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Small-x F, structure function of a nucleus including multiple Pomeron exchanges
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We derive an equation determining the smakvolution of theF, structure function of a large nucleus
which includes all multiple Pomeron exchanges in the leading logarithmic approximation using Mueller's
dipole model. We show that in the double leading logarithmic limit this evolution equation reduces to the
Gribov-Levin-Ryskin equation.S0556-282(99)04013-§

PACS numbsdrs): 12.38.Bx, 12.38.Cy, 24.8%p

[. INTRODUCTION ficient in front of the quadratic term calculated by Mueller
and Qiu[6] for a low density picture of a spherical proton of
The problem of understanding the large gluon density refadiusR reads
gime in high-energy scattering has always been one of the
challenges of perturbative QC®QCD [1-6]. Unitarity of 5 2
the total cross section and saturation of the gluon distribution IXG(x,Q% = aNch(X Q?)
are among the most important issues related to the problem. g In(1/x) aln(QzlAéCD) ™ '
The BalitskirFadin-Kuraev-LipatoBFKL) equation[7,8]

is the only well-established tool of PQCD which allows us to 4a®N, 1 212
explore this high-density region by resumming the leading " 3C.R? E[XG(X'Q )"
longitudinal logarithmic contribution to the scattering pro-

cess. In BFKL evolution the smaX-partons are produced 1)

overlapping each other in the transverse coordinate g8dce

therefore creating high-density regions in the hadron’s waverhjs equation sums up all multiple hard Pomeron exchanges

function (hot spots. The next-to-leading order correction to in the gluon distribution function in the double logarithmic

BFKL equation has been calculated recerith,11]. Al- limit.

though the final conclusion one should draw from the calcu-  Since then there have been several attempts to generalize

lation of [10,17 is still to be understood, there are somethe GLR equation. Recently an equation has been proposed

serious problems associated with the interpretation of thgy Ayala, Gay Ducati, and Levin ifl7,18, which tries to

result[12—14. However, we are not going to address theséincorporate the Glauber-type multiple rescatterings of a

issues in this paper for the following reason. As was showrprobe on the nucleons in a nucle(see Fig. 1 Using the

in [12,13 the effects of the second-order BFKL kernel be-results of Mueller in[19] for a pair of gluons multiply res-

come important in hadron-hadron scattering at the rapiditiegattering inside a nucleus, the author§tf,18 obtained the

of the order of Yy o~1/a? with « being the strong- following equation for the gluon distribution of the nucleus

coupling constant. At the same time the unitarity constraintsin the double logarithmic approximation:

associated with the multipldeading order hard Pomeron

exchanges are expected to be reached at (1/a)In(1/a) 5 5

[15], which is parametrically smaller tha¥iy o for small I°XGa(X,Q%) CNCeS,

coupling constant. Therefore, multiple pomeron exchanges 5'”(Q2/A(23co)f9|n(1/x) 3

become important at lower center-of-mass energies than the

effects of subleading corrections, possibly leading to unitari- [ [{ 2am?
>< — —

zation of the total hadron-hadron cross section. Hence the 1-ex
problem of resummation of the multiple pomeron exchanges
seems to be more important for describing the recent experi- 1
mental results, such as ZEUS 1995 dat@], which probably x—xGA(x,Qz)H 2)
shows evidence of saturation of thg structure function at 2
low Q2.

In this paper we are going to consider deep inelastic scat- %
tering (DIS) of a virtual photon on a large nucleus and will
resum all multiple pomeron exchanges contributing toRhe
structure function of the nucleus in the leading longitudinal
logarithmic approximation in the largg; limit. The first
step in that direction in PQCD was the derivation by Gribov,
Levin, and Ryskin(GLR) of an equation describing the fu-
sion of two pomeron ladders into one in the double logarith- FIG. 1. Forward amplitude of DIS on a nucleus in the quasi-
mic approximatior{5]. The resulting equation with the coef- classical(Glaubey approximation.
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If one expands the right-hand side of K@) to the second the scattering of a virtual photofquarkonium staeon a
order in xG, one recovers the GLR equatidiEg. (2) is  nucleus simplifies the problem, allowing us to treat it ana-
written here for a cylindrical nucleus. Therefore the coeffi-Iytically. In Sec. Il we will use the dipole wave function to
cients in the obtained GLR equation will not match those ofwrite down an equation which governs the evolution of the
Eq. (1)]. F, structure function of the nucleuformula (15)]. Our

