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We compute the three-point function of the stress-energy tensdwdimensional conformal field theory
CFT from AdS;, ; gravity. Ford=4 the coefficients of the three linearly independent conformally covariant
forms entering the three-point function are exactly the same as given by the free-field computations in the
N=4 SYM theory just as expected from the known renormalization theoremsiF8randd=6 our results
give the value of the corresponding three-point function in the theories of strongly caljsteé supercon-
formal scalar and2,0) tensor multiplets, respectivel{/S0556-282199)01114-3

PACS numbe(s): 11.25.Hf, 04.50+h

. INTRODUCTION erators computation of the three-point functioanf()Z) is
complicated by two things. First to clear up the infrared di-
The Maldacena conjectufé—3] relating the largeN limit  vergences of the gravity action, one can introduce the bound-
of certain conformal field theorie€CFT’s) in d dimensions  ary of the AdS space. The Hamiltonian formulatid8] of
with supergravity on the product of thel{ 1)-dimensional the AdS-CFT correspondence then naturally requires addi-
anti—de SittefAdS) space with a compact manifold has beentional boundary term§8], so that the pure gravity action is
recently tested by explicit computation of many two- andnot given only by the standard Einstein-Hilbert term. It is
three-point gauge theory correlation functions from AdS suworth stressing that the account of the boundary terms is
pergravity[4—20]. Considerable progress was also achievedabsolutely necessary since they provide the fulfillment of the
in Studying four-point Corre|ator&1_zﬂ’ whose Comp|ete Ward identities in the bOUndary CFT. The Seconq thlng is
computation, however, requires the knowledge of the SupelJ:hat after introducing the boundary terms the gravity action

gravity action on the AdS background beyond the quadrati¢®Ses its manifest conformal as well as gauge invariance.
[28] approximation. In our computation of the three-point function we account

An important question being yet unsolved with three-the boundary terms in the following way. We start with the

point functions is the computation of the three-point functionStandard Einstein-Hilbert terrwith the cosmological con-
of the stress-energy tensd’r-(i) Unlike the other three- stan} and decompose it up to the cubic order in metric per-
AT turbationh ,,,. Removing all terms linear in second deriva-

point functions that are determined by the conformal SYMiives as well as all total derivative terms we are left with an

metry almost co_mpletel;(tjsgally up to 9”6 cgnsta)mtthe action that according t¢13] differs from the action one
three-point function off;;(x) in general dimensiod admits  should use in the AdS-CFT correspondence only by terms
five independent conformally covariant forms, two Of}hemthat do not contribute to the Green functions. Then, by the
being fixed by the gauge-theory conservation l&w;;(x) on-shell perturbation theory, one may find that the contribu-
=0 [29]. Three constants undetermined neither conformation of the quadratic terms to the value of the three-point is
symmetry nor the conservation law might be computed fromexactly zero. Thus, the remaining action is just the sum of
the AdS supergravity and confronted with their free-fieldthe cubic bulk and the boundafponcovariant terms, the
counterparts. This obviously provides a further nontrivial testatter arise due to the removal procedure. Fortunately, the
for the AdS-CFT correspondence. cubic boundary terms do not contribute to the value of the
In this paper we therefore address the problem of computthree-point function and by this reason can be disregarded.
ing the three-point function of the stress-energy tensor in th@he bulk term is manifestly covariant with respect to the
d-dimensional CFT from Ad$ ; gravity. AdS isometries as well as on-shell gauge symmetry and that
According to the AdS-CFT conjecture the CFT current ofapparently solves the second difficulty.
conformal weight zero coupled to the stress-energy tensor of Choosing the covariant gauge we then explicitly compute
conformal dimensiom is extended to the interior of the AdS the remaining bulk integral and get the three-point function.
space as the on-shell graviton field. In comparison withFor the physically most interesting cade 4 we realize that
three-point functions of other gauge-invariant composite opthe coefficients of the conformal tensors of the three-point
function are exactly the same as the ones found by the free-
field computations. This is obviously in agreement with the
*Email address: arut@genesis.mi.ras.ru earlier results by12,30,31, whose essence is that in four
"Email address: frolov@bama.ua.edu dimensions the superconformal symmetry is powerful
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enough to protect some three-point functions\vis- 4 Yang-
Mills against quantum corrections.
As to the other cases of particular interest3 andd
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s(1>=2f d9%+/GK, ®)
oM

=6, at the moment we are unaware of the gauge-theory calyhereK is the trace of the fundamental form on the bound-

culations and may suggest that our results give the value

the corresponding three-point function in the theories of th

strongly coupled superconformal scalar &) tensor mul-
tiplets, respectively.

