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Bodeker has recently argued that non-perturbative processes in very high temperature non-Abelian plasmas
(such as electroweak baryon number violation in the very hot early Univeasebe quantitatively described,
to leading logarithmic accuracy, by a simple diffusive effective theoryde®er's effective theory is intended
to describe the long-distance transverse electric and magnetic fields which are responsible for non-perturbative
dynamics. His effective theory, however, also contains long-wavelength longitudinal electric fields. We discuss
several subtleties in the treatment of longitudinal dynamics which were not closely examinédékeBs
original treatment. Somewhat to our surprise, we find that within its domain of validideBar’s effective
theory does correctly describe both longitudinal and transverse fluctuations. We also show that, as far as the
transverse dynamics of interest is concernedjder’s effective theory could be replaced by a transverse-only
theory that removes the longitudinal dynamics altogether. In the process, we discuss several interesting aspects
of stochastic field theorie$S0556-282(99)01012-7

PACS numbes): 11.10.Wx, 05.20.Dd, 05.66k, 11.15—q

[. INTRODUCTION QCD, and baryon number violation in hot electroweak
theory (in its high-temperature symmetric phase
Non-perturbative processes in a hot non-Abelian plasma Bodeker[7] has proposed an effective theory appropriate
at or near equilibrium are associated with slow evolution offor the scaleg1.138,(1.1b above. His effective theory is a
magnetic gauge fieldsThe characteristic spatial scaeof  classical field theory that involves only gauge fields with
non-perturbative gauge field fluctuations and the associatedlynamics governed by the diffusive Langevin equation
time scalet for their evolution are of order
ocE=DXB-¢. 1.2
1 1

e gl

(1.13

Here,D is the covariant derivative acting in the adjoint rep-
resentation. In Bdeker's proposal{ is a Gaussian white
for small coupling. Alternatively, the characteristic spatial noise random force, normalized®as
momentumk and frequencyw are
(LX) X)) =209%T 8208, 8(t—t') 83 (x—x"),
k~g’T, w~g*TIn(1/g). (1.1b (1.3

For a review, see the introduction of our earlier paffr  wherei,j anda,b are spatial vector and adjoint color indi-
The logarithm appearing in the time scale is a recent an@es, respectively. This effective theory is supposed to give a
interesting result of Baeker[7], whose physical interpreta- quantitative description of non-perturbative physics in the
tion we discuss in Re{6]. hot plasma to leading order in the logarithm of the coupling.
Throughout this discussion, “hot” means that the tem-|n other words, corrections to this effective theory are sup-
perature is large enough that the running couplird) is  pressed only by powers of 1/In()\. In Ref.[6], we showed
small, that chemical potentials are ignorable, and that there is
no spontaneous symmetry breaking. Examples of nom=———

perturbative processes include chirality violation in hot 2We will scale our gauge fields by a factor gf so covariant

derivatives contain no explicit couplings while the acti@r en-
ergy has an overall factor of @f. In addition, we will take the
This is explicitly argued in Ref[1], but this fact is also implicit gauge group generators, and also the gauge Aeth®T?, to be
in earlier analysis of specific thermal effects such as plasmon damgnti-Hermitian. Hence, the covariant derivative is simlyV
ing rates of fast-moving particl§2—4] and the color conductivity —+A, and for the adjoint representatiom®) .= ;.. with the struc-
[5]. ture constants$ . real and totally anti-symmetric.
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that ¢ can be interpreted as the color conductiViof the D.E is therefore not zero, and so the fields indB&er's
plasma, which is given b§5,7,q effective theory(1.2) are not purely transverse. Our purpose

5 in this paper will be to show two things: first, that @eker's

Ml original derivation of the long-distance longitudinal dynam-
o~ —, (1.9 . . . . . L
Yq ics relied on a questionable approximation which ignored
subtleties associated with longitudinal dynamics, but that the
wherem,, is the plasma frequency and end result is nevertheless correct; and, secondly, that the lon-
gitudinal dynamics is irrelevant and may be removed alto-
¥g~aCaTIn(1/g) (1.9 gether, if one is purely interested in describing physical,

: . gauge-invariant quantities that depend only on the transverse
is the damping rate for hard thermal gauge bos®hsAl.  fie|4s (for example, the rate of anomalous charge violation
The ~ 'sign indicates equality at leading logarithmic order. te |ast point would be trivial in an Abelian theory, because
[That is, we are not distinguishing In(d/ from In(19) in e Eq.(1.2) would be linear in the fields and could be
Eq. (1.5), but the coefficient of the logarithm is corrécthe  roiected into one equation involving only the transverse
plasma frequencyny, is well knowrf" at leading order in  fields and another independent equation involving only the
coupling and is of ordegT. longitudinal fields. The point is much less trivial in a non-

Bodeker’s effective theory is well suited to numerical ppgjian theory because of the non-linearity of E4.2).
simulation because it is classical, insensitive to ultraviolet

cutoffs [6], and when cast intd\;=0 gauge generates a
straightforward local equation of motion for the evolution of
A:

Il. REVIEW OF BO DEKER'’S DERIVATION
A. The effective Boltzmann-Vlasov equation

d We will refer to gauge fields associated with the scales of
oc—A=—DXDXA+{ (1.6) interest(1.19,(1.1b as “soft” fields. In contrast, the domi-

dt nant excitations in the hot plasma correspond to momenta of
orderT and will be called “hard.” On his way to deriving

A numerical investigation of Baeker's effective theory and the effective theory(1.2) for the soft gauge fields, Rteker

its implication for electroweak baryon number violation hasm first derived an effective Boltzmann-Viasov equation for

been recently carried O.Ut by Moq[é]. . the interaction of those fields with hard excitations:
Nevertheless, there is something peculiar about the effec-

tive theory(1.2). In a high temperature plasma, static electric (Dy+V-DY)W—E-v—&=—SC[W], (2.1a
fields (or, more generally, longitudinal fielflsare Debye
screened[9]. The screening distance is of ordergT/ D, F4r=Jr=m3(v*W(V))y, (2.1b

which is small compared to the spatial sc&e 1/g°T of

interest to us. More generally, the longitudinal modes of thayhere
gauge field are screened while, at low frequenaiesk, the
transverse modes are not. Because of Debye screening, it is SCIW](V)= v Z(V,V )W(V'))\r, (2.29
the transverse electric and magnetic fields which are relevant
for producing non-perturbative fluctuations at the scalegnd
(1.19,(1.1b quoted earlier. Longitudinal fields are irrel-

. 2
evant. Nonetheless, Beker's effective theoryl.2) does de- T(vV')= 8D (v—v')— 4 (v (2.2b
scribe long-distance longitudinal fluctuations. The longitudi- ’ T \J1—(v-v')Z ’

nal fields are those pieces Bfwhich contribute tdD- E and
which perturbatively correspond to polarizations parallel toHere,mZDEgmgI is the leading-order Debye magsjuared
the momentunk. Dotting D into both sides of Eq(1.2), one  The first equatior(2.19 is a linearized Boltzmann equation
sees that for the hard particles in the presence of a soft electromag-
netic field, whereW(v,x,t) represents the color distribution
oD-E=-D-Z. (1.9 of those particles and is a unit vector representing the hard
particles’ velocities. SC represents a linearized collision
term for 2—2 scattering that randomizes the color charges
3We are using “color’ as a descriptive name for some non-Of the hard particle§6], andé is a source of random thermal
Abelian gauge field. It should be emphasized that all discussion ofioise. The second equatid@.1b is Maxwell's equation,
“color” is applicable to the dynamics of, in particular, the &)
electroweak gauge field.

