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Strengths of singularities in spherical symmetry
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Covariant equations characterizing the strength of a singularity in spherical symmetry are derived and
several models are investigated. The difference between central and non-central singularities is emphasized. A
slight modification to the definition of singularity strength is suggested. The gravitational weakness of shell
crossing singularities in collapsing spherical dust is proven for timelike geodesics, closing a gap in the proof.
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. INTRODUCTION lim V(7)=0.
—0"

Over thirty years have passed since the appearance of the
first of a series of theorems establishing that under very gen-
eral circumstances, space-times must develop singularitie¥hen the singularity itself is said to Istrongif every causal
This first result, due to Penrogg], appeared in 1965 and the geodesic which approaches it terminates in a strong singular-
body of work which grew up around the singularity theoremsity. The geodesic terminates in a weak singularity if the limit
is contained in the book of Hawking and EI[i8] which was  above is finite and non-zero, and the singularity is weak if
first published in 1973. However, our understanding of theevery causal geodesic approaching it terminates weakly. We
nature of these singularities remains far from complete. Thisyill argue below for a slight modification of this definition
lack is best exemplified by the absence of a proof, or definiwhereby the term strong is also attached to a singularity if
tive refutation, of the cosmic censorship conjecté®C)  the norms of the Jacobi fields themselves have zero or infi-
[3.4]. nite limit.

An important aspect of a singularity is its gravitational ~ The importance of the notion of the gravitational strength
strength[5]. A singularity is termed gravitationally strong, or of a singularity for the CCC is that a statement of such pos-
simply strong, if it destroys by crushing or stretching anysibly need not rule out the occurrence of naked weak singu-
object which falls into it. The most familiar example is the |arities. This is based on the belief that one may extend the
singularity atr =0 in the Schwarzschild solutiofThrough-  geometry of space-time through a weak singularity without
out this paper, we will refer to a singularity at=0 as a  traumatic effect§6,7]. A general description of this exten-
central singularity, and to others as non-centrAlradially  sion does not exist—indeed as far as the author can deter-
infalling object is infinitely stretched in the radial direction mine, only two examples of this procedure exist in the litera-
and crushed in the tangential directions, with the net result ofure, one due to Papapetrou and Hami@Jiand the other
crushing to zero volume. A singularity is termed weakd  due to Clarke and O’DonnelB]. Both deal with extending
object which falls into the singularity is destroyed in this through a shell crossing singularity in collapsing spherical
way. The mathematical description of these ideas runs agust. However the fact that at a weak singularity one has,
follows [5,4]. along any timelike geodesic, a finite non-degenerate triad of

Let y:[ 70,0)—M be a causal geodesic which approacheslacobi fields, from which it may be possible to construct a
a singularity asr— 0~ . DefineJ (y) for ve[7,,0) to be the  metric in a canonical way, lends support to the idea.
set of map<Z:[»,0)—TM satisfying the geodesic deviation  Qur aim here is to give a comprehensive analysis of the
equation alongy such thatZ(7) e T,(y)M, 9apk®(71) Z°(7) strengths of singularities in spherical symmetry. This has

=0 wherek? is the tangent toy and been the arena of some of the most interesting developments
in general relativity in recent years, and an understanding of
Z(v)=0; what can and cannot occur in spherical symmetry may be a

valuable guide for more general situations. Specifically, we
i.e. J,(y) is the set of Jacobi fields alongwhich vanish at  study the Jacobi equations for arbitrary radial causal geode-
y(v). Along a timelike geodesic, three independent Jacobsics. This allows us to give covariant equations identifying
fields define, via the exterior product, a volume elementhe geometrical terms which control the strength of the sin-
V(1) alongy. Along a null geodesic, two such fields define gularity. As one would expect, the results are simpler than
an area element which we also denatér). A timelike  those obtained by Clarke and Kroldk0] which apply to
(null) geodesic terminates insirong curvature singularityf general space-times. We study three different models which
for all ve[ 74,0) and all independent triaddyads in J,(vy) help illustrate the different situations which occur, and by
we have way of application, demonstrate th@t a non-central singu-
larity is always weak along null directions afid) the shell-
crossing singularities in collapsing spherical dust are weak.
*Email address: nolanb@ccmail.dcu.ie (This has only been demonstrated previously for radial null
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directions[11]; we complete the proof by showing that it is wheree= 0 for null geodesics and 1 for timelike; the over-

also true for radial timelike directions. dot is respectively, differentiation with respect to affine pa-
rameter and proper time. Space-like geodesics will not con-
Il. RADIAL CAUSAL GEODESICS, JACOBI FIELDS cern us here. o _ _
AND THE VOLUME ELEMENT We now look at the Jacobi fields along arbitrary radial

