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Longitudinal subtleties in diffusive Langevin equations for non-Abelian plasmas
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Bödeker has recently argued that non-perturbative processes in very high temperature non-Abelian plasmas
~such as electroweak baryon number violation in the very hot early Universe! can be quantitatively described,
to leading logarithmic accuracy, by a simple diffusive effective theory. Bo¨deker’s effective theory is intended
to describe the long-distance transverse electric and magnetic fields which are responsible for non-perturbative
dynamics. His effective theory, however, also contains long-wavelength longitudinal electric fields. We discuss
several subtleties in the treatment of longitudinal dynamics which were not closely examined in Bo¨deker’s
original treatment. Somewhat to our surprise, we find that within its domain of validity Bo¨deker’s effective
theory does correctly describe both longitudinal and transverse fluctuations. We also show that, as far as the
transverse dynamics of interest is concerned, Bo¨deker’s effective theory could be replaced by a transverse-only
theory that removes the longitudinal dynamics altogether. In the process, we discuss several interesting aspects
of stochastic field theories.@S0556-2821~99!01012-7#

PACS number~s!: 11.10.Wx, 05.20.Dd, 05.60.2k, 11.15.2q
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I. INTRODUCTION

Non-perturbative processes in a hot non-Abelian plas
at or near equilibrium are associated with slow evolution
magnetic gauge fields.1 The characteristic spatial scaleR of
non-perturbative gauge field fluctuations and the associ
time scalet for their evolution are of order

R;
1

g2T
, t;

1

g4T ln~1/g!
, ~1.1a!

for small coupling. Alternatively, the characteristic spat
momentumk and frequencyv are

k;g2T, v;g4T ln~1/g!. ~1.1b!

For a review, see the introduction of our earlier paper@6#.
The logarithm appearing in the time scale is a recent
interesting result of Bo¨deker@7#, whose physical interpreta
tion we discuss in Ref.@6#.

Throughout this discussion, ‘‘hot’’ means that the tem
perature is large enough that the running couplinga(T) is
small, that chemical potentials are ignorable, and that the
no spontaneous symmetry breaking. Examples of n
perturbative processes include chirality violation in h

1This is explicitly argued in Ref.@1#, but this fact is also implicit
in earlier analysis of specific thermal effects such as plasmon da
ing rates of fast-moving particles@2–4# and the color conductivity
@5#.
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QCD, and baryon number violation in hot electrowe
theory ~in its high-temperature symmetric phase!.

Bödeker@7# has proposed an effective theory appropria
for the scales~1.1a!,~1.1b! above. His effective theory is a
classical field theory that involves only gauge fields wit
dynamics governed by the diffusive Langevin equation

sE5D3B2z. ~1.2!

Here,D is the covariant derivative acting in the adjoint re
resentation. In Bo¨deker’s proposal,z is a Gaussian white
noise random force, normalized as2

^z i
a~ t,x!z j

b~ t8,x8!&52sg2Tdabd i j d~ t2t8!d (3)~x2x8!,
~1.3!

where i , j anda,b are spatial vector and adjoint color ind
ces, respectively. This effective theory is supposed to giv
quantitative description of non-perturbative physics in t
hot plasma to leading order in the logarithm of the couplin
In other words, corrections to this effective theory are su
pressed only by powers of 1/ln(1/g). In Ref. @6#, we showed

p-

2We will scale our gauge fields by a factor ofg, so covariant
derivatives contain no explicit couplings while the action~or en-
ergy! has an overall factor of 1/g2. In addition, we will take the
gauge group generators, and also the gauge fieldA[AaTa, to be
anti-Hermitian. Hence, the covariant derivative is simplyD5“

1A, and for the adjoint representation (Ta)bc5 f bac with the struc-
ture constantsf abc real and totally anti-symmetric.
©1999 The American Physical Society07-1
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that s can be interpreted as the color conductivity3 of the
plasma, which is given by@5,7,6#

s'
mpl

2

gg
, ~1.4!

wherempl is the plasma frequency and

gg'aCATln~1/g! ~1.5!

is the damping rate for hard thermal gauge bosons@2–4#.
The ' sign indicates equality at leading logarithmic orde
@That is, we are not distinguishing ln(2/g) from ln(1/g) in
Eq. ~1.5!, but the coefficient of the logarithm is correct.# The
plasma frequencympl is well known4 at leading order in
coupling and is of ordergT.

Bödeker’s effective theory is well suited to numeric
simulation because it is classical, insensitive to ultravio
cutoffs @6#, and when cast intoA050 gauge generates
straightforward local equation of motion for the evolution
A:

s
d

dt
A52D3D3A1z. ~1.6!

A numerical investigation of Bo¨deker’s effective theory and
its implication for electroweak baryon number violation h
been recently carried out by Moore@8#.

Nevertheless, there is something peculiar about the ef
tive theory~1.2!. In a high temperature plasma, static elect
fields ~or, more generally, longitudinal fields! are Debye
screened@9#. The screening distance is of order 1/gT,
which is small compared to the spatial scaleR;1/g2T of
interest to us. More generally, the longitudinal modes of
gauge field are screened while, at low frequenciesv!k, the
transverse modes are not. Because of Debye screening
the transverse electric and magnetic fields which are rele
for producing non-perturbative fluctuations at the sca
~1.1a!,~1.1b! quoted earlier. Longitudinal fields are irre
evant. Nonetheless, Bo¨deker’s effective theory~1.2! does de-
scribe long-distance longitudinal fluctuations. The longitu
nal fields are those pieces ofE which contribute toD•E and
which perturbatively correspond to polarizations parallel
the momentumk. Dotting D into both sides of Eq.~1.2!, one
sees that

sD•E52D•z. ~1.7!

3We are using ‘‘color’’ as a descriptive name for some no
Abelian gauge field. It should be emphasized that all discussio
‘‘color’’ is applicable to the dynamics of, in particular, the SU~2!
electroweak gauge field.

4For hot electroweak theory with a single Higgs doublet, for
stance,mpl

2 5
1

18 (512nf)g
2T2 at leading order ing, wherenf53 is

the number of fermion families, and the adjoint CasimirCA52 in
Eq. ~1.5!. For QCD with n flavors of quarks,mpl

2 5
1
3 (11

n
6 )g2T2

andCA53, wheren is the number of relevant quark flavors~u, d, s,
c, b, t!.
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D•E is therefore not zero, and so the fields in Bo¨deker’s
effective theory~1.2! are not purely transverse. Our purpo
in this paper will be to show two things: first, that Bo¨deker’s
original derivation of the long-distance longitudinal dynam
ics relied on a questionable approximation which ignor
subtleties associated with longitudinal dynamics, but that
end result is nevertheless correct; and, secondly, that the
gitudinal dynamics is irrelevant and may be removed a
gether, if one is purely interested in describing physic
gauge-invariant quantities that depend only on the transv
fields ~for example, the rate of anomalous charge violatio!.
The last point would be trivial in an Abelian theory, becau
then Eq.~1.2! would be linear in the fields and could b
projected into one equation involving only the transve
fields and another independent equation involving only
longitudinal fields. The point is much less trivial in a no
Abelian theory because of the non-linearity of Eq.~1.2!.

II. REVIEW OF BÖ DEKER’S DERIVATION

A. The effective Boltzmann-Vlasov equation

We will refer to gauge fields associated with the scales
interest~1.1a!,~1.1b! as ‘‘soft’’ fields. In contrast, the domi-
nant excitations in the hot plasma correspond to moment
order T and will be called ‘‘hard.’’ On his way to deriving
the effective theory~1.2! for the soft gauge fields, Bo¨deker
@7# first derived an effective Boltzmann-Vlasov equation f
the interaction of those fields with hard excitations:

~Dt1v•Dx!W2E•v2j52dC@W#, ~2.1a!

DnFmn5Jm[mD
2 ^vmW~v!&v , ~2.1b!

where

dC@W#~v![gg^I~v,v8!W~v8!&v8 , ~2.2a!

and

I~v,v8![d (2)~v2v8!2
4

p

~v•v8!2

A12~v•v8!2
. ~2.2b!