An extensive work on resumming the multiple Pomeronequation is directly related to a physical observaldg)(
exchanges in the gluon distribution function in the leadingand, therefore, is free from all the problems and ambiguities
In(1/x) approximation(i.e., without taking the double loga- associated with dealing with the gluon distribution function
rithmic limit) has been pursued by Jalilian-Marian, Kovner,xG. It is a nonlinear integral equation, not a functional dif-
Leonidov, McLerran, Venugopalan, and Weigg20-25. ferential equation like ih22]. Therefore, one should be able
Starting with a model of a large nucle[&0,26], which pro-  to solve Eq.(15) at least numerically.
vides some effective actionf20,21], they develop a We will dedicate Sec. Il to exploring the equation result-
renormalization-group procedure which integrates out hardeng from taking double logarithmi¢largeQ?) limit of the
longitudinal gluonic degrees of freedom in the nucleus andequation derived in Sec. Il. We see that our equation reduces
allows one to resum the leading Ing)/contribution to the to the GLR equation, failing to reproduce Edg), (3). Fi-
gluon distribution function. The resulting equation, written in nally, in Sec. IV we will conclude by discussing the limita-
a functional form in[23] is supposed to resum these leadingtions of the largeN. approximation, as well as some advan-
logarithms including also all powers of color charge densitytages of our approach.
of the nucleus, which in a more traditional language corre-
sponds to resummation of multiple Pomeron exchanges.

However, even though that equation at the lowéste Il. EVOLUTION EQUATION
Pomeron level reduces to the expected BFKL equatjag], FROM THE DIPOLE MODEL

in general it is a very complicated functional differential
equation which cannot be solved even numerically. Recentl%n
the double logarithmic limit of that equation was obtained
[25], providing us with another equation f&IG:

We start by considering a deep inelastic scattering process
a nucleus. As shown in Fig. 1, the incoming virtual pho-
ton with a largeq, component of the momentum splits into

a quark-antiquark pair which then interacts with the nucleus
at rest. We model the interaction by no more than two gluon

*XG(x,Q?) exchanges between each of the nucleons and the quark-
J |n(Q2/AéCD)3 In(1/x) antiquark pair. This is done in the spirit of the quasiclassical
approximation used previously if9,28,29. The interac-
N¢(Ne—1) 2[ m(N.—1)Q%S, tions are taken in the eikonal approximation. Then, as could
- TSL T 2axG be shown in general, i.e., including the leading logarithmic

QCD evolution, the total cross section, and, thereforeFthe
structure function of the nucleus can be rewritten as a prod-
uct of the square of the virtual photon’s wave function and
the propagator of the quark-antiquark pair through the
3 nucleus[30,31.The expression read80]

F(W(Nc_l)QZSL) ( W(Nc_l)QZSL)
xex 2axG N~ 2axG :

Equation(3) is written here for a cylindrical nucleon with

transverse ared, . In the limit of small gluon density Eq. , Q? d2xp,dz
(3) reduces to GLR equatidi25]. Fa(x,Q%) = [P(Xo1,2)
. X . . A2 2
Our approach in this paper is pursuing the same goals as T ®EM
the authors of20—-25. We will also write an equation which +® (Xo1,2)] d2bg N(Xo1,b0,Y), ()

resums all multiple Pomeron exchanges on a nucleus in the

leading logarithmic approximation. However our strategy is

a bit different from[20—25. We will consider the scattering where the incoming photon with virtualit®) splits into a

of a virtual photon on a nucleus at rest, therefore putting altjuark-antiquark pair with the transverse coordinates of the

the QCD _evo_lution in the wave function of the virtual pho- quark and antiquark being, and, correspondingly, such
ton. This is different from what was done by the authors of

[20-25, since they were developing the QCD evolution in- that X10= Xl_xol' Ihe Eoordina_\te of the cgr?ter of t_he pair is
side the nucleus. The virtual photon’s wave function includ-given By bo=3(x1+Xo). Y is the rapidity variableY
ing the leading logarithmic evolution was constructed in the=In ¥Q°=In1/x. The square of the light cone wave function
largeN. limit by Mueller in [1-4]. This so-called dipole of qq fluctuations of a virtual photon is denoted by
wave function in fact contains all multiple pomeron ex- ®1(Xq1,2) and ®,(xq;,2z) for transverse and longitudinal
changes, which in the large; language can be pictured as photons correspondingly, wit being the fraction of the
multiple color “cylinders.” A numerical analysis of the uni- photon’s longitudinal momentum carried by the quark. At
tarization of the total onium-onium cross section throughthe lowest order in  electromagnetic  coupling
multiple pomeron exchanges was carried out in the framefagy) P 1(Xg1,2) and® (xq;,2) are given by([30,31, and
work of the dipole model by Salam in R¢R27]. Considering references therein
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with a?=Q?z(1—z). We consider massless quarks having
only one flavor.

