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Small-x F 2 structure function of a nucleus including multiple Pomeron exchanges

Yuri V. Kovchegov
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455

~Received 13 January 1999; published 25 June 1999!

We derive an equation determining the small-x evolution of theF2 structure function of a large nucleus
which includes all multiple Pomeron exchanges in the leading logarithmic approximation using Mueller’s
dipole model. We show that in the double leading logarithmic limit this evolution equation reduces to the
Gribov-Levin-Ryskin equation.@S0556-2821~99!04013-8#

PACS number~s!: 12.38.Bx, 12.38.Cy, 24.85.1p
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I. INTRODUCTION

The problem of understanding the large gluon density
gime in high-energy scattering has always been one of
challenges of perturbative QCD~PQCD! @1–6#. Unitarity of
the total cross section and saturation of the gluon distribu
are among the most important issues related to the prob
The Balitskiı̆-Fadin-Kuraev-Lipatov~BFKL! equation@7,8#
is the only well-established tool of PQCD which allows us
explore this high-density region by resumming the lead
longitudinal logarithmic contribution to the scattering pr
cess. In BFKL evolution the small-x partons are produce
overlapping each other in the transverse coordinate space@9#,
therefore creating high-density regions in the hadron’s w
function ~hot spots!. The next-to-leading order correction t
BFKL equation has been calculated recently@10,11#. Al-
though the final conclusion one should draw from the cal
lation of @10,11# is still to be understood, there are som
serious problems associated with the interpretation of
result @12–14#. However, we are not going to address the
issues in this paper for the following reason. As was sho
in @12,13# the effects of the second-order BFKL kernel b
come important in hadron-hadron scattering at the rapidi
of the order of YNLO;1/a5/3, with a being the strong-
coupling constant. At the same time the unitarity constrai
associated with the multiple~leading order! hard Pomeron
exchanges are expected to be reached atYU;(1/a)ln(1/a)
@15#, which is parametrically smaller thanYNLO for small
coupling constant. Therefore, multiple pomeron exchan
become important at lower center-of-mass energies than
effects of subleading corrections, possibly leading to unit
zation of the total hadron-hadron cross section. Hence
problem of resummation of the multiple pomeron exchan
seems to be more important for describing the recent exp
mental results, such as ZEUS 1995 data@16#, which probably
shows evidence of saturation of theF2 structure function at
low Q2.

In this paper we are going to consider deep inelastic s
tering ~DIS! of a virtual photon on a large nucleus and w
resum all multiple pomeron exchanges contributing to theF2
structure function of the nucleus in the leading longitudin
logarithmic approximation in the large-Nc limit. The first
step in that direction in PQCD was the derivation by Gribo
Levin, and Ryskin~GLR! of an equation describing the fu
sion of two pomeron ladders into one in the double logar
mic approximation@5#. The resulting equation with the coe
0556-2821/99/60~3!/034008~8!/$15.00 60 0340
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ficient in front of the quadratic term calculated by Muell
and Qiu@6# for a low density picture of a spherical proton o
radiusR reads

]2xG~x,Q2!

] ln~1/x! ] ln~Q2/LQCD
2 !

5
aNc

p
xG~x,Q2!

2
4a2Nc

3CFR2

1

Q2
@xG~x,Q2!#2.

~1!

This equation sums up all multiple hard Pomeron exchan
in the gluon distribution function in the double logarithm
limit.

Since then there have been several attempts to gener
the GLR equation. Recently an equation has been propo
by Ayala, Gay Ducati, and Levin in@17,18#, which tries to
incorporate the Glauber-type multiple rescatterings of
probe on the nucleons in a nucleus~see Fig. 1!. Using the
results of Mueller in@19# for a pair of gluons multiply res-
cattering inside a nucleus, the authors of@17,18# obtained the
following equation for the gluon distribution of the nucleu
in the double logarithmic approximation:

]2xGA~x,Q2!

] ln~Q2/LQCD
2 !] ln~1/x!

5
NcCFS'

p3
Q2

3H 12expF2
2ap2

NcS'

3
1

Q2
xGA~x,Q2!G J . ~2!