Here,mD
2[3mpl

2 is the leading-order Debye mass~squared!.
The first equation~2.1a! is a linearized Boltzmann equatio
for the hard particles in the presence of a soft electrom
netic field, whereW(v,x,t) represents the color distributio
of those particles andv is a unit vector representing the ha
particles’ velocities.5 dC represents a linearized collisio
term for 2→2 scattering that randomizes the color charg
of the hard particles@6#, andj is a source of random therma
noise. The second equation~2.1b! is Maxwell’s equation,

-
of

5Technically,W is the adjoint representation piece of the dens
matrix describing the color charges of the hard excitations, summ
over the various species of excitations and integrated over the
ergy of excitations~for a fixed direction of motionv). It is normal-
ized in a way that simplifies the resulting equation. See Ref.@6# for
the explicit definition.
7-2
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LONGITUDINAL SUBTLETIES IN DIFFUSIVE . . . PHYSICAL REVIEW D60 025007
where all the fields on the left-hand side are to be underst
as soft fields, and the current on the right side is the s
momentum component of the current created by hard exc
tions. This current is proportional to the densityW of hard
particles and the velocities of those particles, wherevm

means (1,v). In the explicit form~2.2a!,~2.2b! for the colli-
sion term,^•••&v denotes averaging over the direction ofv
andd (2) is a d function defined on the unit two-sphere wi
normalization

^d (2)~v2v8! f ~v8!&v85 f ~v!. ~2.3!

See Refs.@7,6# for the derivation of the explicit form~2.2b!
of the linearized collision operator.

One may avoid worrying about the details of noise ter
such asj until one reaches the final effective equation~1.2!,
at which point it is possible to then argue how the noise m
in fact appear@6#. However, since in this paper we will b
discussing various subtleties, it will be useful to keep tra
of the noise explicitly at each step we consider. In particu
Bödeker@7# derived that the appropriate normalization of t
noise in the effective Boltzmann-Vlasov equation~2.1a!,
~2.1b! is related to the collision integral:

^ja~ t,x,v!jb~ t8,x8,v8!&

5
2g2T

3s
I~v,v8!dabd~ t2t8!d (3)~x2x8!. ~2.4!

We will not review any further the origin of the effectiv
Boltzmann-Vlasov equations~2.1a!,~2.1b! and direct the
reader instead to Bo¨deker’s original work@7# and our alter-
native derivation@6#. It is in the step from these kinetic equa
tions to Bödeker’s final effective theory~1.2! that subtleties
in the treatment of longitudinal physics creep in, and tha
the focus of this paper.

B. Solving for W

Bödeker obtains his final effective theory~1.2!, at
leading-log order, from the effective Boltzmann-Vlaso
equations~2.1a!,~2.1b! by arguing that the covariant deriva
tive terms in the Boltzmann equation~2.1a! are together of
orderg2TW and so can be ignored compared to the collis
term, which is of orderggW;(g2Tlng21)W and hence large
by a logarithm. There is an important subtlety to this a
proximation which will be examined in the next section. B
accepting this argument at face value for now, if one dro
the covariant derivative terms then the Boltzmann equa
becomes simply

E•v1j'dC@W#. ~2.5!

Formally, the solution is

W5~dC!21~E•v1j!, ~2.6!

wheredC is to be understood here as an operator acting
the space of~adjoint-representation! functions of a unit vec-
tor v. This result forW yields the spatial current appearing
Eq. ~2.1b!,
02500
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J5mD
2 ^v~dC!21~E•v1j!&v . ~2.7!

Next note thatdC preserves the parity~in v) of functions
it acts on. In other words,dC maps even~odd! functions of
v into even~odd! functions ofv. ~In contrast, thev•Dx op-
erator that we dropped does not.! Moreover, in the space o
odd functions ofv, dC as given by Eqs.~2.2a!,~2.2b! reduces
to simply dC5gg . So, sincedC is a symmetric operator
and since it acts to the left on the odd functionv in Eq. ~2.7!,
we can replace (dC)21 by gg

21 in that equation to obtain

J5
mD

2

gg
^v~E•v1j!&v5sE1z, ~2.8!

where

z[3s^vj&v . ~2.9!

Using the correlation~2.4! for j, one produces the correla
tion ~1.3! asserted earlier forz. Taking the spatial part of the
Maxwell equations~2.1b! and dropping thedE/dt term
which, for the scales~1.1a!,~1.1b! of interest, is smaller~by
four powers of coupling! than thesE term, one obtains
Bödeker’s final effective theory~1.2!.

III. LONGITUDINAL SUBTLETIES

In the introduction, we noted that Bo¨deker’s effective
theory~1.2! contains a fluctuating longitudinal electric field
This may seem puzzling since longitudinal electric fields
Debye screened. In this section, we will take a closer look
how both Debye screening, and Bo¨deker’s effective Lange-
vin equation, do emerge from the Boltzmann-Vlasov eq
tions ~2.1a!,~2.1b!.

A. Zero mode of dC

In the last section, the Boltzmann equation forW was
simplified, at leading-log order, by arguing thatdC domi-
nates over the convective derivativeDt1v•Dx by a power of
ln(g21). This is not quite correct, however, because the
eratordC has an eigenvalue which isnot ordergg and which
does not dominate over the convective derivative; spec
cally, dC has a zero mode.

The necessity of this zero mode was noted by Bo¨deker,
who observed that the effective Maxwell equation~2.1b! for
the soft fields requires conservationDmJm50 of the current
Jm5mD

2 ^vmW(v)&v generated by the hard particles. From E
~2.1a!, this conservation requires^dC@W#&v50, which is in-
deed satisfied by Eqs.~2.2a!,~2.2b!.

The fact ^dC@W#&v50 can be rephrased to say that t
symmetric operatordC has null states: it annihilates any
thing that is independent ofv. ~This can be written in bra-ke
notation in v-space aŝ constantudCuW&5^WudCuconstant&
50 for anyW.! This point will be important later on, so le
us give an alternative way of understanding it. The collisi
term dC does not care, at leading-log order, about the
namics of the soft fields. In particular, it does not care t
the soft effective theory is a gauge theory, with a local co
symmetry, instead of a non-gauge theory, with merely a g
7-3
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bal color symmetry. So, from the point of view of the calc
lation of dC at leading-log order, the theorycouldhave been
one where it was meaningful to talk about the total co
charge of the system. If one then imagined adding an infi
tesimal chemical potentialm for this total color charge, the
resulting equilibrium density would be

n5@eb(ep2gmaTa)71#215n01n0~16n0!bgmaTa1O~m2!
~3.1!

for each particle type, wheren0 is the m50 equilibrium
distribution. In equilibrium, the collision term in a Boltz
mann equation always vanishes by detailed balance. Dif
ent values ofm correspond to different equilibrium state
and the collision term must therefore vanish for allm. That
means that the linearized deviation

dn5n0~16n0!bgmaTa ~3.2!

of the equilibrium distribution~3.1! away fromn0 must cor-
respond to a null state of the linearized collision opera
dC. The deviation~3.2! is isotropic and homogeneous—it
independent of bothv andx. As a result, when re-expresse
in terms of the functionW(x,v) used to parametrize colo
distributions of the hard particles in the linearized Boltzma
equation~2.1a!, the deviation~3.2! corresponds toW(x,v)
5 constant. That means that a constantW is a null vector of
dC. But since collisions are local inx ~in the effective
theory!, the x dependence ofW is irrelevant, and so anyW
which does not depend onv is a null vector of the linearized
collision operatordC.

B. Longitudinal and transverse projections

Before continuing, it is worthwhile to introduce longitu
dinal and transverse projection operators. Perturbatively,
longitudinal projection operator for the electric field is

~PL
pert! i j 5 k̂i k̂ j5¹ i

1

¹2 ¹ j . ~3.3!

The gauge-covariant non-perturbative generalization is

PL
i j [Di

1

D2 D j , ~3.4!

whereD2 meansD•D. The transverse projection operator
of course

PT
i j 5d i j 2PL

i j . ~3.5!

