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In this paper we describe Liouville gravity which is induced by a set of quantum fietaisstituents and
represents a two-dimensional analogue of Sakharov's induced gravity. The important feature of the considered
theory is the presence of massless constituents which are responsible for the appearance of the induced
Liouville field. The role of the massive constituents is only to induce the cosmological constant. We consider
the instanton solutions of the Euclidean Liouville gravity with negative and zero cosmological constants, some
instantons being interpreted as two-dimensional anti—de Sitter )Al&ck holes. We study the thermody-
namics of all the solutions and conclude that their entropy is completely determined by the statistical-
mechanical entropy of the massless constituents. This shows, in particular, that the constituents of the induced
gravity are the true degrees of freedom of Ad3ack holes. Special attention is also paid to the induced
Liouville gravity with a zero cosmological constant on a torus. We demonstrate the equivalence of its ther-
modynamics to the thermodynamics of BTZ black holes and comment on computations of the BTZ black hole
entropy.[S0556-282(99)01514-3

PACS numbeps): 04.60.Kz, 05.30-d, 04.70.Dy

[. INTRODUCTION close to the horizon one can find a Liouville-like description
of black holes in an arbitrary dimensidi2,13. This de-

The microscopic explanation of the Bekenstein-Hawkingscription becomes possible because the gravitational action
entropy[1,2] of black holes is one of the most intriguing for spherically symmetric metrics is the action for a two-
problems of theoretical physics. Although there are severalimensional dilatonic gravity. In the region near the horizon
approaches to its resolutidifor a review of some of them this gravity is equivalent to Liouville theoryt 3] and one can
see[3,4]) this problem is a subject of intensive study anduse the conformal theory to calculate the entropy.
continues to inspire new ideas. These results may have the following interpretalﬁmn].

In particu|ar, it was realized recenﬂy that at least Somé)n the level of thermodynamics black holes are equivalent to
black holes may be macroscopica”y equi\/a|ent to two-LiOUVi”e field theory. Liouville field, which is purely classi-
dimensional systems described by Liouville theory. Thecal, is a collective excitation of some quantum constituents
statistical-mechanical entropy of these systems can be contithich are described by 2D conformal field theory. To put it
puted by means of a conformal field theory and coincidedn another way, Liouville theory is an effective theory of the
with the black hole entropy. constituents. The constituents are those microscopic degrees

This observation was first made for extremal black holesf freedom which explain the thermodynamic entropy related
[5] and was based on dualities in string models. However, if0 Liouville field and thus reproduce the black hole entropy
the most explicit and simple form it appeared in the work byin & statistical-mechanical way.

Strominger [6] Concerning Baados-Teitelboim-Zanelli Remarkably, this mechanism is basically the same as the
(BTZ) black holeg7] (for a detailed analysis of these com- mechanism of the generation of the black hole entropy in
putations with the large list of references §89. The BTz  Sakharov's induced gravityf15-18. According to Sa-
black holes have the same thermodynamic characteristics §arov’s ideg[19], the gravitational field is a collective ex-
dual Liouville theory defined at asymptotic infinity. The rea- Citation of the matter constituents and the Einstein action is
son for such a relation arises from a specific property Oithe Iow-energy effective action of the constituents. The equa-
three-dimensional gravity with a negative cosmological contions for the metriay,,, are

stant. It is equivalent to Chern-Simons theory which has only R

boundary degrees of freedom that are described by Liouville (T,.(9))=0. (11
theory[9,10].

Liouville theory which is dual to the BTZ black hole can Here'T'W is the stress-energy tensor of constituent fields on
be also defined at the black hole horizfiil]. Moreover, the background with the metrig,,, and its average is taken

in some quantum state.
It should be noted that in Sakharov’s induced gravity the

*Email address: frolov@phys.ualberta.ca microscopic states of a black hole are related to the constitu-
TEmail address: fursaev@thsund.jinr.ru ents which live on the physical space-time. In the Liouville

*Email address: gabor@theory.uwinnipeg.ca description of black holes the microscopic degrees of free-
$Email address: lenin@math.unb.ca dom live on a dual two-dimensional space-time. For this rea-
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son the statistical origin of the Bekenstein-Hawking entropyscalar fields being massless. The numbers of massive and
in the two approaches is different. massless scalars akg andN, respectively, and the number

Nevertheless, the similarity of both approaches suggestsf massive spinor fields iNy. It is assumed that some mas-
that they may be connected. To see whether there is arsive scalars are nonminimally coupled and the corresponding
connection one must first understand better how Sakharov'sonstants are denoted §s. The effective gravitational ac-
mechanism of induced gravity works in the case of Liouvilletion of the fields propagating on a background with the met-
theory. Studying induced Liouville gravity is the subject of ric g, is
this paper.

The important feature of the considered models of two-
dimensional induced gravity is the presence of massless con-
stituents which induce Liouville action. The massive con-
stituents serve only to induce a finite cosmological constant. 1
Thus, as distinct from higher dimensions, all the dynamics in W= 5log det — V2+ £R+m)),
Liouville induced gravity is due to massless fields. This fact
has a crucial consequence for the statistical interpretation of
the thermodynamics of the instanton solutions of the theory.