The paper is organized as follows. In Sec. Il we define the
gravity action one should use in the AdS-CFT correspon-
dence and obtain its decomposition up to cubic order in met-
ric perturbation. In Sec. Ill we compute the on-shell value of
the gravity action in the de Donder gauge and obtain the
three-point function. We then write down explicitly the co-
efficients of the conformal tensors occurring in the three

point function in dimensionsl=2,3,4,5,6 and comment on

the most interesting cases. Some details of the calculation a

collected in the Appendix.

Il. GRAVITY ACTION AT THIRD ORDER
OF PERTURBATION

We begin by fixing the basic notation. Lé#t be a d
+1)-dimensional manifold with @-dimensional boundary.
Throughout the paper the indices,v, ... run the set
0,...d, whilei,j, ... are reserved for thd-dimensional
boundary and take values .1 . d. The coordinatex,, are
then split as<ﬂ=(xo,§) with x={x;}. Let M be also sup-
plied with a positive signature metri@,,, .

We will deal with the Euclidean version of the AglS
space that is described as the upper half spade {x;
eR; X¢>0} endowed with the metric

1
d52=—2dx”dx“.

0a(ry andG is the determinant of the induced metric. The
%econd boundary ter®?) is a term proportional to the vol-

ume of the boundary:

s<2>:2(1—d)LMddx\/§. )

As was shown in[13], adding the boundary terms is
equivalent to removing from the bulk actid®) all terms
linear in second derivatives and all total derivative terms.

The gravity action obtained in such a way differs from Eq.
Fé) only by terms which do not contribute to Green func-
tions. Therefore, we can restrict our attention to considering
the bulk term.

If we assumeg,,, to be the background AdS metric and
perturb G, near the background valu&,,=g,,+h,,,
then equations of motioR,,,= —dg,, up to the second or-
der inh,, can be written as follows:

L=V, )
where two tensors
L,,=V*V,h,,+V, V,h=-V, Vth, -V Vrh,
+2(h,,—9,.h), (6)

and

V,uV: - Vp[hpa(vﬂhva+ VVhMU_ V“hl‘“’)]

1
Xo +Vv(h”"VMhW)+§(VﬂhVP+V,,hW—VphMV)V"h
The boundary of the AdS; space is ako=0 and can be 1
identified with the Euclidean space. Since the boundary is - EVﬂhp,,V,,hp"Jr v,h,,V*hi=V;h, VPh7  (7)

infinitely distant from any interior point, the gravity action

on the AdS background suffers from infrared divergences.

natural regularization is then provided by setting the bound

ary of AdS;, ; space aky=¢ and considering the part with
Xg=¢. The physical fields are required to vanish when
— 00,

The total gravity actiors one should use for computing
gauge theory correlation functions is given by the sum

S=S+SV+5? (N

of the standard Einstein-Hilbert terfwith the cosmological
constant\ = 3d(d—1)]

S= f JG(R-2)) 2

and two boundary terms) andS(?) [8]. Explicitly, StV is
the Gibbons-Hawking terrfi32]

A

were introduced. Here the covariant derivatives are taken
with respect to the background metric.
Introduce the notation

—r (1) (2)
R, =Ryt RMV-F R,uv+ ce
. 1 )
= R/U/+ 5RMV+ E(S R,uv+ s

for decomposition of the Ricci tensor around the background

R,, and the analogous one for decomposition of the curva-
ture.