FIG. 1. Forward amplitude of DIS on a nucleus in the qua
classical~Glauber! approximation.
©1999 The American Physical Society08-1
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YURI V. KOVCHEGOV PHYSICAL REVIEW D 60 034008
If one expands the right-hand side of Eq.~2! to the second
order in xGA one recovers the GLR equation@Eq. ~2! is
written here for a cylindrical nucleus. Therefore the coe
cients in the obtained GLR equation will not match those
Eq. ~1!#.

An extensive work on resumming the multiple Pomer
exchanges in the gluon distribution function in the lead
ln(1/x) approximation~i.e., without taking the double loga
rithmic limit! has been pursued by Jalilian-Marian, Kovn
Leonidov, McLerran, Venugopalan, and Weigert@20–25#.
Starting with a model of a large nucleus@20,26#, which pro-
vides some effective action@20,21#, they develop a
renormalization-group procedure which integrates out ha
longitudinal gluonic degrees of freedom in the nucleus a
allows one to resum the leading ln(1/x) contribution to the
gluon distribution function. The resulting equation, written
a functional form in@23# is supposed to resum these leadi
logarithms including also all powers of color charge dens
of the nucleus, which in a more traditional language cor
sponds to resummation of multiple Pomeron exchang
However, even though that equation at the lowest~one
Pomeron! level reduces to the expected BFKL equation@22#,
in general it is a very complicated functional differenti
equation which cannot be solved even numerically. Rece
the double logarithmic limit of that equation was obtain
@25#, providing us with another equation forxG:

]2xG~x,Q2!

] ln~Q2/LQCD
2 !] ln~1/x!

5
Nc~Nc21!

2
S'Q2F11

p~Nc21!Q2S'

2axG

3expS p~Nc21!Q2S'

2axG DEiS 2
p~Nc21!Q2S'

2axG D G .
~3!

Equation~3! is written here for a cylindrical nucleon with
transverse areaS' . In the limit of small gluon density Eq
~3! reduces to GLR equation@25#.

Our approach in this paper is pursuing the same goal
the authors of@20–25#. We will also write an equation which
resums all multiple Pomeron exchanges on a nucleus in
leading logarithmic approximation. However our strategy
a bit different from@20–25#. We will consider the scattering
of a virtual photon on a nucleus at rest, therefore putting
the QCD evolution in the wave function of the virtual ph
ton. This is different from what was done by the authors
@20–25#, since they were developing the QCD evolution i
side the nucleus. The virtual photon’s wave function inclu
ing the leading logarithmic evolution was constructed in
large-Nc limit by Mueller in @1–4#. This so-called dipole
wave function in fact contains all multiple pomeron e
changes, which in the large-Nc language can be pictured a
multiple color ‘‘cylinders.’’ A numerical analysis of the uni
tarization of the total onium-onium cross section throu
multiple pomeron exchanges was carried out in the fram
work of the dipole model by Salam in Ref.@27#. Considering
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the scattering of a virtual photon~quarkonium state! on a
nucleus simplifies the problem, allowing us to treat it an
lytically. In Sec. II we will use the dipole wave function t
write down an equation which governs the evolution of t
F2 structure function of the nucleus@formula ~15!#. Our
equation is directly related to a physical observable (F2)
and, therefore, is free from all the problems and ambigui
associated with dealing with the gluon distribution functi
xG. It is a nonlinear integral equation, not a functional d
ferential equation like in@22#. Therefore, one should be ab
to solve Eq.~15! at least numerically.

We will dedicate Sec. III to exploring the equation resu
ing from taking double logarithmic~large-Q2) limit of the
equation derived in Sec. II. We see that our equation redu
to the GLR equation, failing to reproduce Eqs.~2!, ~3!. Fi-
nally, in Sec. IV we will conclude by discussing the limita
tions of the large-Nc approximation, as well as some adva
tages of our approach.

