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Thermodynamics and statistical mechanics of induced Liouville gravity
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In this paper we describe Liouville gravity which is induced by a set of quantum fields~constituents! and
represents a two-dimensional analogue of Sakharov’s induced gravity. The important feature of the considered
theory is the presence of massless constituents which are responsible for the appearance of the induced
Liouville field. The role of the massive constituents is only to induce the cosmological constant. We consider
the instanton solutions of the Euclidean Liouville gravity with negative and zero cosmological constants, some
instantons being interpreted as two-dimensional anti–de Sitter (AdS2) black holes. We study the thermody-
namics of all the solutions and conclude that their entropy is completely determined by the statistical-
mechanical entropy of the massless constituents. This shows, in particular, that the constituents of the induced
gravity are the true degrees of freedom of AdS2 black holes. Special attention is also paid to the induced
Liouville gravity with a zero cosmological constant on a torus. We demonstrate the equivalence of its ther-
modynamics to the thermodynamics of BTZ black holes and comment on computations of the BTZ black hole
entropy.@S0556-2821~99!01514-3#

PACS number~s!: 04.60.Kz, 05.30.2d, 04.70.Dy
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I. INTRODUCTION

The microscopic explanation of the Bekenstein-Hawk
entropy @1,2# of black holes is one of the most intriguin
problems of theoretical physics. Although there are sev
approaches to its resolution~for a review of some of them
see@3,4#! this problem is a subject of intensive study a
continues to inspire new ideas.

In particular, it was realized recently that at least so
black holes may be macroscopically equivalent to tw
dimensional systems described by Liouville theory. T
statistical-mechanical entropy of these systems can be c
puted by means of a conformal field theory and coincid
with the black hole entropy.

This observation was first made for extremal black ho
@5# and was based on dualities in string models. However
the most explicit and simple form it appeared in the work
Strominger @6# concerning Ban˜ados-Teitelboim-Zanelli
~BTZ! black holes@7# ~for a detailed analysis of these com
putations with the large list of references see@8#!. The BTZ
black holes have the same thermodynamic characteristic
dual Liouville theory defined at asymptotic infinity. The re
son for such a relation arises from a specific property
three-dimensional gravity with a negative cosmological c
stant. It is equivalent to Chern-Simons theory which has o
boundary degrees of freedom that are described by Liouv
theory @9,10#.

Liouville theory which is dual to the BTZ black hole ca
be also defined at the black hole horizon@11#. Moreover,

*Email address: frolov@phys.ualberta.ca
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§Email address: lenin@math.unb.ca
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close to the horizon one can find a Liouville-like descripti
of black holes in an arbitrary dimension@12,13#. This de-
scription becomes possible because the gravitational ac
for spherically symmetric metrics is the action for a tw
dimensional dilatonic gravity. In the region near the horiz
this gravity is equivalent to Liouville theory@13# and one can
use the conformal theory to calculate the entropy.

These results may have the following interpretation@14#.
On the level of thermodynamics black holes are equivalen
Liouville field theory. Liouville field, which is purely classi
cal, is a collective excitation of some quantum constitue
which are described by 2D conformal field theory. To put
in another way, Liouville theory is an effective theory of th
constituents. The constituents are those microscopic deg
of freedom which explain the thermodynamic entropy rela
to Liouville field and thus reproduce the black hole entro
in a statistical-mechanical way.

Remarkably, this mechanism is basically the same as
mechanism of the generation of the black hole entropy
Sakharov’s induced gravity@15–18#. According to Sa-
kharov’s idea@19#, the gravitational field is a collective ex
citation of the matter constituents and the Einstein action
the low-energy effective action of the constituents. The eq
tions for the metricgmn are

^T̂mn~g!&50. ~1.1!

Here T̂mn is the stress-energy tensor of constituent fields
the background with the metricgmn and its average is take
in some quantum state.

It should be noted that in Sakharov’s induced gravity t
microscopic states of a black hole are related to the cons
ents which live on the physical space-time. In the Liouvi
description of black holes the microscopic degrees of fr
dom live on a dual two-dimensional space-time. For this r
©1999 The American Physical Society16-1
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FROLOV, FURSAEV, GEGENBERG, AND KUNSTATTER PHYSICAL REVIEW D60 024016
son the statistical origin of the Bekenstein-Hawking entro
in the two approaches is different.

Nevertheless, the similarity of both approaches sugg
that they may be connected. To see whether there is
connection one must first understand better how Sakhar
mechanism of induced gravity works in the case of Liouvi
theory. Studying induced Liouville gravity is the subject
this paper.

The important feature of the considered models of tw
dimensional induced gravity is the presence of massless
stituents which induce Liouville action. The massive co
stituents serve only to induce a finite cosmological const
Thus, as distinct from higher dimensions, all the dynamics
Liouville induced gravity is due to massless fields. This fa
has a crucial consequence for the statistical interpretatio
the thermodynamics of the instanton solutions of the theo

We consider models with negative and zero cosmolog
constants. The theory with negative cosmological constan
a sort of gravity on anti–de Sitter AdS2 space-time. Studying
this theory is motivated by various reasons, one of which
its relation to AdS2 string theories arising as near-horizo
limits of different four- and five-dimensional black holes~for
a recent discussion of AdS2 gravity in this context see@20#!.
Liouville induced gravity with a vanishing cosmologic
constant is interesting because it is that theory which is th
modynamically equivalent to BTZ black holes.