It is the longitudinal electric field which couples to extern
charges, since Gauss’ law readsD•E5r and since
D•(PTE)50. And it’s the transverse electric field that
produced byD3B in the effective theory~1.2! sincePL(D
3B)50. As mentioned in the Introduction, the precise se
ration between longitudinal and transverse dynamics is
transparent from this simple discussion because of the n
linear dependence ofD3B on the underlying vector poten
tial A.
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C. Solving for W „again…

To examine the difficulties caused by the presence o
zero mode ofdC, we now return to the effective Boltzmann
Vlasov equation~2.1a!,~2.1b! and will repeat the analysis o
Sec. II B, this time being more careful about how we tre
the convective derivative compared todC. Formally, the so-
lution for W is

W5
1

Dt1v•Dx1dC
~v•E1j!, ~3.6!

or W5G(v•E1j), whereG denotes the inverse of the lin
earized kinetic operator,

G[@Dt1v•Dx1dC#21. ~3.7!

This fluctuation in the distribution of hard excitations pr
duces a current response@from Eq. ~2.1b!# of

J5mD
2 ^vG~v•E1j!&v , ~3.8!

and the~color! charge density

D•E5J05mD
2 ^G~v•E1j!&v . ~3.9!

One may easily check that the current is conserved~as it
must be!, since

D0J01D•J5mD
2 ^~Dt1v•D!G~v•E1j!&

5mD
2 ^@12dCG#~v•E1j!&

50. ~3.10!

The ^v•E1j&v term vanishes due to isotropy,^v&v50, and
the lack of bias in the noise,̂j&v50. And ^dCG(v•E
1j)&v vanishes becausedC is acting ~to the left! on its
v-independent zero-mode.6

D. The problem with the naive derivation

In following subsections, we will discuss how to evalua
the operator inverse that definesG. To begin, however, it is
useful to see how the zero-mode problem manifests itse
a simple example of matrix inversion. To this end, let us
the moment replace the Green functionG of Eq. ~3.7! by that
of a simplified finite dimensional example. First, imagin
that the gauge interactions are Abelian, so thatDt andDx can
be replaced by simply2 iv andik, respectively. Next, imag-
ine that the infinite-dimensional space of possible functio
of v, on whichdC acts, is truncated to the four-dimension
space of functions that are either independent ofv or linear
in v. We wish to examine the matrix representing the act
of 2 iv1v•Dx1dC within this truncated space. In order t

6In slightly more explicit notation, this term is
gg^I(v9,v8)G(v8,v)@v•E1j(x,v)#&v,v8,v9 . It vanishes because
^I(v9,v8)&v95^I(v9,v8)&v850.
7-4
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distinguish clearly between longitudinal and transverse ph
ics, it is convenient to choose a basis$ f a(v)%, a50, . . . ,3,
where

f 0~v!51, f i~v!5A3êi•v, ~3.11!
r
e
th

q

02500
s-and êi are three mutually orthonormal unit vectors withê1

[ k̂ pointing in the direction ofk. The overall normalization
has been chosen so that^ f i f j&v5d i j . In this basis, the matrix
elements of̂ f i u2 iv1v•Dx1dCu f j&v are
S 2 iv
i

A3
k

i

A3
k gg

2 iv1gg

2 iv1gg

D . ~3.12!

The inverse operator, corresponding toG in our truncated space, is

Gtrunc5S gg Y S 2 iggv1
1

3
k2D 2

i

A3
kY S 2 iggv1

1

3
k2D

2
i

A3
kY S 2 iggv1

1

3
k2D 2 ivY S 2 iggv1

1

3
k2D

~2 iv1gg!
21

~2 iv1gg!
21

D . ~3.13!
ri-

in

so
se
.
m-
The v→0 limit is particularly simple:

Gtrunc→S 3gg

k2
2

iA3

k

2
iA3

k
0

gg
21

gg
21

D . ~3.14!

In contrast, the naive derivation of Bo¨deker’s theory corre-
sponds to replacing2 iv1 iv•k1dC by dC, and the corre-
sponding ‘‘inverse’’ would then be

S `

gg
21

gg
21

gg
21

D . ~3.15!

As one can see, there is no difference in the transve
sector~spanned byf 2,3), but there is a huge difference in th
longitudinal sector. As a particular example, consider
noiseless part of the currentJ, given in Eq.~3.8!; namely
mD

2 ^vGv•E&v . In the naive derivation, as represented by E
~3.15!, this contribution gives
se

e

.

mD
2 ^vgg

21v•E&v5
mD

2

3gg
E. ~3.16!

In our Abelian truncated-space calculation ofG, however, it
is instead given by

mD
2

3
~G11PL1G22PT!E5

mD
2

3gg
PTE ~3.17!

in the v→0 limit. The longitudinal part ofE is projected
out. This is quite different from the result of the naive de
vation.

E. Low-frequency, long-wavelength dynamics

We will now show that, despite the major difference
G21, one nonethelessdoes recover Bo¨deker’s effective
theory even for longitudinal physics. To do so, we will al
return to the full, original non-Abelian problem and dispen
with the truncated Abelian model of the previous section

If we restrict our attention to frequencies and wavenu
bers which are small compared to the damping rate,v,k
!gg , then in the Greens’ functionG we could drop the
convective derivative compared todC were it not for the fact
thatdC has a zero-mode. To deal with this, letP0 denote the
projection operator onto the zero-mode ofdC, so that
7-5
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P0~ f ~v!![^ f ~v!&v , ~3.18!

and separate the convective derivative into zero-mode
non-zero-mode pieces,

Dt1v•D5~Dt1v•D!P01P0v•D

1~12P0!~Dt1v•D!~12P0!. ~3.19!

To see this, note thatDt commutes withP0, and that
P0v•DP050. The last term of Eq.~3.19! only perturbs the
non-zero eigenvalues ofdC, and may be neglected provide
v andk are small compared togg . @For k5O(g2T) this is a
leading-log approximation.# The first two terms of Eq.~3.19!
are rank one perturbations which will lift the zero-mode
the linearized kinetic operator. And one may evaluate exp
itly the change in the inverse of an operator produced
adding a finite rank perturbation. In this case, a short exer
shows that

G.@~Dt1v•D!P01P0v•D1dC#21

5~12P0!dC21~12P0!1gg
21~gg2v•D!

3
P0

ggDt2
1
3 D2

~gg2v•D!. ~3.20!

~To verify the last equality, recall thatdC is nothing but
multiplication by gg when acting on odd functions ofv.
Hence,dCv•DP05ggv•DP0.!

Now pause to note the correspondences of this result
the truncated Abelian results of the previous section. The
inverse~3.20! gives

^G&v.gg@ggDt2
1
3 D2#21, ~3.21a!

^vG&v.
1
3 D@ggDt2

1
3 D2#21, ~3.21b!

^Gv&v.@ggDt2
1
3 D2#21 1

3 D, ~3.21c!

^vGv&v.gg$12 1
3 D@ggDt2

1
3 D2#21 1

3 D% →
Dt→0

1

3gg
PT ,

~3.21d!

for v,k!gg . These are simple non-Abelian generalizatio
of Eq. ~3.13!. ~The factor of 3 differences just reflect th
normalizations of our chosen basis functions in the last s
tion.!

The form~3.20! for G may now be inserted into Eqs.~3.8!
and ~3.9!. For the charge density, one finds

D•E5J052gg@ggDt2
1
3 D2#21~sD•E1D•z!, ~3.22!

or

FDt1
s

mD
2 ~2D21mD

2 !GD•E52D•z, ~3.23!

wheres[ 1
3 mD

2 /gg , andz[3s^vj&v . And for the current,
from Eqs.~3.8! and ~3.22!,
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s

mD
2

D~D•E!. ~3.24!

Inserting this into the Maxwell equation2DtE1D3B5J
gives

DtE1sE2
s

mD
2

D~D•E!5D3B2z. ~3.25!