II. EVOLUTION EQUATION
FROM THE DIPOLE MODEL

We start by considering a deep inelastic scattering proc
on a nucleus. As shown in Fig. 1, the incoming virtual ph
ton with a largeq1 component of the momentum splits int
a quark-antiquark pair which then interacts with the nucle
at rest. We model the interaction by no more than two glu
exchanges between each of the nucleons and the qu
antiquark pair. This is done in the spirit of the quasiclassi
approximation used previously in@19,28,29#. The interac-
tions are taken in the eikonal approximation. Then, as co
be shown in general, i.e., including the leading logarithm
QCD evolution, the total cross section, and, therefore, theF2
structure function of the nucleus can be rewritten as a pr
uct of the square of the virtual photon’s wave function a
the propagator of the quark-antiquark pair through
nucleus@30,31#.The expression reads@30#

F2~x,Q2!5
Q2

4p2aEM
E d2x01dz

2p
@FT~x01,z!

1FL~x01,z!# d2b0 N~x01,b0 ,Y!, ~4!

where the incoming photon with virtualityQ splits into a
quark-antiquark pair with the transverse coordinates of
quark and antiquark beingx̃0 and x̃1 correspondingly, such
that x105 x̃12 x̃0. The coordinate of the center of the pair
given by b05 1

2 ( x̃11 x̃0). Y is the rapidity variableY
5 ln s/Q25ln 1/x. The square of the light cone wave functio
of qq̄ fluctuations of a virtual photon is denoted b
FT(x01,z) and FL(x01,z) for transverse and longitudina
photons correspondingly, withz being the fraction of the
photon’s longitudinal momentum carried by the quark.
the lowest order in electromagnetic couplin
(aEM) FT(x01,z) andFL(x01,z) are given by~@30,31#, and
references therein!
8-2
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FT~x01,z!5
2NcaEM

p
$a2 K1

2~x01a! @z21~12z!2#%, ~5a!

FL~x01,z!5
2NcaEM

p
4Q2z2~12z!2 K0

2~x01a! ~5b!

with a25Q2z(12z). We consider massless quarks havi
only one flavor.

The quantityN(x01,b0 ,Y) has the meaning of the forwar
scattering amplitude of the quark-antiquark pair on a nucl
@31#. At the lowest~classical! order not including the QCD
evolution in rapidity it is given by

N~x01,b0 ,0!52g~x01,b0!

[H 12expF2
CF

Nc

x01
2 ṽ~x01!R

2l
G J , ~6a!

with ṽ as defined in@28# andl being the mean free path o
a gluon in a nuclear medium, as defined in@28#. In the loga-
rithmic approximation for largeQ2 ~small x01), Eq. ~6a! can
be rewritten as

N~x01,b0 ,0!52g~x01,b0!'H 12expF2
ap2

2NcS'

3x01
2 AxG~x,1/x01

2 !G J . ~6b!

g(x01,b0) is the propagator of theqq̄ pair through the
nucleus. The propagator could be easily calculated, simil
to @28,30#, giving the Glauber multiple rescattering formu
~6!. Here and throughout the paper we assume for simpli
that the nucleus is a cylinder, which appears as a circle
radiusR in the transverse direction and has a constant len
2R along the longitudinalz direction. Therefore, its trans
verse cross-sectional area isS'5pR2. In formula ~6! A is
the atomic number of the nucleus,a is the strong-coupling
constant andxG(x,1/x01

2 ) is the gluon distribution in a
nucleon in the nucleus, taken at the lowest order ina, simi-
larly to @28#.

Equation~6! resums all Glauber-type multiple rescatte
ings of aqq̄ pair on a nucleus. As was mentioned befo
since each interaction of the pair with a nucleon in t
nucleus is restricted to the two gluon exchange, formula~6!
effectively sums up all the powers of the parametera2A1/3.
Or, looking at the power of the exponent in Eq.~6! we con-
clude that sincex01;1/Q, it resums all the powers o
03400
s

ly

ty
of
th

,

a2A1/3/Q2. This is the definition of quasi-classical limit,
more detailed discussion of which could be found in@26#.

