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Three-point Green function of the stress-energy tensor in the AdS-CFT correspondence
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We compute the three-point function of the stress-energy tensor ind-dimensional conformal field theory
CFT from AdSd11 gravity. Ford54 the coefficients of the three linearly independent conformally covariant
forms entering the three-point function are exactly the same as given by the free-field computations in the
N54 SYM theory just as expected from the known renormalization theorems. Ford53 andd56 our results
give the value of the corresponding three-point function in the theories of strongly coupledN58 supercon-
formal scalar and~2,0! tensor multiplets, respectively.@S0556-2821~99!01114-5#
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I. INTRODUCTION

The Maldacena conjecture@1–3# relating the large-N limit
of certain conformal field theories~CFT’s! in d dimensions
with supergravity on the product of the (d11)-dimensional
anti–de Sitter~AdS! space with a compact manifold has be
recently tested by explicit computation of many two- a
three-point gauge theory correlation functions from AdS
pergravity@4–20#. Considerable progress was also achiev
in studying four-point correlators@21–27#, whose complete
computation, however, requires the knowledge of the su
gravity action on the AdS background beyond the quadr
@28# approximation.

An important question being yet unsolved with thre
point functions is the computation of the three-point functi
of the stress-energy tensorTi j (xW ). Unlike the other three-
point functions that are determined by the conformal sy
metry almost completely~usually up to one constant!, the
three-point function ofTi j (xW ) in general dimensiond admits
five independent conformally covariant forms, two of the
being fixed by the gauge-theory conservation law] iTi j (xW )
50 @29#. Three constants undetermined neither conform
symmetry nor the conservation law might be computed fr
the AdS supergravity and confronted with their free-fie
counterparts. This obviously provides a further nontrivial t
for the AdS-CFT correspondence.

In this paper we therefore address the problem of com
ing the three-point function of the stress-energy tensor in
d-dimensional CFT from AdSd11 gravity.

According to the AdS-CFT conjecture the CFT current
conformal weight zero coupled to the stress-energy tenso
conformal dimensiond is extended to the interior of the Ad
space as the on-shell graviton field. In comparison w
three-point functions of other gauge-invariant composite
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erators computation of the three-point function ofTi j (xW ) is
complicated by two things. First to clear up the infrared
vergences of the gravity action, one can introduce the bou
ary of the AdS space. The Hamiltonian formulation@13# of
the AdS-CFT correspondence then naturally requires a
tional boundary terms@8#, so that the pure gravity action i
not given only by the standard Einstein-Hilbert term. It
worth stressing that the account of the boundary terms
absolutely necessary since they provide the fulfillment of
Ward identities in the boundary CFT. The second thing
that after introducing the boundary terms the gravity act
loses its manifest conformal as well as gauge invariance

In our computation of the three-point function we accou
the boundary terms in the following way. We start with th
standard Einstein-Hilbert term~with the cosmological con-
stant! and decompose it up to the cubic order in metric p
turbationhmn . Removing all terms linear in second deriv
tives as well as all total derivative terms we are left with
action that according to@13# differs from the action one
should use in the AdS-CFT correspondence only by te
that do not contribute to the Green functions. Then, by
on-shell perturbation theory, one may find that the contrib
tion of the quadratic terms to the value of the three-poin
exactly zero. Thus, the remaining action is just the sum
the cubic bulk and the boundary~noncovariant! terms, the
latter arise due to the removal procedure. Fortunately,
cubic boundary terms do not contribute to the value of
three-point function and by this reason can be disregard
The bulk term is manifestly covariant with respect to t
AdS isometries as well as on-shell gauge symmetry and
apparently solves the second difficulty.

Choosing the covariant gauge we then explicitly comp
the remaining bulk integral and get the three-point functio
For the physically most interesting cased54 we realize that
the coefficients of the conformal tensors of the three-po
function are exactly the same as the ones found by the f
field computations. This is obviously in agreement with t
earlier results by@12,30,31#, whose essence is that in fou
dimensions the superconformal symmetry is power
©1999 The American Physical Society04-1
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enough to protect some three-point functions inN54 Yang-
Mills against quantum corrections.

As to the other cases of particular interestd53 and d
56, at the moment we are unaware of the gauge-theory
culations and may suggest that our results give the valu
the corresponding three-point function in the theories of
strongly coupled superconformal scalar and~2,0! tensor mul-
tiplets, respectively.

The paper is organized as follows. In Sec. II we define
gravity action one should use in the AdS-CFT corresp
dence and obtain its decomposition up to cubic order in m
ric perturbation. In Sec. III we compute the on-shell value
the gravity action in the de Donder gauge and obtain
three-point function. We then write down explicitly the c
efficients of the conformal tensors occurring in the thre
point function in dimensionsd52,3,4,5,6 and comment o
the most interesting cases. Some details of the calculation
collected in the Appendix.