We consider models with negative and zero cosmological 1
constants. The theory with negative cosmological constant is Wg: —log det —V?). (2.3
a sort of gravity on anti—de Sitter AdSpace-time. Studying 2
this theory is motivated by various reasons, one of which i
its relation to Ad$ string theories arising as near-horizon
limits of different four- and five-dimensional black holéer
a recent discussion of AdQravity in this context seg20]).
Liouville induced gravity with a vanishing cosmological
constant is interesting because it is that theory which is ther- N+N—-2Ny4=0, > m§—22 m§=0, (2.9
modynamically equivalent to BTZ black holes. s d

The paper is organized as follows. In Sec. Il we use Sa-
kharov's mechanism to induce Liouville gravity by massless _ _
and massive quantum constituent fields. The considered Ns#+N+Nag 623 &=0. @3
guantum models are free from ultraviolet divergences and, as
a result, the induced theory is finite and well-defined. All theConstraintg2.4) ensure the finiteness of the induced cosmo-
solutions of Liouville gravity with the negative cosmological logical constant, while conditiof2.5 guarantees the finite-
constant are locally AdS In the Euclidean theory they can ness of the induced Newton constant.
be of three types: elliptic, hyperbolic, and parabolic. We re- Suppose now that masses have the order of magnitude
mind the reader the form of these solutions in Sec. Ill. Theof a typical massM. The low-energy limit of the theory is
instantons of the elliptic type can be interpreted as AdS realized when the curvature of the background geometry is
black holes. Thermodynamics and statistical mechanics ofmall compared t&2. In this limit contributions of the mas-
these black holes are studied in Sec. IV. We demonstrate thatve constituents to the induced action can be expanded in
in the physical processes the changes of the entropy of powers of the curvature. On the other hand, the contributions
AdS, black hole coincide with the corresponding changes obf the massless constituent#) can be calculated exactly.

r=> Ws+§ Wy+NW2, (2.1

Wy= —logdet y*V ,+my), (2.2

Here R is the scalar curvature of the background. It is not
difficult to show thatfl” is free from ultraviolet divergences if
the following constraints are satisfied:

the entanglement(statistical-mechanicpl entropy of the It is convenient to represent the induced action in the form
massless constituents. Therefore, the constituents of the in-

duced gravity are the true internal degrees of freedom of r=T"+NW, (2.6)
AdS, black holes. In Sec. V we comment on thermodynam-

ics and statistical mechanics of the hyperbolic and parabolic m_

solutions. Finally, in Sec. VI we consider induced Liouville r _2;‘ Ws+2d: Wd+NW2'diV’

gravity with a vanishing cosmological constant on a torus (2.7
and demonstrate the equivalence of its thermodynamics to

the thermodynamics of the BTZ black hole under identifying W=W2—-W2 4, . (2.8

the central charges of both theories. A brief discussion is '

given in Sec. VII. Here \/\/2,div is the divergent part of the action of massless

fields, so thatW is the “renormalized” action. Note that

because we are dealing with ultraviolet finite theories the

functionalsT'™ are free from the divergences. The diver-
Induced Liouville gravity(ILG) can be constructed from gences of the massive fields iif" are canceled by the term

models with different constituent field species, similar to theNVVg,di\,.

construction of induced Einstein gravift6—18. To illus- Let us consider fields given on a manifold with bound-

trate the idea we consider here the simplest model. It consistgy d M. The metric onM will be denotedg,,,. In the

of noninteracting scalar and spinor fields, with some of thegeneral caseg,, can have Lorentzian or Euclidean signa-

II. INDUCED LIOUVILLE GRAVITY
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ture. In what follows we assume th&t is a Euclidean mani- — 1 N O
fold. In the low energy limit of the theory the action of the L[, 9]=I[e]=— ﬁfﬂd y| (Vo) +7ey
massive constituentE™ can be expanded in powers of the
curvature. We keep only the leadifigpsmological term in B
this decomposition and approximdfd' as N m(‘m_ ¢-). (2.18
rm:f Jg d?x \. (2.9  Here g is the circumference length of the boundary, and
M ¢., ¢_ are the values ofp on the external and internal

h logical . parts of the boundary. If the internal boundary is absent
Here the cosmological constantis é_=0 in Eq.(2.16.

1 Up to the boundary terml, [ ¢] is the canonical Euclid-
A=— 5(2 m2nmZ—2>, milnm3|. (210  ean Liouville actiort The Liouville theory is known from
S d the last century as a theory of negatively curved surfaces. A
In what follows, we consider only the models where thef®VIeW of some its properties can be found[#2,23. The
cosmological constant is negative or zero. The curvature cofMPortant feature of Eq2.16 is that it describes a classical
rections to expressiof2.9) are suppressed by powdrg/ 2,  conformal theory with the central charge
The above approximation is not applicable to the ac#én

of massless fields. In fact, this functional is the well-known 12 (217
Polyakov actior{21] which can be computed exactly. Con- v ’
sider the conformal map aM onto a spaceM with the

metric g,,, = exp(—20)g,,. The actions onM and M are
related as

which in our model is just the number of massless constitu-
ents

— 1 =N, 2.1
W[g]=W[g]—E[ | Ngdxro-(vor) ’ 219

see Eq(2.15. The latter fact is not surprising. The massless

constituents of our model are conformally invariant in two
+ J’HMhl’zdy(ZKo+3n”a'M) ' (213 dimensions. Under quantization the conformal symmetry ac-
quires a central extension due to the conformal anomaly. The
Heren* is a unit vector normal to the bounda#\M of AM;  central charge corresponds to this anomaly.
K andh are the extrinsic curvature and the metric @i.
The functionaM/[ g] is the effective action computed on the I1l. SOLUTIONS TO THE LIOUVILLE THEORY

backg_rqundM with the metricg. It is convenient to assume Equation(2.16 shows that the Liouville field is the only
that M is locally flat. dynamical variable of induced Liouville gravi§By varying