Since the nucleus is at rest in order to include the Q
evolution of F2 structure function, we have to develop th
soft gluon wave function of the incoming virtual photon.
the leading longitudinal logarithmic approximation (ln1/x)
the evolution of the wave function is realized through su

cessive emissions of small-x gluons. Theqq̄ pair develops a
cascade of gluons, which then scatter on the nucleus. In o
to describe the soft gluon cascade we will take the limit o
large number of colors,Nc→`. Then, this leading logarith-
mic soft gluon wave function will become equivalent to th
dipole wave function, introduced by Mueller in@1–3#. The
physical picture becomes straightforward. Theqq̄ pair devel-
ops a system of dipoles~dipole wave function!, and each of
the dipoles independently scatters on the nucleus, as sh
in Fig. 2. Since the nucleus is large, we may approximate
interaction of a dipole~quark-antiquark pair! with the
nucleus byg(x,b) given by Eq.~6!, with x andb being the
dipole’s transverse separation and impact parameter. T
means that each of the dipoles interacts with several nu
ons ~Glauber rescattering! in the nucleus independent o
other dipoles. The interaction of each of the dipoles with
nucleus is the same as was shown in Fig. 1 for the initialqq̄
pair.

To construct the dipole wave function we will heavi
rely on the techniques developed in@1–4#. Following @1,3#
we define the generating functional for dipole
Z(b0 ,x01,Y,u) @see formulas~16! and~17! in @1##. The gen-
erating functional then obeys the equation@see Eq.~12! in
@3##

FIG. 2. DIS on a nucleus including the QCD evolution in th
quark-antiquark pair in the form of dipole wave function. Ea
double line represents a gluon in the large-Nc limit.
Z~b0 ,x01,Y,u!5u~b0 ,x01!expF2
4aCF

p
lnS x01

r DYG1
aCF

p2 E
0

Y

dy expF2
4aCF

p
lnS x01

r D ~Y2y!G
3E

r
d2x̃2

x01
2

x02
2 x12

2
ZS b01

1

2
x12,x02,y,uD ZS b02

1

2
x20,x12,y,uD , ~7!

wherex205 x̃02 x̃2 , x215 x̃12 x̃2 and the integration overx̃2 is performed over the region wherex02>r andx12>r. This r
8-3



d

s

e

tions of

ity
n

itions
s

r

YURI V. KOVCHEGOV PHYSICAL REVIEW D 60 034008
serves as an ultraviolet cutoff in the equation and disappears in the physical quantities.b05 1
2 (x01x1) is the position of the

center of the initial dipole in the transverse plane@3#. CF5Nc /2 in the large-Nc limit. The generating functional is define
such thatZ(b0 ,x01,Y,u51)51 ~see@1#!.

Analogous to@2,3# we now define the dipole number density by

1

2px2
n1(x01,Y,ub2b0u,x)5

d

du~b,x!
Z~b0 ,x01,Y,u!uu51 . ~8!

n1(x01,Y,ub2b0u,x) convoluted with the virtual photon’s wave function gives the number of dipoles of transverse sizex at the
impact parameterub2b0u with the smallest light cone momentum in the pair greater or equal toe2Yq1 . Similarly to the dipole
number density we can introduce dipole pair density@2,3# for a pair of dipoles of sizesx1 andx2 at the impact parameter
ub12b0u andub22b0u by

1

2px1
2

1

2px2
2

n2(x01,Y,ub12b0u,x1 ,ub22b0u,x2)5
1

2!

d

du~b1 ,x1!

d

du~b2 ,x2!
Z~b0 ,x01,Y,u!uu51 . ~9!

Our notation is different from the conventional approach of@2,3# by the factor of a factorial, for reasons which will becom
obvious later. Generalizing the definition~9! to k dipoles of sizesx1 , . . . ,xn situated at the impact parametersub1
2b0u, . . . ,ubk2b0u, we easily obtain

)
i 51

k
1

2pxi
2

nk(x01,Y,ub12b0u,x1 , . . . ,ubk2b0u,xk)5
1

k!)i 51

k
d

du~bi ,xi !
Z~b0 ,x01,Y,u!uu51 . ~10!

One can now see that in order to include all the multiple Pomeron exchanges one has to sum up the contribu
different numbers of dipoles interacting with the nucleus. Namely, we should take the dipole number densityn1(x01,Y,b,x)
and convolute it with the propagator of this one dipole in the nucleusg(x,b). Then we should take the dipole pair dens
n2(x01,Y,b1 ,x1 ,b2 ,x2) and convolute it with two propagatorsg(x1 ,b1) andg(x2,b2), etc. That way we obtain an expressio
for N(x01,b0 ,Y)

2 N~x01,b0 ,Y!5E n1~x01,Y,b1 ,x1!S g~x1 ,b1!
d2x1

2px1
2

d2b1D
1E n2~x01,Y,b1 ,x1 ,b2 ,x2!S g~x1 ,b1!

d2x1

2px1
2

d2b1D S g~x2 ,b2!
d2x2

2px2
2

d2b2D 1 . . .