“For hot electroweak theory with a single Higgs doublet, for in- STechnically,W is the adjoint representation piece of the density
stancemﬁ,: ﬁ (5+2n,)g®T? at leading order iy, wheren,=3 is matrix describing the color charges of the hard excitations, summed
the number of fermion families, and the adjoint Casi@jf=2 in over the various species of excitations and integrated over the en-
Eq. (1.5. For QCD withn flavors of quarksm§|= % (1+ §)g?T? ergy of excitationgfor a fixed direction of motiorv). It is normal-
andC, =3, wheren is the number of relevant quark flavdrs d, s,  ized in a way that simplifies the resulting equation. See Féfior
c, b, 1. the explicit definition.
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where al! the fields on the left-hand S|de.are to be_understood J= m%{v( 6C) " HE-v+§&)),. (2.7
as soft fields, and the current on the right side is the soft-

momentum component of the current created by hard excita- Next note thatdC preserves the parityin v) of functions
tions. This current is proportional to the densityof hard it acts on. In other words§C maps ever(odd) functions of
particles and the velocities of those particles, where v into even(odd functions ofv. (In contrast, thev- D, op-
means (L). In the explicit form(2.23,(2.2b for the colli-  erator that we dropped does ndtloreover, in the space of
sion term,(- - - ), denotes averaging over the directionwof odd functions of/, 5C as given by Eqs2.23,(2.2b reduces
and 5'? is a & function defined on the unit two-sphere with to simply sC=y,. So, sincesC is a symmetric operator,
normalization and since it acts to the left on the odd functiom Eg. (2.7),
we can replaceC) ! by ygl in that equation to obtain

(8P (v—v") (V")) =F(V). 2.3
2
m
See Refs[7,6] for the derivation of the explicit forn2.2b J= —D<v(E~v+ &)W=0E+{, (2.8
of the linearized collision operator. Yy

One may avoid worrying about the details of noise termshere
such ast until one reaches the final effective equatidm?),
at which point it is possible to then argue how the noise must {=30(vé),. (2.9
in fact appeaf6]. However, since in this paper we will be
discussing various subtleties, it will be useful to keep trackUsing the correlatior(2.4) for &, one produces the correla-
of the noise explicitly at each step we consider. In particulartion (1.3) asserted earlier faf. Taking the spatial part of the
Bodeker[7] derived that the appropriate normalization of the Maxwell equations(2.1b and dropping thedE/dt term
noise in the effective Boltzmann-Vlasov equati¢?.13, which, for the scale$1.19,(1.1b of interest, is smalletby
(2.1b is related to the collision integral: four powers of coupling than the cE term, one obtains
Bodeker’s final effective theoryl.2).
(E(txVE X V)

2 Ill. LONGITUDINAL SUBTLETIES

29°T
30 T(v,v') 8208(t—1") 63 (x—x"). (2.4

In the introduction, we noted that Heker's effective
theory(1.2) contains a fluctuating longitudinal electric field.
We will not review any further the origin of the effective This may seem puzzling since longitudinal electric fields are
Boltzmann-Vlasov equation$2.1a,(2.1b and direct the Debye screened. In this section, we will take a closer look at
reader instead to Bleker's original work(7] and our alter- how both Debye screening, and d@zker’s effective Lange-

native der_ivatior[G]. Itis in the step from these kinetic equa- vin equation, do emerge from the Boltzmann-Vlasov equa-
tions to Baleker’s final effective theoryl.2) that subtleties  tions (2.13,(2.1b).

in the treatment of longitudinal physics creep in, and that is
the focus of this paper. A. Zero mode of 5C

In the last section, the Boltzmann equation ffwas
) simplified, at leading-log order, by arguing th&€ domi-
Bodeker obtains his final effective theoryl.2), at nates over the convective derivatig+v- D, by a power of
Ieading-log order, from the effective Boltzmann-Vlasov |n(g_1)_ This is not quite correct, however, because the op-
equations(2.1a,(2.10 by arguing that the covariant deriva- eratorsC has an eigenvalue which it order y, and which
tive terms in the Boltzmann equatid@.13 are together of goes not dominate over the convective derivative; specifi-
orderg®TW and so can be ignored compared to the coIIisionca”y, S5C has a zero mode.
term, which is of orderygW~(g*TIng™")Wand hence larger  The necessity of this zero mode was noted byl@&er,
by a logarithm. There is an important subtlety to this ap-who observed that the effective Maxwell equati@ilby for
proximation which will be examined in the next section. But the soft fields requires conservatitn,J*=0 of the current
accepting this argument at face value for now, if one dfOP%#:mg(v”W(v))v generated by the hard particles. From Eq.
the covariant derivative terms then the Boltzmann equatior@z_la, this conservation requird$$C[W1),=0, which is in-

B. Solving for W

becomes simply deed satisfied by Eq$2.23,(2.2b).
The fact(SC[W]),=0 can be rephrased to say that the
V+ &~ . . . v ; L
E-vi&~oCiw] @9 symmetric operatowC has null states: it annihilates any-
Formally, the solution is thing that is independent of (This can be written in bra-ket
notation inv-space agconstantsC|W)=(W|5C|constant
W=(6C) Y E-v+¢), (2.6) =0 for anyW.) This point will be important later on, so let

us give an alternative way of understanding it. The collision
where 6C is to be understood here as an operator acting oterm SC does not care, at leading-log order, about the dy-
the space ofadjoint-representatigrfunctions of a unit vec- namics of the soft fields. In particular, it does not care that
tor v. This result foW yields the spatial current appearing in the soft effective theory is a gauge theory, with a local color
Eq. (2.1b), symmetry, instead of a non-gauge theory, with merely a glo-

025007-3



PETER ARNOLD, DAM T. SON, AND LAURENCE G. YAFFE PHYSICAL REVIEW B0 025007

bal color symmetry. So, from the point of view of the calcu- C. Solving for W (again)

lation of 6C at leading-log order, the theoopuld have been To examine the difficulties caused by the presence of a
one where it was meaningful to talk about the total color

. . . -~ zero mode of5C, we now return to the effective Boltzmann-
cha_lrge of the_system. If_one ther! imagined adding an '”f'n'VIasov equatior(2.1a,(2.1b and will repeat the analysis of
tesimal chemical potentig for this total color charge, the gec |1 B, this time being more careful about how we treat
resulting equilibrium density would be the convective derivative comparedd€. Formally, the so-

lution for Wis
n=[efl~94aT) T 1] 1=ny+ng( 1+ Ng) BYmaT?+ O( u?)

(3.1

w (v-E+9), (3.6

for each particle type, whergg is the =0 equilibrium Ditv-Dy+5C
distribution. In equilibrium, the collision term in a Boltz-

mann equation always vanishes by detailed balance. Diffe
ent values ofu correspond to different equilibrium states,
and the collision term must therefore vanish for @ll That G=[D,+Vv-D+ 6C] % 3.7)

means that the linearized deviation

or W=G(v-E+¢), whereG denotes the inverse of the lin-
earized kinetic operator,

This fluctuation in the distribution of hard excitations pro-

on=no(1%no) BguaT" (32 guces a current responffeom Eq. (2.1b] of

of the equilibrium distributior(3.1) away fromng, must cor-
respond to a null state of the linearized collision operator
SC. The deviation(3.2) is isotropic and homogeneous—it is
independent of botlkr andx. As a result, when re-expressed
in terms of the functionW(x,v) used to parametrize color D-E=J°=m%<G(v- E+)),. (3.9
distributions of the hard particles in the linearized Boltzmann

equation(2.13, the deviation(3.2) corresponds toV(X,V)  one may easily check that the current is consertas it
= constant. That means that a constéhis a null vector of st be, since

6C. But since collisions are local ix (in the effective

J=m3(VG(v-E+§&)),, (3.9

and the(color) charge density

theory), the x dependence oW is irrelevant, and so anw DJ%+D-J=m3((D;+V-D)G(v-E+£))
which does not depend anis a null vector of the linearized
collision operatorsC. :m2D<[1_ SCG](v-E+£))
B. Longitudinal and transverse projections =0. (3.10

Before continuing, it is worthwhile to introduce longitu- . .
dinal and transverse projection operators. Perturbatively, th&he (v-E+£), term vanishes due to isotropy), =0, and
longitudinal projection operator for the electric field is the lack of bias in the noise(¢),=0. And (SCG(v-E
+£&)), vanishes becauséC is acting (to the lef) on its
L Aa 1 & -
(PPeyil = k':V'WVJ. (3.3 v-independent zero-mode.