As follows from the above analysis, the induced gravita—l— with a fixed boundary value o, one finds the equation
tional action after subtracting a boundary term depending on* y ' q

n*o , can be written in the form

_ “Rp=— A 3.1
Ilg]=1.[g.4]+NWg], (2.12 e Mad="3, @)

It follows from this equation that the physical metug,,

=e7‘/’5,” corresponds to a space with constant negative
curvaturé R=—pu/2. This space is locally a two-

1 2
I[g.4]=~ ngfgdzx((w%;Rw %

277”)’ IM . .
Here we put _1Strictly speaking] [ ¢] differs from the standard definition by a
sign, seq 23|.
2 2To avoid the confusion, let us note thatis the dynamical vari-
$=—o, (2.14 able only in the classical theory, in quantum Liouville theaby
Y appears in the conformal gauge but its contribution is compensated
by the contribution of corresponding ghosts.
y= \/EZ, w= 96;77 )\|_ 31t should be noted thak= — pl2 results in further restrictions on
N N the parameters of the constituent fields of Polyakov induced gravity.

(215  Namely, the condition of the large massé4?s>R, becomesM?

. . > 48| \|/N whereM is a typical scale for masses of the fields and
The actionl | can be also represented as a functional on thg g given by Eq.(2.10. One can construct models where this

flat spaceﬂ condition is satisfied.
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dimensional Lobachevsky spagéb,. The corresponding so-

1
lution in the Lorentzian space-time is locally anti—de Sitter ds’=g(x)d7*+ ——dx?, (3.10
g(x)
(AdS,).
There is also another approach to the variational problem. u 1
One can start with the functioné2.12 and consider Liou- g(x)= ZXZ+ §X’ (3.1)
ville field and metricg,,, as independent variables. Then the
equations of motion obtained from E@.12 by varyind* ¢ g8 L2
andg,,, respectively, are =— 1p 5. (3.12
R=yA ¢, (3.2 pmI—p
G,,=0, (3.3  This solution has the topology of a disk and can be inter-
1 ) preted as a black hole instanton. The horizon of the black
= _= 2, % _ hole is located ak=0 (p=0). The normalization of the
Cr=ud 2 9l VI*+ y(g“”Ad) VuVud) time coordinater is chosen so that the corresponding surface
gravity constant isg’(0)/2=1. One can make the surface
+ Lg _ (3.4) gravity equal to another constant by rescaling
292707 The black hole solutions in the Lorentzian metric have the
) i anti—de Sitter geometry and we will call them AdBlack
The trace of Eq(3.3) results in the relation holes for brevity.
n (2) Hyperbolic solutions A hyperbolic solution depends
Ap=— 5 (3.9 on an integration constam and has the form

which coincides with Liouville equatiof3.1). This justifies
considering the more general variational problem whére
and the metric are independent fields.
When ¢ obeys(3.1),
G =

,uv>'

Where'T'MV is the quantum stress-energy tensor of the con-

stituents computed in the considered approximatidra).
Thus, Eq. (3.3 is equivalent to relation(1.1) of the

2

o|32=<-:ﬂ¢>o|§2=i m |2,

w p?sirf(min p)d 313

The flat metricds? is given by Eq.(3.8). The hyperbolic
solution has the topology of a cylinder. The flat spdetis
defined by the boundary conditign. <p<p, , where

(3.19
The metric(3.13 can be also written in the forif8.10 with

e "M<p_<p,<1.

Sakharov’s induced gravity. It should be noted that boundary

2
conditions for¢ which are required to solve for it from Eq. g= ﬁxz+ 41 (3.19
(3.2) are related to the choice of the quantum state. 4 M
There are three types of solutions of the Euclidean Liou- 4
ville equations(3.1): elliptic, parabolic, and hyperbolicsee, __4m
e.g.,[23)]). These solutions correspond to different coordinate X L cottminp). (3.16

maps on the Lobachevsky spadg.

(1) Elliptic solutions.The metric has the forfn (3) Parabolic solutions Parabolic solutions can be ob-

tained from the hyperbolic ones in the linmt— 0 and look

. 16 1 _
d?=e’?dsf=— ——— - d<, 3. as follows:
w (1=p%)? S .
ds?=p2dr2+dp?, O<r<2m. (3.9 d?=e"?ds?’=— —ds?, (3.17)

m (plInp)

We specify the flat metric by the boundary condition — . ) _ )
whereds® is determined by Eq(3.9). The coordinate is

subject to the boundary condition_<p=<p,, wherep_
>0 andp, <1. In the limit whenp_ =0 the curvature of the
solution has a delta-functionlike singularity. The metric
(3.17 can be also written in the forr{8.10 with

O0<p=p.. (3.9

Solution(3.7) can be also written in the form

“The variational procedure implies that the metric ahdre fixed
on the boundary. The boundary term which depends‘an , was
removed from induced actiof2.12) in order to obey this require-
ment. NI, (3.19

A detailed discussion of this problem can be found for instance in minp
Ref. [24].