_ . . ~causal geodesics, beginning with time-like geodesics.
The line element of a spherically symmetric space-time The unit tangent to an arbitrary time-like curygr) in

may be written as the radial 2-space can be written in the form
ds’=—2e 'dudv +r3dw?, (2. .9 1 d
k=h—+-e*h 1—,
au 2 Jdv

wheref=f(u,v), r=r(u,v) anddw? is the line element of
the unit 2-sphere. The functiaris an invariant of the space- \yhereh=h(u,v). The condition thaty be geodesic is then
time which we will, quite properly, refer to as the radius. The
coordinatesu andv are both null, labelling the null hyper- h,+2h%e~2!(h,— 2f ,h)=0. (2.7
surfaces generated by the two families of null geodesics or- . .
thogonal to the orbits of th& O(3) symmetry group of the 1his follows from the geodesic equatio(&63—(2.69. The
space-time. The forrt2.1) is invariant under the transforma- Variation of any scalar quantityalong this geodesic is given
tionsu—u’(u), v—uv'(v). by

The non-vanishing Ricci tensor components are

. 1

s=k¥V,s=hs,+ ze?'h~1s,, 2.8
Ruu=—2r "X(ryut+2r,fy) (2.29 ST 2 29
Ryp=— 2 X1y, +21,f,) (2.2 ~ andusing Eq(2.7),

. 1
Rup=—2r"1(ry,—rfy,) (2.209 s=h?(sy,+2f,s0)+ Ze4fh72(svv+2fvsv)+e2fsuv'
=cs@ _ 2f (2.9

Rypy=CSCOR,,=1+2€7(rr,+1rr,). (2.20

] ) A Jacobi fieldZ? along y satisfies the geodesic deviation
We use the convention that subscripts attached to lowegqyation

case letters refer to partial derivatives, but elsewhere refer to

tensor components in the associated coordinate basis. The 72+ R3, Z°k°k=0, (2.10

Misner-Sharp energfl2] is

which is a linear equation fd£? and so a basis for the Jacobi

fields may be found by obtaining all independent Jacobi

fields in the radial 2-space and in the tangential 2-space.
We take

r 2f
E=§(1+2e rafs), (2.3

and the Weyl tensor is completely determined by the
Newman-Penrose terflf,, calculated on a null tetrad based > 4 > 4
on the principal null directions of the space time. Thiagis Eay=x(u.v) 72, g(z)=y(u,v)cso9£
an invariant of the space-time and is given by
as candidates for the Jacobi fields in the tangential 2-space.

e2f E Note that the norms of(;, andé&p,) arer x| andr|y| respec-
\Ifzzg(ruﬁ rfu)— 33 (2.4 tively. The geodesic deviation equati¢h10 applied tog?l)
yields the following equation fax (the same result applies to
We note the further invariant, y):
£ R r(4h%(x ,+2fx,) +e*(x,, + 2f x,) + 4h%e?'x,)
e2foU=r—3+2qf2— I (2.5 +2(2h%x,+€?'x,)(2h?r ,+e?'r ) =0.

whereR is the Ricci scalar. Using Egs.(2.8) and (2.9), this assumes the remarkably

The radial geodesic equations are simple form
. rX+2rx=0, 2.1

—2e Yuv=¢ (2.6a (219

which can be integrated to obtain

u—2f,u?=0 (2.6b ,

T dr
. . X(7)=X f _—, (2.123

o—2f,02=0 (2.60 ) rr2(ry
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wherex, is constant and we have included the initial condi-The norm|W| of a p-form W=W; _ip]dxil/\ ...A\dxp
tion x(74)=0, so thaté(l)(a-l):O. The second linearly in- is given by
dependent solution is(7)=0. We obtain the same result for