Now we are ready to analyze gravity acti@ up to the
third order in metric perturbation. We start with working out
decomposition of Eq(2):

: 1 1
S=S+485+ 5 8IS+ 3 8BS+ ... (8
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Computing the first variatio®S of Eq. (2) one then repre- Thus, we see that to find the three-point function we need
sents it in the form to compute the on-shell value &which is given by

h*"+T, 1 1
(©) > 6l @< Vi 20

1
5S[G,h]:_f @(RM 5GLR+AG,,
M

h#¥+ cubic. (11

whereT is the following boundary term:
Hereh,,, is a solution to the linearized equation of motion:

[ P G Ou_ 40 L ,.[h]=0 and cubic refers to the unwritten explicitly total
T= M GV, (V,h#"=V¥h)=— Y G(V,h™#=d"h). derivative terms of the cubic order. Since these terms may
deliver only a local contribution to the value of the three-

In Eq. (9) we considersS[ G,h] as the variation o§[G] at  Point function, in what follows we disregard them.
a “point” G,,, i.e., we do not assume the metfig,, to be
equal to its background value. Now the simple algorithm to
find decomposition8) is to consider the successive varia-
tions of 55/ G,h].* Since we are interested in decomposition  The radiation gauge for the AdS gravity that is effectively
of the total actior(1) we can omit the total derivative terfl  ysed for computing the two-point Green function of the

Thus, varying the terms in parentheses in E9). and  stress-energy tensor in the boundary CFT obviously breaks
reducing the result to the background we get the invariance of the gravity action under isometries. For the
three-point function this fact leads to severe difficulties in
—(L _ Eg L) computing the bulk integrals. Thus, to handle the problem
2\ Y 27K we choose the covariant gauge of the de Donder type:

IIl. THREE-POINT GREEN FUNCTION

M) _ ZqWRp— (1) M= _
R wv 29 R g,uVR +)\g,uv_

where the reIatiorRi}V)+ dh,,=— %LW was used.
For the second variation we find V#( he— Eﬁl;h) —0. (12
SPR — E SPR— 25(1) SYR
y12% 2 gMV 2 g,u,y
In this gauge the solution of the linearized equations of mo-

1 tion reads a$8
—Z(R(z)——gw(gp"R(z)))—nghp"L +=h,,L. 8l

2 m
H R(®_1 po Ry =1y 1y vy h \V; v >N d B 2
ere y13% ZQMV(g (r) 2( y7a% Zg,uv )! wnere hM(XO'X)_KG d y IC(X,y)J’u(X y)
=V~
With these formulas at hand |t is now easy to find the X IU(X=VE: wihui(V 13
action (2) up to the third order irh,,,, TX=YE b (), 13
: 1 1 1 1 where
S=S+f —(L = VL)h’“’——(V = VV)
V93 L 29 6| 20
T 3hh‘“’L ,+h#PhrL (10 =622 Kxy) %G
“ala - v X y X, = T s s 5 4
618 o e YT e Gy

where we again omitted nonessential total derivative terms.
Note that the last term in the integrand coincides with the, . coefficientkg = (d+1)/(d— 1)T'(d)/7¥2I'(d/2), h(y)

thlrd-oLder_term Im tr:jebdecompﬁsnmn. oG, in dWh'Ch done represents the boundary data of the graviton &pg is the
tensorh,,, is replace W .,- The action(10) depends on }(rjaceless symmetric projector:
second derivative terms. To remove these terms one shou

add to Eq.(10) total derivative terms which can be easily

found by using explicit expressiori6) and(7) for L andV, 1 1

respectively. A simple consideration then shows that the qua- &ij k=75 (B dji + i 8j) ~ 5 Gij O - (14
dratic terms in the resulting action do not contribute to the

three-point Green function.

Note that tensoh’ has the vanishing trace.
In the de Donder gauge the remaining bulk term of the
The covariant derivatives ifi are also with respect to the metric on-shell action(11) can be represented in the following form

G most suitable for further computations:

uv:
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1 1 d+1 2r(d)
T :