5(
i 51

` E ni~x01,Y,b1 ,x1 , . . . ,bi ,xi !S g~x1 ,b1!
d2x1

2px1
2

d2b1D . . . S g~xi ,bi !
d2xi

2pxi
2

d2bi D , ~11!

where we put the minus sign in front ofN to make it positive, sinceg is negative. Equation~11! clarifies the physical meaning
of N as a total cross section of aqq̄ pair interacting with a nucleus. One can understand now the factorials in the defin
of the dipole number densities~8!, ~9!, and ~10!: once the convolutions with the propagatorsg are done then the dipole
become ‘‘identical’’ and we have to include the symmetry factors.

In order to write down an equation forN(x01,b0 ,Y) we have to find the equations forni ’s first. Following the techniques
introduced in@1–4# we have to differentiate the equation for the generating functional~7! with respect tou(x,b) settingu
51 at the end, keeping in mind thatZ(b0 ,x01,Y,u51)51. Differentiating formula~7! once we obtain an equation fo
n1(x01,Y,b1 ,x1):

n1~x01,Y,b1 ,x1!5d2~x012x1! 2px1
2 d2~b1!expF2

4aCF

p
lnS x01

r DYG
1

aCF

p2 E
0

Y

dy expF2
4aCF

p
lnS x01

r D ~Y2y!G E
r
d2x̃2

x01
2

x02
2 x12

2
2 n1~x02,y,b̄1 ,x1!, ~12!

where, following@3#, we have definedb̄i5bi2b02 1
2 x12.

Differentiating Eq.~7! twice we obtain an equation forn2(x01,Y,b1 ,x1 ,b2 ,x2):
034008-4
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n2~x01,Y,b1 ,x1 ,b2 ,x2!5
aCF

p2 E
0

Y

dy expF2
4aCF

p
lnS x01

r D ~Y2y!G
3E

r
d2x̃2

x01
2

x02
2 x12

2 @2 n2~x02,y,b̄1 ,x1 ,b̄2 ,x2!1n1~x02,y,b̄1 ,x1! n1~x12,y,b̃2 ,x2!#, ~13!

whereb̃i5bi2b01 1
2 x20. Now higher-order differentiation of Eq.~7! becomes apparent, and could be easily done yielding

following equation for the number density ofi dipoles:

ni~x01,Y,b1 ,x1 , . . . ,bi ,xi !5
aCF

p2 E
0

Y

dy expF2
4aCF

p
lnS x01

r D ~Y2y!G E
r
d2x̃2

x01
2

x02
2 x12

2 F2 ni~x02,y,b̄1 ,x1 , . . . ,b̄i ,xi !

1 (
j 1k5 i

nj~x02,y,b̄1 ,x1 , . . . ,b̄j ,xj ! nk~x12,y,b̃j 11 ,xj 11 , . . . ,b̃i ,xi !G , ~14!

where we anticipate the integration over the dipole sizes and treat the dipoles as identical objects. In principle, Eq.~14! should
contain the permutations of the arguments of the gluon densities in the product on the right-hand side, but for the
mentioned reason we do not write these terms explicitly.

Multiplying formula ~14! by

S g~x1 ,b1!
d2x1

2px1
2

d2b1D . . . S g~xi ,bi !
d2xi

2pxi
2

d2bi D ,

integrating over the dipole sizes and impact parameters, and summing all such equations, i.e., summing overi from 1 to` in
Eq. ~14! one obtains the equation forN(x01,b0 ,Y)

N~x01,b0 ,Y!52g~x01,b0! expF2
4aCF

p
lnS x01

r DYG1
aCF

p2 E
0

Y

dy expF2
4aCF

p
lnS x01

r D ~Y2y!G
3E

r
d2x̃2

x01
2

x02
2 x12

2 F2 NS x02,b01
1

2
x12,yD2NS x02,b01

1

2
x12,yD NS x12,b02

1

2
x20,yD G . ~15!
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Equation~15!, together with Eqs.~4! and~5!, provide us with
the leading logarithmic evolution of theF2 structure function
of a nucleus including all multiple Pomeron exchanges in
large-Nc limit.