Eny: ||W||2:W\i1...ip\Wil"'ip,

where the vertical bars indicate summation only oveti,
<---<ip. This gives

 d7’
y(T):yoLlrz(T,)-

Before dealing with the radial Jacobi fields along the 219
time-like geodesics, we describe the situation for radial null  The existence of six independent solutions of the geodesic
geodesics. It turns out to be remarkably simple. From Eqdeviation equation indicates that in a general space-time, the
(2.63, eitheru or v vanishes along a radial null geodesic. different V() form a six parameter family. This surfeit of
Take it to be the latter. We can then integrate Bqj6b) to  possibilities would produce problems if one wanted to make
obtainu=ce?' and so the tangent is statements about singularity strengths based on the behavior

of all suchV(7). However the definition oﬂTl reduces the

number significantly. Note that, vanishes if and only if

each ofa,, x, andy, vanish. The general solution farhas
the form

(2.12b

IV(7)||=6|ajx2ys|r?.

R J
= f__
k=ce? P

The variation of a scalas along the geodesic i£;=ce2fsu

and a=c,a,tc_a_

wherec.. are arbitrary constants aral. are any two inde-
pendent solutions of Eq2.13). A similar result holds forx
In the null case, there are only tangential Jacobi fields. Camandy. The initial conditiona(7;) =0 fixes the raticc, /c_,

didates for such are given W, ) as above, and it turns out SO that for the problem in hand, there is owigechoice, up

that the norms,y obey the same equation as in the time-like {0 & constant multiple, for each af x andy. Therefore the

case, and thus the solutions are given by @q123. norm of every relevant volume element has the simple form
We now treat the radial Jacobi fields along a time-like 2.19

geodesic. A space-like vector in the radial 2-space orthogo-
a
nal tok™ has the form wherea, x andy here represent thgeneralsolutions of the
appropriate equation®.123, (2.12bh, and(2.13), into which
constants may be absorbed.

We thus have a simple and direct way of assessing the
strength of a singularity. We determine the limiting behavior
of solutions of Eqs(2.123, (2.12h, and(2.13 as the singu-
larity is approached and then use HG.15 to calculate
IimT—»O’”V(T)”'

s=c?e*(s,,+2f sy).

IV(7)|=laxylr?

>

g 1 a
— T a2f -1_"
¢=ahz —Zetahor,

wherea=a(u,v). This has normal. Using Eq.(2.9), we
find that the condition fo€ to satisfy the geodesic deviation
equation along? is

a+2e?f,,a=0.

(2.13

Recall that according to Eq2.5), €?f,, is an invariant of

Ill. POSSIBLE SOLUTIONS OF THE MAIN EQUATIONS

e i We now consider the various possible limiting behaviors
the space-time. Thus Eq&2.123, (2.121, and (2.13 pro which can occur for solutions of the main equations, i.e.,

vide acovariantset of equations which will determine the Eqs.(2.123, (2.128, and(2.13.

strength of the singularity. To see how this comes about, we From Eq.(2.15, the formsrx andry arise naturally and
obtain the relationship betwee¥((7) and the quantities M Eg.(2.19, ] oy Y i y
occur in the following proposition which applies to bath

a,x,y.
’ : . andy.
. Smce_each (.)fi’ X aHQy satisfy seconq o_rder linear or- Proposition One. (i) For a non-central singularity,
dinary differential equations, there are six independent ‘]aﬁm rx is finite and non-zero
7—07 - .

cobi fields a_\long a t|me-_l|ke_geodes;c An arbitrary triad of (i) For a central singularity, if
corresponding 1-forms is given by

Z,=a,etx, r2do+y,sinfd¢,

wheree=(2h) *du—e ?'hdv ande=1,2,3. Then the gen-
eral volume element along has the form

V( T) = Zl/\ZZ/\ZB

= 63[1X2y3]r45in0e/\d o/\d ¢

lim frr*Z(T')dT'@o,

7—07" 1

thenlim_ o-rx=0. Otherwise

lim rx=— lim —.
THOfr(T)