) ) o D. The problem with the naive derivation
The gauge-covariant non-perturbative generalization is ] ) o
In following subsections, we will discuss how to evaluate

. . ' the operator inverse that defin€s To begin, however, it is
P/=D' SzD’, (3.4  useful to see how the zero-mode problem manifests itself in
a simple example of matrix inversion. To this end, let us for
the moment replace the Green functi@rof Eq. (3.7) by that
of a simplified finite dimensional example. First, imagine
that the gauge interactions are Abelian, so haandD, can

pQ == piLj ] (3.5 be replaced by simply-i w andik, respectively. Next, imag-

ine that the infinite-dimensional space of possible functions

It is the longitudinal electric field which couples to external ©f v, on which 5C acts, is truncated to the four-dimensional
charges, since Gauss' law readd-E=p and since SPace of functions that are either independent of linear
D-(PtE)=0. And it's the transverse electric field that is in V- We wish to examine the matrix representing the action
produced byDX B in the effective theory1.2) sinceP (D  ©f —iw+V-Dy+ 6C within this truncated space. In order to
X B)=0. As mentioned in the Introduction, the precise sepa-
ration between longitudinal and transverse dynamics is not
transparent from this simple discussion because of the non-%n  slignhtly more explicit notation, this term is
linear dependence d@XB on the underlying vector poten- y(Z(v",v')G(V' ,v)[v-E+£(X,V) ]}y v . It vanishes because
tial A. (T(V' V) =(Z(V" V") )y =0.

whereD? meansD- D. The transverse projection operator is
of course
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distinguish clearly between longitudinal and transverse physande; are three mutually orthonormal unit vectors with

:/(\:/ﬁélrtels convenient to choose a bagls(v)}, @=0.....3 =k pointing in the direction ok. The overall normalization
has been chosen so tRd{f;),= §;; . In this basis, the matrix
foV)=1, f.(v)=+38 v, (3.19) elements of f;| —iw+v-Dy+ 6C|f;), are
|
—iw —k
V3
! k
= Y
\/5 g (3.12)
—lw+yy
—iw+ 1y
The inverse operator, corresponding@dn our truncated space, is
i 1, i ) 1,
Yg —Iygw+§k _ﬁk —Iygw+§k
[ . 1, _ ) 1,
Giunc= _ﬁk —liyqo+ §k —iw —liygo+ §k (3.13
(—lw+ yg)fl
(—To+yy) 1
|
The w—0 limit is particularly simple: m%
m3(vyy 'v-E),=5—E. (3.16
. 3y
3vg I\/§ 9
k? k In our Abelian truncated-space calculation@fhowever, it
i3 is instead given by
Girunc— K 0 . (3.19
m3 m3
D D
Vg 3 (GuPL+GxPrE= 3_,)/gPTE (3.17

Yo'
In contrast, the naive derivation of Beker's theory corre-
sponds to replacing-iow+iv-k+ 6C by §C, and the corre-
sponding “inverse” would then be

o0
,y*l
g
i . (3.15
Yy
Vg

in the w—0 limit. The longitudinal part ofE is projected
out. This is quite different from the result of the naive deri-
vation.

E. Low-frequency, long-wavelength dynamics

We will now show that, despite the major difference in
G™1, one nonethelessioes recover Baleker's effective
theory even for longitudinal physics. To do so, we will also
return to the full, original non-Abelian problem and dispense
with the truncated Abelian model of the previous section.

As one can see, there is no difference in the transverse If we restrict our attention to frequencies and wavenum-
sector(spanned by, 5, but there is a huge difference in the bers which are small compared to the damping rate
longitudinal sector. As a particular example, consider the<y,, then in the Greens’ functio® we could drop the
noiseless part of the curredt given in Eq.(3.8); namely  convective derivative compared & were it not for the fact
m%(va- E),. In the naive derivation, as represented by Eq.that SC has a zero-mode. To deal with this, B§ denote the
(3.15, this contribution gives projection operator onto the zero-mode &€, so that
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Po(f(V)=(f(V))y, (3.18 o
J=0E+{- —D(D-E). (3.24

and separate the convective derivative into zero-mode and Mp

non-zero-mode pieces, . - .
Inserting this into the Maxwell equationr D,E+DXB=J

D;+v-D=(D;+Vv-D)Py+Pyv-D gives

+(1=Pg)(Dy+v-D)(1-Py). (3.19 o
_ _ DE+cE~ —D(D-E)=DXB—¢{ (3.29

To see this, note thaD, commutes withP,, and that mp

Pov-DPy=0. The last term of Eq(3.19 only perturbs the ) ] o ]
non-zero eigenvalues @iC, and may be neglected provided This local equation of motion is the exact result which fol-
o andk are small compared tg,. [Fork=0(g?T) this is a lows from approximatings as shown in Eq(3.20. How-
leading-log approximatiodThe first two terms of Eq3.19  €Ver that form forG was based on the assumption that the
are rank one perturbations which will lift the zero-mode of frequencies and wavevectors of Interest are small compared
the linearized kinetic operator. And one may evaluate expliciC the damping rateq. Sinceyg is O(g_;l’lng ), this means

itly the change in the inverse of an operator produced byhate is tiny compared to th®(T/Ing ") conductivity, and
adding a finite rank perturbation. In this case, a short exercis@atk is much smaller than th©(gT) Debye mass. Hence,

shows that there is no point in retaining tHeE or D(D-E) terms in the
effective equatior(3.25. Dropping these terms immediately
G=[(D{+V-D)Py+Pgv-D+6C] 1 yields Badeker’s equatioril.2). In other words, a more care-

ful treatment of the effect of the zero mode & does not
produce any differencéin leading-logarithmic approxima-
tion) to the resulting effective theory.

=(1-Pg)8C™(1=Po)+ 4 (74— V-D)

P

X—Olz('yg—v- D). (3.20 . .

YPi— 3D F. Recovering Debye screening

To see how Debye screening emerges from the kinetic
theory (2.19,(2.1b return to Eq.(3.6) for W and now as-
sume that the scales of interest are in the perturbative regime
where k>gT and/or >g*TIng™". [In other words, the
pecessary conditiond..1b for non-perturbative fluctuations
are not both satisfietlin this regime, the gauge fields in the
covariant derivatives appearing in the Greens’ funct{®n
(G)v=7vd ¥Pr—3D* %, (3213 may be treated as smallExpandingG in powers of the

gauge field, the leading term,

(To verify the last equality, recall thafC is nothing but
multiplication by y, when acting on odd functions of.
Hence,6Cv-DPy= ygv-DPy.)