II. GRAVITY ACTION AT THIRD ORDER
OF PERTURBATION

We begin by fixing the basic notation. LetM be a (d
11)-dimensional manifold with ad-dimensional boundary
Throughout the paper the indicesm,n, . . . run the set
0, . . . ,d, while i , j , . . . are reserved for thed-dimensional
boundary and take values 1, . . . ,d. The coordinatesxm are
then split asxm5(x0,xW ) with xW5$xi%. LetM be also sup-
plied with a positive signature metricGmn .

We will deal with the Euclidean version of the AdSd11
space that is described as the upper half spaceM5$xi
PR; x0.0% endowed with the metric

ds25
1

x0
2

dxmdxm.

The boundary of the AdSd11 space is atx050 and can be
identified with the Euclidean space. Since the boundar
infinitely distant from any interior point, the gravity actio
on the AdS background suffers from infrared divergences
natural regularization is then provided by setting the bou
ary of AdSd11 space atx05« and considering the part with
x0>«. The physical fields are required to vanish whenx0
→`.

The total gravity actionS one should use for computin
gauge theory correlation functions is given by the sum

S5S1S(1)1S(2) ~1!

of the standard Einstein-Hilbert term@with the cosmological
constantl5 1

2 d(d21)#

S5E AG~R22l! ~2!

and two boundary termsS(1) andS(2) @8#. Explicitly, S(1) is
the Gibbons-Hawking term@32#
02600
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S(1)52E
]M

ddxAḠK, ~3!

whereK is the trace of the fundamental form on the boun
ary and Ḡ is the determinant of the induced metric. Th
second boundary termS(2) is a term proportional to the vol
ume of the boundary:

S(2)52~12d!E
]M

ddxAḠ. ~4!

As was shown in@13#, adding the boundary terms i
equivalent to removing from the bulk action~2! all terms
linear in second derivatives and all total derivative term
The gravity action obtained in such a way differs from E
~1! only by terms which do not contribute to Green fun
tions. Therefore, we can restrict our attention to consider
the bulk term.

If we assumegmn to be the background AdS metric an
perturb Gmn near the background value:Gmn5gmn1hmn ,
then equations of motionRmn52dgmn up to the second or-
der in hmn can be written as follows:

Lmn5Vmn , ~5!

where two tensors

Lmn5¹r¹rhmn1¹m¹nh2¹m¹rhnr2¹n¹rhmr

12~hmn2gmnh!, ~6!

and

Vmn52¹r@hrs~¹mhns1¹nhms2¹shmn!#

1¹n~hrs¹mhrs!1
1

2
~¹mhnr1¹nhmr2¹rhmn!¹rh

2
1

2
¹mhrs¹nhrs1¹rhms¹rhn

s2¹shmr¹rhn
s ~7!

were introduced. Here the covariant derivatives are ta
with respect to the background metric.

Introduce the notation

Rmn5Ṙmn1Rmn
(1)1Rmn

(2)1•••

5Ṙmn1dRmn1
1

2!
d (2)Rmn1•••

for decomposition of the Ricci tensor around the backgrou
Ṙmn and the analogous one for decomposition of the cur
ture.

Now we are ready to analyze gravity action~1! up to the
third order in metric perturbation. We start with working o
decomposition of Eq.~2!:

S5Ṡ1dS1
1

2!
d (2)S1

1

3!
d (3)S1••• . ~8!
4-2
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THREE-POINT GREEN FUNCTION OF THE STRESS- . . . PHYSICAL REVIEW D60 026004
Computing the first variationdS of Eq. ~2! one then repre-
sents it in the form

dS@G,h#52E
M
AGS Rmn2

1

2
GmnR1lGmnDhmn1T,

~9!

whereT is the following boundary term:

T5E
M
AG¹m~¹nhmn2¹mh!52E

]M
AG~¹mh0m2]0h!.

In Eq. ~9! we considerdS@G,h# as the variation ofS@G# at
a ‘‘point’’ Gmn , i.e., we do not assume the metricGmn to be
equal to its background value. Now the simple algorithm
find decomposition~8! is to consider the successive vari
tions ofdS@G,h#.1 Since we are interested in decompositi
of the total action~1! we can omit the total derivative termT.

Thus, varying the terms in parentheses in Eq.~9! and
reducing the result to the background we get

Rmn
(1)2

1

2
gmn

(1)Ṙ2
1

2
gmnR(1)1lgmn

(1)52
1

2 S Lmn2
1

2
gmnL D ,

where the relationRmn
(1)1dhmn52 1

2 Lmn was used.
For the second variation we find

d (2)Rmn2
1

2
gmnd (2)R2

1

2
d (1)gmnd (1)R

52S Rmn
(2)2

1

2
gmn~grsRrs

(2)! D2
1

2
gmnhrsLrs1

1

2
hmnL.