7—0"

024014-3



BRIEN C. NOLAN PHYSICAL REVIEW D 60 024014

Here and below, the limit refers to the limit as—0~ This does not cover all possibilities since there are irregu-
along a geodesic which approaches the singularity=a®.  lar singular points for which the limit lim,,-|G(7)| does
The proofs of part(i) and the first part of partii) follow  not exist. Typically, this would occur &(7) is oscillatory in
immediately from Eq.(2.123, and that of the second part a neighborhood of=0, e.g.
from Eq.(2.129 and I'Hopital’s rule. A consequence of this
is that the strength of a non-central singularity is completely Gp(m)=k| 7|~ *sin(| 7| P),
determined by the limiting behavior @f at the singularity. , . .

Next we summarize the possible behavioradh the ap- ~ Where p=>0. Taking this form forG(7) and definingx
propriate limit. Define F(7)=2e?'f,(7) and G(r) =|7~% b=x("P 7"%a (3.1) becomes
=7°F(7). Then Eq.(2.13 is equivalent to

sik  1-p?

b” + —
p2 x2°P 4x2

b=0.

ra+G(r)a=0, (3.1

and we wish to determine the behavioreoht 7=0 whichis  The dominant coefficient ob is the decaying oscillatory

a singular point of Eq(3.1). We quote the following results  term, and this determines the asymptotic behavior of the so-
from Bender and Orszgd.3], which should also be found in |ytions. There are three different cases, depending on the
any text on linear differential equations. All the asymptoticyajye ofp. We quote the result for the simplest case, which is

relations below hold as—0~ andc,c. are arbitrary con- p>1. The asymptotic behavior in this case is given| by
stants.

The equation is said to haveragular singular pointat a~xA P2 g x~(EPTH2 (x ooy,
7=0 if G(7) is analytic in a neighborhood af=0. Other-
wise, 7=0 is called arirregular singular point For aregular  Thus the singularity is strong and stretching for-1. It
singular point, we defin&,=G(0). Infact the results below turns out that the singularity is strong and crushing for 1/2
apply more generally, namely@(7)=0(1) as7—0~ with  <p=<1, see[14] for details. On the other hand, if we take
a very low degree of differentiabilityé e C!(—7,,0] is suf-  G(7)=ksin(71), the same procedure leads to
ficient. The method of Frobenius applies. The roots of the
indicial equation are k sinx

1 1 p X
v12=5*5(1-4Gg) "%
the asymptotic solutions of which lead [tb4]

The following possibilities arise.

a1~l, a2~X71 (X—>°C)

(RSP) v,—v,¢Z. Thena(r)~c,|7|°t+c_|7|"2. Three
subcases arise depending on the valu&gf and so in this case the singularity is weak. Notice that we

(RSP13 1/4<G,. Then a(7)~c|7*?, so that have in this cas&(r)=0(1), butG is not differentiable at
lim,__q-a(7r)=0.. 7=0.

(RSP1b 0<Gy<1/4. Thenv, , are both positive so that  Qur main point here is that both strong and weak singu-
lim,_o-a(7)=0. larities may occur in this class and the analysis to determine

(RSP19 G(<0. Thenv,<0 so that lim_-a(7) =c°. which case obtains may be quite difficult.

(RSP)  v;=v,2Go=1/4 Then a(7)~c,|7]'? (ISP3) lim,_.o-G(7) does not exist. The singularity may
+c_|7/"4n|7. Again, lim,_,-a(7)=0. be either strong or weak.