6)u 9| Vi 29# =g Wd/ZF(dIZ), (17
_1 \/_ nv PR 1 HUVRPO
_EJM —9| Vo (', Voh,) = 5 V(W hPoV,0,0) where the coefficients, is fixed by requiring & (xo,X)
L —&(x) whenxo—0. In particular, the componeg? is
—VU(hZh‘V’Vph“")> - ZJM \/—g( V,V,h, herhee

d+3

- KU 0 N
2 0 = dd / = = & | .
—2V,V hhhT+ Shi Y heVehe £%0.%) d+1f Yo+ iy e W
_ E(d+ 1)h”h“n? One may see that on the boundasy£0) the residual gauge
3 pronv e transformations are reduced to

where we used the explicit form &f,, and the vanishing of J. . .2 .
h. 5hi:(7i§'+5'j§_a5ij(5’k§), (18)
Again omitting the total derivatives being the cubic order

boundary terms we see that the on-shell action in the de .
Donder gauge is essentially given by the bulk integral I.e., to the usual gauge transformations of a traceless sym-

metric tensor. In other words, the transformatiob®) of the
boundary data can always be prolonged to the bulk gauge
fields, which preserve the de Donder gauge. We, therefore,

- > -

S:_lf \/—_g(VUV h,,,h#*h?7— 2V .V h**h?h? expect& the: th[ee—point function Tjj i mn(X,Y,2)
4w P e =(Tij()Tu(y) Tmn(2)) of the stress-energy tensdr; to
obey the conservation law

2 2
h!V h&VPhy — §(d+ LHhyh&h? (15

+3,upo‘ ulot e |t

aiTij’kLmn()Z,i,za):O, for noncoincidenk, )7and£.

By using the equation of motion that in the covariant gauge
reads asv,V’h,,=—2h,, we then rewrite Eq(19) in the
form

As was already mentioned in the Introduction in arbitrary
dimensiond>3 there are five independent conformal tensors
occuring in the expression for the three-point function of the
stress-energy tensor. The conservation law then fixes the
value of two from five coefficients. It is clear that the three-
1 e e oo point function defined bys is conformally covariant and the
S= ZJ'M\/__Q 2V gV i, = VoV ph,, 7 h? only reason to find its explicit expression is to make com-
parison of the coefficients of conformal tensors to the ones
2 found on the gauge theory side.
+ §dhﬂhﬁhy>- (16) Thus, substituting Eq(13) in Eq. (16) we see that accord-
ing to the AdS-CFT prescriptiof,3] the three-point func-

. _ tion is defined &
The computation of Eq(16) is a rather combersome but

purely technical task that can be performed by the inversion

method of[7]. Before plugging into details we make some I . s

comments about the relation between the bulk and the Tij,kl,mn(XaYvZ)ZSE Lij ki, mn(Xs Y,2), (19
boundary gauge transformations. The symmetry group of ac-

tion (16) is now reduced to the gauge transformations that . . .

preserves the de Donder gauge. This group of residual gaud\éhere the sum is taken over allgpossmle pe[mutat|ons of sets
transformations is generated by vectgtsobeying an equa- Of indices and pointsi{,x), (kl,y), and (nn,z) of the fol-
tionV,Vr¢,—d¢,=0. Explicitly, the solution satisfying the lowing tensor:

gaugeV =0 reads as

We assume that the coupling ©f (x) with h;;(x) on the bound-
xd+2 o ary of AdS,; is given by fd[3T;;(X)h;;(x)] and this explains
Y= =5 d+lJf‘(x—y)f‘(y), the number 8 in Eq(19). Later on we show that this coupling also

[Xo+(X=y)] leads to the correct Ward identity.

§M(X01>Z): va dd
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dd+1w

i st,mn(XaY22) = 263 i+ Et ket Emnmrn f — 5 K(0,Y)K(0,2)X| 2VV (KN (0—x) (35 I0) (0—y) (3T I})
wq

X(0—=2) =V, VP(KII) (0=x)(35 ) (0—y)(INI7) (0—2)

. (20

2d i’ -, ’ - ’ -
+ 5 (K3 (0=X) (35 ) (0= (3] Iy ) (0 —2)

Recall that here and in what follows the buboundary indices are contracted with respect to the AdS méEieclidean and,
therefore, only their positions matter. Note that the tengay , itself is not conformally covariant.