Throughout the preceding calculations we never made
assumption thatQ2 is large. Of course, it should be larg
enough for the perturbation theory to be applicable. The o
assumption about the incoming photon’s momentum that
made was that its light-cone componentq1 is large, there-
fore we could neglect the inverse powers ofq1 . This is
eikonal approximation, which is natural for leading ln(1/x)
calculation. However, if the inverse power ofq1 comes with
an inverse power ofq2 , forming something like 1/2q1q2

;1/Q2 we do not neglect these terms, therefore resumm
all the inverse powers ofQ2 ~‘‘higher twist terms’’!. That
way we proceed to conclude that Eq.~15! sums up in the
leading logarithmic approximation all diagrams that inclu
the effects of multiple Pomeron exchanges, with Pome
ladders together with Pomeron splitting vertices being inc
porated in the dipole wave function. In terms of conventio
~not ‘‘wave functional’’! language Eq.~15! resums the so-
called ‘‘fan’’ diagrams~see Fig. 3! which were summed up
03400
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by conventional GLR equation@5,6#. The difference between
our equation and GLR is that Eq.~15! does not assume lead
ing transverse logarithmic~largeQ2) approximation.

III. DOUBLE LOGARITHMIC LIMIT

In order to reconcile our approach with traditional resu
in this section we will take the large-Q2 limit of Eq. ~15! and
show that in this double logarithmic approximation Eq.~15!
reduces to the GLR equation@5,6#. We consider a scattering
of a virtual photon, characterized by large momentum sc
Q, on a nucleus at rest characterized by the scaleLQCD. The
Q2@LQCD

2 limit implies that the dipoles produced at eac
step of the evolution in the dipole wave function must be
much greater transverse dimensions than the dipoles
which they were produced. Basically, since in the dou
logarithmic approximation the transverse momentum of
gluons in the dipole wave function should evolve from t
large scaleQ to the small scaleLQCD, than the transverse
sizes of the dipoles should evolve from the small scale 1Q
to the large scale 1/LQCD.

In the limit when the produced dipoles are much larg
8-5
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YURI V. KOVCHEGOV PHYSICAL REVIEW D 60 034008
than the dipole by which they were produced~large-Q2

limit !, the kernel of Eq.~15! becomes

E
r
d2x̃2

x01
2

x02
2 x12

2
→x01

2 pE
x01

2

1/LQCD
2 dx02

2

~x02
2 !2

, ~16!

wherex02'x12@x01, and the upper cutoff of thex02 integra-
tion is given by the inverse momentum scale characteriz
the nucleus, 1/LQCD

2 . Since this integration is done in th
region of large transverse sizes the ultraviolet cutoffr is no
longer needed. One can easily see that including virtual
rections would bring in the exponential factore2(aCF /p)Y in
Eqs.~7! and ~15! instead of exp@2(4aCF /p)ln(x01/r)Y#. In
the double logarithmic approximationaY ln(Q2/LQCD

2 )>1
and ln(Q2/LQCD

2 )@1, thereforeaY <1. That way the factor
of e2(aCF /p)Y can be neglected. The resulting limit of E
~15! is

N~x01,b0 ,Y!52g~x01,b0!

1
aCF

p
x01

2 E
0

Y

dy E
x01

2

1/LQCD
2 dx02

2

~x02
2 !2

3@2 N~x02,b0 ,Y!

2N~x02,b0 ,Y! N~x02,b0 ,Y!#,

which after differentiation with respect toY yields

]N~x01,b0 ,Y!

]Y
5

aCF

p
x01

2 E
x01

2

1/LQCD
2 dx02

2

~x02
2 !2

@2 N~x02,b0 ,Y!