(RSP3 v,—v,eN—0Gy=(1—-k?/4, ke N". Then Keep in mind that the behavior described here is charac-

a(7)~cy|7|"t+c_(|7]"2+d|7|"1In|7) where d is a fixed teristic of a particular radial timelike geodesic which runs
constant. We mention under this last heading one speciahto the singularity, and not of the singularity itself. We will
case of particular importance, that for whi@y,=0. This  therefore refer to, for example,tgpe (RSP1a) geodesiand
includes singularities where&t(7) is finite and, typically, to atype (RSP1a) singularitgnly if all the radial timelike

space-times with weak non-central singularities. geodesics terminating there are ty{RSP1a
(RSP339 Gy=0. Thena(7)~c_+c,|7+c_d|7|In|d), In this language, the central singularity of Schwarzschild
and so lim_ o-a(7) is finite and non-zero. space-time is typ€éRSP1¢, with a(7)~c., |7|*3+c_| 7|~ 3
The second class of possibilities arises when(Bd) has  Also, rx(7)~xo|7|*3, ry(7)~yol7|*®, so that overall,
an irregular singular point at=0. If lim,_o-|G(7)|=%, ||V(7)|~d|7|*3, giving a singularity which is strong along
then the WKB approximation holds. This gives timelike approaches. Suppose instead the behavior was
rX(7)~Xo| 7|, ry(7)~yo|7|*. Then |[V(7)|~d (con-
- -1/4 7 INYVL2H stan}, so by the current definition, the singularity is weak
a(7)~c(F() exw’ + f,l(F(T )) s } along timelike approaches. It would be of very little comfort
to an observer jumping into such a singularity to realize, as
There are two possibilities here. he watched his legs elongate and disintegrate, that such vol-
(ISP lim,_,o-F(7)=+«. Then lim_y-a(7) = + . ume forms were preserved on his journey. The possibility of
(ISP2) lim._,o-F(7)= —<. Then lim_ g-a(7)=0. the existence of such a singularity was noted by Tip&r

024014-4



STRENGTHS OF SINGULARITIES IN SPHERICAL SYMMETRY PHYSICAL REVIEW B0 024014

We give an example of such below. This motivates the fol-.e. 2e72f=1 andr=((v —u)/2)®. We takea=1. The case
lowing addendum to the definition of a strong singularity. «a=1 is flat space-time. The Ricci scalar is
We will say that a causal geodesig[7,0)—M ap-

proaching a singularity as— 0~ terminates in a strong sin- 2 5 S

gularity if for all 7, €[ 7,,0), except some suitably small set R= r_z(l_(30‘ —2a)r ),

(finite, countable, zero-measyyethe general element of

J.,(7) is degenerate or infinite in the limit—0~. We will  anq so there is a scalar curvature singularity-a0. Sincef

say thaty terminates in a weak singularity if the general is constant, the radial Jacobi field orthogonal to an arbitrary
element OfJTl(’y) is finite and non-degenel’ate in the limit. timelike geodesic will Satisfy' according to ECng)’ a

The terms will be applied to the singularity itselféfi causal =0, with general solutiom=c_ +c_ 7. Thus the strength of
geodesics approaching the singularity behave in one of ththis central singularity will be determined by the behavior of
two ways. the tangential Jacobi fields.

By degenerate, we mean that both of the independent Ja- Along a radial null geodesic, we hav@ithout loss of
cobi fields in some particular directidor mutually orthogo-  generality v =constant andi=cr+d, wherec,d are con-
nal direction$ orthogonal tok® shrink to zero magnitude. A stants andr is an affine parameter. Thus after a reparametri-
non-central typg RSP1b singularity would be an example zation of r, we have
of such.

We now gather the results above into some general state- r=cfr|®

ments. o :
Proposition Two. For a non-central singularity and for a The same result holds for all radial timelike geodesics. From

central singularity for which rhas a finite and non-zero limit Egs.(2.12 and(2.19, we find
along every causal geodesic approaching the singularity, the V(7)< (cs +c_| o) 722
strength of the singularity is determined by Eq. (2.18the
singularity is of type (RSP3a), then it is weak. The only otherThus the singularity is strong. Notice tHat(7)||— as the
type which may be weak is (ISP3); singularities of the othersingularity is approached along any radial causal geodesic.
types are strong. A central singularity for whichhas zero  The deformation results from infinite tangential stretching.
or infinite limit along every causal geodesic approaching the The purpose of examining this model is to gave an ex-
singularity is strong. plicit example where the behavior at the singularity is clearly