Now pause to note the correspondences of this result wit
the truncated Abelian results of the previous section. The ful
inverse(3.20 gives

vG),=3D[y,D;—3D?] 7}, 3.21
(VG)=3Dl7gDe— 3D (3.210 G=[,+V-V,+5C] 74, (3.26
<GV>VZ[7’9Dt_%D2]71%D’ (3219 is diagonal in momentum space. Fourier transforming Eg.
1 (3.9 for the charge density then yieldto leading order in
(VGV)y= g{ 1~ $D[ysD,~ 4D?] 14D} — o—Pr, the gatige fie}l
D{—0 g . ~ ~
(3.219 ik- E=mp(Gv), E+m3(Gé),
for ,k<y4. These are simple non-Abelian generalizations _ k-E _
of Eq. (3.13. (The factor of 3 differences just reflect the :m%(Gv~k>v—2+m§,<G§>v
normalizations of our chosen basis functions in the last sec- k
tion.)
The form(3.20 for G may now be inserted into Eq&.8) Y .~ kK-E 5,
and(3.9). For the charge density, one finds - _'mD(1+'“’<G>V)?+mD<G§>V’ (3.27)
D-E=J%= -y yD— 5D’ X(¢D-E+D-), (322 or
or [K2+m3(1+iw(G),)]ik-E=m2k%(G¢),, (3.28

D-E=-D-¢ (323 With

9 2, .2
Dy+ —(— D2+ m3)
Mp

whereo= § m3/y,, and{=30(vé),. And for the current,  7For a more detailed justification, based on a computation of the
from Egs.(3.8) and(3.22, power spectrum of gauge field fluctuations, see REf.
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G(w,K)=[—iw+iv-k+6C] L (3.29  imaginary-timg correlator De(i w,,k) from the imaginary
Matsubara frequencies tQust above the real frequency
andE and & now denoting the ¢,k) Fourier components of ~axis.
these fields. In the first step of E(3.27), we used the fact By comparing Eq.(3.31 to the form(3.33, the kinetic
that, with gauge fields neglectedfﬂ the only vector which theqry result for the power spectrum may be converte_d to an
(Gv), can depend upon is, and therefore only the longitu- equivalent result for the retarded correlator. The leading fac-

dinal component oE can contribute to the result. The fol- tor of T./w s Jl."St the onv—frequenc;(classma] limit of the

i ~ ) ~ o Bose distribution function, and hence the retarded charge
|0WII’lg Step usec{G(lV' k_|(1))>= 1_<G5C>= 1 Wthh IS density correlator is
another consequence of the zero modes®. The result

(3.28 shows thak - E satisfies a diffusive Langevin equation 244
in which the noise and damping depend(@), and(G),,, Dr(w,k)=0g%k?— J —.  (3.39
respectively. k?+m3(1+iw(G),)
The power spectrum of charge density D- E) fluctua-
tions is defined as The local (and temperature-independegtk? term, which
does not contribute to the imaginary part, is determined by
_ 3o iwt—ik-x/ 10 0 the current-current Ward identities, or equivalently by the
pL(w’k)_f dtdxe (F(X0I0.0)¢. (3.30 requirement thaD g remain bounded as—«. The low fre-
quency limit,
Using Eq.(3.28 to expres®d-E in terms of the nois€&, and
then recalling that the covariance of the noiseas given by 22 2 4
Egs.(2.4) and(2.29,(2.2b is proportional to5C, allows one Dg(0 k):g D_ 2| m2_ D (3.36
to write the power spectrum as R k2em? ®k2emd| '

pL@,K) =Mk (GE(EGT), ), /K> +mB(1+iw(G))I*  reproduces the correct static equilibrium Debye-screened
charge density correlatioisMore generally, the kinetic

=2g°Tmak* Re<(~3>\,/|k2+ m%(1+iw<é)v)|2 theory answer(3.35 reduces to the known hard-thermal-
loop result whenever the frequency or momentum is large
2T 9%k* compared to the damping rajg . In this domain, the details
=——1Im (3.3)  of the scattering operatdC are irrelevant, an®(w,k) may

@ k+mp(1+ia(G)) be approximated bif w—v-k+ie] L. The resulting average
over v may then be performed analytically, and yields the
standard HTL result for the self-energy.

If neitherk nor w are large compared to the damping rate

Yg. then the detailed form o6C is significant. Evaluating

Once again, this answer is valid providks g°T and/orw
>g*TIng ™! since we neglectetfor this discussion onlythe
soft gauge fields in the covariant derivatives. Furthermbre,

and @ must be small compared {6, since this is a basic ) o .
requirement for any kinetic theory description to be valid. G(«.K) is non-trivial if kis comparable to the damping rate.

Linear response theory, applied to the underlying quantiowever, ifk ande are both small compared tg;, then the

tum field theory, shows that the power spectrum previous representatiof3.219 may be used. Perturbatively,
it gives
p,_(a),k)EJ dtd®xe' =k x(213%,x),J3°(0,0)}) y
(3.32 (G(w,K)y=15—, (3.37)
3 k—i wYg
(defined with a symmetrized ordering of quantum operators
is related to the retarded charge-density charge-density coivhich gives
relator
k = 29°T k2 3.3
DR(w,k)Eif dtd3xeiwt—ik~x0(t)<[‘]0(t’x),JO(O,O)D’ PL(CO, )|Bcdeker__ . ( . 8
(3.33
by the fluctuation-dissipation relation 8The factor ofg? is present merely because we have chosen to
scale all our gauge fields by relative to the usual perturbative
pL(w,K)=[2n(w)+1]ImDg(w,k), (3.3  conventions. In, for example, Coulomb gau@g, equals the one-

loop gauge field self-energii® (which is justm3 in the static
wheren(w)=[e?*—1]"" is the equilibrium Bose distribu- limit), plus the one-particle reducible contributions which sum to
tion function. And the retarded correlat@z(w,k) is the  T19DOI%, where D%=(A%A%=—1/(k?+11%) is the Debye-
analytic continuation of the Euclidean spa@ine-ordered screened\® propagator.
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This is the same result which emerges directly from the reyriting E=DA,— (dA/dt), it is easy to see that the trans-
lation oD-E=—D-{ in Bodeker's effective theory, com- verse electric fieldE= — P+(dA/dt) does not either. Con-
bined with Eq.(1.3) for the noise variance. This result is sequently, an example of a physical quantity which depends
valid in the overlap of the perturbative and damping-only on the transverse dynamics is the topological chéoge
dominated domains, that is whefk’—iwo|>g*T?> and  change in Chern-Simons numbef the gauge field, which

| 5K —iwyg<vs. is proportional® to [t E-B]= ftr[ (PE)-B].}

IV. IRRELEVANCY OF LONGITUDINAL DYNAMICS A. Naive equivalence

We first wish to paint with a broad brush. We will for the
moment ignore all subtleties and discuss how, if one implic-
cE=DXB—{¢, (4.1) itly_ and incorrectly(and only when advantagequseats the

noise{(x,t) as a smooth function df one may show that the

within its domain of validity, does correctly describe both WO theories(4.1) and(4.2) should generate the same trans-

longitudinal and transverse fluctuations. However, it is the/erse dynamics. We will wait until Sec. IV B and its sequel

transverse part of the gauge fields which are responsible fdP correct this discussion by taking into account the non-
interesting non-perturbative phenomena such as topologic&Mooth nature of Gaussian white noise. _

transitions and associated baryon non-conservation. One may It is simplest to initially consider both theori¢4.2) and
wonder if it is possible to formulate an equally valid effec- (- In Ag=0 gauge:

tive theory which describesnly transverse physics. On the

We have seen that Bleker's effective theory

face of things, this should be easy; just insert a transverse O'EA: —DXB+¢, 4.3
projection operator to eliminate the longitudinal part of the dt
noise, and
ocE=DXB—P+L 4.2 d
aaAz—Dx B+ P+ (4.9