Following the method of 7] we now set in Eq.(20) x=0 and perform the change of variablerizco#/w2 and x{
=x; /x2. This is just the inversion transformation under which the derivatWggransform covariantly. In particular,

JL(x)IP(x)

V,[K(0,x)3,(0=X) 3 (0=X)]=|0'[2T(0) () I (0 )V [K(o' X))o —x")If(e’—X")] NE

and

V[K(0,03,(0)3](0)]=|o'[2I(0")Ij(0) I (o) YV (0h)8), ),

where the covariant derivativ%lg are with respect to to the connection
I ')——i 805,,+8%5,,—8°5,,)
ptf(w - w,(plw oCup CuCpal-
0

Thus, after substituting the change of variables all internal Jacobians depending on the vamddnhe cancel against each
other and one is left with the following expression:

Ikl,k’l’()-;) Imn,m’n’(E)J d* e
®o

> - 4d ’ > roi >
NE BE K(w,y" ) K(w,2")x —?(Jik,af,)(w—y')(ag“ I w=2")

Iij,k|,mn(01912):zKégij‘i/J—;

+2

d ’ -> ! > ror N ’ -
d+ 5 +2 (35 ) 0=y )N ) (0 =2") = (d?=d=2) (I I (0 =y )(IF ) (0 —2")

(21)

+2d(35 3%) (0—y) AT I ) (w-2")

where the concise notatidh; (X) =& i+j/(JinJjn)(X) was introduced.
In view of Eq.(19) it is further more convenient to deal with the integr?fi’,ﬂ?l’mn being the symmetrization of E¢R1) with
respect to kl,y) and (mn,z):

|isjy,T|,mn(0a)7a2) =1y Kmn(0Y,2)+1 ij mnk(0.2,Y). (22)

The computation of Y™ is sketched in the Appendix and below we present the result
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S (09.5) = 2mI23 P2+ D Tager(y) Tonmw (2) 1
e (d+1)7(d-nr(d+2) """y 29 e

tctd
X [ a1&irjr abfk17,ackmn’ be T a2 ’j',abgk’l’,acgm/n/,bd_tz

ttyy 1
gk,l,,i,j,(%—aam,n,)+(k’|')ﬂ(m'n’)

tctd
+a3[gk/|/’abgmrnr’bcgirjr’ad+(k,| ,)%(mln,)]t_2+a4
ti!tj! 1

toty 1
a (c/‘ e n’ 5‘!'7
5Ck’l”,m’n ( t2 d "l

t—z d 6m/nr

tirtjr 1 tbtc tirtjr 1 tklt'/ 1 tmrtn/ 1
+a78k’l’,abgm’n’,ac t_z_aai/j/ t_2+a8 t_z_aﬁi/j/ t_z_a(skq/ t—z_a(sm/nl . (23)

In the last formula the Latin indicesa(b,c,d) are used to distinguish the boundary summation indices and the vatjable
=z{ -y . The coefficients;, i=1, .. .,8 areexpressed through the constaaf@, k=1,2,3 found in the Appendix by the
following formula:

e rat tpte
+ag| Ekiranfirj’ ac +(K'")—=(m'n") |—

4d d
a=—a’+2|d*+z+2/a?—(d*~3d-2)a*. (24)

If we now restore thex dependence, the variablig,

ti=(z—x){—<y—x){=(X—y)i (x—2);

(x=y)?  (x=2)?
turns into the conformal vectoX; : t;= —X; with a remarkable property to transform covariaily— X; under the inversion
x| =x; Ix? [29]:

Xi/ = X2Jij ()_())XJ .

Then by using the two identities

Lo (x—y)? SO .o .o
Jij(X—Z)Zj=—mX,‘, Ji(X=2)Jj(z—y)=J;;(x—y) +2(x—y)?X;Y;,
one may finally represent the three-point functi@s®) in the form
1 - - - . - -
Tij,kl,mn:|)—()_)—/>|2d|)—/>_£|2d|)z_£|2d{gij,i'j’gkl,k/l’gmn,m’n/[A\]i’k’(X_y)\]I’m’(y_Z)\]j’n’(z_x)+BJi'k’(X_y)Jj’n’
- - ZZm 1
X(X=2)Y 'Y (y—2)“+cycl. perm]+C| Z;j i ?—aﬁmn +cycl. perm +D| & irjrEx ke Xir Yior
ZnZ, 1 XX 1 Y., 1 ZnZ, 1
X—V)2J: 1, (x—v)| == _ = Ly Rl S (O S B —mTnh _ -~
X(X=Y)Jjrr(X y)( 2 démn +cycl. perm] + & 2 ddi v dé‘k|> 2 d5mn)]’
(25
|
where and
A=3A4a,;, B=A42a;+a,—2az), C=A4(2a,+as)), A —pd2, 3 I'(d/2)[T(d/2+1)]? dr(d)
dq=&m