Here Rmn
(2)2 1

2 gmn(grsRrs
(2))5 1

2 (Vmn2 1
2 gmnV), where V

5Vm
m .

With these formulas at hand it is now easy to find t
action ~2! up to the third order inhmn :

S5Ṡ1E
M
AgF1

4 S Lmn2
1

2
gmnL Dhmn2

1

6 S Vmn2
1

2
gmnVD

3hmn2
1

6 S 1

8
h2L2

3

4
hhmnLmn1hmrhr

nLmnD G , ~10!

where we again omitted nonessential total derivative ter
Note that the last term in the integrand coincides with
third-order term in the decomposition ofAG, in which one
tensorhmn is replaced byLmn . The action~10! depends on
second derivative terms. To remove these terms one sh
add to Eq.~10! total derivative terms which can be easi
found by using explicit expressions~6! and ~7! for L andV,
respectively. A simple consideration then shows that the q
dratic terms in the resulting action do not contribute to
three-point Green function.

1The covariant derivatives inT are also with respect to the metr
Gmn .
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Thus, we see that to find the three-point function we ne
to compute the on-shell value ofS which is given by

S52
1

6EM
AgS Vmn2

1

2
gmnVDhmn1cubic. ~11!

Herehmn is a solution to the linearized equation of motio
Lmn@h#50 and cubic refers to the unwritten explicitly tota
derivative terms of the cubic order. Since these terms m
deliver only a local contribution to the value of the thre
point function, in what follows we disregard them.

III. THREE-POINT GREEN FUNCTION

The radiation gauge for the AdS gravity that is effective
used for computing the two-point Green function of t
stress-energy tensor in the boundary CFT obviously bre
the invariance of the gravity action under isometries. For
three-point function this fact leads to severe difficulties
computing the bulk integrals. Thus, to handle the probl
we choose the covariant gauge of the de Donder type:

¹mS hn
m2

1

2
dn

mhD50. ~12!

In this gauge the solution of the linearized equations of m
tion reads as@8#

hm
n ~x0 ,xW !5kGE ddy K~x,yW !Jm

i ~x2yW !

3Jj
n~x2yW !Ei j ,klhkl~yW !, ~13!

where

Jm
n ~x!5dm

n 22
xmxn

uxu2
, K~x,yW !5

x0
d

@x0
21~xW2yW !2#d

,

the coefficientkG5(d11)/(d21)G(d)/pd/2G(d/2), hl
k(yW )

represents the boundary data of the graviton andEi j ,kl is the
traceless symmetric projector:

Ei j ,kl5
1

2
~d ikd j l 1d i l dk j!2

1

d
d i j dkl . ~14!

Note that tensorhm
n has the vanishing trace.

In the de Donder gauge the remaining bulk term of t
on-shell action~11! can be represented in the following form
most suitable for further computations:
4-3
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S52
1

6EM
A2gS Vmn2

1

2
gmnVDhmn

5
1

6EM
A2gS ¹s~hmnhmr¹rhn

s!2
1

2
¹m~hmnhrs¹nhrs!

2¹s~hm
shn

r¹rhmn! D2
1

4EM
A2gS ¹s¹rhmnhmnhrs

22¹s¹rhmnhm
r hn

s1
2

3
hm

n ¹rhs
m¹rhn

s

2
2

3
~d11!hm

n hs
mhn

sD ,

where we used the explicit form ofVmn and the vanishing of
hm

m .
Again omitting the total derivatives being the cubic ord

boundary terms we see that the on-shell action in the
Donder gauge is essentially given by the bulk integral

S52
1

4EM
A2gS ¹s¹rhmnhmnhrs22¹s¹rhmnhm

r hn
s

1
2

3
hm

n ¹rhs
m¹rhn

s2
2

3
~d11!hm

n hs
mhn

sD . ~15!

By using the equation of motion that in the covariant gau
reads as¹r¹rhmn522hmn we then rewrite Eq.~15! in the
form

S5
1

4EM
A2gS 2¹s¹rhmnhm

r hn
s2¹s¹rhmnhmnhrs

1
2

3
dhm

n hs
mhn

sD . ~16!