The paper is organized as follows. In Sec. II we use
kharov’s mechanism to induce Liouville gravity by massle
and massive quantum constituent fields. The conside
quantum models are free from ultraviolet divergences and
a result, the induced theory is finite and well-defined. All t
solutions of Liouville gravity with the negative cosmologic
constant are locally AdS2. In the Euclidean theory they ca
be of three types: elliptic, hyperbolic, and parabolic. We
mind the reader the form of these solutions in Sec. III. T
instantons of the elliptic type can be interpreted as Ad2
black holes. Thermodynamics and statistical mechanics
these black holes are studied in Sec. IV. We demonstrate
in the physical processes the changes of the entropy
AdS2 black hole coincide with the corresponding changes
the entanglement~statistical-mechanical! entropy of the
massless constituents. Therefore, the constituents of th
duced gravity are the true internal degrees of freedom
AdS2 black holes. In Sec. V we comment on thermodyna
ics and statistical mechanics of the hyperbolic and parab
solutions. Finally, in Sec. VI we consider induced Liouvil
gravity with a vanishing cosmological constant on a to
and demonstrate the equivalence of its thermodynamic
the thermodynamics of the BTZ black hole under identifyi
the central charges of both theories. A brief discussion
given in Sec. VII.

II. INDUCED LIOUVILLE GRAVITY

Induced Liouville gravity~ILG! can be constructed from
models with different constituent field species, similar to t
construction of induced Einstein gravity@16–18#. To illus-
trate the idea we consider here the simplest model. It con
of noninteracting scalar and spinor fields, with some of
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scalar fields being massless. The numbers of massive
massless scalars areNs andN, respectively, and the numbe
of massive spinor fields isNd . It is assumed that some ma
sive scalars are nonminimally coupled and the correspond
constants are denoted asjs . The effective gravitational ac
tion of the fields propagating on a background with the m
ric gmn is

G5(
s

Ws1(
d

Wd1NWs
0 , ~2.1!

Ws5
1

2
log det~2¹21jsR1ms

2!,

Wd52 log det~gm¹m1md!, ~2.2!

Ws
05

1

2
log det~2¹2!. ~2.3!

Here R is the scalar curvature of the background. It is n
difficult to show thatG is free from ultraviolet divergences i
the following constraints are satisfied:

Ns1N22Nd50, (
s

ms
222(

d
md

250, ~2.4!

Ns1N1Nd26(
s

js50. ~2.5!

Constraints~2.4! ensure the finiteness of the induced cosm
logical constant, while condition~2.5! guarantees the finite
ness of the induced Newton constant.

Suppose now that massesmi have the order of magnitud
of a typical massM. The low-energy limit of the theory is
realized when the curvature of the background geometr
small compared toM2. In this limit contributions of the mas-
sive constituents to the induced action can be expande
powers of the curvature. On the other hand, the contributi
of the massless constituentsWs

0 can be calculated exactly.
It is convenient to represent the induced action in the fo

G5Gm1NW, ~2.6!

Gm5(
s

Ws1(
d

Wd1NWs,div
0 ,

~2.7!

W[Ws
02Ws,div

0 . ~2.8!

Here Ws,div
0 is the divergent part of the action of massle

fields, so thatW is the ‘‘renormalized’’ action. Note tha
because we are dealing with ultraviolet finite theories
functionals Gm are free from the divergences. The dive
gences of the massive fields inGm are canceled by the term
NWs,div

0 .
Let us consider fields given on a manifoldM with bound-

ary ]M. The metric onM will be denotedgmn . In the
general case,gmn can have Lorentzian or Euclidean sign
6-2
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THERMODYNAMICS AND STATISTICAL MECHANICS OF . . . PHYSICAL REVIEW D60 024016
ture. In what follows we assume thatM is a Euclidean mani-
fold. In the low energy limit of the theory the action of th
massive constituentsGm can be expanded in powers of th
curvature. We keep only the leading~cosmological! term in
this decomposition and approximateGm as

Gm5E
M

Ag d2x l. ~2.9!

Here the cosmological constantl is

l52
1

8p S (
s

ms
2ln ms

222(
d

md
2 ln md

2D . ~2.10!

In what follows, we consider only the models where t
cosmological constant is negative or zero. The curvature
rections to expression~2.9! are suppressed by powersRM22.

The above approximation is not applicable to the actionW
of massless fields. In fact, this functional is the well-know
Polyakov action@21# which can be computed exactly. Con
sider the conformal map ofM onto a spaceM̄ with the
metric ḡmn5exp(22s)gmn . The actions onM and M̄ are
related as

W@g#5W@ ḡ#2
1

24p F E
M

Ag d2x„Rs2~¹s!2
…

1E
]M

h1/2dy~2Ks13nms ,m!G . ~2.11!

Herenm is a unit vector normal to the boundary]M ofM;
K and h are the extrinsic curvature and the metric on]M.
The functionalW@ ḡ# is the effective action computed on th
backgroundM̄ with the metricḡ. It is convenient to assum
thatM̄ is locally flat.

As follows from the above analysis, the induced gravi
tional action after subtracting a boundary term depending
nms ,m can be written in the form

G@g#5I L@g,f#1NW@ ḡ#, ~2.12!

I L@g,f#52
1

8pEMAg d2xS ~¹f!21
2

g
Rf1

m

g2D
2

1

2pgE]M
h1/2dyKf. ~2.13!

Here we put

f5
2

g
s, ~2.14!

g5A12

N
, m5

96p

N
ulu.

~2.15!

The actionI L can be also represented as a functional on
flat spaceM̄
02401
r-
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I L@f,g#5 Ī L@f#52
1

2pEM̄d2yS ~¹̄f!21
m

g2 egfD
2

b

2pg
~f12f2!. ~2.16!