2N~x02,b0 ,Y! N~x02,b0 ,Y!#, ~17!

where, for simplicity, we suppressed the difference in
impact parameter dependence ofN on the left- and right-
hand sides of Eq.~17!. This is done in the spirit of the larg
cylindrical nucleus approximation. Also, one should keep
mind that for this double logarithmic limit in the definition o

FIG. 3. Multiple Pomeron exchanges and splittings resumm
by Eq.~15!. Each Pomeron ladder interacts with a nucleus, whic
symbolically denoted byA.
03400
g

r-

e

N(x01,b0 ,Y) given by Eq.~11!, the integration over the di-
pole’s transverse sizes should be also done fromx01

2 to
1/LQCD

2 .
Now we have to make a connection betwe

N(x01,b0 ,Y) and the gluon distribution functionxGA(x,Q2)
of a nucleus.N(x01,b0 ,Y) is a forward scattering amplitud
of a qq̄ pair on a nucleus and is a well-defined physic
quantity. However, there is some freedom in the definition
the gluon distribution. If one makes use of the general d
nition of the gluon distribution as a matrix element of lea
ing twist operator, then an attempt to take into acco
higher twist operators would lead only to renormalization
their matrix elements~see@32#, and references therein!. The
evolution equation forxG would be linear, with all the non-
linear saturation effects included in the initial condition
The goal of the GLR type of approach is to put these n
linear effects in the evolution equation. Therefore, in t
double logarithmic approach one usually defines the glu
distribution function through a cutoff operator product e
pansion, i.e., as a matrix element of theAmAm operator, with
Q2 an ultraviolet cutoff imposed on the operator~see the
discussion on pp. 442–443 of@6#!. In the spirit of this ap-
proach we define the gluon distribution by

N~x01,b0 ,Y!5
ap2

2NcS'

x01
2 xGA~x,1/x01

2 !, ~18!

with the coefficient fixed by the two gluon exchange betwe
the quark-antiquark pair and the nucleus~in the large-Nc
limit !. Substituting Eq.~18! into Eq. ~17! one obtains

]xGA~x,1/x01
2 !

]Y
5

aCF

p E
x01

2

1/LQCD
2 dx02

2

x02
2 F2 xGA~x,1/x02

2 !

2x02
2 ap2

2NcS'

@xGA~x,1/x02
2 !#2G .

Differentiating the resulting equation with respect
ln(1/x01

2 LQCD
2 ) and usingx01;2/Q, which is valid in the

double logarithmic limit, we end up with

]2xGA~x,Q2!

] ln~1/x! ] ln~Q2/LQCD
2 !

5
aNc

p
xGA~x,Q2!

2
a2p

S'

1

Q2
@xGA~x,Q2!#2,

~19!

which exactly corresponds to the GLR equation@5,6#, with
the factors matching those corresponding to cylindri
nucleus case in Refs.@17,18#.

One has to note that the problems with the definition
the gluon distribution function outlined above bear no co
sequence on Eq.~15!. This equation describes the evolutio
of N(x01,b0 ,Y) in the leading ln(1/x) and does not assum

d
s
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FIG. 4. ~a! Diagrams which are not included in our analysis.~b! A diagram which is included in Eq.~15!.
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collinear factorization or impose transverse momentum c
offs, therefore posing no problems like the mixing of ope
tors of different twists@32#.

One would also like to rederive the equation forxGA
derived earlier in@17,18,21#, given by Eq.~2! here. In the
double logarithmic limit we did not reproduce those resu
given by formula~48! in @18#, formula ~3.19! in @21#, and,
most explicitly by formula~41! in @25#. Nevertheless, this
equation could be obtained from Eq.~15! in the following
peculiar limit. Consider the scattering of a virtual phot
with moderately large virtualityQ on a nucleus composed o
very heavy quarks, so that the typical momentum scale c
acterizing the nucleus given by the mass of the heavy qu
M is much larger thanQ. In that case the double logarithm
limit would correspond to production of small dipoles in th
dipole wave function. Now, using certain freedom we ha
in the definition of the gluon distribution function, we ca
treat Eq.~6b! as a definition ofxGA , which should be sub-
stituted in Eq.~6b! instead ofAxG. Plugging the generalized
Eq. ~6b! into Eq. ~15! taken in the small-dipole limit we
obtain Eq. ~2!. That way we will rederive the results o
@17,18,21#, however not quite for the same process as the
for which they were derived originally.

