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Four-fermion field theories and the Chern-Simons field: A renormalization group study
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~Received 15 January 1999; published 25 June 1999!

In 211 dimensions, we consider the model of anN-flavor, two-component fermionic field interacting
through a Chern-Simons field in addition to a four-fermion self-interaction which consists of a linear combi-
nation of the Gross-Neveu- and Thirring-like terms. The four-fermion interaction is not perturbatively renor-
malizable and the model is taken as an effective field theory in the region of low momenta. Using the
Zimmerman procedure for reducing coupling constants, it is verified that, for small values of the Chern-Simons
parameter, the origin is an infrared-stable fixed point but changes to ultraviolet stable asa becomes bigger than
a criticalac . Composite operators are also analyzed and it is shown that a specific four-fermion interaction has
an improved ultraviolet behavior asN increases.@S0556-2821~99!00914-5#

PACS number~s!: 11.10.Gh, 11.10.Hi, 11.10.Kk
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Fermionic quartic interactions have been very import
for the clarification of conceptual aspects as well as for
applications of quantum field theory. Illustrative examples
such a dual role are provided by the Thirring and Namb
Jona-Lasinio models. However, perturbative studies of
models have been hampered by the fact that only in
dimensions are they renormalizable. If the number of flav
is high enough, a better ultraviolet behavior is achieved
the context of the 1/N expansion which turns out to be reno
malizable up to 42e dimensions@1–3#. Various studies
have been performed using such a scheme@4#.

On the other hand, for smallN we may consider the mod
els as effective field theories@5#, reliable at low energies, a
has indeed been done in their phenomenological applicat
@6#. Besides that, recent studies@7,8# pointed out that in 211
dimensions yet another complementary direction would
available. Through interaction with a Chern-Simons~CS!
field @9# fermionic fields could change their operator dime
sion in such way as to improve the ultraviolet behavior of
perturbative expansion. In@8# this conjecture was investi
gated for the case of the Gross-Neveu model coupled
Chern Simons field and consideringN51. Although an im-
provement does occur for the basic field, we found that qu
tic composite operators do not share this property. T
means that the behavior of these operators is not affecte
the CS field. Nevertheless, from the characteristics of theN
expansion and also from nonperturbative investigati
based in the Schwinger Dyson equation we may expect
existence of relevant four-fermion interactions whenNÞ1.
In fact, nonperturbative studies point towards the existe
of critical values ofN where mass generation occurs a
basic properties of the theories are drastically chan
@10,2#. It is therefore reasonable to expect substan
changes in these theories asN increases, even at the pertu
bative level.

In this Brief Report, pursuing the work of@8#, we will
present some results on four-fermion theories coupled
CS field whenN is small butÞ1. The basic fieldc, belong-
ing to the two-dimensional representation of the Lore
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group, has now both Lorentz and SU~N! indices which we
will sometimes indicate by Greek and Latin letters, resp
tively. Our first observation is that, as a result of the Fie
identity @11#,

S 11
2

ND ~ c̄c!21~ c̄gmc!~c̄gmc!1~ c̄lac!~c̄lac!50,

~1!

2S 21
1

ND ~ c̄c!21
2

N
~ c̄gmc!~c̄gmc!

1~ c̄gmlac!~c̄gmlac!50,

~2!

where la, a51, . . . ,N221, are the generators of SU~N!;
there are only two independent, Lorentz and SU~N! scalar
quartic self-interactions. Therefore, without losing gener
ity, we may restrict our study to the theory described by
Lagrangian

L5
1

2pa
«mna ]mAn Aa1c̄~ i ]”2m!c1c̄gmcAm2G1~ c̄c!

3~ c̄c!2G2~ c̄gmc!~c̄gmc!1
1

2j
~]mAm!2. ~3!

Actually, evading possible infrared divergences, through
this paper we will work in a Landau gauge obtained by fo
mally letting j→0. As the canonical dimension ofc is 1,
both G1 and G2 have dimension21 in mass unity. The
model is therefore nonrenormalizable, the degree of sup
cial divergence of a generic graph withNA andNF bosonic
and fermionic external lines, and withV1 and V2 Gross-
Neveu- and Thirring-like vertices, being equal to

d~g!532NA2NF1V11V2 . ~4!