The quantityN(Xq;,bg,Y) has the meaning of the forward
scattering amplitude of the quark-antiquark pair on a nucleus
[31]. At the lowest(classical order not including the QCD

evolution in rapidity it is given by . . o
FIG. 2. DIS on a nucleus including the QCD evolution in the
N(Xg1,bg,0) = — ¥(Xo1,bo) quark-antiquark pair in the form of dipole wave function. Each

,~ double line represents a gluon in the lafdgdimit.
Cr Xow (XoD)R
[1_ex‘][_N_CT . (3

a«?AY3Q2?. This is the definition of quasi-classical limit, a
o~ i ] ) more detailed discussion of which could be found26].
with v as defined irf28] and\ being the mean free path of  sjnce the nucleus is at rest in order to include the QCD

a gluon in a nuclear medium, as defined 28]. In the loga- gy g|ution of F, structure function, we have to develop the
rithmic approximation for larg&®*~ (smallxoy), Eq.(68) can  gqft gluon wave function of the incoming virtual photon. In

be rewritten as the leading longitudinal logarithmic approximation (Ir}L/

am? the evolution of the wave function is realized through suc-
N(Xo1,b0,0)= — 7(X01,bo)*( l—ex;{ T 2NS, cessive emissions of smallgluons. Theqq pair develops a
¢ cascade of gluons, which then scatter on the nucleus. In order
to describe the soft gluon cascade we will take the limit of a
2 2
XXOlAXG(X'lb(Ol)H' (6b) large number of colord\.— . Then, this leading logarith-

o mic soft gluon wave function will become equivalent to the
¥(Xo1,b0) is the propagator of thejq pair through the dipole wave function, introduced by Mueller [1—-3]. The
nucleus. The propagator could be easily calculated, similarlyhysical picture becomes straightforward. Tfeepair devel-
to [28,30, giving the Glauber multiple rescattering formula ops a system of dipoleslipole wave function and each of
(6). Here and throughout the paper we assume for simplicitthe dipoles independently scatters on the nucleus, as shown
that the nucleus is a cylinder, which appears as a circle oh Fig. 2. Since the nucleus is large, we may approximate the
radiusR in the transverse direction and has a constant lengtthteraction of a dipole(quark-antiquark pajr with the
2R along the longitudinak direction. Therefore, its trans- npucleus byy(x,b) given by Eq.(6), with x andb being the
verse cross-sectional areaSs= R In formula(6) Ais  dipole’s transverse separation and impact parameter. That
the atomic number of the nucleus, is the strong-coupling means that each of the dipoles interacts with several nucle-
constant ande(x,l/xél) is the gluon distribution in a ons (Glauber rescatteringin the nucleus independent of
nucleon in the nucleus, taken at the lowest ordesjrsimi-  other dipoles. The interaction of each of the dipoles with the
larly to [28]. nucleus is the same as was shown in Fig. 1 for the infél

Equation(6) resums all Glauber-type multiple rescatter- pajr,
ings of agqq pair on a nucleus. As was mentioned before, To construct the dipole wave function we will heavily
since each interaction of the pair with a nucleon in therely on the techniques developed[it—4]. Following[1,3]
nucleus is restricted to the two gluon exchange, fornt6la we define the generating functional for dipoles
effectively sums up all the powers of the parametdA®.  Z(bg,Xo;,Y,u) [see formulagl6) and(17) in [1]]. The gen-
Or, looking at the power of the exponent in Ef) we con-  erating functional then obeys the equatieee Eq.(12) in
clude that sincexy;~1/Q, it resums all the powers of [3]]

40[C|: XOl C(CF Y 4CYC|: XOl
Z(bg,Xg1,Y,u)=u(bg,xg) X — Inl—|Y +t— dyexp — Inl —](Y—y)
p me Jo m p
~ X 1 1
xfd Xo——5 Z| bo+ 5 X12:X02,Y, U Z| by— 5%20:X12,Y,U (7)
P X02X12

wherex,o=Xo— Xz, Xo1=X;— X, and the integration ovex, is performed over the region whexg,=p andx;,=p. This p
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serves as an ultraviolet cutoff in the equation and disappears in the physical quangitiégx,+ x;) is the position of the
center of the initial dipole in the transverse pldi3é C-=N./2 in the largeN, limit. The generating functional is defined
such thatZ(bg,Xg1,Y,u=1)=1 (see[1]).