This produces an effective theory with no longitudinal dy-
namics whatsoeverP E=0. In the case of an Abelian
theory, the trivial decoupling of transverse and longitudinal
parts of the gauge field would make it obvious thaBk-
ers theory (4.1) and the transverse-projected thed2)  pyqeyers equatiori4.3) is satisfied by a gauge fieki(xt).
describe exactly the same transverse dynamics. But for OWiow rewrite Baleker's equation in the form
non-Abelian theory, the dependence of covariant derivatives

and projection operators on the gauge field makes this de- d
coupling far less obvious. The remainder of this paper is U(aA—UlPLg =—-DXB+ P+l (4.9
devoted to showing that it ialmosttrue that Eqs(4.1) and

(4.2) do in fact generate identical transverse dynamics. TheJsing the explicit form(3.4) of the longitudinal projection
“almost” caveat reflects subtleties associated with the facipperator, this can be written as

that white noise cannot be considered smooth even on infini-

tesimal time scales. Investigating these subtleties will reveal d ~
that the naive transverse equati@n2) must be corrected but ‘T( &A_ DAO) = —DXB+Py{, (4.6
can then be made exactly equivalent todBker’'s equation

(4.1) with regard to the transverse dynamics. It should beyhereA, is simply a(suggestive name for

emphasized that this investigation was motivated by theoret-

ical curiosity, not practical convenienéeBodeker’s equa- AOEO_—lD—ZD_g 4.7)
tion (4.1) is local, whereas the transverse-projected equation

(4.2 is not. Consequently, numerical simulations are far For a particular instantiation of the noisand any initial
more easily performed in the original theory than in anycondition, the solution to Eq(4.6) may be interpreted in
transverse-projected variant. two different ways. On the one hand, is, by construction,

To be precise, by “transverse dynamics” we refer to allan A,=0 gauge solution to Bieker's equatiori4.1). On the
physical observables that do not depend Agnwhen ex-

pressed as gauge-invariant functions of the fiéids The
magnetic fieldB=DX A does not, of course, depend Ag.

For the moment, imagine a particular instantiation of the
white noise(x,t)—that is, consider a particular member of
the Gaussian ensemble of noise functions. Suppose that

OThe precise formula idN(t) = (1/872) [ {dtd*x E?B? .
The topological transition ratér Chern-Simons number diffu-
. sion constanf is an important ingredient in scenarios of elec-
In fact, historically, it took us some time to recognize that longi- troweak baryogenesis. Understanding the applicability of numerical
tudinal physics forw<k< 1y, is correctly reproduced by Bieker's  simulations using Baeker’s effective theory for extracting the to-
effective theory, and the discussion in this section was motivated bpological transition rate motivated this investigation. $8¢ for
the desire to show that it simply does not matter. such recent numerical work and related discussion.
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other hand, if one says thato is actually the time compo- Eq.(4.12 as desired. A similar argument shows that unequal
nent of the gauge field, then the left-hand-side of @) is  time correlations of vanish, as they should.

just —oE. Therefore,Aﬂz(Ro,A) is a solution to the pro- .

jected equation(4.2) in the particular gauge wheréd, B. So what is wrong?

— ~—1n-2

=0 "DD-L _ 1. A toy model
But, given a solution4g,A) to Eq.(4.2) with A;#0, one

may always gauge transform backAg=0 gauge. The re- To see what goes wrong with the previous equivalency

argument, and to understand what it has to do with the short-

sult will be a gauge fieldh which obeys time nature of white noise, it is instructive first to consider a
. system much simpler than non-Abelian gauge theory. Forget
o q;A= ~DXB+PrL (4.8 about field theory and instead imagine stochastic dynamics

L . . of a classical particle moving in two dimensions in a
This is just theAy=0 transverse equatio@.4), except that rotationally-symmetric potential (r):

the noise has been gauge transformed by the transformation

which takes Ay,A) into A;=0 gauge: d
. b dtr_ VV+¢, (4.1
£=uh, (4.9
with ({i(t)é’j(t')>=2T5ij5(t—t’). (4.16
t~ (1 For convenience, we have normalized the analog o6 1.
— — 1 . . 1
U—Tex;{ foAOdt} —Texp{o fo D? D gdt}' Imagine also we care only about the radial dynamics of this

(4.10 system and not at all about the angular dynamics.
vyhereTsignifies time ordering, with the latest times on the gofsogg\a{:]ng;ig‘zgjgg’et:;egﬁiglr%t;m?g:ziﬁg?rlgns_
right. — verse gauge dynamics, and the angular dynamics to the lon-
The distinction betweed and its gauge transford@iwill  gitudinal dynamics. Circles about the origin are analogous to
not matter, and our two theorie@.3) and (4.4 will be  gauge orbits of 3-dimensional gauge configurations under
equivalent(subject to earlier caveatsprovided the distribu-  3-dimensional gauge transformatiofsince, in the gauge
tion ££=U23%¢ is Gaussian white noise, just like the distri- theory, infinitesimal displacements in the longitudinal direc-
bution of the originalZ. If our transformationJ was not a  tion are of the formA A(x) = DA (x), which is the form of an

function of the noise, this would be trivial because then weinfinitesimal 3-dimensional gauge transformafioBquation
would have (4.19 is analogous to Baeker's effective theory4.3), and
the analog of the transverse-projected theldry) is then

(£8) =0 UKL, (412 .
Since the ¢ correlator is proportional tas°®, and since AR (4.1
uacyPdsed= 520 it would follow that
L where the radial projection operatBy is
(EL)=(L0). (4.12

Pi=riri=61-69. (4.18
Even though our transformatidu depends on the Gaussian

white noise, this result naively remains true. Consider, for ~Justas in Sec. IV A, we can make a sloppy and not quite
instance, the equal time correlation correct argument that the unprojected equatbt? and the

o projected equatior{4.17) are equivalent. A transforma@n
(2 2(1))y=(U(tHuPd ) (1) Z4t)).  (4.13  from a solutionr of the unprojected equation to a solution
of the projected equation appears to be
Because the noise correlation is local in time, whilgfor- o
mally) depends only on the noisgrior to t, this can be r=uUr, ¢=U¢ (4.19
factorized!?

(BOL1)) = (U U EM ED)).  (4.14

The ¢ correlation is again proportional t6°%, which again

contracts theJ’s and eliminates them, so that we arrive atwhere, ifr and ¢ are represented by complex numbegs
+iry and{,+i¢,, U can be written in a form quite analo-
gous to Eq(4.10:

or equivalently

r=U"1%, ¢=U"1g (4.20

12In fact, the dependender lack thereof of U(t) on the noise at ¢
exactly timet is ill-defined and depends on the details of time U=ex _if A0~§dt i (4.22)
discretization, as discussed in the next sub-section. 0
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U simply rotates away the accumulated motion in the angu-
lar direction, so that the projected motion, at every instant in
time, becomes purely radial. Naively plugging E¢.20
into the unprojected equatio@.15, and implicitly but in-
correctly assuming thdtis a smooth function of time, yields

the naive projected equatiqd.17) for r.

