Pk
(1)D H gmn2

nmqn1qmnn

n•q

1
qmqn

q2 S n2q2

~n•q!2

Pk
(2)

12~Pk
(1)2Pk

(2)!
D J . ~D21!

2. The casex˜0

Inspection of the expressions~D20! and~D21! exhibit the
relative importance of the contributions}Pk

(1) andPk
(2) : If

the terms involvingPk
(2) could be droppped, then both Eq

~D20! and~D21! would become simply the bare counterpa
~D15! and ~D16! for j→0, modulo the factors 12Pk

(1) , re-
spectively 1/(12Pk

(1)). Now, there is no immediate argu
ment whyPk

(2) itself should be negligable as compared
Pk

(1) , so that the only way thePk
(2)-term in the propagator

~D21! could be small or even vanishing, is when

x
n2q2

~n•q!2
→0, ~D22!

which implies

q2

~n•q!2
→0 or n2→0. ~D23!

The first condition corresponds to very large moment
component along the direction ofn, for example, if n is
chosen along thez-axis, thenqz→` would do the job. The
second condition, on the other hand, corresponds to pick
out of the class of axial gauges, specifically the light-co
gauge. Under either of these conditions, one arrives the v
simple forms for Eqs.~D20! and ~D21!:
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~Dk
21!mn

ab~q!5dab
„q21Rk~q2!…~12P1!S gmn2

qmqn

q2 D
~D24!

Dkmn
ab ~q!5

dab

q21Rk~q2!
S 1

12P1
D S gmn2

nmqn1qmnn

n•q D .

~D25!

One sees that now the effect of gluon self-interactions
encoded multiplicatively, so that we can express bothDk and
Dk

21 as the bare counterpartsDk
(0) , respectivelyDk

(0)21 ,
modulo a scalar renormalization functionZk(q2,x)ux→0
[Zk(q2),

~Dk
21!mn

ab~q!5
1

Zk~q2!
~Dk

(0), 21!mn
ab~q!

5dabS q21Rk~q2!

Zk~q2!
D S gmn2

qmqn

q2 D
~D26!

Dk,mn
ab ~q!5Zk~q2!~Dk

(0)!mn
ab~q!

5dabS Zk~q2!

q21Rk~q2!
D S gmn2

nmqn1qmnn

n•q D ,

~D27!

where the renormalization functionZk(q2) is related to the
gluon self-energyPk

(1) by

Zk~q2!5
1

12Pk
(1)~q!

, ~D28!

with initial condition atq25L2→`,

Zk~q2!uq25L251, ~D29!

so to ensure that the full propagator equals the bare on
the asymptotic freedom regime whenPk

(1) ,Pk
(2)→0.

APPENDIX E: SPECTRAL REPRESENTATION OF THE
GLUON PROPAGATOR IN THE AXIAL GAUGES

In this appendix we discuss in more detail the relat
between the gluon propagatorDk and its spectral densityrk ,
as introduced in Sec. III, Eq.~110!. Recall, that the gluon
propagator is formally defined, according to Eqs.~B2!, ~B11!
and ~B18!, as the connected 2-point Green function in t
presence of the infrared cut-offk, involving thetime-ordered
product of two gauge fields at space-time pointsx andy:11

Dk,mn
ab ~x,y!5^0uT@A m

a ~x!A n
b~y!#u0&k . ~E1!

11We suppress here the superscript (c) for ‘‘connected.’’
03401
re

in

Analogously we define now the gluon correlation function
the non-time ordered 2-point function which describes
correlation between two gluon fields atx andy, irrespective
of their time history and spatial origin:

rk,mn
ab ~x,y!5^0u@A m

a ~x!A n
b~y!#u0&k . ~E2!

In momentum space, we write Eqs.~E1! and ~E2! as

Dk,mn~q!5E d4xeiq•xDk,mn~x,0! ~E3!

rk,mn~q!5E d4xeiq•xrk,mn~x,0!. ~E4!

We recall that both the propagator and the correlator dep
on q andn, more precisely onq2 andn•q. Let us now focus
on the correlation functionrk,mn and then work our way
back to the propagatorDk,mn . Following @21#, we take the
commutator in Eq.~E2! apart and define~suppressing the
color indices, as they are in parallel with the Lorentz indice!

rk,mn
(1) ~q![E d4xeiq•x^0uAm~x!An~0!u0&k ~E5!

rk,mn
(2) ~q![2E d4xeiq•x^0uAn~0!Am~x!u0&k . ~E6!

Hence,

rk,mn~q!5rk, mn
(1) ~q!1rk,mn

(2) ~q!

5E d4xeiq•x^0u@A m
a ~x!A n

b~0!#u0&k , ~E7!

and we have the following properties:

rk,mn~q!52rk,mn~2q! ~E8!

rk,mn
(2) ~q!52rk,mn

(1) ~2q!. ~E9!

Now, recall that in the axial gauges theq-dependence of
both the propagatorDk and the correlatorrk can enter only
in terms of the two invariantsq2 and (n•q)2. It is therefore
useful to introduce a notation for the decomposition of
arbitrary four-vectorvm into its longitudinal (vL

m) and trans-
verse components (vT

m) with respect to the gauge vectornm:

vL
m5~n•v !nm, vT

m5vm2vL
m ~E10!

with vL
25(n•v)2n2, vT

25v22vL
2 , and n•vL5n•vT50.