To validate our calculations we shall treat Eq.~3! as an ef-
fective theory, suppressing the high momentum contributi
to the Feynman amplitudes. This is conveniently done
introducing a dimensional parameterL through the defini-
tions G15g1 /L andG25g2 /L and restricting the calcula
©1999 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW D 60 027701
tion by requiring thatp!L. In this implementationg1 and
g2 must then be considered as the perturbative coupling

To regulate Feynman integrals, we use the following ‘‘d
mensional regularization’’ recipe. Initially, the algebra of t
Dirac matrices and contractions of the« Levi-Cività symbols
are performed in 211 dimensions using

gmgn5gmn2 i«mnrgr ~5!

and

«mnr«rsl5ds
mdl

n2dl
mds

n . ~6!

After this step, the integrals are promoted tod dimensions
and carried out according to the usual rules@12#. Singulari-
ties appear as poles atd532e which should then be re
moved. To this end, to each loop integral we incorporate
factor me where the massive parameterm plays the role of
the renormalization point. The renormalized amplitude
given by the constant term~i.e., thee-independent one! of
the Laurent expansion of the resulting expression. This ‘
mensional regularization’’ method does not require an ext
sion of the Levi-Civitàsymbol outside 211 dimensions and
thus is very convenient for practical calculations. One sho
be aware that slight modifications of these rules may cha
the finite part~for example, usinggmgagm522d instead of
21! of the outcome. However, our results will not be a
fected since we will be dealing only with the simple pole p
of the amplitudes~double poles only appear at higher orde
i.e., in the computation of graphs with three or more loop!.
Actually, with the restrictions mentioned the method h
been applied and tested in a variety of problems in 211
dimensions@7,13#.

The vertex functions so defined approximately satisfy
renormalization group equation

FL ]

]L
1m

]

]m
1b1

]

]g1
1b2

]

]g2
2gNFGG (N)~p1 , . . . ,pN!

'0, ~7!

where, as a consequence of the Coleman-Hill theorem@14#, a
term proportional to the derivative of thea parameter is
absent. The coefficientsg andb i can be calculated by sub
stituting the two- and four-point functions into Eq.~7!.

To fix g notice that, up to two loops, only graphs whic
are second order ina may contribute to the wave functio
renormalization~i.e., linearly divergent graphs with two ex
ternal fermionic lines!. There are three graphs~the same as in
Fig. 2 of @8#! and a direct computation gives

g52
N11

24
a2. ~8!

Notice that forN51 this result agrees with@8#, as it should.
Analogously, b1 and b2 can be determined from th

momentum-independent residues in the four-point ver
functions. In this calculation, it should be observed that
m dependence of the pole part arises through the expan
of the me511e ln m1O(e2) factors, introduced for each
02770
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loop momentum integral. We denote the Fourier transfo
of ^0u Tca1a1

(x1)ca2a2
(x2)c̄a3a3

(y1)c̄a4a4
(y2)u0& by

Ga1a1 ,a2a2 ;a3a3 ,a4a4

(4) , where Lorentz and SU(N) indices are

represented by Greek and Latin letters, respectively.
found that, up to third order ing1 , g2, anda, them depen-
dence of the four-point function is given by

m-dependent part ofGa1a1 ,a2a2 ;a3a3 ,a4a4

(4) ~pi50!

522ia2 ln mH Fg1

L S 7

2
13ND1

g2

L
~913N!G~D ^ D!

1Fg1

L S 5

2
1

N

3 D2
g2

L S 2

3
1

N

3 D G
3~G ^ G!J

a1a1 ,a2a2 ,a3a3 ,a4a4

, ~9!

where we adopted the simplified notation

~D ^ D!a1a1 ,a2a2 ;a3a3 ,a4a4
5da1a3

da2a4
da1a3

da2a4

2da1a4
da2a3

da1a4
da2a3

,

~10!

~G ^ G!a1a1 ,a2a2 ;a3a3 ,a4a4
5ga1a3

m gma2a4
da1a3

da2a4

2ga1a4

m gma2a3
da1a4

da2a3
,

~11!

for the Gross-Neveu and Thirring vertices, respectively.
Substituting the above expression into Eq.~7!, using Eq.

~8!, and equating to zero the coefficients of the Gross-Ne
and Thirring vertices we determineb1 andb2 to be

b15g12
43137N

6
g1a222~913N!g2a2, ~12!

b25g22S 51
2N

3 Dg1a21
1

2 S 7

3
1NDg2a2.

~13!