The proof follows from Proposition One and from the pathological and destructive, but which would not previously
definitions above; essentially it amounts to some usefuhave been described as a strong singularity. We note that
book-keeping. A great many singularities will have different a b
behaviors along different geodesics approaching the singu- i) (i) __ i(a—l)rﬂ“
larity, and so will not be covered by this result. There re- du/ \du 8 '
mains the problem of determining the behavioragf) and o

so that the weak energy condition is violated for the values

we have identified which elements of the geometry deterpf o of interest here.

r(7) in the limit as the singularity is approached. However
mine the strength of a singularity and listed the various pos-

Tab

sibilities. B. Roberts’ solution
We now give some applications of the results laid out Roberts’ solution has been used in studies of cosmic cen-
above. sorship[15] and critical collaps¢17]. The line element is

1
IV. EXAMPLES d32=_dudv+Z(u2—2uv+(1—p2)v2)dw2,

In this section, we study the strengths of some singulari-

ties in four different(classesof space-times. The first three, wherep is constantp=0 gives flat space-time. The Ricci
two toy models and Roberts’ space-tifit5], are used t0  gog)ar is

illustrate the types of singularities which may arise and some

of the points made above. The fourth is the marginally bound 1

case of a Lem#ne-Tolman-Bondi(LTB) collapsing dust R=—4p2UU,
spherd 16]. We use the theory above to demonstrate conclu- 2r

sively the weakness of shell-crossing singularities in this

and so there is a central scalar curvature singularity. As

space-time. above, the strength of the singularity is determined by the
tangential Jacobi fields. In this case we find thatc|7|
A. A toy model . . L
along any radial causal geodesic terminating a0 at pa-
We consider the space-time with line element rameter valuer=0. We use Eqg2.123, (2.121, and(2.15

to obtain

—-u 2«
ds?= —dudv+(v—) do?,

2 IV(7)][~k(cs+c_|7)
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with rx,ry~constant as— 0", and so this central singular- F(r)~cq|7| 2

ity is weak. Thus the examples where this singularity is na-

ked may not be genuine counterexamples to cosmic censowherec; is a negativeconstant. Then in the notation used

ship. See als¢3] for related comments. above, G, is a negative constant, and so this is a type
(RSP1¢ singularity. The asymptotic behavior afis

C. Another toy model v v
a(m)~cy|7|’1+c_|7"2

A model with slightly more complicated dynamics and
which illustrates well some of the points made above is thawherev, ;= (1= (1—4Gy)*?/2, and so

with the line element
Hv( ’T)”"‘Vol T|v2+4a/(2a+ l).

2a 2
ds?=— (%) dudv +(%) dw?. Therefore, for any value af, there will exist radial timelike
geodesics along whichv(7)|| diverges, has zero limit and
We takea=0; a=0 is flat space-time. We find that has finitq Ii_mit as the singularity _is approached. The;e differ-
ent possibilities arise from the different choices available for
2e?'f,=—4a(2a+1)r 42, (4.) ¢ in Eqg. (4.2 which give the value Gy=—4a(2a
+1)c~ 42, Starting from some fixed value=r, at 7
and so there is a scalar curvature singularity a0 (recall =7, <0, we see that is essentially a measure of the initial
that this term is an invariant velocity of an observer falling radially inwards from . By
For an arbitrary radial null geodesic, we make take tuning this velocity, an observer could in principle ensure
=Up=constant. Then we find that his||V(7)| is finite in the approach to the singularity.
o U(2a+1) However, in practice this would be of little help to him since
v-U=v—Up=(c7+d) ' as pointed out above, the observer experiences infinite tan-
so that gential crushing and radial stretching in the infall. Further-
more, his initial velocity would have to be tuned with infinite
r=k|7|(2a+1) precision to obtain &lim__ o-||V(7)||<. According to the

definition above, this is a strong singularity.
after an appropriate shift in the affine parameteApplying

the second part of Proposition One, we see that all radial null D. Marginally bound spherical dust

geodesics approachig=0 terminate in a strong curvature , , i

singularity with the area element obeyiftg(7)||— 0 in ev- The marginally bound LTB space-timepherically sym-

ery case. metric inhomogeneous dydtas line element

To solve for the radial timelike geodesics, we make the d2= — dt?+ (r")2d 7%+ r 2d w2
change of variables= (v —u)/2, t= (v +u)/2. Then the line (r')"dm @
element takes the form where the prime indicates differentiation with respect to the
coordinatey. For the collapsing case,

d=r2%(—d2+dr?) +r2dw?. naten psing
. . I . 9

The geodesic equations for radial infall yield r3(n,t)= Em( 7) (to( 7) —1)?,

i:_r72a(02_r2a)1/2' ) ) )
wherem,t, are arbitrary functions of;. See[16] for details.