Analogous td2,3] we now define the dipole number density by

1)
waznl(Xm,Y, ~bol. )= 50550

Z(bo.%o1, Y, U)|y=1- (8)
n1(Xo1,Y,|b—bg|,x) convoluted with the virtual photon’s wave function gives the number of dipoles of transverseasittes
impact parametgb— b,| with the smallest light cone momentum in the pair greater or equel tg_. . Similarly to the dipole

number density we can introduce dipole pair dengy8| for a pair of dipoles of sizex; andx, at the impact parameters
|by—bo| andb,—by| by

1 1 1 S
———N2(Xo1,Y,|by—bo[,X1,[P2—Dg|,X Z(bg,Xp1,Y,U)|y=1- 9
2'7TX12 X2 2( 01 | 1 0| l| 27 0| 2) 2| 5u(b1,X1) 5U(b2,X2) ( 0:701 )|U 1 ()
Our notation is different from the conventional approach28] by the factor of a factorial, for reasons which will become
obvious later. Generalizing the definitiof®) to k dipoles of sizesx,, ... x, situated at the impact parametets;
—byl, ... ,|bg—bg|, we easily obtain
T2 o Yol - b blod =TT =2 2(by o .0 10
Nk (Xo1,Y,|b1—bgl X1, . .. |bk=bg|, X)) =11 =—=——= Xot, Y U)|y=1-
] 27TX|2 k\A01 1 ol»A1 k 0l Ak k!iZl 5U(bi !Xi) 0,701 u=1

One can now see that in order to include all the multiple Pomeron exchanges one has to sum up the contributions of
different numbers of dipoles interacting with the nucleus. Namely, we should take the dipole number gnrgityY,b,x)
and convolute it with the propagator of this one dipole in the nuclgixssb). Then we should take the dipole pair density

Nn»(Xo1,Y,b1,X1,b5,X5) and convolute it with two propagatosgx, ,b;) andy(x,,b,), etc. That way we obtain an expression
for N(Xg1,bg,Y)

d2x
- N(Xo1,boaY):j nl(X011va11X1)< y(Xq, b1) 2b1)
2mx3

2

d*x; d*;
"’f N2(Xo1,Y,b1,X1,02,X2) | ¥(X1,01)——=d%by || ¥(X2,b2)—db, | +
2mX] 2mX5

* d2X 2 .
:E Ni(Xo1,Y,01,X1, ... b ’Xi)< y(X1,b1) lzdzbl) . ( (X ,b) ol 2b|): (11
i=1 27TX 7TXi

1

where we put the minus sign in front bifto make it positive, since is negative. Equatiofil1) clarifies the physical meaning

of N as a total cross section ofqa? pair interacting with a nucleus. One can understand now the factorials in the definitions
of the dipole number densitig8), (9), and (10): once the convolutions with the propagatorsare done then the dipoles
become “identical” and we have to include the symmetry factors.

In order to write down an equation fd(xy1,bg,Y) we have to find the equations fay’s first. Following the techniques
introduced in[1-4] we have to differentiate the equation for the generating functiffalith respect tou(x,b) settingu
=1 at the end, keeping in mind that(by,xy;,Y,u=1)=1. Differentiating formula(7) once we obtain an equation for
N1(Xo1,Y,0b1,Xy):

v
2

X
Ol)(Y y) }f d, 202 2n3(Xo2,Y,b1.,X), (12
Xo2X12

4aC X
N1(Xo1,Y,b1,X1) = 8%(Xo1—Xy1) 277X5 52(b1)exr{ R 3 |n(?01

C(CF Y 4(XC|:
a

where, following[3], we have defineth; = b, —bg— x;,.
Differentiating Eq.(7) twice we obtain an equation far,(Xq;,Y,01,X1,b5,X5):
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CYCF Y 4CYC|: XOl
nZ(XOLbelelabZaXZ):_Zf dyexg — (Y=y)
w* Jo T p