Since the Gross-Neveu and Thirring interactions were ta
as independent, these expressions are valid only ifN.1.
They show that the renormalization group fixed points, d
fined through the vanishing ofb1 andb2, will require

a25ac
25

6@217N2181~Q!1/2#

~354111900N1255N2!
, ~14!

with Q5386512512N1544N2. However, to better under
stand the nature of this result it is convenient to use
systematic procedure devised by Zimmermann@15# which
allows us to consider just one constant,g1 let us say, as
independent. The other coupling is then fixed so as to h
just oneb function in the renormalization group equatio
Such a scheme has been applied in a variety of circu
1-2
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BRIEF REPORTS PHYSICAL REVIEW D 60 027701
stances, including cases of nonrenormalizable models tre
as effective theories@16#. We thus suppose thatg25r0g1
wherer0 is a constant such thatb25r0b1, which gives

r05
225220N1~Q!1/2

36~31N!
. ~15!

In this situation,

b15g1H 12a2F43137N

6
1~1816N!r0G J . ~16!

From this equation we conclude that the origin is an infra
fixed point stable or unstable accordinglya,ac or a.ac .
At a5ac , b150 and the theory is approximately scale i
variant.

We want now to go back to the question posed at
beginning of this paper: namely, ifN.1, does the coupling
with the CS field improve the ultraviolet behavior of quar
operators? If this were the case, one could use this qu
interaction to perturb the model of fermionic particles inte
acting just through a CS field. We thus considerg15g250
and study the renormalization behavior of integrated ope
tors of canonical dimension 4. Specifically, we define~sym-
bolically!

D15E d3xc̄D2c, D25E d3x~ c̄c!2,

D35E d3x~ c̄gmc!~cgmc!, ~17!

whereD25DmDm andDm5]m2 iAaAm is the covariant de-
rivative. The renormalized integrated operators are obtai
by removing poles so that, up to second order ina, in mo-
mentum space the renormalized amplitude with the inser
of the operatorD i is

GD i
5~12t!I D i

5~d i j 1zi j !GD j
8 , ~18!

wheret is the operator for the pole part@8#, I D i
is the dimen-

sionally regularized integral,GD i
8 is the m-independent par

of GD i
, and the matrixz is given by

z52a2 ln@m#S 2
1

3
0 0

0 7/213N 5/21N/3

~11N/4!
1

6pa
913N 22/32N/3

D .

~19!

With this understanding we may writeD iR5(d i j 1zi j )D j8 ,
whereD j8 is the finite part corresponding toGD i8 .

Although the operatorsD i in Eqs.~17! are not multiplica-
tive renormalized, we can find new operators having suc
02770
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property by taking adequate linear combinationsD̄ i
5Ci j D j . The new renormalized operators are then line
combinations of the old ones,D̄ iR5Ci j D jR .

The specific form of the matrixC is not actually relevant
but it is such thatD̄ iR5(d i j 1Zi j )D̄ j whereZ is a diagonal
matrix. We found

Z52a2 ln m DiagonalS 21/3,
1

12
~2AQ117116N!,

1

12
~AQ117116N! D . ~20!

We are now in a position to calculate the anomalous dim
sion for these operators. Indeed, from the above results
noticing that they satisfy

S m
]

]m
2gNF1gD̄ iRDG

D̄ iR

(NF)
50, ~21!

we arrive at

gD̄1R
5

72N

12
a2, gD̄2R

5
1

6
~AQ217N218!a2, ~22!

and

gD̄3R
52

1

6
~AQ117N118!a252

a2

ac
2

. ~23!

Thus, in the infrared-stable region,a,ac , there are two
operators (D̄1R andD̄3R) whose dimensions decrease withN.
The anomalous dimensiongD̄1R

has a very small variation
implying that the ultraviolet behavior of the correspondi
operator is not improved in a meaningful way. The situati
is much better concerning the second operator. By con
niently choosinga nearac , the operator dimension ofD̄3R
may become as near 3 as we want and, for all pract
purposes, the interaction behaves like a renormalizable
This operator is therefore a natural candidate for impleme
ing a consistent perturbation scheme around the confor
invariant theory of fermions interacting through a Cher
Simons field. Of course, higher order corrections m
modify the above results. Thus, increasing the parameteL
will require the inclusion of new interactions and in princip
new couplings will be needed. However, we may conject
that in this phase, following Zimmermann’s procedure,
will also be possible to fix the new couplings as defin
functions of just one four-fermion coupling.

This work was supported in part by Conselho Nacional
Desenvolvimento Cientı´fico e Tecnolo´gico ~CNPq! and Co-
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