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We show that the background field method applied to supergravity in AdS space-time provides the path
integral for the theory in the bulk with conformal symmetry associated with the isometry of the AdS space.
This in turn allows us to establish the rigid conformal invariance of the generating functional for the super-
gravity correlators on the boundafy50556-282(99)07612-2

PACS numbd(s): 11.25.Hf, 04.65+e

[. INTRODUCTION tional for the Green functions of the supergravity in AdS
space in the bulk. In Sec. IV we deduce the simplified rigid
In this paper we present an observation that the effectivéonformal symmetry for correlators at the boundary of AdS
gauge-fixed supergravity actions have confornfahd R space. In Sec. V we suggest how to compare our results with
symmetryin the bulk and at the boundaip cases when the available calculations. Finally in the Discussion we explain
AdS,, ,¥ $9-P~2 packground(with form fields defines a that the part of the Maldacena’s conjecture about conformal
vacuum of the theory. This sheds light on the status of th&ymmetry in supergravity is proved. We explain why this is
recent conjecturfl] about the conformal field theoCFT) ~ Not yet a proof of the exact correspondence with conformal
and AdS correspondence between the laxgtmit of the ~ Yang-Mills theory.
SU(N) Yang-Mills (YM) theory and supergravity. In particu-
lar, we will find outwhat part of Maldacena’s conjectufé] [l. BACKGROUND FIELD METHOD IN SUPERGRAVITY
can be proved and what part remains to be studied AND ISOMETRIES
Our observation is based on the existence of the back-
ground functional method, first introduced for gravitational
field theories by De Witf2] and extended later for the case
of supergravities iM3]. We use here the existence of the

The background method is best described in condensed
DeWitt's notation[2] where the gauge symmetry of the clas-
sical action means that

so-called background covariant gauges in which the effective S [B]=Sy[®+ 6D ] 2.1
actions of the theory as well as the generating functional of c! cl ' '
the Green functions are background invariant. where®' includes all fields of supergravity and

In fact we are using here precisely the same idea which
has allowed us to construct a conformal theory of branes in 810cP'= Ria[q’]ffﬁ)c, (2.2

[4]. There we had a class of actions with world volume local

symmetries and rigid symmetries due to isometries of AdSand&f;, is the infinitesimal parameter of the local symmetry.
space. After gauge fixing local symmetries, we found that then the presence of a background fied, the fields of super-
gauge-fixed theory has conformal symmetry. The basic idegravity are shifted and the classical action is given by
is the same in supergravity: the gauge-fixed action can bg_[ ¢+ d]. This action is invariant undewo types of sym-
constructed in background-covariant gauges which respeghetries

the symmetry of the background. In the case of interest it is (1) Transformations which affect only the quantum fields

a conformal symmetry associated with the AdS backgroundd which will become the integration variables in the path
Our general analysis applies to the following class ofintegral:

theories(i)The so-called Poincasupergravitiesungauged

for which the Ad$.,xS" P 27*xE, background with Squan® =0, Squan®@ =R [p+ D&Y, (2.3

some form fields are a solution of classical field equations.

(i) Any of the gauged supergravities for which AdS space isThis results in

known to be a consistent solution of field equations. In some i i ,

cases these gauged supergravities correspond to the massless Sioc( @'+ D) =R' [ d+ P&, (2.4

modes of the higher dimensional supergravity compactified

on a sphere or on some other compact space. This is thghich is a symmetry of the actio®[ ¢+ P].

simplest case and for AgSt will be studied in detail. (2) Background symmetry. Transformations of the back-
We first recall the essential features of the background@round fields¢ are accompanied by transformations of the

field method for supergravity in general and specify it for thequantum fieldsb:

case of a background with isometries in Sec. Il. In Sec. Il o o )

we derive the conformal symmetry of the generating func- e =R'[Pl€loe, P =Ry [d]PIEL.. (2.9
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This results in and D# is a covariant derivative in the background metric
. . . g, - For the vector fields we have
Sa(¢'+ D) =R [d+ D] (2.6
. i . 1
so that the actiors, [ ¢+ @] is invariant. ng[gW,AM]JrSsource:f ddx\/g E(DMA”)Z

In view of the local symmetries, to define the path integral
we have to add to the classical action of supergravity some
gauge-fixing conditions and the ghost actions. The generat- +f dix\g A% (2.13
ing functional of the Green functions in supergravity is given

by It is usual to consider the gauge-fixing term quadratic in
_ - _ _ quantum flelds as in the examples above; in DeWitt's nota-
éW[‘f"J]zf dddcdcdc, €S#®.c.c.ca.d], (2.7)  tion this is} <I>'F”[¢]<DJ Together with the part of the clas-

sical action quadratic in fieldS?, it gives
Here S consists of four terms, a classical action in the back-
ground, the gauge-fixing action, the ghost action, and the
source term:

1 )
(Sa+ Sy b, @]= Eq)l(s,ij[¢]+ Fijlo) D'
(2.19

— _ This defines the free-background-dependent Green functions
+Synosl ¢, ®,C.C.c3]+ P (2.8 Gi[¢]:

S ¢,®,c,c,d]=Sy[p+ D]+ Syl ¢, P]

The integration in the path integral is performed over all _(S_+F_,)[¢]ij[¢]:5_k. (2.15
quantum supergravity fieldd' and over the Faddeev-Popov . '

antighostsc and ghosts and over the third ghosts. The  The basic property of the differential operatorsS;(
term Sys[ ¢,P] is designed to break all local symmetries of +F,. i)[#] and higher order verticeS;; . [¢] in the back-
the classical action. In this way the local gauge symmetry Obround field method is that they transform covariantly under
the first typedyuan: is broken and replaced by the Becchi- background field transformations. This means that for each
Rouet-Stora-TyutifBRST) symmetry due to the presence of ypper index the transformation is as in Eg.5) for ®' and
ghosts. However, the second, the background symmetry @br each index down as for the sourde
the classical action, is preserved by both the gauge-fixing Thus we have recalled here the well-known property of
condition in background covariant gauges, by the ghost ache background field method for supergravity which allows
tion, and by the source term: us to construct the generating functional for the Green func-

_ - tions of the theory in a background covariant way, i.e., by

S¢,d,c.c,I]=H ¢+ ch, P+ 6P,c+ dcC,C+ 6C,C3 keeping the following symmetry:
*96C3, ] 2.9 W[, 3]=W[ b+ S, I+ 563]. 2.16

Since we are mostly interested here in the tree approximation
of supergravity, we will not provide here the background This background symmetry is also present in the effective
symmetry transformations of the ghosts; it is sufficient toaction of the theory:
notice that it exists. However, the transformation of source

fields which preserves the background symmetry of the inte- [, @]=W[¢,J]-J;®', (2.17
grand in the path integral is important for our purpose and it
is given below: whereJ is replaced by the function of the background and
. classical fields according to the solution of
8cdi=JjR, [ 1€ (2.10
For example, the gravitational part of our integra@d) in Z_\;V[¢,J(¢,(§)]:(§i. (2.18

the path integra(2.7) is

S=Su[0,,,+hu ]+ Syl 9pv N uu]+ Sghosl 9, v CiC] Here one has to take into account that the background trans-
formation of the field®' is given by

+ f d\g h,,J~, (2.11)
where Jg=\[deg,,,[ and

5P =R, [ p]DI g (2.19

In the case that the background has isometries, which means

§ 1 that for some part of“, which will be denoted byg ,
ng[g;/,v’h,u,v]:J d X\/a EDphp/.L g'uVDo—hUV! o . .
(212 56" =R [ $]£¢=0, (2.20
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The generating functional for the Green functions of the The metric of our background A(;;$2><Sd*p*2 geom-
theory has the following symmetry: etry is

2

W[, I]=W[¢,3+ L, J]. (.29 [dr2+r2d02?]. (3.1

r 2w
ﬁ) de‘I?mnan-l-

r
Here the transformation of the sourcédor the particular

case we consider, when the background has isometries, §8ne can also rewrite this metric asn€0,...,p; m'=p
reduced to an action of the Lie derivative for a given field +1,... d—=1; r?=ynym)

with respect to the Killing vectors. For the effective action

we have the following symmetry: dg2=

2
dy™ S dy™ . (3.2)

r\ 2w
ﬁ) dxX"7nad X"+

T
I[¢,®]=T[,D+ L, D]. 2.2 _ o :
(¢, ®]=TT¢ 2 ] (2.22 In these coordinates the infinitesimal action of the BO(

When the path integral of supergravity is expanded near théL 1,2) isometry group i$4]

saddle pointb =®, one gets in the first approximation the . . 5 2hv .
generating functional for the correlators and the effective ac-  Jaas(§)X"= —&"(X,1) == £(X) = (WR)7| K s
tion describing all tree diagrams:

Wied 6 91=Su 0+ B+ S (6,81 43,8, (223 IOV =TT ZWRLVE,

~ ~ ~ Saad E)r=—E(X,r)=WAp(X)r, (3.3
Tired 6, P]1=Sal ¢+ D1+ Sy ¢, D1, (2.29 A °
where
oT ,®
_ "_;eé‘if’ 15 (2.25 £M(X) = M+ NI+ X pX M+ (KPA D= 2X7X- Ay ),
- 1
The iterative solution of E¢(2.25 gives®' as a functional Ap(x)= aamgm:)\D_ZX'AK (3.9

of the sources. It involves background covariant free Green
functionsG"[¢] and verticesSj[ ¢].Sjul 4], ... of the  gnggam \mn ) = Am are the constant parameters associated
theory. Symbolically the tree solution for the field can be  ith translationsP,,, Lorentz transformationM ,,, dilata-

written as tions D, and special conformal transformatiokig,. In case
1 that d>p+2, there is also a spheré"®~2 and we have
('i')i — ‘JJ + E‘JpGpmS,mjn[ ¢]Jqun+ . )G“[¢] SO(d_ P— 1) R Symmetry.
(2.29 Ssora—p-1y" =A™ py". (35

By inserting this tree field back into the right-hand side of Now we can apply the AdS arnid transformations to study
Eq. (2.23 for Wy, One gets the generating functional of all the symmetry of the generating functional of the supergrav-
connected Green functions of the theory in the tree approxiity in the background-covariant gauges.

mation. We will explain the main result for the simpler case of
only an AdS background in the case of gauged supergravity.
II. CONFORMAL SYMMETRY OF SUPERGRAVITIES The generalization to the more general situation when the
IN ADS SPACES IN THE BULK sphere is present is technically more involved. Also for defi-

] . ~niteness we will focus on the case of Ag®hich describes
The new interesting feature of the background fieldihe massless part of ten-dimensional supergravity compacti-
method comes from the fact that when we consider supefied on Ad$x S°. This part of Maldacena’s conjecture was

gravity in the fixed AdS background we are allowed to con-geveloped irf5—9] where actual calculations supporting the
sider only those symmetries of the generating functional foionjecture were presented.

the Green functions or effective action which do not change The path integral of the five-dimensionbl=8 gauged
the background. The background has isometries generated gyjpergravity in the AdSbackground is symmetric under the
the Killing vector fieldséy . Therefore the symmetry of the sometries generated by the Kiling vector fields,
generating functional is reduced to the action of the Lie de—5AdS(§)g ,=0, and we will use the notation=0,1,2,3;.
rivatives with respect to the Killing vectors of AdS space. Here m=M0,1,2,3 are coordinates of the four-dimensional
boundary which is at — .
First we focus on supergravity in the bulk. The action of

We assume here that the Jacobian of the background transform&dS symmetry on all sources to the supergravity fields is
tions on the quantum fields is trivial, i.e., that the background symgenerated by the Lie derivative with respect to the Killing
metry has no anomalies. vectorsé. These in turn coincide with what is known in the
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supergravity literature as a “general covariance” transfor- In our context the advantage of considering the sources to
mation of various fields in the action. By combining thesethe supergravity fields located only at the boundary of AdS
two notions we are getting the following symmetry transfor-space is the dramatic simplification of the conformal symme-
mations for the sources of the gravitational, vector, and scary comparative to the one in the bulk.
lar fields, J*”, J*, andJ, which are coupled to the super-  To find these symmetries we have to consider the limit of
gravity fields. The generating functional for the Greenour conformal symmetries in the bulk to the boundary at
functions (2.21) is symmetric under the following transfor- —o. We specify the case with AdS w=1. We will first
mations of sources: change the variables to=R?/r in which the AdS part of the

) ) ) metric is conformally flat,ds?=(R?/z%)(dx3+dZ?). In

—L M=\ =0\ E* N =5, E"I*,  (3.6)  these variables the boundary iszat 0. Clearly,

— L 4= 89,4 — 0,8, (3.7 E"(X,2) 0= (" () +Z2AR) 0= M) (4.1
—L£I=89,3, 3.9 and
and the corresponding transformations on fermionic sources. (89),—0=Ap(X)z, (4.2

A)\_ Am — - . -
Here £*=¢£7 for A 0’1’2:? _'S defined in Eq3.3) and the where the parameters of the rigid conformal symmeétigx)
last one, the component’, is equal to—wWAp(X)r, @ one  gnqA (x) are given in Eq(3.4). We will denote the sources

can see from Eq(3.3). _ _ placed at the boundary, which areindependent by7. To

. The effective action2.22 is symmetric ‘_J”der the follow- - fing the boundary limit of the conformal transformations

ing transformations of the effective fields: from the bulk we note that omindependent functions,
~Leu = €L+ 8N+ 8, (39 [E"(X,2) I+ E"(%,2) 0] 0= €™ () O (4.3)
—LA,=80\A,+d,8A,, (3.10  To study the limit to the boundary on tensors we need to use