K = .
C(d+1)2T(d—1)T(d+2) 27%d—1)2
D:Ad(4a5+a7_4a3_2a6), 5=Ad(12a5+ 6a7+3a8),

(26)  As was expected formulé25) is just the conformally cova-
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TABLE . Coefficientsa( for d=4.

ai(k) a(1|<) a(zk) agk) agk) aék) agk) a(7k) agk)
k=1 547/21 —1163/42 —659/42 —25/84 —109/84 843/42 465/42 —92/7
k=2 39/14 —78/7 —22/7 —9/7 =2/7 66/7 24/7 —48/7
k=3 —29/21 116/21 74/21 113/21 8/21 —74/21 —-32/21 64/7
riant three-point function of the stress-energy tensor in the 1/8
d-dimensional conformal field theory and it involves five in- A= —(—ns— 16nv),
dependent conformal tensors. 7®\27
The coefficientsA4, ... ,£ computed for any dimension
d=2 represent our basic result. We first discuss the most 1/16
interesting casel=4. In this case by using Table | in the = F(ﬁ”ﬁ' 4”f+32nv)'
Appendix one finds fot4, . . . £ the following values:
1/(2
8x 128 8x 392 8x 184 _—g(ﬁnﬁznf“&‘u)-
9n* 9t 9n*
Substituting here the field-theoretical content of thé
=4 SUN) SYM:
8X 472 8% 304
BT By 27 ne=6(N°-1), n;=2(N2-1), n,=N?-1,

Now we are ready to confront the coefficiedy) with
the ones found by the free-field computationg\ier 4 SYM.
To this end one needs to restore the gravity coup@@é
that enters as an overall constant in front of the total ac®ion

The value of the coupling constant is fixed by the type-IIB

supergravity on the Ads< S® background and is equal to

872

TNE

95

Clearly, to restore thgé dependence of the three-point func-
tion we should multiply Eq(27) on gg? and obtain

128
A=——N?,

975

(28)

Recall that the two-point function oTij(i) found from the
AdSy, 1 gravity is given by

. R C I
<Tij(x)aTkl(y)>:»—(;7|dIij,kl(X_y) (29

[x=

with the central chargé:d=2kGd/gé. In particular, ford
=4, one getC,=80/m2g3=(10/7*)N2.

In Ref. [33] it was shown that for any four-dimensional
free-field theory given by scalars, byn; Dirac fermions,
and byn,, vector fields the coefficientd, B,C are as follows:

we, thus, arrive at

128 392
——ﬁ(N -1, B——ﬁ(N -1,
184
C:_Q(N —1). (30)

The central charg€, can be found by taking into account
the Ward identity that relateS, with coefficients.A,B,C of
the three-point functioh29]:

w2 10 )
C,= 12(9A B—10C)= 7T4(N 1).
It is now obvious that in the largi- limit the coefficients
A,B,C andC, of the N=4 SU(N) SYM coincide with the
ones found from the AdSgravity.

Thus, the coefficientsd, 5, andC of the conformal ten-
sors obtained from the AdSgravity and reflecting thereby
the strong-coupling behavior of the corresponding gauge
theory do not receive corrections to their free-figlwhe-
loop) values. This fact finds a good agreement with the re-
sults by[12,30,31. Indeed, the traceless conserved stress-
energy tensor occurs in the multiplet of the supercurfient
=tr(W?), whereW is an analytic superfield describing the
N=4 Yang-Mills strength multiplet. I112] it was checked
for the leading components @f being the scalar fields that
their three-point functions computed from AgSS® super-
gravity coincide with the one-loop results in the lafge-
limit. The same conclusion about vanishing of the radiative
corrections at ordeg? was achieved ifi30] even for finiteN.