The computation of Eq.~16! is a rather combersome bu
purely technical task that can be performed by the invers
method of@7#. Before plugging into details we make som
comments about the relation between the bulk and
boundary gauge transformations. The symmetry group of
tion ~16! is now reduced to the gauge transformations t
preserves the de Donder gauge. This group of residual ga
transformations is generated by vectorsjm obeying an equa-
tion ¹r¹rjm2djm50. Explicitly, the solution satisfying the
gauge¹mjm50 reads as

jm~x0 ,xW !5kvE ddy
x0

d12

@x0
21~xW2yW !2#d11

Ji
m~x2yW !j i~yW !,
02600
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kv5
d11

d

2G~d!

pd/2G~d/2!
, ~17!

where the coefficientkv is fixed by requiring j i(x0 ,xW )
→j i(xW ) whenx0→0. In particular, the componentj0 is

j0~x0 ,xW !5
kv

d11E ddy
x0

d13

@x0
21~xW2yW !2#d11

] ij
i~yW !.

One may see that on the boundary («→0) the residual gauge
transformations are reduced to

dhi
j5] ij

j1] jj
i2

2

d
d i j ~]kj

k!, ~18!

i.e., to the usual gauge transformations of a traceless s
metric tensor. In other words, the transformations~18! of the
boundary data can always be prolonged to the bulk ga
fields, which preserve the de Donder gauge. We, theref
expect the three-point function Ti j ,kl,mn(xW ,yW ,zW)
5^Ti j (xW )Tkl(yW )Tmn(zW)& of the stress-energy tensorTi j to
obey the conservation law

] iTi j ,kl,mn~xW ,yW ,zW !50, for noncoincidentxW , yW andzW.

As was already mentioned in the Introduction in arbitra
dimensiond.3 there are five independent conformal tens
occuring in the expression for the three-point function of t
stress-energy tensor. The conservation law then fixes
value of two from five coefficients. It is clear that the thre
point function defined byS is conformally covariant and the
only reason to find its explicit expression is to make co
parison of the coefficients of conformal tensors to the o
found on the gauge theory side.

Thus, substituting Eq.~13! in Eq. ~16! we see that accord
ing to the AdS-CFT prescription@2,3# the three-point func-
tion is defined as2

Ti j ,kl,mn~xW ,yW ,zW !58( I i j ,kl,mn~xW , yW ,zW !, ~19!

where the sum is taken over all possible permutations of
of indices and points (i j ,xW ), (kl,yW ), and (mn,zW) of the fol-
lowing tensor:

2We assume that the coupling ofTi j (xW ) with hi j (xW ) on the bound-

ary of AdSd11 is given by*ddx@
1
2 Ti j (xW )hi j (xW )# and this explains

the number 8 in Eq.~19!. Later on we show that this coupling als
leads to the correct Ward identity.
4-4
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I i j ,kl,mn~xW ,yW ,zW !52kG
3 Ei j ,i 8 j 8Ekl,k8 l 8Emn,m8n8E dd11v

v0
d11
K~v,yW !K~v,zW !3F2¹s¹r~KJi 8

m Jn
j 8!~v2xW !~Jm

k8Jl 8
r

!~v2yW !~Js
m8Jn8

n
!

3~v2zW !2¹s¹r~KJi 8
m Jn

j 8!~v2xW !~Jm
k8Jl 8

n
!~v2yW !~Jr

m8Jn8
s

!~v2zW !

1
2d

3
~KJi 8

m Jn
j 8!~v2xW !~Jm

k8Jl 8
r

!~v2yW !~Jr
m8Jn8

n
!~v2zW !G . ~20!

Recall that here and in what follows the bulk~boundary! indices are contracted with respect to the AdS metric~Euclidean! and,
therefore, only their positions matter. Note that the tensorI i j ,kl,mn itself is not conformally covariant.

Following the method of@7# we now set in Eq.~20! xW50 and perform the change of variablesvm8 5vm /v2 and xi8
5xi /x2. This is just the inversion transformation under which the derivatives¹m transform covariantly. In particular,

¹r@K~v,xW !Jm
i ~v2xW !Jj

n~v2xW !#5uv8u2Jm
l ~v8!Jb

n ~v8!Jr
s~v8!¹s8 @K~v8,xW8!Jl

a~v82xW8!Jb
b~v82xW8!#

Ja
i ~xW !Jj

b~xW !

uxu2d

and

¹r@K~v,0!Jm
i ~v!Jj

n~v!#5uv8u2Jm
l ~v8!Jb

n ~v8!Jr
s~v8!¹s8 „~v08!ddl

i d j
b
…,

where the covariant derivatives¹m8 are with respect to to the connection

Grs8
m~v8!52

1

v08
~dr

0dms1ds
0dmr2dm

0 drs!.