—Cg(i:%)‘&)\&), (31]) [am%n(xvz)]ZﬂO:é’mén(X)! (44)
and the corresponding transformations on fermionic fields. [0,8%(X,2)],.0=Ap(X), (4.5
The transformations shown in Eg&.6), (3.7), and(3.8)
represent the conformal symmetry of the generating func- [3,6"(X,2)], 0=2AR(X)z=0 (4.6

tional for the correlators of the supergravity fields in the bulk
at finite values of. Note that so far our sources are defined ~z
in the bulk and differentiating the generating functional over [Im“(X,2)]z—.0= ImAp(X)2=0. 4.7

the sources one can get all correlators of supergravity fields |; foj1ows that the components of the contravariant tensors

in the bulk. , , , _in the bulk directionz are not mixed anymore with those in
If the actual calculation of the generating functional is yiractionsx:

performed, e.g., if the term quadratic dnis found, it takes
the form _ﬂtgound mn_ gl(x)aljmn_ ﬁlgmjln_ﬁlgnjml,

W(G,,,(r),I#7(X,r),I4(X,1),J(X,r), .. .) 4.8
1 —LPT=E9.T"- 0T, 4.9

= EJ dxdrd*x'dr’ I(x,r)G(x,r;x’",r")I(x",r' )+ ... .
_ﬁgoundj: g|(9|$ (41@

(3.12
with £™(x) defined in Eq.(3.4).

This expression has to be invariant under the transformations The transformation of the remaining components of the
(3.8) which puts constraints on the Green functi®nn the  sources is
bulk. The same takes place for any other correlator.

_E?oundjmz: §I(X)(?|jmz— o"|§m._7lz—AD(X)jmz,

IV. CONFORMAL SYMMETRY OF SUPERGRAVITIES (4.1
ON THE BOUNDARY OF THE AdS SPACES bound 77+l Sy mz
— LBOUNT72= £(x) 3y T 2= 2Ap(X) T™,

The basic idea developing Maldacena's conjectilg (4.12
was suggested by Gubser, Klebanov, and Polydkdand
Witten [7]. It was to place the sources to the supergravity — L2 T7= €9 TP~ Ap(X) T~ (4.13

fields at the boundary and calculate the correlators of the
fields on the boundary and compare them with those of the The generating functional depending on boundary sources
YM theory. has the following symmetry:
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Wbound[ﬂ:w[frggoundﬂ, (4.14 ing inversion, translation, and another inversion one can find
out that the generating functional is indeed invariant under
where the transformation of all sources at the boundary isonformal symmetry as predicted by our analysis. The func-
given in Eqgs.(4.8—-(4.13. tional for the two-point correlators of vector fields found in
Note that we have suppressed here the dependence ph9] has the form
internal indices of the vectors and scalars since for our
simple example conformal symmetries do not act on them; o T n by o
the only relevant ones are those which show the behavior ~ WTJ "1=¢ | dxd"yT2(X) Tu(y) (419 omn
under general coordinate transformations. 1
— ﬁman)ﬁ . (5.4
V. COMPARISON WITH AVAILABLE CALCULATIONS Ix—yl
'Consider here the_ calcu]ations_of the two-point and threeThe fabc part of the three-point correlator was found[Bi:
point correlators available in the literatum 7,9. For mass-

less scalars in a Euclidean signature we have
W J™M=c f d'xdlyd*273(x) T3(y) T F**° (5.5
JX) A
W(Z)[ﬂ=cf d‘&d“yL(ey). (5.2 o o
x—y| X [kiDni(x,y,2) + ko Cafii(xy, 2) 1, (5.6)

This answer is in agreement with our form of conformal\yhere the tensor® andC have particular form presented in
symmetry which states that under the transformatidn0  [9]. 1t may be difficult but not impossible to establish that the
the functionaM has to be symmetric. These transformationsyenerating functional for the correlators of supergravity

include translation, dilatation, and Lorentz transformationsgie|ds on the boundary calculated @] indeed has the re-
which are all obvious, but also the special conformal transyyired symmetry properties required by E@é.14), (4.9).
fogaﬂops, which are not so obvious. The transformation Ofrhis would confirm that the choice of the inversion-covariant
WHLT] is bulk-to-boundary Green functions [®] corresponds to the
correct choice of the background-field-covariant gauge in the

LT X)]TY) + T(X) AdS background.