Here b is the circumference length of the boundary, a
f1 , f2 are the values off on the external and interna
parts of the boundary. If the internal boundary is abs
f250 in Eq. ~2.16!.

Up to the boundary term,Ī L@f# is the canonical Euclid-
ean Liouville action.1 The Liouville theory is known from
the last century as a theory of negatively curved surfaces
review of some its properties can be found in@22,23#. The
important feature of Eq.~2.16! is that it describes a classica
conformal theory with the central charge

c5
12

g2 , ~2.17!

which in our model is just the number of massless const
ents

c5N, ~2.18!

see Eq.~2.15!. The latter fact is not surprising. The massle
constituents of our model are conformally invariant in tw
dimensions. Under quantization the conformal symmetry
quires a central extension due to the conformal anomaly.
central chargec corresponds to this anomaly.

III. SOLUTIONS TO THE LIOUVILLE THEORY

Equation~2.16! shows that the Liouville field is the only
dynamical variable of induced Liouville gravity.2 By varying
Ī L with a fixed boundary value off, one finds the equation

e2gfD̄f52
m

2g
. ~3.1!

It follows from this equation that the physical metricgmn

5egfḡmn corresponds to a space with constant nega
curvature3 R52m/2. This space is locally a two

1Strictly speaking,Ī L@f# differs from the standard definition by
sign, see@23#.

2To avoid the confusion, let us note thatf is the dynamical vari-
able only in the classical theory, in quantum Liouville theoryf
appears in the conformal gauge but its contribution is compens
by the contribution of corresponding ghosts.

3It should be noted thatR52m/2 results in further restrictions on
the parameters of the constituent fields of Polyakov induced grav
Namely, the condition of the large masses,M2@R, becomesM2

@48pulu/N whereM is a typical scale for masses of the fields a
l is given by Eq.~2.10!. One can construct models where th
condition is satisfied.
6-3



-
te

em

he

on

a
.

ou

at

er-
ack

ce
e

the

-

ic

to

-

e i

in

FROLOV, FURSAEV, GEGENBERG, AND KUNSTATTER PHYSICAL REVIEW D60 024016
dimensional Lobachevsky spaceH2. The corresponding so
lution in the Lorentzian space-time is locally anti–de Sit
(AdS2).

There is also another approach to the variational probl
One can start with the functional~2.12! and consider Liou-
ville field and metricgmn as independent variables. Then t
equations of motion obtained from Eq.~2.12! by varying4 f
andgmn , respectively, are

R5gDf, ~3.2!

Gmn50, ~3.3!

Gmn[f ,mf ,n2
1

2
gmnu¹fu21

2

g
~gmnDf2¹m¹nf!

1
m

2g2 gmn . ~3.4!

The trace of Eq.~3.3! results in the relation

Df52
m

2g
, ~3.5!

which coincides with Liouville equation~3.1!. This justifies
considering the more general variational problem wheref
and the metric are independent fields.

Whenf obeys~3.1!,

Gmn524p^T̂mn&, ~3.6!

where T̂mn is the quantum stress-energy tensor of the c
stituents computed in the considered approximation~3.2!.
Thus, Eq. ~3.3! is equivalent to relation~1.1! of the
Sakharov’s induced gravity. It should be noted that bound
conditions forf which are required to solve for it from Eq
~3.2! are related to the choice of the quantum state.5

There are three types of solutions of the Euclidean Li
ville equations~3.1!: elliptic, parabolic, and hyperbolic~see,
e.g.,@23#!. These solutions correspond to different coordin
maps on the Lobachevsky spaceH2.

~1! Elliptic solutions.The metric has the form6

ds25egfds̄25
16

m

1

~12r2!2 ds̄2, ~3.7!

ds̄25r2dt21dr2, 0<t<2p. ~3.8!

We specify the flat metric by the boundary condition

0,r<r1 . ~3.9!

Solution ~3.7! can be also written in the form

4The variational procedure implies that the metric andf are fixed
on the boundary. The boundary term which depends onnms ,m was
removed from induced action~2.12! in order to obey this require
ment.

5A detailed discussion of this problem can be found for instanc
Ref. @24#.

6We consider only the solutions which are free from conical s
gularities.
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ds25g~x!dt21
1

g~x!
dx2, ~3.10!

g~x!5
m

4
x21

1

2
x, ~3.11!

x5
8

m

r2

12r2 . ~3.12!

This solution has the topology of a disk and can be int
preted as a black hole instanton. The horizon of the bl
hole is located atx50 (r50). The normalization of the
time coordinatet is chosen so that the corresponding surfa
gravity constant isg8(0)/251. One can make the surfac
gravity equal to another constant by rescalingt.

The black hole solutions in the Lorentzian metric have
anti–de Sitter geometry and we will call them AdS2 black
holes for brevity.

~2! Hyperbolic solutions. A hyperbolic solution depends
on an integration constantm and has the form

ds25egfds̄25
4

m

m2

r2 sin2~m ln r!
ds̄2. ~3.13!

The flat metricds̄2 is given by Eq.~3.8!. The hyperbolic
solution has the topology of a cylinder. The flat spaceM is
defined by the boundary conditionr2<r<r1 , where

e2p/m,r2,r1,1. ~3.14!

The metric~3.13! can be also written in the form~3.10! with

g5
m

4
x21

4m2

m
, ~3.15!

x52
4m

m
cot~m ln r!. ~3.16!