5We consider only the solutions which are free from conical sin-As follows from Eq.(3.18) these solutions are analogous to

gularities. extremal black holes.

g=—x2, (3.18
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Note that Liouville solutions of all three types have the pletely characterized by the temperatdreneasured at the
same asymptotic behavior at langdt is also worth pointing  boundaryx=x_,
out that each Liouville solution can be interpreted as a
boundary theory of a three-dimensional AdS-gravity and cor- T=Q2mVg(x,)) 2 (4.7)
responds to a particular three-dimensional obfae.” El- . N . .
liptic solutions with conical singularities correspond to mas-This condition defines.. in terms ofT:
sive particles in Adg hyperbolic and parabolic solutions
may be related to nonextreme and extreme three-dimensional X, :L( m_ 47T). 4.2
black holes, respectively. The nonextreme black holes corre- TuT

spond to a particular Liouville theory on a torus. o ) o o
The Liouville action on the elliptic solution is

IV. ELLIPTIC SOLUTIONS M
|L(X+):—FX+ . (43)
A. Thermodynamics of AdS, black holes Y

Let us now study black holes corresponding to elliptic To calculate the induced actid.12 one also has to know
solutions. It is perhaps necessary at this stage to explain ithe value of the Polyakov action on the disk of the radius
what sense we expect constant curvature solutions to behaye . The dependence of this action pn can be found out
like black holes. The key assumption that we make is thaby making a scaling transformatidne., a conformal trans-
Liouville field ¢ is an observable quantity, despite the factformation with constant factoto the disk of unit radius
that it is not, strictly speaking, a fundamental field. It is
rather introduced for calculational convenience to make the — 2
effective action local and defined formally by the relation- NWg(p+)]=— 7|”P++C- (4.4
ship ¢=(yA) 'R(g). In effect, the observability ot re-
quires matter to couple nonlocally to the metgdi.e., to  HereC is a constant corresponding to the action on the unit
A~'R). This does not occur at the classical level, but in thegisk. It does not depend chand can be omitted. From Egs.
full quantum effective action one does expect such terms 193.12), (4.3), and(4.4) we obtain, for(2.12,
appear. It is on this basis that we feel justified in assuming
that ¢ is an observable field, analogous to a dilaton. Hence- 1/ip Xy
forth we treat Liouville action as if it were a dilaton gravity I'=- 2( (4.5
theory of the general form considered extensively in a vari-

8
ety of reference$25].” _ _ This result can be immediately expressed in terms of the
We will interpret the induced Euclidean acti@h12 con- temperature on the boundary by using E@s1) and (4.2).

sidered on the elliptic solutiof8.7) asT times the free en- gy neglecting in Eq(4.5 a numerical constant we find the
ergy of the corresponding black hole. The black hole is com¢,ge energy of the black hole:

111
FER(T) =TT (X )|x, —x,(n="— 7[5\/(477T)2+M

"It is interesting to note that in a 4D gravity there also exist three
different families of Schwarzschil¢anti) de Sitter solutions. These
solutions are given by metrids’=—A dt?+dr2/A+r2dQ?, ——
whereA=K—(2m/r)+Ar?/3, dQ?=d#?+ sinrf 6 d¢2. For an el- +2TIn(V(47T) +'U“_477T)} (4.6
liptic case,K=1 and sinrd=siné. For a hyperbolic case{=
—1 and sinm¥=sinh¢. For a parabolic cas& =0 and sinh=6.  Thus, the black hole entropy defined by the standard relation,
The elliptic solution(with K=1) corresponds to a usual black hole. jg
The hyperbolic solution describes a black hole moving with a su-
perluminar velocity, while the hyperbolic solution describes a black JFBH 2
hole moving with the velocity of light. SEH(T)=— —=

8t is worth noting that there exists at least one other theory, T
namely, Jackiw-Teitelboim gravity, in which constant curvature
black hole solutions have been analyzed in some detail. In that cas
the black holes can be interpreted in terms of dimensionally reduce
2+1 Einstein gravity(the BTZ black holeg7]). Interestingly, the
Jackiw-Teitelboim theory was originally motivated by the connec-
tion between constant curvature metrics and induced Liouville grav- BH - _ 1 2
. ; : : Vire 9 E"N(T)= V(A7T) "+ . (4.9
ity. The dilaton was considered to be a physically irrelevant 2my
Lagrange multiplier field needed to enforce the constant curvature
equation. Once the dilaton is taken seriously, it becomes clear thakhe variations of the energy and the entropy are related by
Jackiw-Teitelboim gravity and induced Liouville gravity are quite the first law
different theories, despite the fact that the solutions to both involve
constant curvature metrics. dEBH=TdS". (4.9

In(N(47T)°+ u—47T).
(4.7

gHere all numerical constants were omitietihe energy cor-
responding to this solution is