S WA 7]= —cf d*x dty

Ix=y[®
X[ LTy} VI. DISCUSSION
In this paper we have addressed the problem which natu-
:Cf d'x d4y|x—y|8{[§(X)mﬁmJ(X)]ﬂy) rally comes to the mind of anybody familiar with the differ-

ence between ungauged supergravity, gauged supergravity,

+ IX)E(Y)"ImT(Y) ]} (5.2  and conformal supergravity. As phrased by Stglle], why
should Poincaresupergravity know anything about confor-

After integration by parts, and using E@.4), we obtain mal symmetry at all? The answer is that in general, indeed,

only conformal supergravity has local conformal symmetry
and both ungauged and gauged supergravities do not have
anything close to conformal symmetry. However, when
placed in the consistent AdS background with symmetries
isomorphic to the conformal group these two versions of
. supergravity upon gauge fixing do have conformal symmetry
as conjectured ifil]. In particular the generating functional
(5.3  for all correlators of supergravity fields everywhere in AdS
space-time has conformal symmetries of the type which were
Inserting the explicit expression &f" in Eq. (3.4) leads to  found previously on the world volumeg] of brane actions.
the cancellation of the terms in the square brackets. They are characterized by an unusual form of the special
For vectors in7,9] the relevant correlators are given for conformal symmetry. Now we have found the analogous
two-point functions and 9] for three-point functions. In- symmetries in the space-time supergravity.
stead of doing a direct verification of our symmetries when We also studied a particular case when the sources of the
J™ sources are nonvanishing, as shown for scalars abovsupergravity fields are placed only on the boundary of AdS
we may use some important properties of the correlators espace-time, as proposed[i,7]. The conformal symmetry of
tablished in[9] which will allow us to confirm that there is supergravity in the bulk is simplified and reduced to the
an agreement with our form of symmetries[®] the bound- simple rigid conformal symmetry, consisting as usual of
ary correlators are found to be covariant under inversiortranslations, Lorentz transformations, dilatations, and special
which means that the generating functio®§l7™] is invari- ~ conformal transformations. For example we found that the
ant under inversion. The relevant nonlocal functional is alsgyenerating functional of the correlators of scalar fields of
invariant under translational symmetry. Therefore by apply-supergravity on the boundary is symmetric under the trans-

—4Ap(X)

1
5§W(2)[‘7-|:Cf d*x dﬂ/wj(x)j(y)

LE)™=E(Y)™(Xm— Ym)
Ix—y|?
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formations of thez-independent scalar sourcéplaced at the is present in supergravities in AdS spaces. This part of the

boundaryz—0: famous CFT-AdS correspondenf® is no conjecture any-
more: if one uses the correct Feynman rules for the calcula-
ST(X)=[a™+ Aa"™n+ ApX™+ (XPAY tions of tree diagrams in supergravity in the particular setup,
P explained in this paper, conformal symmetry is guaranteed to
—mex'AK)]m J(X). (6.1  be there, in the form of Eq2.21) in the bulk and Eq(4.14)

at the boundary.

Note addedAfter this paper was written we saw a recent
aper of Liu and Tseytlif11] where new calculations of
Supergravity correlators on the boundary of AdS space are
performed. In particular the aim was to find the graviton-

It should also be stressed that in Witten diagrqih$g], as
our analysis shows, the Green functions which are not touc
ing the boundary are in fact bulk-to-bulk Green functions
which are different from bulk-to-boundary correlators useddilaton-dilaton correlator “without making priori assump-

in the calculations performed so far. Such bulk-to-bulk COTtions about the conformal invariance of the result.”” A de-

relators will be always present in the tree level bounda.rytailed study of this set of calculation@nd any new one

supergra\_/ity starting with four-point cqrrelators as well as N vhich may appear soowould be interesting to carry out
all I.g?]tp.g'?r?éatr)ni'( gzgsﬁofgen?n ;'{Irt]r?got?()s ﬁ:jeaconformalll % rom the perspective of our proof of the conformal symmetry
vanant | u y unadary, as Well 8%y the full generating functional for the boundary correlators

all vertices of the theory. .
Thus we have found a clear explanation via a backgrounglc supergravity on AdS.

field method why in ungauged or gauged supergravity one

encounters rigid conformal symmetry. Note that our proof ACKNOWLEDGMENTS
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