Thus, after substituting the change of variables all internal Jacobians depending on the variablev alone cancel against eac
other and one is left with the following expression:

I i j ,kl,mn~0,yW ,zW !52kG
3 Ei j ,i 8 j 8

Ikl,k8 l 8~yW !

uyu2d

Imn,m8n8~zW !

uzu2d E dd11v

v0
K~v,yW 8!K~v,zW8!3F2

4d

3
~Ji 8

k8Jl 8
s

!~v2yW 8!~Js
m8Jn8

j 8 !~v2zW8!

12S d21
d

3
12D ~Ji 8

k8Jl 8
0

!~v2yW 8!~Jj 8
m8Jn8

0
!~v2zW8!2~d22d22!~Ji 8

k8Jl 8
j 8!~v2yW 8!~J0

m8Jn8
0

!~v2zW8!

12d~J0
k8Jl 8

0
!~v2yW 8!~Ji 8

m8Jn8
j 8 !~v2zW8!G , ~21!

where the concise notationIi j ,kl(xW )5Ei j ,i 8 j 8(Ji 8kJj 8 l)(xW ) was introduced.
In view of Eq.~19! it is further more convenient to deal with the integralI i j ,kl,mn

sym being the symmetrization of Eq.~21! with

respect to (kl,yW ) and (mn,zW):

I i j ,kl,mn
sym ~0,yW ,zW !5I i j ,kl,mn~0,yW ,zW !1I i j ,mn,kl~0,zW,yW !. ~22!

The computation ofI sym is sketched in the Appendix and below we present the result
026004-5
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I i j ,kl,mn
sym ~0,yW ,zW !52pd/2kG

3 G~d/2!@G~d/211!#2

~d11!2G~d21!G~d12!
Ei j ,i 8 j 8

Ikl,k8 l 8~yW !

uyu2d

Imn,m8n8~zW !

uzu2d

1

utud

3H a1Ei 8 j 8,abEk8 l 8,acEm8n8,bc1a2Ei 8 j 8,abEk8 l 8,acEm8n8,bd

tctd

t2

1a3@Ek8 l 8,abEm8n8,bcEi 8 j 8,ad1~k8l 8!→~m8n8!#
tctd

t2
1a4FEk8 l 8,i 8 j 8S tm8tn8

t2
2

1

d
dm8n8D 1~k8l 8!→~m8n8!G

1a5Ek8 l 8,m8n8S t i 8t j 8

t2
2

1

d
d i 8 j 8D 1a6FEk8 l 8,abEi 8 j 8,acS tm8tn8

t2
2

1

d
dm8n8D 1~k8l 8!→~m8n8!G tbtc

t2

1a7Ek8 l 8,abEm8n8,acS t i 8t j 8

t2
2

1

d
d i 8 j 8D tbtc

t2
1a8S t i 8t j 8

t2
2

1

d
d i 8 j 8D S tk8t l 8

t2
2

1

d
dk8 l 8D S tm8tn8

t2
2

1

d
dm8n8D J . ~23!

In the last formula the Latin indices (a,b,c,d) are used to distinguish the boundary summation indices and the variat i

5zi82yi8 . The coefficientsai , i 51, . . . ,8 areexpressed through the constantsai
(k) , k51,2,3 found in the Appendix by the

following formula:

ai52
4d

3
ai

(1)12S d21
d

3
12Dai

(2)2~d223d22!ai
(3) . ~24!

If we now restore thexW dependence, the variablet i ,

t i5~z2x! i82~y2x! i85
~x2y! i

~xW2yW !2
2

~x2z! i

~xW2zW !2

turns into the conformal vectorXi : t i52Xi with a remarkable property to transform covariantlyXi→Xi8 under the inversion
xi85xi /x2 @29#:

Xi85x2Ji j ~xW !Xj .

Then by using the two identities

Ji j ~xW2zW !Zj52
~xW2yW !2

~zW2yW !2
Xj , Jik~xW2zW !Jk j~zW2yW !5Ji j ~xW2yW !12~xW2yW !2XiYj ,

one may finally represent the three-point function~19! in the form

Ti j ,kl,mn5
1

uxW2yW u2duyW2zWu2duxW2zWu2d H Ei j ,i 8 j 8Ekl,k8 l 8Emn,m8n8@AJi 8k8~xW2yW !Jl 8m8~yW2zW !Jj 8n8~zW2xW !1BJi 8k8~xW2yW !Jj 8n8

3~xW2zW !Yl 8Ym8~yW2zW !21cycl. perm.#1CFIi j ,klS ZnZm

Z2
2

1

d
dmnD 1cycl. permG1DFEi j ,i 8 j 8Ekl,k8 l 8Xi 8Yk8

3~xW2yW !2Jj 8 l 8~xW2yW !S ZmZn

Z2
2

1

d
dmnD 1cycl. perm.G1ES XiXj

X2
2

1

d
d i j D S YkYl

Y2
2

1

d
dklD S ZmZn

Z2
2

1

d
dmnD J ,

~25!
where

A53Dda1 , B5Dd~2a11a222a3!, C5Dd~2a41a5!,

D5Dd~4a51a724a322a6!, E5Dd~12a516a713a8!,
~26!
02600
and

Dd52pd/2kG
3 G~d/2!@G~d/211!#2

~d11!2G~d21!G~d12!
5

dG~d!