This local equation of motion is the exact result which fo
lows from approximatingG as shown in Eq.~3.20!. How-
ever, that form forG was based on the assumption that t
frequencies and wavevectors of interest are small comp
to the damping rategg . Sincegg is O(g2Tlng21), this means
thatv is tiny compared to theO(T/ lng21) conductivity, and
that k is much smaller than theO(gT) Debye mass. Hence
there is no point in retaining theDtE or D(D•E) terms in the
effective equation~3.25!. Dropping these terms immediatel
yields Bödeker’s equation~1.2!. In other words, a more care
ful treatment of the effect of the zero mode indC does not
produce any difference~in leading-logarithmic approxima
tion! to the resulting effective theory.

F. Recovering Debye screening

To see how Debye screening emerges from the kin
theory ~2.1a!,~2.1b! return to Eq.~3.6! for W and now as-
sume that the scales of interest are in the perturbative reg
where k@g2T and/or v@g4Tlng21. @In other words, the
necessary conditions~1.1b! for non-perturbative fluctuations
are not both satisfied.# In this regime, the gauge fields in th
covariant derivatives appearing in the Greens’ functionG
may be treated as small.7 ExpandingG in powers of the
gauge field, the leading term,

G.@] t1v•¹x1dC#21, ~3.26!

is diagonal in momentum space. Fourier transforming
~3.9! for the charge density then yields~to leading order in
the gauge field!

ik•E5mD
2 ^G̃v&v•E1mD

2 ^G̃j&v

5mD
2 ^G̃v•k&v

k•E

k2
1mD

2 ^G̃j&v

52 imD
2
„11 iv^G̃&v…

k•E

k2
1mD

2 ^G̃j&v , ~3.27!

or

@k21mD
2 ~11 iv^G̃&v!# ik•E5mD

2k2^G̃j&v , ~3.28!

with

7For a more detailed justification, based on a computation of
power spectrum of gauge field fluctuations, see Ref.@1#.
7-6
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G̃~v,k!5@2 iv1 iv•k1dC#21, ~3.29!

andE andj now denoting the (v,k) Fourier components o
these fields. In the first step of Eq.~3.27!, we used the fact

that, with gauge fields neglected inG̃, the only vector which
^Gv&v can depend upon isk, and therefore only the longitu
dinal component ofE can contribute to the result. The fo

lowing step used̂ G̃( iv•k2 iv)&512^G̃dC&51 which is
another consequence of the zero mode indC. The result
~3.28! shows thatk•E satisfies a diffusive Langevin equatio

in which the noise and damping depend on^G̃j&v and^G̃&v ,
respectively.

The power spectrum of charge density~or D•E) fluctua-
tions is defined as

rL~v,k![E dtd3xeivt2 ik•x^J0~ t,x!J0~0,0!&j . ~3.30!

Using Eq.~3.28! to expressD•E in terms of the noisej, and
then recalling that the covariance of the noisej, as given by
Eqs.~2.4! and~2.2a!,~2.2b! is proportional todC, allows one
to write the power spectrum as

rL~v,k!5mD
4k4

Š^G̃j&v^jG̃†&v8‹j /uk21mD
2 ~11 iv^G̃&v!u2

52g2TmD
2k4 Re^G̃&v /uk21mD

2 ~11 iv^G̃&v!u2

52
2T

v
Im

g2k4

k21mD
2 ~11 iv^G̃&v!

. ~3.31!

Once again, this answer is valid providedk@g2T and/orv
@g4Tlng21 since we neglected~for this discussion only! the
soft gauge fields in the covariant derivatives. Furthermork
and v must be small compared toT, since this is a basic
requirement for any kinetic theory description to be valid

Linear response theory, applied to the underlying qu
tum field theory, shows that the power spectrum

rL~v,k![E dtd3xeivt2 ik•x^ 1
2 $J0~ t,x!,J0~0,0!%&

~3.32!

~defined with a symmetrized ordering of quantum operato!
is related to the retarded charge-density charge-density
relator

DR~v,k![ i E dtd3xeivt2 ik•xu~ t !^@J0~ t,x!,J0~0,0!#&,

~3.33!

by the fluctuation-dissipation relation

rL~v,k!5@2n~v!11#Im DR~v,k!, ~3.34!

wheren(v)5@ebv21#21 is the equilibrium Bose distribu
tion function. And the retarded correlatorDR(v,k) is the
analytic continuation of the Euclidean space~time-ordered
02500
-

or-

imaginary-time! correlator DE( ivn ,k) from the imaginary
Matsubara frequencies to~just above! the real frequency
axis.

By comparing Eq.~3.31! to the form ~3.33!, the kinetic
theory result for the power spectrum may be converted to
equivalent result for the retarded correlator. The leading f
tor of T/v is just the low-frequency~classical! limit of the
Bose distribution function, and hence the retarded cha
density correlator is

DR~v,k!5g2k22
g2k4

k21mD
2 ~11 iv^G̃&v!

. ~3.35!

The local ~and temperature-independent! g2k2 term, which
does not contribute to the imaginary part, is determined
the current-current Ward identities, or equivalently by t
requirement thatDR remain bounded ask→`. The low fre-
quency limit,

DR~0,k!5
g2k2mD

2

k21mD
2

5g2FmD
2 2

mD
4

k21mD
2 G , ~3.36!

reproduces the correct static equilibrium Debye-scree
charge density correlations.8 More generally, the kinetic
theory answer~3.35! reduces to the known hard-therma
loop result whenever the frequency or momentum is la
compared to the damping rategg . In this domain, the details

of the scattering operatordC are irrelevant, andG̃(v,k) may
be approximated byi @v2v•k1 i e#21. The resulting average
over v may then be performed analytically, and yields t
standard HTL result for the self-energy.

If neitherk nor v are large compared to the damping ra
gg , then the detailed form ofdC is significant. Evaluating

G̃(v,k) is non-trivial if k is comparable to the damping rat
However, ifk andv are both small compared togg , then the
previous representation~3.21a! may be used. Perturbatively
it gives

^G̃~v,k!&v5
gg

1
3 k22 ivgg

, ~3.37!

which gives

rL~v,k!uBödeker5
2g2T

s
k2. ~3.38!

8The factor ofg2 is present merely because we have chosen
scale all our gauge fields byg relative to the usual perturbativ
conventions. In, for example, Coulomb gauge,DR equals the one-
loop gauge field self-energyP00 ~which is just mD

2 in the static
limit !, plus the one-particle reducible contributions which sum
P00D00P00, where D005^A0A0&521/(k21P00) is the Debye-
screenedA0 propagator.
7-7
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This is the same result which emerges directly from the
lation sD•E52D•z in Bödeker’s effective theory, com
bined with Eq.~1.3! for the noise variance. This result
valid in the overlap of the perturbative and dampin
dominated domains, that is whenuk22 ivsu@g4T2 and

u 1
3 k22 ivggu!gg

2 .

IV. IRRELEVANCY OF LONGITUDINAL DYNAMICS

We have seen that Bo¨deker’s effective theory

sE5D3B2z, ~4.1!

within its domain of validity, does correctly describe bo
longitudinal and transverse fluctuations. However, it is
transverse part of the gauge fields which are responsible
interesting non-perturbative phenomena such as topolog
transitions and associated baryon non-conservation. One
wonder if it is possible to formulate an equally valid effe
tive theory which describesonly transverse physics. On th
face of things, this should be easy; just insert a transve
projection operator to eliminate the longitudinal part of t
noise,

sE5D3B2PTz. ~4.2!

This produces an effective theory with no longitudinal d
namics whatsoever,PLE50. In the case of an Abelian
theory, the trivial decoupling of transverse and longitudin
parts of the gauge field would make it obvious that Bo¨dek-
er’s theory ~4.1! and the transverse-projected theory~4.2!
describe exactly the same transverse dynamics. But for
non-Abelian theory, the dependence of covariant derivati
and projection operators on the gauge field makes this
coupling far less obvious. The remainder of this paper
devoted to showing that it isalmosttrue that Eqs.~4.1! and
~4.2! do in fact generate identical transverse dynamics. T
‘‘almost’’ caveat reflects subtleties associated with the f
that white noise cannot be considered smooth even on in
tesimal time scales. Investigating these subtleties will rev
that the naive transverse equation~4.2! must be corrected bu
can then be made exactly equivalent to Bo¨deker’s equation
~4.1! with regard to the transverse dynamics. It should
emphasized that this investigation was motivated by theo
ical curiosity, not practical convenience.9 Bödeker’s equa-
tion ~4.1! is local, whereas the transverse-projected equa
~4.2! is not. Consequently, numerical simulations are
more easily performed in the original theory than in a
transverse-projected variant.