~3! Parabolic solutions. Parabolic solutions can be ob
tained from the hyperbolic ones in the limitm→0 and look
as follows:

ds25egfds̄25
4

m

1

~r ln r!2 ds̄2, ~3.17!

whereds̄2 is determined by Eq.~3.8!. The coordinater is
subject to the boundary conditionr2<r<r1 , where r2

.0 andr1,1. In the limit whenr250 the curvature of the
solution has a delta-functionlike singularity. The metr
~3.17! can be also written in the form~3.10! with

g5
m

4
x2, ~3.18!

x52
4

m ln r
. ~3.19!

As follows from Eq.~3.18! these solutions are analogous
extremal black holes.

n

-
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Note that Liouville solutions of all three types have t
same asymptotic behavior at largex. It is also worth pointing
out that each Liouville solution can be interpreted as
boundary theory of a three-dimensional AdS-gravity and c
responds to a particular three-dimensional object@14#.7 El-
liptic solutions with conical singularities correspond to ma
sive particles in AdS3, hyperbolic and parabolic solution
may be related to nonextreme and extreme three-dimens
black holes, respectively. The nonextreme black holes co
spond to a particular Liouville theory on a torus.

IV. ELLIPTIC SOLUTIONS

A. Thermodynamics of AdS2 black holes

Let us now study black holes corresponding to ellip
solutions. It is perhaps necessary at this stage to expla
what sense we expect constant curvature solutions to be
like black holes. The key assumption that we make is t
Liouville field f is an observable quantity, despite the fa
that it is not, strictly speaking, a fundamental field. It
rather introduced for calculational convenience to make
effective action local and defined formally by the relatio
ship f5(gD)21R(g). In effect, the observability off re-
quires matter to couple nonlocally to the metricg ~i.e., to
D21R). This does not occur at the classical level, but in
full quantum effective action one does expect such term
appear. It is on this basis that we feel justified in assum
that f is an observable field, analogous to a dilaton. Hen
forth we treat Liouville action as if it were a dilaton gravit
theory of the general form considered extensively in a v
ety of references@25#.8

We will interpret the induced Euclidean action~2.12! con-
sidered on the elliptic solution~3.7! asT times the free en-
ergy of the corresponding black hole. The black hole is co

7It is interesting to note that in a 4D gravity there also exist th
different families of Schwarzschild-~anti! de Sitter solutions. These
solutions are given by metricds252A dt21dr2/A1r 2 dV2,
whereA5K2(2m/r )1Lr 2/3, dV25du21sinn2u df2. For an el-
liptic case,K51 and sinnu5sinu. For a hyperbolic case,K5
21 and sinnu5sinhu. For a parabolic case,K50 and sinnu5u.
The elliptic solution~with K51) corresponds to a usual black hol
The hyperbolic solution describes a black hole moving with a
perluminar velocity, while the hyperbolic solution describes a bla
hole moving with the velocity of light.

8It is worth noting that there exists at least one other theo
namely, Jackiw-Teitelboim gravity, in which constant curvatu
black hole solutions have been analyzed in some detail. In that c
the black holes can be interpreted in terms of dimensionally redu
211 Einstein gravity~the BTZ black holes@7#!. Interestingly, the
Jackiw-Teitelboim theory was originally motivated by the conne
tion between constant curvature metrics and induced Liouville g
ity. The dilaton was considered to be a physically irreleva
Lagrange multiplier field needed to enforce the constant curva
equation. Once the dilaton is taken seriously, it becomes clear
Jackiw-Teitelboim gravity and induced Liouville gravity are qui
different theories, despite the fact that the solutions to both invo
constant curvature metrics.
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pletely characterized by the temperatureT measured at the
boundaryx5x1 ,

T5„2pAg~x1!…21/2. ~4.1!

This condition definesx1 in terms ofT:

x15
1

pmT
~A~4pT!21m24pT!. ~4.2!

The Liouville action on the elliptic solution is

I L~x1!52
m

2g2 x1 . ~4.3!

To calculate the induced action~2.12! one also has to know
the value of the Polyakov action on the disk of the rad
r1 . The dependence of this action onr1 can be found out
by making a scaling transformation~i.e., a conformal trans-
formation with constant factor! to the disk of unit radius

NW@ ḡ~r1!#52
2

g2 ln r11C. ~4.4!

HereC is a constant corresponding to the action on the u
disk. It does not depend onT and can be omitted. From Eqs
~3.12!, ~4.3!, and~4.4! we obtain, for~2.12!,

G52
1

g2S m

2
x11 ln

mx1

mx118D . ~4.5!

This result can be immediately expressed in terms of
temperature on the boundary by using Eqs.~4.1! and ~4.2!.
By neglecting in Eq.~4.5! a numerical constant we find th
free energy of the black hole:

FBH~T!5TG~x1!ux15x1(T)52
1

g2F 1

2p
A~4pT!21m

12T ln~A~4pT!21m24pT!G . ~4.6!

Thus, the black hole entropy defined by the standard relat
is

SBH~T!52
]FBH

]T
5

2

g2ln~A~4pT!21m24pT!.

~4.7!

~Here all numerical constants were omitted.! The energy cor-
responding to this solution is

EBH~T!52
1

2pg2A~4pT!21m. ~4.8!

The variations of the energy and the entropy are related
the first law

dEBH5TdSBH. ~4.9!
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FROLOV, FURSAEV, GEGENBERG, AND KUNSTATTER PHYSICAL REVIEW D60 024016
It should be noted that the given thermodynamical system
not stable because its heat capacity is negative for all va
of T:

c~T!5T
]SBH

]T
52

1

g2

8pT

A~4pT!21m
. ~4.10!