According to Egs(2.13 and(3.1), we need to determine the The energy d_ens_ity of the dust, which is proportional to the

behavior ofr as proper timer—0. [As usual, we fix the Ricci scalar, is given by

origin of proper time so that(0)=0.] The previous equa-

tion may be solved asymptotically by expanding the right barp= m_’
hand side and then inverting the resulting integral with the r2r’
result
Thus as well as the central singularity @0 [occurring
r=c|7VC* D+ 0(|7/#) (4.2 whent=ty(7)], there are so-called shell-crossing singulari-
where 8> 1/(2a+1). ?hes occurring whem =0 [18]. These gen_erally occur before
; - . e central singularity, at non-zero radius and so are non-
Then the tangential Jacobi fields have the asymptotic bec'entral. It has long been believed that these scalar curvature
havior singularities are weak. However, it seems that this has only
rx~c| 724/t (q£1/2), been properly established for null geodesics approaching the
singularity[6,11]. As we have seen above, this weakness is
rx~c|7|Yn|7] (a=1/2). completely independent of the structure and nature of the

singularity apart from the fact that it is non-central. We fill
The behavior of the radial Jacobi fields is dictated by Eqthis gap by proving that all radial timelike geodesics termi-
(4.2) which from the above has the behavior nate in a weak singularity.
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According to Proposition Two, the strength of a shell-
crossing singularity is governed Kg.13. Using Eq.(2.5),
we find that

m’ m

F=2e?'f,, =
v r2r/

r3

The termsm’/r? and m/r® will both be finite in general in

PHYSICAL REVIEW B0 024014

where here and subsequently, evaluation at zero means in the
limit ——0~ along a geodesic.

Generically,r{(0) andr”(0) will be non-zero. If this
were not the case, there would be extra conditions imposed
onm andt, for all values of#, which would result in a loss
of generality. For example, if; (0)=0, thent,(7)=0 for
all ». In this case, the space-time is homogeneous and iso-
tropic. The condition”(0)=0 imposes less severe but none-

the approach to the singularity, the former being positivetheless significant restrictions. So we assume henceforth that
assuming positive energy density. Thus the behavior is govt (0) andr”(0) are non-zero.

erned byF=1/r'. We will show that

- 72
lim —=0

, 4.3
7'—»07r

We also need to track the evolution oandr’ along the
geodesics. We have

. ) . 2m. .
r=rtt+r’n=\/Tt+r’n

4.9

along any radial timelike geodesic approaching the singular-

ity. This shows that the singularity is tyd®SP3a, and is
therefore weak by Proposition Two.
The radial timelike geodesic equations are

—t24+(r'")2pP=—-1 (4.43
r'p+2rtp+r"n?=0 (4.4b
t+r'r{7?=0 (4.49

2 rt
3 (to—t)?

"

r'y.

(r’) (4.9
We now prove Eq(4.3), which demonstrates the weak-
ness of the singularity.
Case One:lim,_o-| 7| <.
By Eq. (4.43, t(0)=1. The sign comes from the assump-
tion that the geodesic is future directed and the fact thst
a global time coordinate. The past directed case proceeds in
an identical manner. By Ed4.9), (i) will be finite in the

where the overdot indicates differentiation with respect tdimit 7—0~. If this limit is non-zero, we can apply
proper time along the geodesic and the subscript is differenzHdpital’s rule to 7%/r’ to prove Eq.(4.3). The other possi-

tiation with respect to the global time coordinateAlong

each geodesic approaching the singularity, we choose the

origin of proper time so that the singularity is &t 0.
We find that

so that at a shell-crossing singularity,

r

m’ 2t
r' —+—],
3\lm  tp—t

m 2t
to—t

m

The following terms will enter into our analysis:

2ty @5
3 (t—1)? .
(r'? r|(m” (m’)2 2tg 2t
r’= to|l == - .
r 3lm m o=t (to—1)?
(4.6
Then
"(0) ( ()24 t) (4.7
r = m —=(m -mm'ty ], .
3mlt, 075 0 0

bility is that (r')(0)=0 So now assume this to be the case.