To be precise, by ‘‘transverse dynamics’’ we refer to
physical observables that do not depend onA0 when ex-
pressed as gauge-invariant functions of the fieldsAm . The
magnetic fieldB5D3A does not, of course, depend onA0.

9
In fact, historically, it took us some time to recognize that lon

tudinal physics forv!k!gg is correctly reproduced by Bo¨deker’s
effective theory, and the discussion in this section was motivate
the desire to show that it simply does not matter.
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Writing E5DA02(dA/dt), it is easy to see that the trans
verse electric fieldPTE52PT(dA/dt) does not either. Con-
sequently, an example of a physical quantity which depe
only on the transverse dynamics is the topological charge~or
change in Chern-Simons number! of the gauge field, which
is proportional10 to * tr@E•B#5* tr@(PTE)•B#.11

A. Naive equivalence

We first wish to paint with a broad brush. We will for th
moment ignore all subtleties and discuss how, if one imp
itly and incorrectly~and only when advantageous! treats the
noisez(x,t) as a smooth function oft, one may show that the
two theories~4.1! and ~4.2! should generate the same tran
verse dynamics. We will wait until Sec. IV B and its sequ
to correct this discussion by taking into account the no
smooth nature of Gaussian white noise.

It is simplest to initially consider both theories~4.2! and
~4.1! in A050 gauge:

s
d

dt
A52D3B1z, ~4.3!

and

s
d

dt
A52D3B1PTz. ~4.4!

For the moment, imagine a particular instantiation of t
white noisez(x,t)—that is, consider a particular member
the Gaussian ensemble of noise functions. Suppose
Bödeker’s equation~4.3! is satisfied by a gauge fieldA(x,t).
Now rewrite Bödeker’s equation in the form

sS d

dt
A2s21PLzD52D3B1PTz. ~4.5!

Using the explicit form~3.4! of the longitudinal projection
operator, this can be written as

sS d

dt
A2DÃ0D52D3B1PTz, ~4.6!

whereÃ0 is simply a~suggestive! name for

Ã0[s21D22D•z. ~4.7!

For a particular instantiation of the noise~and any initial
condition!, the solution to Eq.~4.6! may be interpreted in
two different ways. On the one hand,A is, by construction,
anA050 gauge solution to Bo¨deker’s equation~4.1!. On the

y

10The precise formula isDN(t)5(1/8p2)*0
t dtd3xEi

aBi
a .

11The topological transition rate~or Chern-Simons number diffu
sion constant!, is an important ingredient in scenarios of ele
troweak baryogenesis. Understanding the applicability of numer
simulations using Bo¨deker’s effective theory for extracting the to
pological transition rate motivated this investigation. See@8# for
such recent numerical work and related discussion.
7-8
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other hand, if one says thatÃ0 is actually the time compo
nent of the gauge field, then the left-hand-side of Eq.~4.6! is

just 2sE. Therefore,Am5(Ã0 ,A) is a solution to the pro-
jected equation~4.2! in the particular gauge whereA0
5s21D22D•z.

But, given a solution (Ã0 ,A) to Eq.~4.2! with A0Þ0, one
may always gauge transform back toA050 gauge. The re-

sult will be a gauge fieldĀ which obeys

s
d

dt
Ā52D̄3B̄1PTz̄. ~4.8!

This is just theA050 transverse equation~4.4!, except that
the noise has been gauge transformed by the transform

which takes (Ã0 ,A) into A050 gauge:

z̄a5Uabzb, ~4.9!

with

U5T expF E
0

t

Ã0dtG5T expFs21E
0

t 1

D2 D•zdtG ,
~4.10!

whereT signifies time ordering, with the latest times on t
right.

The distinction betweenz and its gauge transformz̄ will
not matter, and our two theories~4.3! and ~4.4! will be
equivalent~subject to earlier caveats!, provided the distribu-

tion z̄a5Uabzb is Gaussian white noise, just like the distr
bution of the originalz. If our transformationU was not a
function of the noise, this would be trivial because then
would have

^ z̄az̄b&5UacUbd^zczd&. ~4.11!

Since the z correlator is proportional todcd, and since
UacUbddcd5dab, it would follow that

^ z̄az̄b&5^zazb&. ~4.12!

Even though our transformationU depends on the Gaussia
white noisez, this result naively remains true. Consider, f
instance, the equal time correlation

^ z̄a~ t !z̄b~ t !&5^Uac~ t !Ubd~ t !zc~ t !zd~ t !&. ~4.13!

Because the noise correlation is local in time, whileU ~for-
mally! depends only on the noiseprior to t, this can be
factorized:12

^ z̄a~ t !z̄b~ t !&5^Uac~ t !Ubd~ t !&^zc~ t !zd~ t !&. ~4.14!

The z correlation is again proportional todcd, which again
contracts theU ’s and eliminates them, so that we arrive

12In fact, the dependence~or lack thereof! of U(t) on the noise at
exactly time t is ill-defined and depends on the details of tim
discretization, as discussed in the next sub-section.
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Eq. ~4.12! as desired. A similar argument shows that uneq

time correlations ofz̄ vanish, as they should.

B. So what is wrong?

1. A toy model

To see what goes wrong with the previous equivalen
argument, and to understand what it has to do with the sh
time nature of white noise, it is instructive first to conside
system much simpler than non-Abelian gauge theory. Fo
about field theory and instead imagine stochastic dynam
of a classical particle moving in two dimensions in
rotationally-symmetric potentialV(r ):

d

dt
r52“V1z, ~4.15!

^z i~ t !z j~ t8!&52Td i j d~ t2t8!. ~4.16!

For convenience, we have normalized the analog ofs to 1.
Imagine also we care only about the radial dynamics of t
system and not at all about the angular dynamics.

Comparing to the gauge theory problem,r above is analo-
gous toA in A050 gauge, the radial dynamics to the tran
verse gauge dynamics, and the angular dynamics to the
gitudinal dynamics. Circles about the origin are analogous
gauge orbits of 3-dimensional gauge configurations un
3-dimensional gauge transformations@since, in the gauge
theory, infinitesimal displacements in the longitudinal dire
tion are of the formDA(x)5DL(x), which is the form of an
infinitesimal 3-dimensional gauge transformation#. Equation
~4.15! is analogous to Bo¨deker’s effective theory~4.3!, and
the analog of the transverse-projected theory~4.4! is then

d

dt
r52“V1Prz, ~4.17!

where the radial projection operatorPr is

Pr
i j 5 r̂ i r̂ j5d i j 2 û i û j . ~4.18!

Just as in Sec. IV A, we can make a sloppy and not qu
correct argument that the unprojected equation~4.15! and the
projected equation~4.17! are equivalent. A transformation
from a solutionr of the unprojected equation to a solutionr̄
of the projected equation appears to be

r̄5Ur , z̄5Uz, ~4.19!

or equivalently

r5U21r̄ , z5U21z̄, ~4.20!

where, if r and z are represented by complex numbersr x
1 ir y andzx1 i zy , U can be written in a form quite analo
gous to Eq.~4.10!:

U5expS 2 i E
0

t

û•zdtD . ~4.21!
7-9
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U simply rotates away the accumulated motion in the an
lar direction, so that the projected motion, at every instan
time, becomes purely radial. Naively plugging Eq.~4.20!
into the unprojected equation~4.15!, and implicitly but in-
correctly assuming thatz is a smooth function of time, yields
the naive projected equation~4.17! for r̄ .

One can immediately see that the two equations~4.15!
and~4.17! cannot, however, actually describe the same ra
dynamics. In the unprojected case~4.15!, there is zero prob-
ability that the system would ever passexactly through the
origin r 50. The projected case~4.17!, however, just de-
scribes one-dimensional motion, parametrized byr, along a
line of constantu. That is, we could fixu and just replace
Eq. ~4.17! by the one degree of freedom equation

d

dt
r 52

dV

dr
1z. ~4.22!