The energy of this black hole decreases when its tempera
grows. Increasing the temperature corresponds to moving
boundary closer to the black hole horizon (x1→0).

As follows from Eq.~4.10! the heat capacity is increasin
at small temperatures and one may speculate that in thi
gion the black hole may be in a quasiequilibrium state. Th
at low temperatures our description of the black hole
terms of a canonical ensemble may be justified. On the o
hand, at high temperaturesT the system is very unstable an
one should expect a phase transition. Other possible ph
of the theory may be related to other solutions of ILG.

B. Black hole statistical mechanics

1. Black hole canonical ensemble in terms of the constituents

We now show how the black hole can be described
terms of statistical mechanics of the constituents of ILG.
this aim let us consider the constituents which propagat
the static region of the black hole, outside the horizon, a
compare the canonical ensembles of the black hole and
constituents.

It is well known that the description of statistica
mechanics in the presence of a Killing horizon meets di
culties due to the divergences of the density of states nea
horizon@3#. The standard method to proceed in this situat
is to introduce a cutoff near the horizon at some proper
tancee. This cutoff can be considered as an inner bounda
Then the regularized free energyF(e,T) of the constituents
has the standard definition

e2F/T5Tr e2(Ĥ2Ev)/T, ~4.11!

whereT is the temperature of the system. The operatorĤ is
normally ordered total Hamiltonian of all the constituen
andEv is the zero-point energy. In our approach the mass
constituents are very heavy and contribute only to the c
mological constant. It means that in the considered appr
mation all the effect of these fields is in the vacuum ene
Ev . Thus, one can rewrite Eq.~4.11! as

e2F/T5eEv /T~Tr e2Ĥ0 /T!N5e(Ev2NF0)/T, ~4.12!

where Ĥ0 and F0 are, respectively, the normally ordere
Hamiltonian and the statistical-mechanical free energy o
single massless constituent.

It is also instructive to represent the free energy~4.11! of
the constituents in another form, in terms of the induc
Euclidean actionG(x1 ,e,T). The Euclidean theory is for
mulated on the elliptic solution~3.7! with an inner boundary
at r2 determined by the cutoff,

r2.e2gf2/2e, ~4.13!
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wheref2 is the value of the Liouville field at this boundar
(f2 is a finite constant ate→0). The both functionals are
related as

G~x1 ,e,T!1C5F~e,T!T21, ~4.14!

where C is a possible finite numerical constant which a
counts for, according to@26#, the difference between field
theoretical and statistical-mechanical computations.x1 in
Eq. ~4.14! is expressed in terms ofT by Eq. ~4.2!. The in-
duced action is determined by Eq.~2.12!,

G~x1 ,e,T!5I L~x1 ,e,T!1NW@Ke#. ~4.15!

The actionW@Ke# is the Polyakov action on the annulusKe :

ds25r2dt21dr2, r2~e!<r<r1 . ~4.16!

It is related to the Polyakov action on the cylinderQb :

ds25dt21dy2, 0<t<2p, ~4.17!

dy5d ln r, 0<y<b, ~4.18!

by the conformal transformation,

W@Ke#5W@Qb#2
b

12
, ~4.19!

b5 ln
r1

r2
. ln

x1T

e
. ~4.20!

Because of the conformal invariance the spectrum of sin
particle excitations of two-dimensional massless scalars
incides with the spectrum of these fields on related flat ul
static space~4.17! ~see for the details, e.g.,@3#!. As a result
of this property, the effective action on the cylinder is relat
to the statistical-mechanical free energy of a single mass
constituent in a simple way:

TW@Qb#5F0~e,T!. ~4.21!

Equations~4.12!, ~4.14!, ~4.15!, and~4.21! enable us to find
the expression for the vacuum energy

Ev~e,T!5TS I L~x1 ,T!2
N

12
ln

r1

r2
1CD . ~4.22!

~Here we took into account that Liouville action on the a
nulus and that on the disc differ by a constant in the lim
e→0.! The divergence of the vacuum energy is the result
the divergence of the density of states near the horizon.

The statistical-mechanical entropy of a two-dimensio
gas on the interval with the sizeb can be computed exactl
in the limit of largeb, see, e.g.,@27#. If the temperature is
b21, the free energy, entropy and energy are

Fsm~b,b!.2
p

6

b

b2 2
1

2b
ln

b

2b
, ~4.23!

Ssm~b,b!.
p

3

b

b
1

1

2
ln

b

2b
, ~4.24!
6-6
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Esm~b,b!.
p

6

b

b2 2
1

2b
, ~4.25!

where all constants which are finite at largeb are omitted.
The parameterb coincides with the periodicity of the

Euclidean timet in Eq. ~4.17!. In our caseb52p. By taking
into account that the physical temperature isT one can write

F0~e,T!52pTFsm~b,2p!. ~4.26!

This relation in combination with Eqs.~4.12!, ~4.23!–~4.25!
gives the following result:

F~e,T!5E~e,T!2TS~e,T!, ~4.27!

E~e,T!5Ev~e,T!12pNTEsm~b,2p!

5TIL~x1!1CT, ~4.28!

S~e,T!5NSsm~b,2p!. ~4.29!