7
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It should be noted that the given thermodynamical system isvhere¢ _ is the value of the Liouville field at this boundary
not stable because its heat capacity is negative for all valugsp_ is a finite constant até—0). The both functionals are

of T: related as
BH 1 8aT I'(x,,e,T)+C=F(eT)T (4.14
c(M=T =—— . (4.10
Jt Y \/(47TT)?+M where C is a possible finite numerical constant which ac-

) . counts for, according t§26], the difference between field-
The energy of this black hole decreases when its temperatufgegretical and statistical-mechanical computations. in

grows. Increasing the temperature corresponds to moving ﬂ‘@q. (4.14) is expressed in terms af by Eq.(4.2). The in-

boundary closer to the black hole horizan (—0). duced action is determined by E@.12)
As follows from Eq.(4.10 the heat capacity is increasing '
at small temperatures and one may speculate that in this re- I'(X;,e,T)=1(Xs, 6 T)+NWK_]. (4.15

gion the black hole may be in a quasiequilibrium state. Thus

at low temperatures our description of the black hole inThe actionW[K.] is the Polyakov action on the annulkis:
terms of a canonical ensemble may be justified. On the other oy o )

hand, at high temperaturd@sthe system is very unstable and ds’=p?dr?+dp?, p_(e)<p<p,. (4.19
one should expect a phase transition. Other possible phas

S . . )
of the theory may be related to other solutions of ILG. ﬁ Is related to the Polyakov action on the cylindgy:

ds?=dr?+dy?, 0=<r<2m, (4.17
B. Black hole statistical mechanics

1. Black hole canonical ensemble in terms of the constituents dy=dlnp, 0Osysb, (4.18

We now show how the black hole can be described irby the conformal transformation,
terms of statistical mechanics of the constituents of ILG. To

this aim let us consider the constituents which propagate in WK ]=W[Qp]— B (4.19
the static region of the black hole, outside the horizon, and 12

compare the canonical ensembles of the black hole and the [ X4 T

constituents. b=|np—:|n Pt (4.20

It is well known that the description of statistical-
mechanics in the presence of a Killing horizon meets diffi-Because of the conformal invariance the spectrum of single
culties due to the divergences of the density of states near thgarticle excitations of two-dimensional massless scalars co-
horizon[3]. The standard method to proceed in this situationincides with the spectrum of these fields on related flat ultra-
is to introduce a cutoff near the horizon at some proper disstatic spacé4.17) (see for the details, e.d3]). As a result
tancee. This cutoff can be considered as an inner boundaryoef this property, the effective action on the cylinder is related
Then the regularized free energye,T) of the constituents to the statistical-mechanical free energy of a single massless
has the standard definition constituent in a simple way:

e FT=Tre (H-&)T (4.19) TWQp]=Fo(e,T). (4.2

whereT is the temperature of the system. The operétgs ~ Equations(4.12), (4.14, (4.19), and(4.21) enable us to find
normally ordered total Hamiltonian of all the constituents, the expression for the vacuum energy

andé&, is the zero-point energy. In our approach the massive N
constituents are very heavy and contribute only to the cos- E(eT=T|1.(x,,T)— —=n—+C]|. (4.22
mological constant. It means that in the considered approxi- 12

mation all the effect of these fields is in the vacuum enerng took int t that Liovill . th
£,. Thus, one can rewrite Eq4.11 as (Here we took into account that Liouville action on the an-

nulus and that on the disc differ by a constant in the limit
e FIT=g%/T(Tr eflqolT)N: e@NFIT (419 e—>0._) The divergence of th_e vacuum energy is the _result of

the divergence of the density of states near the horizon.
where |:|O and F, are, respectively, the normally ordered The statistical-mechanical entropy of a two-dimensional

Hamiltonian and the statistical-mechanical free energy of Egafhonl.th.? |r}t(|arval g‘”th the sutmzc?an hl??hcotmputed :axac_tly
single massless constituent. in the limit of largeb, see, e.g.[27]. e temperature is

-1
It is also instructive to represent the free enefgyl 1) of B~ the free energy, entropy and energy are

the constituents in another form, in terms of the induced - 1 B
Euclidean actiorl'(x, ,€,T). The Euclidean theory is for- Fsb,B)=— E_Z_z_lnﬁ' (4.23
mulated on the elliptic solutiofB.7) with an inner boundary B B
at p_ determined by the cutoff, b 1 8
aa
S ~ —|ln—
po=e -2, (4.13 STbA)=73 5" 2N 429
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T 1 It is important that if one considers variations of the param-
ESb,B)=% 22— 55" (4.29  eters of the black hole at fixed value of the parameter
6 B 28 O i
changes of entropy4.29 coincide with changes of thermo-
where all constants which are finite at ladgare omitted. ~ dynamical entropy4.7) of a black hole,

The paramete3 coincides with the periodicity of the
Euclidean timer in Eq.(4.17). In our case8= 2. By taking
into account that the physical temperaturd isne can write