2pd~d21!2
.

As was expected formula~25! is just the conformally cova-
4-6
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TABLE I. Coefficientsai
(k) for d54.

ai
(k) a1

(k) a2
(k) a3

(k) a4
(k) a5

(k) a6
(k) a7

(k) a8
(k)

k51 547/21 21163/42 2659/42 225/84 2109/84 843/42 465/42 292/7
k52 39/14 278/7 222/7 29/7 22/7 66/7 24/7 248/7
k53 229/21 116/21 74/21 113/21 8/21 274/21 232/21 64/7
th
n-

o
e

n
IB

c-

al

t

ge

re-
ss-
t
e

t

ive

e-
riant three-point function of the stress-energy tensor in
d-dimensional conformal field theory and it involves five i
dependent conformal tensors.

The coefficientsA, . . . ,E computed for any dimension
d>2 represent our basic result. We first discuss the m
interesting cased54. In this case by using Table I in th
Appendix one finds forA, . . . ,E the following values:

A52
83128

9p4
, B52

83392

9p4
, C52

83184

9p4
,

D52
83472

9p4
, E52

83304

9p4
. ~27!

Now we are ready to confront the coefficients~27! with
the ones found by the free-field computations inN54 SYM.
To this end one needs to restore the gravity couplinggG

22

that enters as an overall constant in front of the total actioS.
The value of the coupling constant is fixed by the type-I
supergravity on the AdS53S5 background and is equal to

gG
2 5

8p2

N2
.

Clearly, to restore thegG
2 dependence of the three-point fun

tion we should multiply Eq.~27! on gG
22 and obtain

A52
128

9p6
N2, B52

392

9p6
N2, C52

184

9p6
N2.

~28!

Recall that the two-point function ofTi j (xW ) found from the
AdSd11 gravity is given by

^Ti j ~xW !,Tkl~yW !&5
Cd

uxW2yW ud
Ii j ,kl~xW2yW ! ~29!

with the central chargeCd52kGd/gG
2 . In particular, ford

54, one getsC4580/p2gG
2 5(10/p4)N2.

In Ref. @33# it was shown that for any four-dimension
free-field theory given byns scalars, bynf Dirac fermions,
and bynv vector fields the coefficientsA,B,C are as follows:
02600
e

st

A5
1

p6 S 8

27
ns216nvD ,

B52
1

p6 S 16

27
ns14nf132nvD ,

C52
1

p6 S 2

27
ns12nf116nvD .

Substituting here the field-theoretical content of theN
54 SU(N) SYM:

ns56~N221!, nf52~N221!, nv5N221,

we, thus, arrive at

A52
128

9p6
~N221!, B52

392

9p6
~N221!,

C52
184

9p6
~N221!. ~30!

The central chargeC4 can be found by taking into accoun
the Ward identity that relatesC4 with coefficientsA,B,C of
the three-point function@29#:

C45
p2

12
~9A2B210C!5

10

p4
~N221!.

It is now obvious that in the large-N limit the coefficients
A,B,C andC4 of theN54 SU(N) SYM coincide with the
ones found from the AdS5 gravity.

Thus, the coefficientsA, B, andC of the conformal ten-
sors obtained from the AdS5 gravity and reflecting thereby
the strong-coupling behavior of the corresponding gau
theory do not receive corrections to their free-field~one-
loop! values. This fact finds a good agreement with the
sults by @12,30,31#. Indeed, the traceless conserved stre
energy tensor occurs in the multiplet of the supercurrenT
5tr(W2), whereW is an analytic superfield describing th
N54 Yang-Mills strength multiplet. In@12# it was checked
for the leading components ofT being the scalar fields tha
their three-point functions computed from AdS53S5 super-
gravity coincide with the one-loop results in the large-N
limit. The same conclusion about vanishing of the radiat
corrections at orderg2 was achieved in@30# even for finiteN.
By considering the anomaly in the superconformal symm
4-7
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try, it has been argued in@31# ~see also@7#! that the two- and
three-point functions ofT should actually have a one-loo
nature.