Note that the total energyE(e,T) is finite in the limit e
→0 because the divergence of zero-point fluctuations
compensated by the divergence of the thermal excitation
the massless constituents. Moreover, by using Eqs.~4.2! and
~4.3! we find that

EBH~T!5E~0,T!1CT, ~4.30!

whereC is a numerical constant. By using an arbitrariness
relation ~4.14! between the Euclidean action and the fr
energy one can always makeC equal to 0. After this ‘‘nor-
malization’’ the statistical-mechanical energy of the induc
gravity constituents coincide with black hole energy~4.8!.

Let us consider now the entropy of the constituents. B
cause this quantity corresponds to the fields propagating
side the horizon it can be interpreted as the entanglem
entropy. As is well known, the entanglement entropy is
vergent when the cutoff is removed. This is its key distin
tion from the black hole entropySBH. However, as follows
from Eqs. ~4.7!, ~4.24!, and ~4.29!, the two entropies are
related:9

SBH~T!5S~e,T!2SR~e!, ~4.31!

SR~e!.2
2

g2ln e2
6

g2 lnu ln eu.

~4.32!

It is not difficult to see thatSR(e) can be interpreted as th
entropy of the constituents on the Rindler space with
same cutoff

ds25r2dt21dr2, e,r<1, 0<t<2p. ~4.33!

9An analogous subtraction formula for two-dimensional bla
holes was discussed in@27#. A similar computation of the entangle
ment entropy in two dimensions can be also found in@28#. How-
ever, these papers are dealing with quantum corrections to the b
hole entropy rather than to the entropy itself.
02401
is
of

n

d

-
t-
nt
-
-

e

It is important that if one considers variations of the para
eters of the black hole at fixed value of the parametere,
changes of entropy~4.29! coincide with changes of thermo
dynamical entropy~4.7! of a black hole,

DSBH~T!5DS~e,T!. ~4.34!

Thus, from the point of view of thermodynamics, the tw
entropies are equivalent. Moreover, the above relation d
not depend on the choice of the regularization prescripti
Instead of using the cutoff near the horizon one can arriv
Eq. ~4.34! using the dimensional or Pauli-Villars regulariz
tion schemes which also enable one to eliminate the div
gences related to the horizon~see for details, e.g.,@3#!.

The analysis of this section demonstrates that the ther
dynamics of AdS2 black holes has a statistical-mechanic
explanation in terms of the constituents of ILG. One c
conclude that the constituents are the real degrees of free
of the black hole. It is interesting to point out the black ho
entropy is related to the massless constituents only. It d
not mean, however, that the massive fields are irrelevant
we saw, these constituents provide the finite cosmolog
constant and give a contribution to the vacuum energy wh
depends on the black hole parameters.

2. Conformal field theory

The above result for the entropy can be computed
means of a conformal field theory~CFT! along the lines of
computations of the entropy of BTZ black holes@6#. Mass-
less constituents of ILG are described by a CFT with
central chargec5N, see Eq.~2.17!.

The computation of the entropy is as follows@29,30#. The
relation between the Hamiltonian of the system and gen
tors of Virasoro algebra follow from the representation of t
metric ~4.17! in the form

ds̄25S b

p D 2

~2dh21dz2!5S b

p D 2

du dv, ~4.35!

u5
z1h

2
, v5

z2h

2
. ~4.36!

Consequently,

] t5
p

2b
~]u2]v!. ~4.37!

In Eq. ~4.35! the coordinatez ranges from 0 top. This
corresponds to a theory on an interval where the pointz
50 and z5p are independent. In order to carry out th
computations it is convenient to pass to a theory wherez is a
periodic coordinate. This can be done if one considers
equivalent CFT’s on the intervals with the lengthp and
makes from them a CFT on a circle by gluing together
ends of the intervals. In the obtained theoryz has the peri-
odicity 2p.

One has two copies of Virasoro algebra where the e
mentsLn and L̄n can be defined in a standard way as t
generators of the coordinate transformations,du5einu and
ck
6-7
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dv5einv, respectively. As a result of relation~4.37!, the
Hamiltonian of massless constituents which generates tr
formations along the Killing timet coincides with the opera
tor p(L02L̄0)/2b. Similarly, translations of the system
alongy are generated by the momentump(L01L̄0)/2b. Be-
cause the system is at rest the average momentum is zer
the other hand, the average value of the energy
NEsm(b,b). This fixes the average valuesh andh̄ of L0 and
L̄0, respectively. In the leading approximation

h52h̄5
N

6

b2

b2
. ~4.38!

In the limit whenb is large (e goes to zero!, h@1 and one
can use Cardy’s formula to estimate the degeneracy oL0

and L̄0. In this approximation the total degeneracyD is

ln D52pAch

6
12pAcuh̄u

6
~4.39!

and by taking into account that in our case the central cha
c5N we find

ln D52N
p

3

b

b
. ~4.40!

Finally, we have to remember thatD is the number of state
of the system with the doubled Hilbert space which resu
from the trick of imposing periodicity of the coordinatez.
The real number of states of the system we are intereste
is AD. Thus, the entropy is

1

2
ln D5NSsm ~4.41!

and it coincides exactly with the required value in Eq.~4.24!
for N fields.

A remark concerning fixing of the Virasoro level is i
order. In our calculation the eigenvaluesh, h̄ are not con-
nected with the observable energy~4.8! of a black hole but
are determined by the average value of the normally orde
Hamiltonian, i.e., by the thermal energy of the fields.

V. HYPERBOLIC AND PARABOLIC SOLUTIONS

It is also worth studying thermodynamics of parabolic a
hyperbolic instantons of ILG. Below we briefly comment o
its features.