Finally, we note that we failed to find a limit in which Eq
~15! reproduces formula~39! in @25#,that was given by Eq
~3! above, which is another candidate for the double lo
rithmic evolution ofxG including all multiple Pomeron ex
changes.

IV. CONCLUSIONS

One of the diagrams that were not included in our analy
above is shown in Fig. 4~a!. There a hard Pomeron ladde
splits into two and then the two ladders again fuse into o
which connects to the nucleus. In general this diagram is
the same order in coupling and rapidity as the usual tw
pomeron exchange diagram of Fig. 4~b!, and, therefore
should be also considered. The effects of that type can
an important role in unitarization and saturation of t
onium-onium scattering amplitude@33#. In the dipole wave
03400
t-
-

,

r-
ks

e

e

-

is

e
of
-

ay

function language the graph in Fig. 4~a! can be interpreted in
two ways. In one case it could be a part of the dipole wa
function, which should be redefined to include this graph
the form of color quadrupoles. On the other hand, the gr
in Fig. 4~a! could correspond to the usual ‘‘two dipole’’ pa
of wave function (n2) with both dipoles interacting with the
same nucleon in the nucleus. However, for the given pr
lem of scattering on a large nucleus, the graph in Fig. 4~a! is
suppressed by powers of atomic numberA compared to the
graph in Fig. 4~b! for both cases.

The inclusion of the Pomeron fusion effects in the dipo
wave function is a difficult task@33#. Equation~7! does not
take them into account. Construction of dipole wave funct
which includes the diagrams shown in Fig. 4~a! is an inter-
esting and important problem, which is still to be solve
One should note that inclusion of the graphs of the ty
shown in Fig. 4~a! in the dipole wave function would resu
in appearance of color quadrupoles@33#. In the case of
onium-onium center-of-mass scattering this wave funct
can be either considered as suppressed by factors ofNC

2 com-
pared to the one-dipole wave function, or, more correc
one may note that its contribution to the scattering amplitu
will be suppressed by the factor ofe(aP21)Y/2 @3#, with aP
the intercept of the BFKL Pomeron. However, this argum
does not apply for the case when one of the onia is at
@33#, or to our case when the nucleus is at rest.

The graph in Fig. 4~a! in our case of nucleus at rest bring
in suppression by powers ofA. The reason for that is very
simple: in the first diagram@Fig. 4~a!# there is only one
Pomeron ladder~dipole! interacting with the nucleus below
whereas in the second diagram@Fig. 4~b!# there are two lad-
ders. Since each dipole is convoluted with its propaga
through the nucleus, each ladder brings in a factor
g(x,b)d2b. For large transverse size dipoles this factor
proportional toA2/3 and for small dipoles it scales asA1. In
any case one can see that the graph in Fig. 4~a!, having the
same parametrical dependence ona and Y as the graph in
Fig. 4~b!, is suppressed by some power ofA compared to this
second graph. Therefore, one should note that by neglec
the effects of the graph in Fig. 4~a! we assume that we ar
8-7
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doing the leading calculation in the powers of the atom
number of the nucleusA. That allows us to avoid complica
tions associated with the incorporation of the diagram in F
4~a! in the evolution equation~15!.

Equation~15! can also be derived directly from Eq.~7! by
setting u(x01,b0)5g(x01,b0)11 in it and definingN51
2Z. That way we have a method of resumming all multip
Pomeron exchanges for any higher-order corrections to
dipole kernel. If one calculates the dipole kernel, say, at
next-to-lowest order, then we can write down an equation
generating functionalZ, similar to Eq.~7!. Though the next-
to-lowest order equation will in addition have cubic terms
Z on the right-hand side. Then, settingu5g11 andZ51
2N one would easily obtain an equation resumming m
tiple Pomeron exchanges in the subleading logarithmic
proximation. Therefore, the dipole model provides us with
relatively straightforward way of taking into account th
l-

.

03400
c

.

e
e
r

-
p-
a

multiple Pomeron exchanges once the one-pomeron
change contribution has been calculated. In other words
the dipole kernel is known at any order in the coupling co
stant one can easily generalize the resulting equation for g
erating functional to include the multiple Pomeron e
changes on a nucleus.

Finally, we note that it would be interesting to try fittin
the recent HERA data@16# using the evolution of theF2
structure function given by Eq.~15!.
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