~There does not appear to be an analog of this simplifica
in the gauge theory; see Appendix B.! As long as there are
no infinite potential barriers, this one-dimensional syst
will eventually fluctuate through any value ofr, including r
50.

To understand the discrepancy, we need to properly
derstand the small time behavior of white noise Lange
equations such as Eq.~4.15! and~4.17!. The standard way o
defining what such equations actually mean is to discre
time and only at the end of the day take the continuous t
limit.

2. Time discretization ambiguities

Before proceeding, we have to dispose of an instruc
red herring concerning the time discretization of our vario
stochastic equations. It is not always true that continuu
time stochastic equations like the ones we have been wr
down have an unambiguous meaning. To understand the
sible ambiguities, imagine that instead of being intereste
only the radial dynamics of our toy model, we were inste
interested in only the angular dynamics, and so had propo
a projected equation of the form

d

dt
r5Puz, ~4.23!

Pu
i j 5 û i û j5d i j 2 r̂ i r̂ j . ~4.24!

This continuum equationappears to describe motion for
which the radiusr remains constant. Now imagine discreti
ing time with small time steps of sizee, so that

e21Dr5Puz, ~4.25!

^z i~ t !z j~ t1ne!&52Te21d i j dn0 . ~4.26!

There is an ambiguity in the schematic way we have writ
the discretized equation~4.25!: we have not made it clea
whether the directionû implicit in Pu is supposed to be
evaluated at the starting point of the tiny time interval, t
end point, or somewhere in between. In the first case,
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value ofr will drift out a little bit, as in Fig. 1a. In the second
case, it will drift in a little bit, as in Fig. 1b. If we pick a
symmetric convention, where we evaluateû at the midpoint,
then r will remain constant, as in Fig. 1c.

In non-stochastic equations, such discretization choi
become irrelevant in the continuum limite→0 ~though they
may have significance for the practicality of numerical c
culations!. For stochastic equations, however, thee→0 limit
is more subtle because, by Eq.~4.26!, the amplitude of the
white noisez is order

z;AT

e
~4.27!

and diverges ase→0. The drift Dr in Figs. 1a and b is
therefore of order

6Dr;Ar 21~ez!22r;
~ez!2

r
;

eT

r
~4.28!

for a time intervale. That means that the drift per unit time
Dr /e, is finite ase→0, and so the continuum limit really
depends on one’s discretization conventions.

In the unprojected equation~4.15!, there is no such dis-
cretization ambiguity. And in our actual toy model equati
~4.17! with radial projection, there is no such ambiguity be
cause motion in ther̂ direction, unlike in theû direction, is
straight—r̂ does not change between one end of the inter
and the other. The situation is slightly more complicated
the transverse-projected equation~4.4! for gauge theory,
however. There, motion ofA in the transverse directiondoes
change the transverse projection operatorPT . However, we
demonstrate in Sec. IV C 2 that this change turns out to
high enough order indA that discretization ambiguities d
not arise.

The upshot is that the continuum stochastic equati
~4.17! and ~4.4! for the radial-projected toy model and th
transverse-projected gauge theory are not ambiguous. H
ever, we shall next see that the very same discretization
sues affect the transformations we used to argue that
were equivalent with their unprojected counterparts.

FIG. 1. Radial motion generated by Eq.~4.25! depending on

whetherû is defined by the~a! beginning,~b! end, or~c! middle of
a discrete time jumpt→t1e.
7-10
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3. Centrifugal drift

The way we proposed obtaining the projected equa
~4.17! from the unprojected one~4.15! was by rotating away
the accumulatedu motion. Imagine a single time step of th
discretized unprojected equation. Then13

r ~ t1e!5r ~ t !2e“V„r ~ t !…1ez~ t !. ~4.29!

The motion of the radial coordinater is then

r ~ t1e!5ur ~ t !2e“V„r ~ t !…1ez~ t !u

5F r 2eV8~r !1e r̂•z1
e2

2r
uzu2GU

t

1O~e3/2!. ~4.30!

Given that, ase→0, a large number of successive tiny tim
steps will occur before the system appreciably changes p
tion, the positiveuzu2 term can be replaced by its statistic
average~4.26!:

r ~ t1e!'F r 2eV8~r !1e r̂•z1
eT

r G~ t !. ~4.31!

The distribution ofr̂•z does not care about the direction ofr̂ ,
and ~4.31! can be rewritten as

r ~ t1e!'r ~ t !2eVeff8 „r ~ t !…1ez r~ t !, ~4.32!

wherez r is uncorrelated white noise and

Veff~r !5V~r !2Tlnr . ~4.33!

The continuum projected equations that are truly equiva
to the unprojected one are therefore Eqs.~4.17! or ~4.22!
with V replaced byVeff . The addition of the lnr term in Eq.
~4.33! now provides a ‘‘centrifugal potential’’ which pre
vents the one-dimensional system~4.22! from passing
throughr 50.

4. Equilibrium distributions

The exact form of the ‘‘centrifugal’’ correction wa
really determined from the very start. As we shall brie
review in Sec. IV C 4, the equilibrium distribution inr gen-
erated by the unprojected equation~4.22! is proportional to
exp(2V/T). That means that the probability distribution fo
the radial variabler must be proportional to

2prexp~2V/T!}exp~2Veff /T!, ~4.34!

since the 2pr is the volume of the symmetry orbit. Bu
exp(2Veff /T) is precisely the equilibrium distribution gene
ated by the projected equation~4.22! if V is replaced byVeff .

In the gauge theory case, there will be no analog to
one-dimensional radial equation~4.22!, and so it is worth-

13Whether it isV@r (t)# or V@r (t1e)#, or the average of the two
does not matter in the continuum time limite→0.
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while to understand how the equilibrium distribution cou
have been deduced directly from the two-dimensional p
jected equation~4.17!. This requires deriving the Fokker
Planck equation that is associated with a given Lange
equation and which describes the time evolution of proba
ity distributionsP(r ). ~This will be discussed explicitly in
the gauge theory case below.! For the naive projected equa
tion ~4.17!, one finds that

P~r !}
exp~2V/T!

2pr
~4.35!

is a ~two-dimensional! equilibrium solution. But if we cor-
rect the naive equation by replacingV→Veff , then we indeed
recover the unprojected result

P~r !}
exp~2Veff /T!

2pr
5exp~2V/T! ~4.36!

as the equilibrium distribution inr .14 @Do not confuse the
two-dimensional distribution~4.36! for r with the one-
dimensional radial distribution~4.34! for r. Both describe the
same equilibrium ensemble.#

C. Gauge theory

1. Time discretization ambiguities

The transverse-projected version~4.4! of the soft effective
theory is a Langevin equation of the form

d

dt
qi52] iV~q!1eia~q!za , ~4.37a!

^za~ t !zb~ t8!&52Tdabd~ t2t8!, ~4.37b!

where, for the moment, we are using notation natural fo
system with a finite number of degrees of freedom. In
field theory case, the dynamical variablesq are the values of
the gauge fields at different points in space and] i becomes a
functional derivatived/dA. The functionseia(q) character-
ize the coupling of the noise to the dynamical variablesq; for
the gauge theory this is the transverse projection operatoPT
~which depends on the gauge fieldA).

14Because the projected equation conservesu, there is a family of
two-dimensional equilibrium solutions to the projected toy mod
equation: namely, the rotationally invariant distribution~4.35! can
be multiplied by an arbitrary angular distributionf (u). This non-
uniqueness is, of course, irrelevant if one is only interested in r
tionally invariant observables. The appearance of an arbitrary fu
tion of u in the general equilibrium distribution is a reflection of th
non-ergodicity of the projected two-dimensional evolution equ
tion. As discussed in Appendix B, for the transverse-projec
gauge theory there does not appear to be any analog of a cons
gauge-orbit coordinateu and, so far as we know, the transvers
projected gauge theory remains ergodic.
7-11
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To define exactly what is meant by this equation, imag
discretizing time into very small time steps of sizee.15 Sto-
chastic equations of the form~4.37a!,~4.37b! are generically
ambiguous if the couplingeia(q) to the noise has non-trivia
dependence ofq, because of the ambiguity, discussed earl
of when to evaluateq. In the discretized equation,

qi~ t1e!2qi~ t !

e
5@2] iV1eiaza# t1ae , ~4.38!