Xo1
f d'&z

whereb, =b, —by+ 2X,o. Now higher-order differentiation of E(7) becomes apparent, and could be easily done yielding the
following equation for the number density bflipoles:

2

[2 Na(Xo2,Y,01,%1,b2,X2) +N1(X02,Y, b1, X1) N1(X12,Y,02,%2)], (13

2

il v [ o

+ Z ((Xo2,Y201, %1, 2 0y X)) Ni(Xa2,Y. By 1, X415 -+ - DX |

2 ni(xoz,y,a,xl, ..0bi LX)

T2

aCg
ni(X01aY,b1-X11 . b| 1X) dyexp{ -
v 0

12

(14

where we anticipate the integration over the dipole sizes and treat the dipoles as identical objects. In prindipk skquld
contain the permutations of the arguments of the gluon densities in the product on the right-hand side, but for the above-
mentioned reason we do not write these terms explicitly.

Multiplying formula (14) by

d®x; d?x;
’)/(Xlibl) 2d bl . y(xl 1b ) b
2mX] 7TXi
integrating over the dipole sizes and impact parameters, and summing all such equations, i.e., summifigm\eto« in

Eq. (14) one obtains the equation fd(xg1,bg,Y)
4aC X Ce (Y 4aC X
¢ F ( Ol)Y +a_2F dyexp{— ¢ FIn(—m)(Y—y)}
m JO T p

N(Xo1,b0,Y)=—¥(Xo1,00) eXF{ -

< | @,

1 1
[2 N(on,b0+ 2X12,y) _N<X021bo+ 5 %12,y

1
N<X121bo— Exzol)’”- (15

Equation(15), together with Eqs(4) and(5), provide us with by conventional GLR equatidrb,6]. The difference between
the leading logarithmic evolution of tHe, structure function our equation and GLR is that E(L5) does not assume lead-
of a nucleus including all multiple Pomeron exchanges in théng transverse logarithmiiarge Q?) approximation.
largeN; limit.

Throughout the preceding calculations we never made an
assumption thaQ? is large. Of course, it should be large
enough for the perturbation theory to be applicable. The only In order to reconcile our approach with traditional results
assumption about the incoming photon’s momentum that wén this section we will take the larg@? limit of Eq. (15) and
made was that its light-cone component is large, there- show that in this double logarithmic approximation E&5)
fore we could neglect the inverse powersaf. This is  reduces to the GLR equati¢b,6]. We consider a scattering
eikonal approximation, which is natural for leading Inl/ of a virtual photon, characterized by large momentum scale
calculation. However, if the inverse power®f comes with  Q, on a nucleus at rest characterized by the sdajgp. The
an inverse power off_, forming something like 1/§,q_ Q%> A2 acp limit implies that the dipoles produced at each
~1/Q? we do not neglect these terms, therefore resummingtep of the evolution in the dipole wave function must be of
all the inverse powers of? (“higher twist terms™. That much greater transverse dimensions than the dipoles off
way we proceed to conclude that E{.5) sums up in the which they were produced. Basically, since in the double
leading logarithmic approximation all diagrams that includelogarithmic approximation the transverse momentum of the
the effects of multiple Pomeron exchanges, with Pomeromluons in the dipole wave function should evolve from the
ladders together with Pomeron splitting vertices being incordarge scaleQ to the small scale\ ocp, than the transverse
porated in the dipole wave function. In terms of conventionalsizes of the dipoles should evolve from the small sca@ 1/
(not “wave functional”) language Eq(15) resums the so- to the large scale Nycp.
called “fan” diagrams(see Fig. 3 which were summed up In the limit when the produced dipoles are much larger

[lI. DOUBLE LOGARITHMIC LIMIT
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v* N(Xo1,bo,Y) given by Eq.(11), the integration over the di-
pole’s transverse sizes should be also done figgn to
1A cp.
Now we have to make a connection between
N(Xo1,b0,Y) and the gluon distribution functionGa(x,Q?)
of a nucleusN(Xq1,bg,Y) is a forward scattering amplitude
of a qq pair on a nucleus and is a well-defined physical
quantity. However, there is some freedom in the definition of
the gluon distribution. If one makes use of the general defi-
nition of the gluon distribution as a matrix element of lead-
ing twist operator, then an attempt to take into account
higher twist operators would lead only to renormalization of
their matrix element$see[32], and references therginThe
FIG. 3. Multiple Pomeron exchanges and splittings resummedVvolution equation fox G would be linear, with all the non-