By considering the anomaly in the superconformal symme-
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try, it ha; been argued i31] (see alsd7]) that the two- and 59x 25% 34 119x 27x 33 27% 37
three-point functions off should actually have a one-loop (=———+——, D=———, &=———.
nature. 5%7° 5%7° 5%7°
Having discussed the four-dimensional case, we now list (34)
explicitly the coefficients 4, ...,£ for dimensions d . . N
=2,3,5,6 that can be found from E@24) together with In [29] it was showq that thg con'sgrv'atlon law implies the
fulfilment of the following two identities:
(A1)—(A3).
d=2: (d2—4) A+ (d+2)B—4dC— 2D=0,
%2 L, 4, B2 (d—2)(d+4)B—2d(d+2)C+8D—4E=0.
7T2 , ’772 ' ’772 '
It is needless to say that coefficiei®) and Eqs(31)—(34)
32 16 satisfy both of them. It is, of course, only the check that we
D=-—, &=~ - (31) have done the computation of Eg.6) correctly. One should
& K be also aware of the fact that fde=2 andd=3 the number
d=3: of linearly independent conformal tensors is reduced to 1 and
2, respectively 33].
34 19x 32 11x 33 The casesi=3 andd=6 are of particular interest since
A=——3, =— T =— according to the AdS-CFT conjecture they correspond to
2m 2m 2%m compactifications of the HlLsupergravity on Adgx S’ and
AdS, x S*, respectively. We, therefore, expect that coeffi-
41x 32 11x 3% : . . : o
__ v - _ _ (32) cients(32) describe the three-point function ®f;(x) in the
2273 2473 strongly coupled three-dimensional gauge theory of Afe
=8 conformal scalar multiplet, while E¢34) are expected
d=5: to be found in the six-dimensional gauge theory of (&)
tensor multiple{34—37.
3x5* 303x 52 117x 53 plet 2
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APPENDIX

We sketch here for the reader’'s convenience some details of computation of iiyral
Clearly, Eq.(22) can be written as the following sum of the integrilisk=1,2,3:

Ikl,k’l ’(37) Z.mn,m’n’(i))
ly[* |2

om Ké 4d 1
ij,kl,mn™ Tgij,i’j' T a9

wherel¥ are given by

dd+1w

1 v
Iij,kl,mn(oyyyz)_gij,i’j’gkl,k’l’gmn,m’n’J @g

dd+1w
Wo

dd+1w

Ii2j,kI,mn(Oagaz):gij,i’j’gkl,k'l’gmn,m’n'f

3 i’j',k’l’,m’n’

12 (d2—d—2)13

i’j’,k’l’,m’n'_ i"j" k1", m'n’ |

d
2, —
+2(d +3+2

K(w,y)K(0,2')(35 35 (0-y) AT I ) (0—2"),

K(0,y)K(0,2)3f ) (0=y) I ) (0-2"),

|i3},k|,mn(0,)7,£):5ij,i'j'5k|,k'|'5mn,m'n'j K(w,y' ) K(w,2")

wo

X} K’ i’ 25y, qm’ 10 = K’ 10 2y qm i’ =
2[(J,-fJ|f)(w Yo I (0=2")+ (3o Iy (0—y") (I} Iy ) (w—2")].
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Then by using the identities

d d i d
.k, i —0: S " j 0 . o | 0
Faaer J")(w)(wgﬂ?)d &ivrr| g 5"(wg+(32)d 2d(d+ 1) K (21 g2yt
5-k’w8 1 5{&)8
(9!(9 oy ————=——
T 2d(d+ D) M (a1 2Ad-Ddd+ 1) N (s g2
1 wg
T a@ 2@ na@ry NN o)
Si v (393, 0 —& &
i Eer (3 |r)(w)(w(2)+—(;2)d— ik
d_l P (l)d 1 5i:wd
X d+15lk’ 5{; 2 0_,2 d_ d d+1 &kr&j, 2 ! -’20d71
(wp+ w?) ( ) (wgt w?)
N 1 wg
a(d=2)(d-Dyd(d+1) VNN Gz g2
et o (3€ 30 @ _ d-1 g il ! g il
k|,k’|'( i |/)(w)(w(2)+(;2)d_d(d+1) k|,im0"m(w(2)+(;2)d Z(d_l)d(d+1) kIﬁk’I/&k/&l/&iW:
and
d d+2
. 1 w
S T @ _ G, —
EIJ,I ] (‘]|'Jo )(w)(w(z)+(:)2)d d(d+1)glJ,I jr9irdjr (o 0+w2)d