^za~ t !zb~ t8!&52Te21dabd tt8 , ~4.39!

this ambiguity appears as dependence on a parameta
which controls the time at which the right-hand side is eva
ated. For example,a50 corresponds to a forward time de
rivative and is known as the Itoˆ convention,a5 1

2 to the
symmetric derivative, known as Stratonovich conventi
anda51 to a backward time derivative. The precise mea
ing of evaluation at timet1ae is to expand inae. Keeping
in mind that the amplitude of the noisez is e21/2, and using
the equation of motion itself, the terms in the expans
which are non-negligible whene→0 are

qi~ t1e!2qi~ t !

e
5@2] iV1eiaza1ae~] jeia!ejbzazb# t .

~4.40!

The productzazb may be replaced by its expectation, givin
the final discretized equation

qi~ t1e!2qi~ t !

e
5@2] iV12aT ~] jeia!eja1eiaza# t .

~4.41!

The term proportional toa is a convention-dependen
‘‘drift’’ force. The naive continuous-time formulation
~4.37a!,~4.37b! does not, in general, uniquely specify the d
namics.

2. Vanishing ambiguity

We shall now show that the ambiguity vanishes for t
transverse-only noise equation of Eq.~4.4!. This implies that
there is no real issue of convention dependence for this
plication.

We work in continuous space~rather than working on a
spatial lattice, which would be more relevant to numeri
simulations but also more complicated!. The degrees of free
dom in the gauge theory case are labeled by coordinateX
5(x,i ,a), where i is a vector index anda an adjoint color
index. It will be convenient to introduce combined labels f
several different choices of coordinates:

X5~x,i ,a!, Y5~y, j ,b!, Z5~z,k,c!. ~4.42!

15The following discussion roughly follows the presentation
Secs. 4.7 and 4.8 of Ref.@10#, although our normalizations ar
slightly different.
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The noise couplingeia introduced above becomes the~ma-
trix elements of the! transverse projection operator

PXY5d i j dabd~x2y!2~DiD22D j !xy
ab . ~4.43!

This operator is symmetric inX and Y, and the drift force
discussed earlier is proportional to

PXZ

d

dAX
PZY . ~4.44!

When taking the variation ofPZY , the variation must act on
the left-most covariant derivative in Eq.~4.43!, since other-
wise that derivative will annihilate against thePXZ factor.
One thus obtains

PXZ

d

dAX
PZY}E

z
PXZd ikTce

a d~x2z!~D22D j !zy
eb

}dTae
a ~D22D j !xy

eb

2~DiD22Di !xx
acTce

a ~D22D j !xy
eb ~4.45!

in d spatial dimensions, where no integration overx is im-
plied. The first term vanishes because the adjoint genera
Tbc

a are anti-symmetric in (abc) and soTae
a 50. The second

term vanishes because (DiD22Di)xx
ac is symmetric in (ac)

and so vanishes when contracted with the anti-symme
Tce

a . So the convention-dependent drift force is exac
zero.16,17

3. Centrifugal drift

We now return to the transformation, between Bo¨deker’s
effective theory and the transverse-projected theory, in or
to derive the gauge theory analog of the centrifugal corr
tion discussed for the toy model in Sec. IV B 3. The tim
discretized version of Bo¨deker’s effective theory is

A~ t1e!5A~ t !2
e

sS dV
dA

~ t !2z~ t ! D , ~4.46!

where

16The drift force is also proportional toT which, in the field theory
case, isTd(0). If we were only interested in perturbative physic
we could have chosen to work in dimensional regularization, wh
setsd(0) to zero.

17In the general case, a sufficient condition for the ambiguity
vanish can be expressed as follows. Suppose the potentialV(q) of
Eq. ~4.37! is invariant under some symmetry transformations t
have the infinitesimal formq→q1lua(q), wherea indexes the
independent symmetry generators~andl is infinitesimal!. Define a
metric gab5ua

•ub on the space of symmetry generators. As
general relativity, letgab denote the~matrix! inverse of the metric.
Now suppose that the noise coupling equals the projection ope
ei j 5d i j 2u i

agabu j
b . One can then show that the ambigui

(] jeia)eja vanishes if] iu j
a is anti-symmetric under interchange ofi

and j. This anti-symmetry condition is indeed satisfied in both t
radial-projected toy model and transverse-projected gauge theo
7-12
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V5 1
2 g22E

x
Bi

aBi
a5 1

4 g22E
x
Fi j

a Fi j
a ~4.47!

is the potential energy associated with the magnetic field,
noise correlation is

^z i
a~ t,x!z j

b~ t1ne,x8!&52g2Tse21dabd i j dn0d~x2x8!,
~4.48!

and we have chosen to use a forward time difference.
now want to apply~a discrete version of! the gauge transfor
mation U that was introduced in the time-continuum cas
Eq. ~4.10!, to eliminate longitudinal motion ofA. For sim-
plicity of presentation, we shall focus on one single, tim
step fromt to t1e and discuss how to transformA(t1e)
relative toA(t) in order to eliminate the longitudinal motio
introduced during that step. Consider a gauge transforma
U which equals the identity at timet, but is a non-trivial
infinitesimal transformation at timet1e,

U~ t,x!51, U~ t1e,x!5exp@a~x!#. ~4.49!

For the moment, we leave the generator of the transfor
tion, a, arbitrary. The gauge transformed field is

Ā[U~“1A!U21. ~4.50!

Expanding in powers of the generatora at time t1e, this
gives

Ā~ t1e!5A~ t1e!2Da1 1
2 @Da,a#1O~a3!, ~4.51!

whereDa5“a1@A(t1e),a#. Using the equation of mo
tion ~4.46! to rewriteA(t1e) in terms ofA(t) gives

Ā~ t1e!5A~ t !2
e

s S dV
dA

2zD2Da1
e

s F dV
dA

2z,aG
1 1

2 @Da,a#1O~a3,Aea2!, ~4.52!

where now all the covariant derivatives involve the gau
field at timet. Choosing the infinitesimal generator to equ

a5
e

s
D22D•z, ~4.53!

as implied by our previous discussion@cf. Eq. ~4.10!#, will
cause theDa term to cancel the longitudinal projection o
the noisez. Since the noisez is of ordere21/2, this means
thata is of orderAe. We need to keep all terms in Eq.~4.52!
which are of ordere. The term (e/s)@dV,a# is O(e3/2) and
may be neglected. Consequently,

Ā~ t1e!5A~ t !1
e

s S 2
dV
dA

1PTzD
2

e2

s2@z2 1
2 DD22D•z,D22D•z#1O~e3/2!.

~4.54!
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Once again, we can replace the terms quadratic in noise
their statistical averages, as given by Eq.~4.48!. After some
manipulation, one finds that this yields

Āa~ t1e,x!5Aa~ t,x!1
e

s S 2
dV

dAa~x!
1PTza~ t,x!D

1
Te

s
f abc~DD22!xx

cb1O~e3!

5Aa~ t,x!1
e

s S 2
dVeff

dAa~x!
1PTza~ t,x!D

1O~e3!, ~4.55!

where the effective potentialVeff is

Veff5V2 1
2 TTrln~2D2!5V2TlnAdet~2D2!. ~4.56!

As shown in Appendix A,Adet(2D2) is the volume of the
gauge orbit containing a given spatial gauge field. Con
quently, this logarithmic correction to the potential is com
pletely analogous to the ‘‘centrifugal’’ potential appearing
the rotationally invariant toy model. The upshot is that t
projected equation which is actually equivalent to Bo¨deker’s
effective theory differs from the naive projected equati
~4.4! by the replacement ofV by Veff :

s
d

dt
A52D3B1 1

2 T
d

dA
Trln~2D2!1PTz. ~4.57!