One can immediately see that the two equati¢hd5
and(4.17 cannot, however, actually describe the same radial
dynamics. In the unprojected ca@e15), there is zero prob- (@) (b)
ability that the system would ever passactlythrough the
origin r=0. The projected cas&t.17), however, just de-
scribes one-dimensional motion, parametrized pglong a
line of constantd. That is, we could fixé and just replace
Eq. (4.17 by the one degree of freedom equation

FIG. 1. Radial motion generated by E@.25 depending on
whetherd is defined by théa) beginning,(b) end, or(c) middle of
a discrete time jump—t+e.

value ofr will drift out a little bit, as in Fig. 1a. In the second
d dv case, it will drift in a little bit, as in Fig. 1b. If we pick a
a’ " " arte (422 symmetric convention, where we evaluatet the midpoint,
thenr will remain constant, as in Fig. 1c.
(There does not appear to be an analog of this simplification In non-stochastic equations, such discretization choices
in the gauge theory; see Appendix)Bs long as there are become irrelevant in the continuum limit-0 (though they
no infinite potential barriers, this one-dimensional systemmay have significance for the practicality of numerical cal-
will eventually fluctuate through any value ofincludingr  culations. For stochastic equations, however, the 0 limit

=0. is more subtle because, by Ed.26), the amplitude of the
To understand the discrepancy, we need to properly unwhite noise¢ is order

derstand the small time behavior of white noise Langevin
equations such as E.15 and(4.17). The standard way of

defining what such equations actually mean is to discretize \ﬁ
time and only at the end of the day take the continuous time i~ € (4.27
limit.
2. Time discretization ambiguities and diverges ag—0. The drift Ar in Figs. 1a and b is
Before proceeding, we have to dispose of an instructivéerefore of order
red herring concerning the time discretization of our various
stochastic equations. It is not always true that continuum- (e0)? €T
time stochastic equations like the ones we have been writing +Ar~\r+(el)’—r~ - (4.28

down have an unambiguous meaning. To understand the pos-
sible ambiguities, imagine that instead of being interested in
only the radial dynamics of our toy model, we were instead,, 5 time intervale. That means that the drift per unit time,
interested in only the angular dynamics, and so had proposegl /. i finite ase—0, and so the continuum limit really
a projected equation of the form depends on one’s discretization conventions.
d In the unprojected equatio@.15), there is no such dis-
d_r: Py, (4.23 cretization ambiguity. And in our actual toy model equation
t (4.17 with radial projection, there is no such ambiguity be-
cause motion in the direction, unlike in thed direction, is
straight— does not change between one end of the interval

This continuum equatiomppearsto describe motion for and the other. The.situation is Sl|ght|y more Complicated for
which the radius remains constant. Now imagine discretiz- the transverse-projected equati¢.4) for gauge theory,

Pl=00=51—rrl, (4.24)

ing time with small time Steps of S|ze SO that hOWeVer. There, motion Oﬁ in the transverse direCtiGﬂDes
change the transverse projection operder However, we
e Ar=Py, (4.29 demonstrate in Sec. IV C 2 that this change turns out to be
high enough order idA that discretization ambiguities do
(Gi(DE(t+ne))=2Te 168n0. (4.26  not arise.

The upshot is that the continuum stochastic equations
There is an ambiguity in the schematic way we have written4.17 and (4.4) for the radial-projected toy model and the
the discretized equatiot4.29: we have not made it clear transverse-projected gauge theory are not ambiguous. How-
whether the directiord implicit in P, is supposed to be ever, we shall next see that the very same discretization is-
evaluated at the starting point of the tiny time interval, thesues affect the transformations we used to argue that they
end point, or somewhere in between. In the first case, thevere equivalent with their unprojected counterparts.
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3. Centrifugal drift while to understand how the equilibrium distribution could
have been deduced directly from the two-dimensional pro-
jected equation4.17). This requires deriving the Fokker-
Planck equation that is associated with a given Langevin
equation and which describes the time evolution of probabil-
ity distributions P(r). (This will be discussed explicitly in
r(t+e)=r(t)—eVV(r(t))+elt). (4.29  the gauge theory case belgwror the naive projected equa-
tion (4.17), one finds that

The way we proposed obtaining the projected equatio
(4.17 from the unprojected ong}.15 was by rotating away
the accumulated@ motion. Imagine a single time step of the
discretized unprojected equation. Thén

The motion of the radial coordinateis then
_ exp(—VIT)
r(t+e)=|r(t)—eVV(r(t))+elt)| P(r) ot ———-

2r

(4.39

is a (two-dimensional equilibrium solution. But if we cor-
rect the naive equation by replaciNg- Vi, then we indeed

62
— _ ' r. —|1A2
r—eV’'(r)+er §+2r|§| L

+0(€%?). (4.30  recover the unprojected result
Given that, ax—0, a large number of successive tiny time exp(—Vex/T)
steps will occur before the system appreciably changes posi- Pr)s —— = =exp(—VIT) (4.36

tion, the positivel£|? term can be replaced by its statistical

average(4.26: as the equilibrium distribution im.** [Do not confuse the

R €T two-dimensional distribution(4.36 for r with the one-
r(t+e)~|r—eV'(r)+er-{+ e (1). (4.31) dimensional radial distributiot¥.34) for r. Both describe the
same equilibrium ensemble.

The distribution of - £ does not care about the directionrof
and(4.31) can be rewritten as C. Gauge theory

F(t+e)~r(t)— eVig(r(t))+ el (1), (4.3 1. Time discretization ambiguities

The transverse-projected versi@h4) of the soft effective

where(, is uncorrelated white noise and theory is a Langevin equation of the form
Vei(r)=V(r)—Tinr. (4.33 d
—0i=—4d;V(Q)t+eg , 4.37
The continuum projected equations that are truly equivalent de ¥ V(@ ea(@)a ( 3

to the unprojected one are therefore EGE17) or (4.22
with V replaced by¢;. The addition of the Interm in Eq. (Za(t) Lp(t'))=2T8p8(t—1"), (4.37b
(4.33 now provides a “centrifugal potential” which pre-
vents the one-dimensional systefd.22 from passing

where, for the moment, we are using notation natural for a
throughr=0.

system with a finite number of degrees of freedom. In the
field theory case, the dynamical variabtpare the values of
the gauge fields at different points in space andecomes a
The exact form of the “centrifugal” correction was functional derivatives/ SA. The functionse;,(q) character-
really determined from the very start. As we shall briefly jze the coupling of the noise to the dynamical variatojgfor
review in Sec. IV C 4, the equilibrium distribution ingen-  the gauge theory this is the transverse projection opeRator
erated by the unprojected equatieh22) is proportional to  (which depends on the gauge figlJ.
exp(=VIT). That means that the probability distribution for

the radial variable must be proportional to

4. Equilibrium distributions

2mrexp( — VIT)ocexp — Vi /T), (4.34 Because the projected equation consemgtiere is a family of
two-dimensional equilibrium solutions to the projected toy model
since the Zrr is the volume of the symmetry orbit. But equation: namely, the rotationally invariant distributiGh35 can
exp(—Ve/T) is precisely the equilibrium distribution gener- e multiplied by an arbitrary angular distributidg). This non-
ated by the projected equatioh.22) if V is replaced by o . uniqueness is, of course, irrelevant if one is only mterest_ed in rota-
In the gauge theory case, there will be no analog to thémnally invariant observables. The appearance of an arbitrary func-

one-dimensional radial equatia#.22, and so it is worth- tion of ¢ in the general equilibrium distribution is a reflection of the
7 non-ergodicity of the projected two-dimensional evolution equa-

tion. As discussed in Appendix B, for the transverse-projected
gauge theory there does not appear to be any analog of a conserved
Bwhether it isV[r(t)] or V[r(t+¢€)], or the average of the two, gauge-orbit coordinat® and, so far as we know, the transverse-
does not matter in the continuum time lingt-0. projected gauge theory remains ergodic.
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To define exactly what is meant by this equation, imagineThe noise coupling;, introduced above becomes tfma-
discretizing time into very small time steps of sigé® Sto-  trix elements of thetransverse projection operator
chastic equations of the fortd.373,(4.37b are generically i ab (2 iiab
ambiguous if the coupling;,(q) to the noise has non-trivial Pxy=816"6(x—y)—(D'D"?D)g/.  (4.43
dependence df, because of the ambiguity, discussed earlier

of when to evaluate. In the discretized equation, This operator is symmetric iX andY, and the drift force

discussed earlier is proportional to

gi(t+e)—a;(t)
A gV ealaliae, (438 PysPyy. (4.4
SA
(La) (1)) =2T€ 18,p0 (4.39  When taking the variation dP,y, the variation must act on