by Eq.(15). Each Pomeron ladder interacts with a nucleus, which idinear saturation effects included in the initial conditions.
symbolically denoted by. The goal of the GLR type of approach is to put these non-

linear effects in the evolution equation. Therefore, in the
than the dipole by which they were producédrge-Q? double logarithmic approach one usually defines the gluon
limit), the kernel of Eq(15) becomes distribution function through a cutoff operator product ex-

pansion, i.e., as a matrix element of theA , operator, with

Q? an ultraviolet cutoff imposed on the operat@ee the

A A A A

2 2
fdz)"(zi_)xglwfl’/\zqco dXg2 , (16)  discussion on pp. 442-443 {8)). In the spirit of this ap-
b XEX2, 2 (x3y)? proach we define the gluon distribution by
. 2
wherexg,~X1,>Xq1, and the upper cutoff of the,, integra- _amt 2
tion is given by the inverse momentum scale characterizing N(X01,b0,Y) = 2N.S, XoXGa(X, 1xgy), (18)

the nucleus, ﬂéCD. Since this integration is done in the

region of large transverse sizes the ultraviolet cupof§ no it the coefficient fixed by the two gluon exchange between
longer needed. One can easily see that including virtual cofhe quark-antiquark pair and the nucle(is the largeN,
rections would bring in the exponential facr *“F'™Y in jimit). Substituting Eq(18) into Eq. (17) one obtains

Egs.(7) and (15) instead of exp—(4aCc/m)IN(Xg1/p)Y]. In
the double logarithmic approximationYIn(QZIAéCD)zl

2 ) A2
and InQZ/Aé(CD)>1, thereforeaY <1. That way the factor IXGalx, 1) _aCe fl’AQCDd_XO2 2 XGp(x, 1K2,)
of e (@Cr/™Y can be neglected. The resulting limit of Eq. Y T Jx Xb,
(15) is o2
_ngm[XGA(X,l/XSZ)]Z}
N(Xo1,00,Y)= = y(Xo1,b0) el
aCg , (Y UAScp dx3, Differentiating the resulting equation with respect to
+ X0 JO dy ngl —(ng)z In(1ix5AScp) and usingXe~2/Q, which is valid in the

double logarithmic limit, we end up with
X[2N(Xo2,00,Y)
2 2
~N(Xg2,b0,Y) N(Xo2,b0, ), THCAXQ) Moy o 22
an(1x) IN(Q¥Adcp) 7

which after differentiation with respect 6 yields

o’ 1
, 5 —[XGa(X,Q?)]?,
NOo1bo.Y) _aCr fméw—dxoz [2N(X52,b0,Y) - 0
Y ar 01 Xsl (ng)z 02:M0> (19)
—N(Xo2,P0,Y) N(Xo2,b0,Y) ], (17 which exactly corresponds to the GLR equat[&n6], with

the factors matching those corresponding to cylindrical
where, for simplicity, we suppressed the difference in thenucleus case in Ref§17,18.
impact parameter dependence Mfon the left- and right- One has to note that the problems with the definition of
hand sides of Eq.17). This is done in the spirit of the large the gluon distribution function outlined above bear no con-
cylindrical nucleus approximation. Also, one should keep insequence on Eq15). This equation describes the evolution
mind that for this double logarithmic limit in the definition of of N(xg;,bg,Y) in the leading In(2¥) and does not assume
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T* *

(a) ()

FIG. 4. (a) Diagrams which are not included in our analygl®. A diagram which is included in Eq15).