4. The equilibrium distribution

It’s interesting to examine what happens if one convert
Langevin equation of the generic form~4.41! into a Fokker-
Planck equation for the evolution of the probability distrib
tion P(q,t). One finds~see for example@10#! that

]

]t
P5] i@T] j~eiaejaP!1$] iV22aT~] jeia!eja%P#.

~4.58!

If eia(q) were justd ia , as in Bödeker’s equation~4.3!, then
the equilibrium distribution ~the solution to dP/dt50)
would simply beP5exp(2V/T ) up to an overall normaliza-
tion constant.

For the naive radial-projected toy model~4.17! with eia

5 r̂ i r̂ a ,

] j~eiaeja!5
r̂ i

r
5 r̂ i

d

dr
ln~2pr !, ~4.59!

and (] jeia)eja50. This leads to the equilibrium distribution
~4.35! quoted in Sec. IV B 4.

In the gauge theory case, we have seen that
convention-dependent drift force vanishes for the transve
only noise equation~4.4!, but there still remainseia depen-
dence in the Fokker-Planck equation. Plugging in the tra
verse projection operator fore, one finds
7-13
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] j~eiaeja!→
d

dAY
PXY5 1

2 PXY

d

dAY
trln~2D2!, ~4.60!

and, solving for the equilibrium distribution,

P5
exp~2V/T!

Adet~2D2!
~4.61!

up to an overall normalization constant.18 As mentioned
above,Adet(2D2) just represents the gauge orbit volum
and the above distribution is analogous to the toy mo
result~4.35!. As with the toy model, however, if we examin
the transverse theory that is truly equivalent to the
projected theory, then we should replaceV→Veff and we
recover the correct equilibrium distribution

P5
exp~2Veff /T!

Adet~2D2!
5exp~2V/T!. ~4.62!
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APPENDIX A: THE VOLUME OF GAUGE ORBITS

The natural metric on the space of gauge field vector
tentials is

ds25E
x
tr@dA†

•dA#. ~A1!

This is the unique metric~up to an overall multiplicative
constant! which is invariant under both gauge transform
tions and spacetime symmetries. The gauge orbit pas
through a particular gauge configurationA consists of all
gauge transforms ofA. Within a neighborhood ofA, con-
figurations on the gauge orbit may be parametrized as

AL[e2LDeL, ~A2!

whereL is an arbitrary generator of the gauge group@i.e.,
L(x)[La(x)Ta is a Lie-algebra valued function ofx#, and
D5“1A is the covariant derivative with gauge fieldA.
SinceAL2A;DL, the induced metric on the gauge orb
evaluated atA, is just

18In the more general notation of footnote 17, the assumption
] iu j

a is anti-symmetric ini and j leads to] j (eiaeja)5
1
2 ei j ] j lnAg

andP5exp(2V/T)/Ag, whereg is the determinant of the invers
metric gab .
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ds2uorbit5E
x
tr@~DdL!†

•~DdL!#5E
x
tr@dL†~2D2!dL#.

~A3!

Consequently the induced volume element on the or
evaluated atA, is

dv5Adet~2D2!dL, ~A4!

where dL[)x,adLa(x) denotes the flat measure on th
gauge algebra. But the gauge-invariant Haar measure on
gauge group is justdL when evaluated at the identity. And
because the functional determinant det(2D2) is gauge in-
variant, it is constant over the gauge orbit. So, globally,
volume elementdv equalsAdet(2D2) times the Haar mea
sure on the gauge group. Hence,

orbit volume

gauge group volume
5@det~2D2!#1/2, ~A5!

and soAdet(2D2) is the gauge orbit volume up to an overa
A-independent normalization factor.

APPENDIX B: NO GAUGE THEORY ANALOG TO TOY
MODEL u

Return, for a moment, to the toy model described in S
IV B. The projected equation~4.17! has two obvious proper
ties. First, the particle always moves in a direction perp
dicular to the gauge orbitsr 5const. Second, moving accord
ing to this equation, the particle cannot reach any point in
configuration space, but instead remains confined to a s
in a configuration space whereu is a constant. In particular
starting from a point (r ,u), one cannot reach any point that
gauge equivalent to it, except the original point. In oth
words, if one fixes the gaugeu5u0, with u0 some constant,
then this gauge-fixing condition remains satisfied through
the random walk.

Now consider the gauge theory. Equation~4.4! describes
a motion in the space of field configurations that is analog
to that described by the projected equation~4.17! in the toy
model. In terms of the natural metric~A1!, on the space of
gauge configurations, one can easily check that the motio
always along directions perpendicular to deformations g
erated by gauge transformations.~This is equivalent to satis
fying the conditionD•Ȧ50.! The question we want to ask i
whether the second property of our toy model still holds, i
is the motion confined to a slice in configuration space?
might be surprising that the answer to this question is ne
tive, and one can travel throughout the whole configurat
space even when restricted to trajectories whose tangen
every point, are perpendicular to the intersecting gauge o
This negative answer is perhaps less surprising if one not
that there is no obvious gauge-fixing condition similar tou
5u0 that is conserved during the transverse-projected r
dom walk ~4.4!. Thus, in the gauge theory, there is n
equivalence of the parameteru.

This can be seen most directly by the explicit construct
of a trajectory that remains perpendicular to gauge trans

at
7-14
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mations at all times, but nevertheless connects two dist
points on the same gauge orbit. The trajectory we are go
to construct starts atA50 and remains small all the time, s
we can use perturbation theory. Let us denote the small
rameter bye. Consider first the following trajectory:

Ai~ t,x!55
tCi~x!, 0,t,e;

eCi~x!1~ t2e!Di~x!, e,t,2e;

~3e2t !Ci~x!1eDi~x!, 2e,t,3e;

~4e2t !Di~x!, 3e,t,4e.
~B1!

Provided thatCi andDi are transverse,] iCi5] iDi50, it is
trivial to check thatD•Ȧ50 to leading order ine. This
means the trajectory is everywhere perpendicular@to within
O(e2)# to the gauge orbits it passes through.

This trajectory may seem uninteresting, since it is a clo
loop that starts atA50 and ends at the same point. Th
interest arises when we go to next-to-leading order ine. At
next-to-leading order, the trajectory~B1! does not satisfy the
02500
ct
g

a-

d

condition D•Ȧ50. For example, whene,t,2e, D•Ȧ
5e@Ci ,Di #. To correct for this deviation, we need to modi
Ai in the following way:

Ai~ t,x!5eCi~x!1~ t2e!Di~x!1~ t2e!a i~x!, e,t,2e,
~B2!

wherea i5O(e), so the term involvinga i is of higher order
than the other terms. Equation~B2! satisfies the condition
D•Ȧ50 if one places the following constraint ona i :

] i ȧ i1e@Ci ,Di #50. ~B3!

This condition can be satisfied by choosing

ȧ i52e] i“
22@Cj ,D j #. ~B4!

In this manner, one can modify the whole trajectory~B1! so
that the conditionD•Ȧ50 is satisfied through next-to
leading order. The result is
of
jectory,
y show
e-
Ai~ t,x!55
tCi , 0,t,e;

eCi1~ t2e!Di2e~ t2e!] i“
22@Cj ,D j #, e,t,2e;

~3e2t !Ci1eDi2„e21e~ t22e!…] i“
22@Cj ,D j #, 2e,t,3e;

~4e2t !Di22e2] i“
22@Cj ,D j #, 3e,t,4e.

~B5!

One sees that the trajectory now starts atAi50 at t50 and runs toAi522e2] i“
22@Cj ,D j # at t54e. @Including still

higher-order corrections would only change this byO(e3).# At the end point,A is a pure gauge, and, for a general choice
Ci andDi , nonzero. Therefore, this trajectory presents a simple example of how, following a transverse projected tra
one can go from one field configuration to a field configuration that is gauge equivalent to it. From this result one ma
~provided the gauge group is semi-simple! that any field configuration in the vicinity ofA50 is accessible to the transvers
projected random walk~4.4!. Hence, there can be no analog of the toy model ‘‘slice parameter’’u for transverse-projected
dynamics in non-Abelian gauge theories.
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