Thus, theq-argument inrk , for instance, reads with this
notation

rk,mn~q!5rk,mn~q2,qL
2!. ~E11!

In order to derive the relation between the time-orde
product of gauge fields~E1! in the propagatorDk and the
non-time-ordered product~E2! in the correlation function
rk , we proceed now as follows. Let$uN&%HG

denote a com-

plete set of states which spans the Hilbert spaceHG of all
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possible gluon configurations~one of which is the vacuum
state u0&). Inserting then this complete set of gluon sta
into Eq. ~E5! gives

rk,mn
(1) ~q!5(

n
^0uAmuN&k^NuAnu0&k~2p!4d4~q2pN!,

~E12!

and requiresq05p0>0. Inserting Eqs.~E12! into ~E5! and
inverting the Fourier transform, one readily finds

^0uAm~x!An~0!u0&k5E d4q

~2p!4
e2 iq•xu~q0!rk, mn~q2,qL

2!

5E d4q

~2p!4
e2 iq•xu~q0!

3E
2`

`

dyLeiqL•yLr̃k, mn~q2,yL!,

~E13!

wherer̃k(q2,yL) is the longitudinal transform of Eq.~E11!.
Introducing the advanced and retarded functions,Dk

(1) and
Dk

(2) , respectively,

Dk
(6)~x!56E d4q

~2p!4
e2 iq•xu~q0!d~q22k2!, ~E14!

one can express Eq.~E13! as

^0uAm~x!An~0!u0&k

5E
0

`

dq2E
2`

`

dyLr̃k,mn~q2,yL!Dk
(1)~x2yL!.

~E15!

Similarly, from the crossing relations~E8! and ~E9!, one
obtains for the reversed product of the gauge fields,

^0uAn~0!Am~x!u0&k

5E
0

`

dq2E
2`

`

dyLr̃k,mn~q2,yL!Dk
(2)~2x1yL!.

~E16!

With the above relations we can now express the tim
ordered product of the gauge fields, which determines
propagatorDk via Eq. ~E1!, as12

12To be precise, here the indicesi , j 51,2,3 should be restricted t
the spatial components of the gauge fieldsA and ofrk , because in
the coordinate representation, the tensor structure ofrk, mn @cf. Eq.
~E22! below# leads to space-time derivatives]m acting on theDk

(6)

functions, which causes the time-ordering operation not to comm
with the time derivatives arising from the time components
rk,mn .
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^0uT@A m
a ~x!A n

b~0!#u0&k

5E
0

`

dq2E
2`

`

dyLr̃k,mn~q2,yL!@u~x0!Dk
(1)~x2yL!

1u~2x0!Dk
(2)~x2yL!#. ~E17!

If the gauge vector is chosen to be space-like or light-li
i.e., n2<0, then causality allows us to replaceu(x0) by
u(x02yL), in which case Eq.~E17! together with Eq.~E1!
yields

Dk,mn~x,0!5E
0

`

dq2E
2`

`

dyLr̃k,mn~q2,yL!Dk
(F)~x2yL!

~E18!

whereDk
(F) is the standard Feynman function,

Dk
(F)~x!5u~x0!Dk

(1)~x!1u~2x0!Dk
(2)~x!. ~E19!

In momentum space, Eq.~E18! reduces to the well-known
spectral~or Lehmann! representation,

Dk,mn~q!5E
0

`

dq82
rk,mn~q2,qL

2!

q22q82
. ~E20!

If we decompose the tensor structure ofDk, mn as in Sec. III,
Eq. ~85!, or Appendix D, Eq.~D10!,

Dk,mn~q!5Ak~q2,x!Smn~q!1Bk~q2,x!Tmn~q!,
~E21!

with x5n2q2/(n•q)2 as before, and analogously, for th
correlation functionrk,mn ,

rk,mn~q!5rk
A~q2,x!Smn~q!1rk

B~q2,x!Tmn~q!,
~E22!

then Eq. ~E20! may be written as@noting that x5n2q2/
(n•q)25n2q2/qL

2 , i.e. x}qL
22#

Dk,mn~q!5Smn~q!E
0

`

dq82
rk

A~q2,x!

q22q82

1Tmn~q!E
0

`

dq82
rk

B~q2,x!

q22q82
. ~E23!

In the casex→0, corresponding toqL
2→`, the second term

in Eq. ~E23! tends to zero, as discussed in Appendix
Thus, with

rk
A~q2,x! →

x→0

rk~q2! rk
B~q2,x! →

x→0

0 ~E24!

we are left with

te
f
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Dk, mn~q!5Smn8 ~q!E dq82
rk~q82!

q22q82
, ~E25!

which is precisely Eq.~110! with the substitutionq2→q2

1Rk in the denominator.
The spectral representation~E23! or ~E25! has a rather

intuitive physics interpretation: The propagator for a glu
of momentumq is a sum over all intermediate virtual gluo
ev
r.

G

J
d

im

,

03401
states of momentumq8 with virtuality q82 and with level
density rk(q8), and weighted with the phase-space fac

1/(q22q82). For a bare gluon with momentumq→` in the
ultraviolet, no virtual fluctuations would be present, so th
rk(q82)5d(q82). On the other extreme, an infrared gluo
with momentumq→0 is dressed by a dense cloud of so
virtual fluctuations, so thatrk(q82) can be a very broad dis
tribution.
.
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