Having discussed the four-dimensional case, we now
explicitly the coefficients A, . . . ,E for dimensions d
52,3,5,6 that can be found from Eq.~24! together with
~A1!–~A3!.

d52:

A52
32

p2
, B52

40

p2
, C52

12

p2
,

D52
32

p2
, E52

16

p2
. ~31!

d53:

A52
34

2p3
, B52

19332

2p3
, C52

11333

23p3
,

D52
41332

22p3
, E52

11334

24p3
. ~32!

d55:

A52
3354

22p5
, B52

303352

22p5
, C52

117353

24p5
,

D52
25733352

23p5
, E52

13733353

25p5
. ~33!

d56:

A52
28335

52p6
, B52

181326333

52p6
,

02600
st

C52
59325334

52p6
, D52

119327333

52p6
, E52

27337

52p6
.

~34!

In @29# it was shown that the conservation law implies t
fulfilment of the following two identities:

~d224!A1~d12!B24dC22D50,

~d22!~d14!B22d~d12!C18D24E50.

It is needless to say that coefficients~27! and Eqs.~31!–~34!
satisfy both of them. It is, of course, only the check that
have done the computation of Eq.~16! correctly. One should
be also aware of the fact that ford52 andd53 the number
of linearly independent conformal tensors is reduced to 1
2, respectively@33#.

The casesd53 andd56 are of particular interest sinc
according to the AdS-CFT conjecture they correspond
compactifications of the 11d supergravity on AdS43S7 and
AdS73S4, respectively. We, therefore, expect that coe
cients~32! describe the three-point function ofTi j (xW ) in the
strongly coupled three-dimensional gauge theory of theN
58 conformal scalar multiplet, while Eq.~34! are expected
to be found in the six-dimensional gauge theory of the~0,2!
tensor multiplet@34–37#.
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APPENDIX

We sketch here for the reader’s convenience some details of computation of integral~22!.
Clearly, Eq.~22! can be written as the following sum of the integralsI k, k51,2,3:

I i j ,kl,mn
sym 5

kG
3

2
Ei j ,i 8 j 8

Ikl,k8 l 8~yW !

uyu2d

Imn,m8n8~zW !

uzu2d F2
4d

3
I i 8 j 8,k8 l 8,m8n8

1
12S d21

d

3
12D I i 8 j 8,k8 l 8,m8n8

2
2~d22d22!I i 8 j 8,k8 l 8,m8n8

3 G ,
whereI k are given by

I i j ,kl,mn
1 ~0,yW ,zW !5Ei j ,i 8 j 8Ekl,k8 l 8Emn,m8n8E dd11v

v0
K~v,yW 8!K~v,zW8!~Ji 8

k8Jl 8
s

!~v2yW 8!~Js
m8Jn8

j 8 !~v2zW8!,

I i j ,kl,mn
2 ~0,yW ,zW !5Ei j ,i 8 j 8Ekl,k8 l 8Emn,m8n8E dd11v

v0
K~v,yW 8!K~v,zW8!~Ji 8

k8Jl 8
0

!~v2yW 8!~Jj 8
m8Jn8

0
!~v2zW8!,

I i j ,kl,mn
3 ~0,yW ,zW !5Ei j ,i 8 j 8Ekl,k8 l 8Emn,m8n8E dd11v

v0
K~v,yW 8!K~v,zW8!

3
1

2
@~Jj 8

k8Jl 8
i 8!~v2yW 8!~J0

m8Jn8
0

!~v2zW8!1~J0
k8Jl 8

0
!~v2yW 8!~Jj 8

m8Jn8
i 8 !~v2zW8!#.
4-8
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Then by using the identities

Ekl,k8 l 8~Ji
k8Jl 8

j
!~v!

v0
d

~v0
21vW 2!d

5Ei j ,k8 l 8S d21

d11
d i

k8d l 8
j v0

d

~v0
21vW 2!d

2
1

2d~d11!
]k8] i

d l 8
j v0

d

~v0
21vW 2!d21

2
1

2d~d11!
] l 8] j

d i
k8v0

d

~v0
21vW 2!d21

1
1

2~d21!d~d11!
]k8] l 8

d i
jv0

d

~v0
21vW 2!d21

1
1

4~d22!~d21!d~d11!
] i] j]k8] l 8

v0
d

~v0
21vW 2!d22D ,

Ei j ,i 8 j 8Ekl,k8 l 8~Ji 8
k8Jl 8

j 8!~v!
v0

d

~v0
21vW 2!d

5Ei j ,i 8 j 8Ekl,k8 l 8

3S d21

d11
d i 8

k8d l 8
j 8 v0

d

~v0
21vW 2!d

2
1

d~d11!
]k8] j 8

d l 8
i 8v0

d

~v0
21vW 2!d21

1
1

4~d22!~d21!d~d11!
] i 8] j 8]k8] l 8

v0
d

~v0
21vW 2!d22D ,

Ekl,k8 l 8~Ji
k8Jl 8

0
!~v!

v0
d

~v0
21vW 2!d

5
d21

d~d11!
Ekl,im]m

v0
d11

~v0
21vW 2!d

2
1

2~d21!d~d11!
Ekl,k8 l 8]k8] l 8] i

v0
d11

~v0
21vW 2!d21

,

and

Ei j ,i 8 j 8~Ji 8
0 J0

j 8!~v!
v0

d

~v0
21vW 2!d

5
1

d~d11!
Ei j ,i 8 j 8] i 8] j 8

v0
d12

~v0
21vW 2!d

.