ASBH(T)=AS(¢,T). (4.39

Thus, from the point of view of thermodynamics, the two
Fole,T)=27TFMb,27). (4.26 entropies are equivalent. Moreover, the above relation does
not depend on the choice of the regularization prescription.
This relation in combination with Eq$4.12), (4.23—(4.25 Instead of using the cutoff near the horizon one can arrive at

gives the following result: Eq. (4.34) using the dimensional or Pauli-Villars regulariza-
tion schemes which also enable one to eliminate the diver-
F(e,T)=E(e,T)-TS€,T), (4.27  gences related to the horizdésee for details, e.g[3]).
The analysis of this section demonstrates that the thermo-
E(e, T)=&,(€,T)+2aNTE™b,27) dynamics of Ad$ black holes has a statistical-mechanical
_ explanation in terms of the constituents of ILG. One can
=Th(x)+CT, (4.28 conclude that the constituents are the real degrees of freedom
S(e,T)=NS"b.21m). 4.29 of the black hole. It is interesting to point out the black hole

entropy is related to the massless constituents only. It does
Note that the total energf(e,T) is finite in the limit e not mean, however, that the massive fields are irrelevant. As

—.0 because the divergence of zero-point fluctuations i¥/& Saw, these_ constituepts .provide the finite cosmologipal

compensated by the divergence of the thermal excitations §onstant and give a contribution to the vacuum energy which

the massless constituents. Moreover, by using B8 and ~ depends on the black hole parameters.

(4.3) we find that 2. Conformal field theory

EPH(T)=E(0,T)+CT, (4.30 The above result for the entropy can be computed by

i ) i L . means of a conformal field theofCFT) along the lines of

whereC is a numerical constant. By using an arbitrariness 'rtomputations of the entropy of BTZ black holg&). Mass-

relation (4.14 between the Euclidean action and the free|ass constituents of ILG are described by a CFT with the

energy one can always makeequal to 0. After this “nor- central charge=N, see Eq(2.17.

mali_zation” the statisti(_:al-_mechanical energy of the induced The computatior’1 of the entropy is as follof9,30. The

gravity constituents coincide with black hole energyg). relation between the Hamiltonian of the system and genera-
Let us consider now the entropy of the constituents. Beyq s of virasoro algebra follow from the representation of the

cause this quantity corresponds to the fields propagating OUf atric (4.17) in the form

side the horizon it can be interpreted as the entanglement

entropy. As is well known, the entanglement entropy is di- _ 2 b\?2

vergent when the cutoff is removed. This is its key distinc- dSZ:(-) (—dn2+d22)=<—) du dv, (4.39

tion from the black hole entropg®". However, as follows 7 7

from Egs. (4.7), (4.24), and (4.29, the two entropies are

related® Uu=——, p=

(4.36

SBH(T)=S(¢,T)—Sg(e€), (4.31) c
onsequently,

2 6
Sr(€)=— —In e— —In|In €. ™
-7 e sinline =g (94— 3,) (4.39
4.32

It is not difficult to see thaBg(e) can be interpreted as the !N EQ. (4.35 the coordinatez ranges from O tom. This

entropy of the constituents on the Rindler space with th&orresponds to a theory on an interval where the pants
same cutoff =0 and z== are independent. In order to carry out the

computations it is convenient to pass to a theory whésea
ds?=p?dr?+dp?, e<p<1, O<r<2w. (433 periodic coordinate. This can be done if one considers two

equivalent CFT’'s on the intervals with the length and

makes from them a CFT on a circle by gluing together the

%An analogous subtraction formula for two-dimensional blackends of the intervals. In the obtained thearhas the peri-

holes was discussed j&7]. A similar computation of the entangle- odicity 2. ) .
ment entropy in two dimensions can be also found28]. How- One has two copies of Virasoro algebra where the ele-

ever, these papers are dealing with quantum corrections to the bladRentsL andfn can be defined in a standard way as the
hole entropy rather than to the entropy itself. generators of the coordinate transformatiofis=¢e'"" and
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Sv=e"", respectively. As a result of relatio#.37), the  (3.13 and(3.17) can be written as
Hamiltonian of massless constituents which generates trans- .
formations along the Killing time coincides with the opera- ds?=er%ds?, (5.1

tor w(LO—fO)IZb. Similarly, translations of the system

alongy are generated by the momentur(1L0+f0)/2b. Be-
cause the system is at rest the average momentum is zero. On
the other hand, the average value of the energy is

ds?=dr2+dy?, (5.2

- 5.3
ﬁES”‘(b,B). This fixes the average valuesandh of L, and ©3
Lo, respectively. In the leading approximation In case of the hyperbolic solution,

4 1
— NDb? Yb—
h=—h= E E (438) e “ TSI y, (54)

o _ andB=2mm wheremis defined in Eq(3.13. The boundary
In the limit whenb is large (e goes to zerj h>1 and one  coordinates subject to the restrictions>0 andy, <. For
can use Cardy's formula to estimate the degeneracyq0f the parabolic solution
andL,. In this approximation the total degenerdoyis

4 1
e)’d’:_ —,

ch clh| ny ®5
InD=27 E+27T 5 (4.39

wherey_, <0. In this caseB is an arbitrary parameter. In
fact, the parabolic metric does not change when one rescales
the coordinatey and = with the same coefficient. Thus one
can choose any periodicity far by appropriate redefinition
T b of the boundary valueg.. .
INnD=2N= B (4.40 The induced actior(2.12 for hyperbolic and parabolic

solutions has a very simple form because the Polyakov ac-
Finally, we have to remember thBtis the number of states 10N on the cylinder(5.2) is determined by thejtatistical-
of the system with the doubled Hilbert space which resultgnechanical free energy.23 at the temperaturg™~ on the
from the trick of imposing periodicity of the coordinage  interval of the lengttb=y. —y_,
The real number of states of the system we are interested in s
is \D. Thus, the entropy is e e e 5.6

and by taking into account that in our case the central charg
c=N we find

Note, as we explained in the previous sectid(y.
lln D=NSM (4.4)) —Yy_,B) coincides with the free energy of a single massless
2 scalar constituent of ILG. One can represent the induced ac-
tion (2.12 in the form
and it coincides exactly with the required value in E424
for N fields. L(ys.y-.B)=Blf(y:)—f(y ) +NF Ny, —y_.B)].