_ o the left-most covariant derivative in E4.43), since other-
this ambiguity appears as dependence on a parameter wise that derivative will annihilate against ti&, factor.
which controls the time at which the right-hand side is evalu-One thus obtains

ated. For exampleg=0 corresponds to a forward time de-

rivative and is known as the “lteonvention,a=3 to the ik—a _oiveb
symmetric derivative, known as Stratonovich convention, Pxzgp, Pzv™ LPXZé Teed(x=2)(D™"Dl)yy
anda=1 to a backward time derivative. The precise mean-

ing of evaluation at timeé+ «e€ is to expand inke. Keeping ochge(D—2DJ)§b

in mind that the amplitude of the noigeis e~ ¥, and using _ Y _

the equation of motion itself, the terms in the expansion —(D'D 2D Ta(D2D))s) (4.45

which are non-negligible whea—0 are ) o ) . . o
in d spatial dimensions, where no integration oxeis im-

gi(t+e)—a;(t) plied. The first term vanishes because the adjoint generators
———=[—diVt+ealat ae(dj€a)ejplalpl:- 2. are anti-symmetric ingbc) and soT2,=0. The second
(4.40  term vanishes becaus®iD ~2D')2¢ is symmetric in &c)
and so vanishes when contracted with the anti-symmetric

The productZ,¢, may be replaced by its expectation, giving Tee- 1653 the convention-dependent drift force is exactly
the final discretized equation zero:™

€

gi(t+e)—q;(t) 3. Centrifugal drift

=[=aV+2aT (di€a)€jat €ialalt- We now return to the transformation, betweeidBker’s

(4.41 effective theory and the transverse-projected theory, in order
to derive the gauge theory analog of the centrifugal correc-
The term proportional toa is a convention-dependent tion discussed for the toy model in Sec. IV B 3. The time-
“drift” force. The naive continuous-time formulation discretized version of Bieker's effective theory is
(4.373,(4.37h does not, in general, uniquely specify the dy-
namics.

€

el oV
A(t+ e)=A(t)—;(ﬁ(t)—§(t)), (4.49
2. Vanishing ambiguity

We shall now show that the ambiguity vanishes for theWhere

transverse-only noise equation of E4.4). This implies that

there is no real issue of convention dependence for this ap-

plication. 18The drift force is also proportional tBwhich, in the field theory
We work in continuous spacgather than working on a case, isT(0). If we were only interested in perturbative physics,

spatial lattice, which would be more relevant to numericalwe could have chosen to work in dimensional regularization, which

simulations but also more complicale@he degrees of free- setss(0) to zero.

dom in the gauge theory case are labeled by coordinétes 17I_n the general case, a sufficient condition for the amt_)iguity to

=(x,i,a), wherei is a vector index an@ an adjoint color vanish can bg expressed as follows. Suppose the pot@/hjn!alof

index. It will be convenient to introduce combined labels forEq- (4.37) is invariant under some symmetry transformations that

several different choices of coordinates: ave the infinitesimal forng—q+\ 6*(q), where « indexes the
' independent symmetry generatgasid\ is infinitesima). Define a

v oy _ metric g*#= 6% #° on the space of symmetry generators. As in
X=(xia), Y=(yjb), Z=(zkc). (442 general relativity, leg,; denote the&matrix) inverse of the metric.
Now suppose that the noise coupling equals the projection operator
€= 0~ Hi‘xgaﬁef. One can then show that the ambiguity
15The following discussion roughly follows the presentation in (deia)€ja vanishes ifg; 6" is anti-symmetric under interchangeiof
Secs. 4.7 and 4.8 of Ref10], although our normalizations are andj. This anti-symmetry condition is indeed satisfied in both the
slightly different. radial-projected toy model and transverse-projected gauge theory.
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o[ cava 1.2 [ cara Once again, we can replace the terms quadratic in noise by
V=307 | BiBi=29 ° | FijFi (4.47  their statistical averages, as given by E448. After some
X X manipulation, one finds that this yields

is the potential energy associated with the magnetic field, the
noise correlation is Ka(t+e,x)=Aa(t,x)+§

+P t,x
| e
(L) (t+nex))=29°Toe 15205 5y08(X—X'),
Te
(449 +—— (DD %)+ 0( )
and we have chosen to use a forward time difference. We

now want to apply(a discrete version dthe gauge transfor- SV
mation U that was introduced in the time-continuum case, =A%(t,X)+ £l eff +p_|_§ﬁ(t,x))
Eq. (4.10, to eliminate longitudinal motion oA. For sim- SAZ(X)
licity of presentation, we shall focus on one single, time
plicity of p 9 +0(e), (4.59

step fromt to t+ e and discuss how to transford(t+ €)
relative toA(t) in order to eliminate the longitudinal motion : . .
introduced during that step. Consider a gauge transformatio\ﬁvhere the effective potentidle is
U which equals the identity at timg but is a non-trivial Voe=V—1TTrn(=D2)=V—TIn/de{ —D2). (4.5
infinitesimal transformation at time+ e, eff 2 ( ) ( ). (456

As shown in Appendix A,/det(—D?) is the volume of the
gauge orbit containing a given spatial gauge field. Conse-
aquently, this logarithmic correction to the potential is com-
pletely analogous to the “centrifugal” potential appearing in
the rotationally invariant toy model. The upshot is that the
projected equation which is actually equivalent todBker’s
effective theory differs from the naive projected equation
(4.4) by the replacement of by Ve

U(t,x)=1, U(t+e,x)=exda(x)]. (4.49

For the moment, we leave the generator of the transform
tion, «a, arbitrary. The gauge transformed field is

A=U(V+A)UL. (4.50

Expanding in powers of the generatarat timet+ e, this

gives d S
_ UaA=—D>< B+§TﬁTrln(—D2)+PT§ (4.57)
A(t+e)=A(t+e€)—Da+i[Da,a]+0(a?), (4.5))

whereDa=V a+[A(t+¢€),a]. Using the equation of mo- 4. The equilibrium distribution

tion (4.46 to rewrite A(t+€) in terms of A(t) gives It's interesting to examine what happens if one converts a

Langevin equation of the generic for(.41) into a Fokker-

— 8V 8V : i ility distribu-
A(t+e)=A(t) — E(——g) Dat € % ta I?Ianck equation fpr the evolution of the probability distribu
o\ A o| 6A tion P(q,t). One finds(see for exampl¢10]) that
+1[Da,a]+0(a3 Jea?), (4.52 9
EP: &i[T&j(eiaejaP)-i-{&iV—Zaﬂajeia)eja}P].

where now all the covariant derivatives involve the gauge (4.59
field at timet. Choosing the infinitesimal generator to equal '
If e,(q) were justs,,, as in Baleker's equatiori4.3), then
= ED‘ZD- Z (4.53 the equilibrium distribution (the solution to d?P/dt=0)
o would simply beP=exp(—V/7T") up to an overall normaliza-
tion constant.

as implied by our previous discussigaf. Eq. (4.10], will For the naive radial-projected toy mod@.17) with e,
cause theDa term to cancel the longitudinal projection of _ - »

the noisel. Since the nois¢ is of ordere Y2, this means ~lifa:

thata is of ordery/e. We need to keep all terms in E@.52 P d

which are of ordete. The term €/a)[ 6V, a] is O(e¥?) and Jj(€ia€ja) = == In(27r), (4.59
may be neglected. Consequently, roodr

_ € Y and (7;e;,)€;2=0. This leads to the equilibrium distributions
At+e)=A(t)+ —( -+ PTg) (4.35 quoted in Sec. IV B 4.
o oA In the gauge theory case, we have seen that the
€2 convention-dependent drift force vanishes for the transverse-
- F[g—%DD*2D~§,D*2D-§]+O(63’2). only noise equatiori4.4), but there still remaing;, depen-

dence in the Fokker-Planck equation. Plugging in the trans-
(4.54  verse projection operator f@; one finds
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5 B
aj(eiae]-a)—>6TYPXY=%PXY5TYtrIn(—D2), (4.60 ds?| orpit= thr[(DM)T-(DaA)]:fxtr[aA*(—DZ)aA].