One can rewrite everyI k as derivatives with respect to the external variablet i5zi82yi8 of the standard integrals@7#:

I b,c
a 5E dd11v

v0
a

@v0
21vW 2#b@v0

21~vW 2 tW !2#c
5

pd/2

2

G~a/211/2!G~b1c2d/22a/221/2!

G~b!G~c!

3
G~1/21a/21d/22b!G~1/21a/21d/22c!

G~11a1d2b2c!
uxW2yW u11a1d22b22c.

After straightforward calculations one obtains that all integralsI k result in the same form

I k5
pd/2

2

G~d/2!@G~d/211!#2

~d11!2G~d21!G~d12!

1

utud H 1a1
(k)Ei j ,abEkl,acEmn,bc1a2

(k)Ei j ,abEkl,acEmn,bd

tctd

t2

1a3
(k)@Ekl,abEmn,bcEmn,ad1~kl !→~mn!#

tctd

t2
1a4

(k)FEkl,i j S tmtn

t2
2

1

d
dmnD 1~kl !→~mn!G1a5

(k)Ekl,mnS t i t j

t2
2

1

d
d i j D

1a6
(k)FEkl,abEi j ,acS tmtn

t2
2

1

d
dmnD 1~kl !→~mn!G tbtc

t2
1a7

(k)Ekl,abEmn,acS t i t j

t2
2

1

d
d i j D tbtc

t2

1a8
(k)S t i t j

t2
2

1

d
d i j D S tkt l

t2
2

1

d
dklD S tmtn

t2
2

1

d
dmnD J
026004-9
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but with different coefficientsai
(k) , where i 51, . . . ,8 and

k51,2,3.
For the first integralI 1 the coefficientsai

(k) are found to
be

a1
(1)5

4~d21!~d11!

d
1

~d21!~8d112!

d2
1

8d14

d2

1
12~d12!18~d22!~d13!

d2~d21!~d13!
,

a2
(1)52

2~d21!~2d13!

d
2

8d14

d

2
12~d12!18~d22!~d13!

d~d21!~d13!
,

a3
(1)5262

2~d21!~d11!

d

2
12~d12!18~d22!~d13!

d~d21!~d13!
,

a4
(1)52

~d13!~d23!13~d12!

d~d21!~d13!
,

a5
(1)52

d21

d
2

3~d12!12~d22!~d13!

d~d21!~d13!
,

a6
(1)5

~d12!~2d11!

d

1
~d12!@6~d12!14~d22!~d13!#

d~d21!~d13!
,

a7
(1)5

~d21!~d12!

d

1
~d12!@6~d12!14~d22!~d13!#

d~d21!~d13!
,

tt

l
gle

lli

02600
a8
(1)52

~d12!~d14!@3~d12!12~d22!~d13!#

2d~d21!~d13!
.

~A1!

For the second integralI 2 the coefficientsa1
(2) , . . . ,a8

(2)

are as follows:

a1
(2)5

2~d21!

d
1

4

d
1

4~d12!

d~d21!~d13!
,

a2
(2)522~d21!242

4~d12!

~d21!~d13!
,

a3
(2)5222

4~d12!

~d21!~d13!
, a4

(2)5212
~d12!

~d21!~d13!
,

a5
(2)52

~d12!

~d21!~d13!
, a6

(2)5d121
2~d12!2

~d21!~d13!
,

a7
(2)5

2~d12!2

~d21!~d13!
, a8

(2)52
~d12!2~d14!

2~d13!~d21!
,

~A2!

while for the third one they are

a1
(3)52

4

d
2

4~d14!

d~d21!~d13!
, a2

(3)541
4~d14!

~d21!~d13!
,

a3
(3)521

4~d14!

~d21!~d13!
, a4

(3)5d111
~d14!

~d21!~d13!
,

a5
(3)5

~d14!

~d21!~d13!
, a6

(3)52d222
2~d12!~d14!

~d21!~d13!
,

a7
(3)52

2~d12!~d14!

~d21!~d13!
, a8

(3)5
~d12!~d14!2

2~d21!~d13!
.

~A3!

The coefficientsai
(k) are obtained for the general dimen

sion d. We then specify their value ford54 in Table I.
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