A remark concerning fixing of the Virasoro level is in (5.7
order. In our calculation the eigenvaluks h are not con-
nected with the observable ener@.8) of a black hole but
are determined by the average value of the normally ordere
Hamiltonian, i.e., by the thermal energy of the fields.

The functionf(y) can be easily found by calculating Liou-
ille action (2.16 for the given solutions. One has

1 Y
f(y)=—mz<4 coty +2y— §¢(y)) (5.9
V. HYPERBOLIC AND PARABOLIC SOLUTIONS

It is also worth studying thermodynamics of parabolic and]cor the hyperbolic solution, and

hyperbolic instantons of ILG. Below we briefly comment on 1
its features. fy)=—=
The solutions have two boundaries, and the fiducial space Yy

M in the both casefsee Eqs(3.13 and(3.17] is an annu-  for the parabolic one. As follows from these expressions, the
lus. For this reason there are no difficulties related to theyarabolic action is a limiting form of the hyperbolic func-
horizon as in the case of Ad®lack holes. This automati- tjonal at the small values of. .

cally provides the agreement between thermodynamics of the The thermodynamics of these solutions is the thermody-
solutions and statistical mechanics of the constituents. T@amics of a system in a finite volume. The corresponding
begin with it is convenient to replace the fiducial spadein  thermodynamical state is fixed by the boundary valyes

Eq. (2.12 to a cylinder by making coordinate and conformal which characterize the size of the system and the temperature
transformations and changing the Liouville field. Then Eqs.T measured at one of the boundaries. The free energy is

4 v
v §¢(Y)> (5.9
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determined by the induced actiof5.7) as usually, 2712
F(T.y.,y_)=TI'(B,y.,y_). The inverse temperatufie B=——: (6.9
is the circumference length of the boundary and is propor- *
tional to 8. Thus, one immediately concludes from E§.7) 20t
that the thermodynamical entropy coincides with the statisti- A (6.5
cal entropy of the massless constituents of ILG: 4G
_ _ It is instructive to represent the free energy, entropy, and
ST+ .y )=NSTBY =y, (.19 mass of the black hole in terms of the inverse temperature
where 2|2
FETZ(1 gy= 1 @)= — 6.6
IF(T,y..y-) : 2Gp?’
STy y-)= —(T . (51D
Yyyo 7T2| 2
SBTA1LB) = ==, 6.7)
andS*™is defined in Eq(4.24). The equality(5.10 is more G
strong than relatiori4.34) for the elliptic solutions. -
To conclude this section we should note that the first law MBTZ(| g)= l 6.8
for the hyperbolic and the parabolic solutions has a more ' 2GB?" '

general form
Let us now demonstrate that this black hole is thermody-

SE=T8S—p, oy, —p_dy_, (5.12  namically equivalent to a certain type of ILG. We begin with
Euclidean ILG with a zero cosmological constant=0)
where which is a particular case of ILG models. The boundary of a
Euclidean BTZ black hole is a torus, see, e[@2]. This
E=F+TS (5.13 leads us to consider ILG where the backgrouvtihas the

is the energy of the system and the quantities topology of a torus. The induced action of this theorysise

Eqg. (2.12]
IF(T,y,.,y-) — —
ENuAL) 514 Tlg1=Ti[ ]+ NWLM) ©9
+ Ty
n 1 2000 412
can be interpreted as pressures at the boundaries. They can Wel=—5— A_4d y(Ve)~. (6.10

be computed with the help of Eq&.7)—(5.9).

The flat spaceM is a torus
VI. ILG DUAL TO BTZ BLACK HOLES

Our discussion includes as a particular example induced ds*=dr’+dx’. (6.1
Liouville gravity which is dual to the BTZ black hole sector
of the three-dimensional gravity with the negative cosmo-We assume that
logical constant (Ad$gravity). The Euclidean action of this 0<r<pB, O0<x=b 6.12
theory[31], ' ' :

1 The solutions to this theory are constafitand on the solu-
() —— 3
! 16776[ f dx g

+f dzx\/ﬁK}, tions the induced action coincides wi\W M]. Thus, the
o on-shell Euclidean action of ILG corresponds to the free en-
(6.1) ergy of massless gas on a circle of lengtht the tempera-
ture B8~ 1. In the limit when sizeb is large one can find the
ction on the torus from the leading order expressad
or the free energy on the interval of sibe We thus obtain

2
R+ 2

whereK is the extrinsic curvature of the asymptotic bound-
ary, corresponds to a canonical free energy of the system. L
us consider for simplicity a static BTZ black hole with the
massM. Functional(6.1) taken on the corresponding instan- - b
ton has the canonical form F(b,B8)=—N