One can rewrite everi¥ as derivatives with respect to the external varigbtez/ —y; of the standard integralg]:

2 _j g+ g 792 T (al2+ 1/2T (b+c—d/2—a/2—1/2)
o [0+ w2 Plwd+(o—D)2S 2 T(b)T(c)
I'(1/2+al2+d/2—-b)I'(1/2+a/2+d/2—c) .

|X |1+a+d72b72c
I'l+a+d—b—c) '

After straightforward calculations one obtains that all integtéleesult in the same form

Ik_

792 T (d/2)[T(d/2+1)]2 i{ toty

— & b€t acEmnbet AYE abit ack,
2 (d+1)2F(d—1)F(d+2) |t|d 1 ij,ab“kl,acémn,bc 2 " Cij,abckl,acémnbd ™ 5 t2

3

(k) tela | ¢
+ a3 [gkl,abgmn,bcgmn,ad+ (kl)—>(mn)]t—2 + a4 + (kl)_)(mn)

tmtn, 1 tit; 1
) gkl,ij(%_a5mn +alg, mn( tlzj_a&j)

+a®| & ansii tfn L5 ) (ki t+ g, o[ |l

a kl,ab<ij,ac t2 g Zmn (k)= (mn) 2 a kl,ab“mn,ac t2 d ij 2
ity 1 Lty 1 tty 1

4| L _ s [ X Z _mn_ -

ag t2 d 5” ,[2 d 5k| t2 d 5mn

026004-9



G. ARUTYUNOV AND S. FROLOV PHYSICAL REVIEW D60 026004

but with different coefficientsal®, wherei=1,...,8 and @ (d+2)(d+4)[3(d+2)+2(d—2)(d+3)]
k=123. o %7 2d(d—1)(d+3) '
For the first integral* the coefficientsa® are found to (A1)
be
For the second integraf the coefficientsa(?, ... a®
4(d—-1)(d+1) (d—1)(8d+12 8d+4 are as follows:
alt= + +
1 d d2 d2
@) 2(d—-1) 4 4(d+2)
a = ) L
12(d+2)+8(d—2)(d+3) ! d d d(d-1)(d+3)
d?(d—1)(d+3) ’ A(d+2)
a(22)= _Z(d—l)—4— W,
@ 2d-1)(2d+3) 8d+4 (d—=1)(d+3)
ay’'=-— —
‘ ; o MATD) o ([d+2)
12(d+2)+8(d—2)(d+3) 3 (d=1)(d+3)’ 4 (d=1)(d+3)’
a d(d—1)(d+3 '
(d=1)(d+3) - (d+2) @) 2(d+2)?
af)=— —— =, ay)=d+2+ —— -,
AD— _g_2d7Dd+D) (d=1)(d+3) (d=1)(d+3)
M=
d
2 2d+2)? 2 (d+2)%(d+4)
12(d+2)+8(d—2)(d+3) &= d-1)(d+3)’ ¥ T 2d+3)d-1)
d(d—1)(d+3) ’ (A2)
1 (d+3)(d—=3)+3(d+2) while for the third one they are
a.4 = - — y
damnErs ol b adry) g Adrd)
@ d=1 3(d+2)+2(d—2)(d+3) ! d dd-1)(d+3)" ™ (d=1)(d+3)’
a5 = - - — ’
d d(d=1)(d+3) 4(d+4) (d+4)
a®=2+ D a®odp1r o
1) (d+2)(2d+1) (d—=1)(d+3) (d—=1)(d+3)
ag’'=———5——
d
3) (d+4) ) 2(d+2)(d+4)
ar’ = al)=—d—2—
(d+2)[6(d+2)+4(d_2)(d+3)] 5 (d_l)(d+3)’ 6 (d_l)(d+3) '
d(d—1)(d+3) ’
@ 2(d+2)(d+4) o (d+2)(d+4)?
Lo 4 Dd+2) & T T d—1)(d+3) * *® T2(d-1)(d+3)
7 d (A3)
(d+2)[6(d+2)+4(d—2)(d+3)] The coefficientsa® are obtained for the general dimen-
d(d—1)(d+3) ' siond. We then specify their value fat=4 in Table I.
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