The solutions have two boundaries, and the fiducial sp
M̄ in the both cases@see Eqs.~3.13! and~3.17!# is an annu-
lus. For this reason there are no difficulties related to
horizon as in the case of AdS2 black holes. This automati
cally provides the agreement between thermodynamics o
solutions and statistical mechanics of the constituents.
begin with it is convenient to replace the fiducial spaceM̄ in
Eq. ~2.12! to a cylinder by making coordinate and conform
transformations and changing the Liouville field. Then E
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~3.13! and ~3.17! can be written as

ds25egfds̄2, ~5.1!

ds̄25dt21dy2, ~5.2!

0<t<b, y2<y<y1 .
~5.3!

In case of the hyperbolic solution,

egf5
4

m

1

sin2 y
, ~5.4!

andb52pm wherem is defined in Eq.~3.13!. The boundary
coordinates subject to the restrictionsy2.0 andy1,p. For
the parabolic solution

egf5
4

m

1

y2 , ~5.5!

where y1,0. In this caseb is an arbitrary parameter. In
fact, the parabolic metric does not change when one resc
the coordinatesy andt with the same coefficient. Thus on
can choose any periodicity fort by appropriate redefinition
of the boundary valuesy6 .

The induced action~2.12! for hyperbolic and parabolic
solutions has a very simple form because the Polyakov
tion on the cylinder~5.2! is determined by the statistica
mechanical free energy~4.23! at the temperatureb21 on the
interval of the lengthb5y12y2 ,

W~y12y2 ,b!5bFsm~y12y2 ,b!. ~5.6!

Note, as we explained in the previous section,Fsm(y1

2y2 ,b) coincides with the free energy of a single massle
scalar constituent of ILG. One can represent the induced
tion ~2.12! in the form

G~y1 ,y2 ,b!5b@ f ~y1!2 f ~y2!1NFsm~y12y2 ,b!#.
~5.7!

The function f (y) can be easily found by calculating Liou
ville action ~2.16! for the given solutions. One has

f ~y!5
1

pg2 S 4 coty12y2
g

2
f~y! D ~5.8!

for the hyperbolic solution, and

f ~y!5
1

pg2 S 4

y
2

g

2
f~y! D ~5.9!

for the parabolic one. As follows from these expressions,
parabolic action is a limiting form of the hyperbolic func
tional at the small values ofy6 .

The thermodynamics of these solutions is the thermo
namics of a system in a finite volume. The correspond
thermodynamical state is fixed by the boundary valuesy6

which characterize the size of the system and the tempera
T measured at one of the boundaries. The free energ
6-8
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determined by the induced action~5.7! as usually,
F(T,y1 ,y2)5TG(b,y1 ,y2). The inverse temperatureT21

is the circumference length of the boundary and is prop
tional tob. Thus, one immediately concludes from Eq.~5.7!
that the thermodynamical entropy coincides with the stati
cal entropy of the massless constituents of ILG:

S~T,y1 ,y2!5NSsm~b,y12y2!, ~5.10!

where

S~T,y1 ,y2!52S ]F~T,y1 ,y2!

]T D
y1 ,y2

, ~5.11!

andSsm is defined in Eq.~4.24!. The equality~5.10! is more
strong than relation~4.34! for the elliptic solutions.

To conclude this section we should note that the first l
for the hyperbolic and the parabolic solutions has a m
general form

dE5TdS2p1dy12p2dy2 , ~5.12!

where

E5F1TS ~5.13!

is the energy of the system and the quantities

p652S ]F~T,y1 ,y2!

]y6
D

T,y7

~5.14!

can be interpreted as pressures at the boundaries. The
be computed with the help of Eqs.~5.7!–~5.9!.

VI. ILG DUAL TO BTZ BLACK HOLES

Our discussion includes as a particular example indu
Liouville gravity which is dual to the BTZ black hole secto
of the three-dimensional gravity with the negative cosm
logical constant (AdS3 gravity!. The Euclidean action of this
theory @31#,

I (3)52
1

16pG F E d3xAgS R1
2

l 2D1 È d2xAhKG ,
~6.1!

whereK is the extrinsic curvature of the asymptotic boun
ary, corresponds to a canonical free energy of the system
us consider for simplicity a static BTZ black hole with th
massM. Functional~6.1! taken on the corresponding insta
ton has the canonical form

I (3)5bMBTZ2SBTZ, ~6.2!

whereb and SBTZ are the inverse temperature and the e
tropy of the black hole, respectively. The parameters of
black hole are determined by the radiusr 1 of the horizon

MBTZ5
r 1

8Gl2
, ~6.3!
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b5
2p l 2

r 1
, ~6.4!

SBTZ5
2pr 1

4G
. ~6.5!

It is instructive to represent the free energy, entropy, a
mass of the black hole in terms of the inverse temperatu

FBTZ~ l ,b!5b21I (3)52
p2l 2

2Gb2 , ~6.6!

SBTZ~ l ,b!5
p2l 2

Gb
, ~6.7!

MBTZ~ l ,b!5
p2l 2

2Gb2 . ~6.8!

Let us now demonstrate that this black hole is thermo
namically equivalent to a certain type of ILG. We begin wi
Euclidean ILG with a zero cosmological constant (m50)
which is a particular case of ILG models. The boundary o
Euclidean BTZ black hole is a torus, see, e.g.,@32#. This
leads us to consider ILG where the backgroundM has the
topology of a torus. The induced action of this theory is@see
Eq. ~2.12!#

G@g#5 Ī L@f#1NW@M̄#, ~6.9!

Ī L@f#52
1

2pEM̄d2y~¹̄f!2. ~6.10!