(A3)
and, solving for the equilibrium distribution,
Consequently the induced volume element on the orbit,

B exp(—VIT) 6D evaluated a#, is
vde(—D%) ' dv=\de{—D?)dA, (A4)

up to an overall normalization constdfitAs mentioned
above, Jdet(— D?) just represents the gauge orbit volume,
and the above distribution is analogous to the toy mode
result(4.35. As with the toy model, however, if we examine
the transverse theory that is truly equivalent to the un
projected theory, then we should replabe»V, 4 and we
recover the correct equilibrium distribution

where dA=II, ,dA?(x) denotes the flat measure on the

auge algebra. But the gauge-invariant Haar measure on the
gauge group is jusdA when evaluated at the identity. And,
because the functional determinant def§?) is gauge in-
‘variant, it is constant over the gauge orbit. So, globally, the
volume elementv equals\det(— D?) times the Haar mea-
sure on the gauge group. Hence,

exp(— Ver/ T) orbit volume
=—————=exp(—VIT). (4.62 — —n2y12
yde{ —D?) gauge group volume [aet=DAT™ (A9
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94ER40818. dicular to the gauge orbits= const. Second, moving accord-
ing to this equation, the particle cannot reach any point in the
APPENDIX A: THE VOLUME OF GAUGE ORBITS configuration space, but instead remains confined to a slice

in a configuration space whereis a constant. In particular,
The natural metric on the space of gauge field vector postarting from a pointi, #), one cannot reach any point that is
tentials is gauge equivalent to it, except the original point. In other
words, if one fixes the gauge= 6,, with 6, some constant,
ds?= f tTdAT-dA]. (A1) then this gauge-fixing condition remains satisfied throughout
X the random walk.
Now consider the gauge theory. Equati@nd) describes
This is the unique metridup to an overall multiplicative a motion in the space of field configurations that is analogous
constant which is invariant under both gauge transforma-to that described by the projected equatidril?) in the toy
tions and spacetime symmetries. The gauge orbit passimgodel. In terms of the natural metril), on the space of
through a particular gauge configuratién consists of all gauge configurations, one can easily check that the motion is
gauge transforms of\. Within a neighborhood ofA, con- always along directions perpendicular to deformations gen-
figurations on the gauge orbit may be parametrized as erated by gauge transformatiori$his is equivalent to satis-
A A fying the conditionD- A=0.) The question we want to ask is
At=e "De’, (A2)  whether the second property of our toy model still holds, i.e.,
is the motion confined to a slice in configuration space? It
might be surprising that the answer to this question is nega-
tive, and one can travel throughout the whole configuration
space even when restricted to trajectories whose tangents, at
— 4 every point, are perpendicular to the intersecting gauge orbit.
evaluated af\, is just This negative answer is perhaps less surprising if one notices
that there is no obvious gauge-fixing condition similaréto
=6, that is conserved during the transverse-projected ran-
81 the more general notation of footnote 17, the assumption thalom walk (4.4). Thus, in the gauge theory, there is no
d;6" is anti-symmetric ini andj leads tod;(e.ejs) = 7€;9;in\g  equivalence of the parametér
and P=exp(-VIT)/\/g, whereg is the determinant of the inverse This can be seen most directly by the explicit construction
Metric g, - of a trajectory that remains perpendicular to gauge transfor-

where A is an arbitrary generator of the gauge grdup.,
A(X)=A3(x)T? is a Lie-algebra valued function of], and
D=V +A is the covariant derivative with gauge fiel.
SinceA»—A~DA, the induced metric on the gauge orbit,
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mations at all times, but nevertheless connects two distingt,ngition D-A=0. For example, whene<t<2e D-A
points on the same gauge orbit. The trajectory we are going. . /. p.]. To correct for this deviation, we need to modify
to construct starts EA=_0 and remains small all the time, so A, in the following way:

we can use perturbation theory. Let us denote the small pa-

rameter bye. Consider first the following trajectory:

Ai(t,X): ECi(X)+ (t_ G)Di(x) + (t_ e)ai(x), e<t<2e,
tCi(x), 0<t<eg; (B2)
€C;(X) +(t—€)Di(x), e<t<2¢; wherea;=0(€), so the term involvingy; is of higher order

Ai(t,x)= (3e—1)Ci(X) + €D;(X), 2e<t<3e: tha_n the_other terms. EquatldB.Z) satlsfles_ the condition
D-A=0 if one places the following constraint @ :
(4e—t)Di(x), 3e<t<4e.
(B1) ;
o'?iai-l-e[Ci,Di]:O. (BS)
Provided thatC; andD; are transverse};C;=4;,D;=0, it is . - o .
trivial to check thatD-A=0 to leading order ine. This  1his condition can be satisfied by choosing
means the trajectory is everywhere perpendicfiamwithin . _2
O(€?)] to the gauge orbits it passes through. a;=—€d;V_Cj,Dj]. (B4)

This trajectory may seem uninteresting, since itis a closed ] )
loop that starts aA=0 and ends at the same point. The In this manner, one can modify the whole trajectBl) so
interest arises when we go to next-to-leading orde¢.idit  that the conditionD-A=0 is satisfied through next-to-
next-to-leading order, the trajectof1) does not satisfy the leading order. The result is

tCi, 0<t<6,
€Ci+(t—€)D;—e(t—€)a,V ?[C;,Dj], e<t<2e;

At )= 2 2 (B5)
(3e—1)Ci+eDi—(e"+e(t—2¢€))d; V7 C;,Djl, 2e<t<3g;
(4e—t)D;—2€%3,V?[C;,D|], Ze<t<4e.

One sees that the trajectory now startsAat=0 att=0 and runs toAi=—262<9iV‘2[Cj ,D;] at t=4e. [Including still
higher-order corrections would only change this®e®).] At the end pointA is a pure gauge, and, for a general choice of

C; andD;, nonzero. Therefore, this trajectory presents a simple example of how, following a transverse projected trajectory,
one can go from one field configuration to a field configuration that is gauge equivalent to it. From this result one may show
(provided the gauge group is semi-simpileat any field configuration in the vicinity oA=0 is accessible to the transverse-
projected random walk4.4). Hence, there can be no analog of the toy model “slice paramedeidr transverse-projected
dynamics in non-Abelian gauge theories.

[1] P. Arnold, D. Son, and L. Yaffe, Phys. Rev. Bb, 6264 [6] P. Arnold, D. Son, and L. Yaffe, Phys. Rev. §9, 105020

(1997. (1999.
[2] R. Pisarski, Phys. Rev. Let3, 1129(1989; Phys. Rev. D47, [7] D. Bodeker, Phys. Lett. BI26, 351 (1998.
5589(1993. [81 G. Moore, McGill Report No. MCGILL-98-28,

[3] V. Lebedev and A. Smilga, Physica 81, 187 (1992.
[4] J. Blaizot and E. lancu, Phys. Rev. Le#t6, 3080 (1996;
Phys. Rev. D55, 973(1997); 56, 7877(1997).

hep-ph/9810313.
[9] See, for example, J. Kapustinite Temperature Field Theory
(Cambridge University Press, Cambridge, England, 1989

[5] A. Selikhov and M. Gyulassy, Phys. Lett. B16, 373
(1993.

[10] J. Zinn-Justin,Quantum Field Theory and Critical Phenom-
eng 2nd ed.(Oxford University Press, New York, 1983

025007-15