collinear factorization or impose transverse momentum cutfunction language the graph in Figi@ can be interpreted in
offs, therefore posing no problems like the mixing of opera-two ways. In one case it could be a part of the dipole wave
tors of different twistq32]. function, which should be redefined to include this graph in
One would also like to rederive the equation G,  the form of color quadrupoles. On the other hand, the graph
derived earlier in(17,18,21, given by Eq.(2) here. In the in Fig. 4(a) could correspond to the usual “two dipole” part
double logarithmic limit we did not reproduce those resultsof wave function f,) with both dipoles interacting with the
given by formula(48) in [18], formula (3.19 in [21], and,  same nucleon in the nucleus. However, for the given prob-
most explicitly by formula(41) in [25]. Nevertheless, this |em of scattering on a large nucleus, the graph in Fig) &
equation could be obtained from EQL5) in the fO“OWing Suppressed by powers of atomic numbecompared to the
peculiar limit. Consider the scattering of a virtual photongraph in Fig. 4b) for both cases.
with moderately large virtualitQ on a nucleus composed of  The inclusion of the Pomeron fusion effects in the dipole
very heavy quarks, so that the typical momentum scale chaiwave function is a difficult task33]. Equation(7) does not
acterizing the nucleus given by the mass of the heavy quarkgke them into account. Construction of dipole wave function
M is much Iarger thal@. In that case the double Iogarithmic which includes the diagrams shown in F|g{a)4|s an inter-
limit would correspond to production of small dipoles in the esting and important problem, which is still to be solved.
dipole wave function. Now, using certain freedom we haveone should note that inclusion of the graphs of the type
in the definition of the gluon distribution function, we can shown in Fig. 4a) in the dipole wave function would result
treat Eq.(6b) as a definition o&kG,, which should be sub- jn appearance of color quadrupolg33]. In the case of
stituted in Eq(6b) instead ofAxG. Plugging the generalized onium-onium center-of-mass scattering this wave function
Eqg. (6b) into Eq. (15) taken in the small-dipole limit we can be either considered as suppressed by factd§ abm-
obtain Eq.(2). That way we will rederive the results of pared to the one-dipole wave function, or, more correctly,
[17,18,2], however not quite for the same process as the ongne may note that its contribution to the scattering amplitude
for which they were derived originally. will be suppressed by the factor ef*r~ VY2 [3], with ap
Finally, we note that we failed to find a limit in which Eq. the intercept of the BEKL Pomeron. However, this argument
(15) reproduces formul&39) in [25],that was given by Eq. goes not apply for the case when one of the onia is at rest
(3) above, which is another candidate for the double Iogaf33], or to our case when the nucleus is at rest.
rithmic evolution ofxG including all multiple Pomeron ex- The graph in Fig. @) in our case of nucleus at rest brings
changes. in suppression by powers &. The reason for that is very
simple: in the first diagraniFig. 4@)] there is only one
Pomeron ladde(dipole) interacting with the nucleus below,
whereas in the second diagrdfig. 4(b)] there are two lad-
One of the diagrams that were not included in our analysislers. Since each dipole is convoluted with its propagator
above is shown in Fig.(4). There a hard Pomeron ladder through the nucleus, each ladder brings in a factor of
splits into two and then the two ladders again fuse into oney(x,b)d?b. For large transverse size dipoles this factor is
which connects to the nucleus. In general this diagram is oproportional toA%® and for small dipoles it scales &g In
the same order in coupling and rapidity as the usual twoany case one can see that the graph in Fg), daving the
pomeron exchange diagram of Fig(b and, therefore same parametrical dependence @randY as the graph in
should be also considered. The effects of that type can plakig. 4(b), is suppressed by some powerfofompared to this
an important role in unitarization and saturation of thesecond graph. Therefore, one should note that by neglecting
onium-onium scattering amplitud@3]. In the dipole wave the effects of the graph in Fig.(& we assume that we are

IV. CONCLUSIONS
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doing the leading calculation in the powers of the atomicmultiple Pomeron exchanges once the one-pomeron ex-

number of the nucleu8. That allows us to avoid complica- change contribution has been calculated. In other words, if

tions associated with the incorporation of the diagram in Figthe dipole kernel is known at any order in the coupling con-

4(a) in the evolution equatiofl5). stant one can easily generalize the resulting equation for gen-
Equation(15) can also be derived directly from Eq) by  erating functional to include the multiple Pomeron ex-

setting u(Xo1,bo) = ¥(Xo1,b0) +1 in it and definingN=1  changes on a nucleus.

—Z. That way we have a method of resumming all multiple  Finally, we note that it would be interesting to try fitting

Pomeron exchanges for any higher-order corrections to thgye recent HERA dat&l6] using the evolution of thé=,
dipole kernel. If one calculates the dipole kernel, say, at thetrycture function given by Eq15).

next-to-lowest order, then we can write down an equation for
generating functionaZ, similar to Eq.(7). Though the next-

to-lowest o_rder equatipn will in additipn have cubic terms in ACKNOWLEDGMENTS
Z on the right-hand side. Then, setting=y+1 andZ=1
—N one would easily obtain an equation resumming mul- | would like to thank Alex Kovner, Genya Levin, Larry

tiple Pomeron exchanges in the subleading logarithmic apMcLerran, and Alfred Mueller for a number of informative
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