The flat spaceM̄ is a torus

ds̄25dt21dx2. ~6.11!

We assume that

0,t<b, 0,x<b. ~6.12!

The solutions to this theory are constantf and on the solu-
tions the induced action coincides withNW@M̄#. Thus, the
on-shell Euclidean action of ILG corresponds to the free
ergy of massless gas on a circle of lengthb at the tempera-
ture b21. In the limit when sizeb is large one can find the
action on the torus from the leading order expression~4.23!
for the free energy on the interval of sizeb. We thus obtain

F~b,b!.2N
p

6

b

b2 . ~6.13!

This free energy corresponds to the CFT with the inte
central chargec5N. Consider now the BTZ black hole with
the same central chargec10

10The conformal Virasoro algebra with an integer central cha
has a number of interesting features which were discussed in@33#.
6-9
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cBTZ5
3l

2G
5N. ~6.14!

This charge corresponds to the group of diffeomorphism
the asymptotic infinity of the BTZ black hole. By now re
placingN in Eq. ~6.13! by cBTZ and puttingb52p l we come
to the identity between the ILG and BTZ free energy~6.6!,

FBTZ~ l ,b!5F~2p l ,b!uN5cBTZ
. ~6.15!

The corresponding identities can be established for the
tropy ~6.7! and energy~6.8! of the black hole. Therefore, th
static BTZ black hole isthermodynamicallyequivalent to 1
11 ILG havingcBTZ massless fields and given on the circ
of the radiusl @ l is related to the curvature radius of th
corresponding AdS3 geometry, see Eq.~6.1!#.

This result can be also generalized to rotating BTZ bla
holes. If the angular velocityV of the black hole is not zero
the free energy~6.6! is replaced to@32#

FBTZ~V,l ,b!52
p2l 2

2Gb2~12 l 2V2!
. ~6.16!

The corresponding two-dimensional system equivalent
this black hole is a rotating quantum gas. To be more s
cific, consider a massless gas where half of the quanta
rotating clockwise with angular velocityV and the other half
are moving in the opposite direction. The corresponding f
energies of these quanta denoted byF6 are determined by
the ‘‘boosted’’ partition functions

e2bF65Tr e2b(Ĥ6VM̂ ), ~6.17!

whereĤ is the Hamiltonian andM̂ is the angular momentum
related to the momentumP̂ along the circle as

M̂5
b

2p
P̂. ~6.18!

@b/(2p) is the radius of the circle.# The energy of a relativ-
istic massless particle equals the modulus of its moment
Therefore

e2bF65Tr e2b(16V̄)Ĥ, ~6.19!

V̄5
bV

2p
. ~6.20!

Thus, whenb is large one can findF6 with the help of Eq.
~4.23!,
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F6~V,b,b!.2
pb

6b2~16V̄!
. ~6.21!

The total free energy of the system is11

F~V,b,b!5
N

2
F1~V,b,b!1

N

2
F2~V,b,b!

.2N
p

6

b

b2~12V̄2!
. ~6.22!

Now by taking into account Eq.~6.20! and thatb52p l we
can generalize the relation~6.15!:

FBTZ~V,l ,b!5F~V,2p l ,b!uN5cBTZ
. ~6.23!

Once one has the thermodynamic relation~6.23! between the
BTZ black hole and a two-dimensional rotating gas, t
statistical-mechanical explanation of the two-dimensio
entropy can be considered as an explanation of the b
hole entropy@6#. This, however, cannot be taken as a sa
factory explanation of the entropy, because the degree
freedom of the two-dimensional theory have nothing to
with the degrees of freedom of the black hole.

VII. DISCUSSION

Recent interesting computations of the entropy of e
tremal@4,5# and BTZ@6# black holes leave open the essent
question about the real degrees of freedom of the black h
The difficulty is that the computations concern not bla
holes themselves but dual systems in flat space-times. S
help in resolving this difficulty may come from studyin
models of Sakharov’s induced gravity@16–18#. In this theory
the degrees of freedom responsible for the black hole entr
are the constituents which induce the Einstein gravity in
low-energy limit.

The Liouville induced gravity considered in this paper is
suitable ‘‘firing range’’ to study this issue. We have show
that the entropy of induced AdS2 black holes is equivalent to
the entanglement entropy of the massless constituents. In
dimensions the divergence usually encountered in the de
tion of the entanglement entropy does not depend on
thermodynamical parameters of the black hole and, henc
not observable in physical processes. Therefore, going
two-dimensional induced gravity leads to an essential sim
fication. In higher-dimensional models the relation betwe
the entanglement and black hole entropies is more com
cated. It always requires subtraction a nontrivial Noeth
charge related to nonminimal couplings of the constitue
@17#. Another distinction is that in higher dimensions th

11A similar computation can be found in@34#.
6-10
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main contribution to the entanglement entropy is determi
only by the constituents with the Planck mass localized
the vicinity of the horizon. In ILG the entropy is related
the fields which are localized in the entire black hole ex
rior.

Induced Liouville gravity has solutions of different type
which may find different applications. The important e
ample are the solutions with a zero cosmological constan
a torus. On the level of thermodynamics they are equiva
to BTZ black holes. It would be interesting to see wheth
there is a similar relation of the found solutions, includi
tu

s

n-

’’

s.
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AdS2 black holes, and thermodynamics of the objects in
three-dimensional AdS space. Another interesting problem
to analyze along the lines of Sec. VI the theory@12,13#
which appears in the near horizon limit of generic bla
holes. We leave these issues for future publications.
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