EF (6.13

| 3)— M BTZ__ SBTZ' 6.2
A .2 This free energy corresponds to the CFT with the integer
Whereﬁ and SBTZ are the inverse temperature and the en_Central Charg@: N. Consider now the BTZ black hole with
; 0
tropy of the black hole, respectively. The parameters of théhe same central charge
black hole are determined by the radius of the horizon

MBTZ= M+ 6.3 %The conformal Virasoro algebra with an integer central charge
8GI?’ ' has a number of interesting features which were discussggBin

024016-9



FROLOV, FURSAEV, GEGENBERG, AND KUNSTATTER PHYSICAL REVIEW B0 024016

3l
Cerz=55 — N (6.14 F.(Q,bB)=— —-—. (6.21)
68%(1+Q)
This charge corresponds to the group of diffeomorphisms .
the asymptotic infinity of the BTZ black hole. By now re- “he total free energy of the systents
placingN in Eg. (6.13 by cgt7 and puttingo= 271 we come
to the identity between the ILG and BTZ free eneféy6), _N N
F(vaug)_ 2 F+(vavﬂ)+ 2 F—(vanB)
FETA1,B) =F (271, B)IN-cq; (6.19 S
=N —. (6.22
6 IBZ(l_QZ)

The corresponding identities can be established for the en-

tropy (6.7) and energy6.8) of the black hole. Therefore, the

static BTZ black hole ighermodynamicallyequivalent to 1

+1 ILG havingcgrz massless fields and given on the circle

of the radiusl [l is related to the curvature radius of the

corresponding Ad$geometry, see Ed6.1)]. FETAQ,1,8)=F(Q.271,8)In=cy,, (6.23
This result can be also generalized to rotating BTZ black

holes. If the angular velocit2 of the black hole is not zero, )
the free energy6.6) is replaced td32] Once one has the thermodynamic relati6r23 between the

BTZ black hole and a two-dimensional rotating gas, the
statistical-mechanical explanation of the two-dimensional
FETZ0.1 B)= — ™ 6.16 entropy can be considered as an explanation of the black
" 2G32(1_|?Q?) ' ' hole entropy{6]. This, however, cannot be taken as a satis-
factory explanation of the entropy, because the degrees of
) ) ) . freedom of the two-dimensional theory have nothing to do
The corresponding two-dimensional system equivalent tQiin the degrees of freedom of the black hole.
this black hole is a rotating quantum gas. To be more spe-

cific, consider a massless gas where half of the quanta are
rotating clockwise with angular veloci and the other half
are moving in the opposite direction. The corresponding free
energies of these quanta denotedfby are determined by ~ Recent interesting computations of the entropy of ex-
the “boosted” partition functions tremal[4,5] and BTZ[6] black holes leave open the essential
guestion about the real degrees of freedom of the black hole.
The difficulty is that the computations concern not black
holes themselves but dual systems in flat space-times. Some
help in resolving this difficulty may come from studying
models of Sakharov’s induced grav[t{6—1§. In this theory
the degrees of freedom responsible for the black hole entropy
are the constituents which induce the Einstein gravity in the
low-energy limit.
N b . The Liouville induced gravity considered in this paper is a
M=5_P. (6.189  suitable “firing range” to study this issue. We have shown
au . . .
that the entropy of induced Ad®lack holes is equivalent to
the entanglement entropy of the massless constituents. In two
[b/(27) is the radius of the circl¢ The energy of a relativ- dimensions the divergence usually encountered in the defini-
istic massless particle equals the modulus of its momentuntion of the entanglement entropy does not depend on the
Therefore thermodynamical parameters of the black hole and, hence, is
not observable in physical processes. Therefore, going to
CBF . T e B(1+DA two-dimensional induced gravity leads to an essential simpli-
e Fr==Tre . (6.19 fication. In higher-dimensional models the relation between
the entanglement and black hole entropies is more compli-
cated. It always requires subtraction a nontrivial Noether
— bQ e : )
Q= —. (6.20  charge related to nonminimal couplings of the constituents
2m [17]. Another distinction is that in higher dimensions the

Now by taking into account Eq6.20) and thatb=2x1 we
can generalize the relatiq6.15:

2|2

VII. DISCUSSION

e A =Tre AH=OM) (6.17

whereH is the Hamiltonian andl/ is the angular momentum
related to the momenturi along the circle as

Thus, wherb is large one can finér .. with the help of Eq.
(4.23, LA similar computation can be found [134].
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main contribution to the entanglement entropy is determineghdsS, black holes, and thermodynamics of the objects in the
only by the constituents with the Planck mass localized inthree-dimensional AdS space. Another interesting problem is
the vicinity of the horizon. In ILG the entropy is related to to analyze along the lines of Sec. VI the thedty2,13
the fields which are localized in the entire black hole exte-which appears in the near horizon limit of generic black
rior. holes. We leave these issues for future publications.
Induced Liouville gravity has solutions of different types
which may find different applications. The important ex-
ample are the solutions with a zero cosmological constant on
a torus. On the level of thermodynamics they are equivalent This work was partially supported by the Natural Sciences
to BTZ black holes. It would be interesting to see whetherand Engineering Research Council of Canada. The work of
there is a similar relation of the found solutions, including D.F. was supported in part by RFBR grant N99-02-18146.
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