Suppose further thgty(0)| <. Then ¢’ 7)(0)=0, and
so taking the limit of Eq(4.4b, we have

0= lim (2r{t+r"7)

7—0

= lim (r{t+(r"),
T—0"
which givesr{(0)=0, in contradiction of one of our as-
sumptions. So if (’)(0)=0, then we must havéz(0)|

=00,

Using I'Hopital’s rule twice, we have in this case

o2
lim —= lim .
T*?O_(r )

!
7—0" r
We calculate

m. 2

(r')y=rit2+r{t+2ritp+r" p+r" 7%

From Eq.(4.49, t(0)=0 and the terms;,, r{ andr” will
be finite in the appropriate limit. Thus the dominant term is

r" 7, giving lim,_o-|r’| =00, proving Eq.(4.3).
Case Two:lim,_.o-|5|=c°.
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Suppose thajr’ 5|(0)<«. Then by Eq.(4.4a, t(0) is  While detailed qualitative information about causal geodesics
is required, we do not need the full solution of the geodesic
equations. Therefore there is good hope that the results
above may be successfully applied to other situations.

One of these is the case where the singularity occurs at a

finite and so Eq.(4.9) gives |[(r')|(0)=%. We then use
I'Hopital’s rule to prove Eq(4.3).

Finally, suppose thdt ' 7|(0)=%. Then by Eq.(4.43,

" point where the metric is continuous and non-degenerate
im = li ol 14 1 (det(g,p) #0) (we will refer to such as a continuous non-
|m7t— |m7 L] |r’%7| degenerate singularitylt seems plausible that in such a situ-
70 70 ation, the singularity must necessarily be weak. The argu-
. ) ment goes roughly as follows. Solutions of the time-like
= I|m7|r 7). geodesics of Sec. Il typically behave as=0(1), v
70 =0(1) ast—0. Then to obtain a strong curvature singular-
Then by Eq.(4.9), ity, the Riemann tensor components must diverge faster than

O(7 ?); integrating twice cannot yield a finite metric. How-
: PN oo ever this argument might not hold for &$8P3 singularity,

I|m7|(r )|=[r"=rr](0) I|m7|7;|. and perhaps not for other cases. A careful analysis of Egs.

70 70 (2.6a—(2.60 and(2.13 should be able to yield either a theo-
This can be finite only if ("=r'r/)(0)=0. But this limitis ~ rem stating that a continuous non-degenerate singularity is
generically equal ta”(0), which is non-zero, and so we indeed weak, or produce examples to the contrary. The state-
have|(_r’)|(0)=oo Again. I'Hopital's rule is used to prove ment that a continuous non-degenerate singularity is neces-
Eq. (4.3 - Agam, P P sarily weak has been made, or the conclusion been used, on
q.Thi;s (;om letes the proof of E¢4.3) for all radial time- several occasions in the literature in connection with studies
like eodesiF():s and thlE)S demonst.r.ates the weakness of tf% the Cauchy horizon singularity in black holes and singu-
sin L?Iarity larities in plane wave space-times. This has usually been
9 ' accompanied by separate calculations verifying that the sin-

gularity is indeed weak19,20, but this has not always been

the casg[21-23. Thus it appears to be of importance to
The central results here are contained in E@s123, determine exactly when one can conclude weakness for a

(2.12b, (2.13 and (2.15. These provide a set of covariant continuous non-degenerate singularity. _
equations, the asymptotic solutions to whisthich require ~ Clarke and Krolak 10] have given necessary and suffi-
information about causal geodesicketermine the strengths Cient conditions, in arbitrary space-times, for a singularity to
of singularities in spherically symmetric space-times. Thee strong, the conditions involving integrals of certain cur-
notion of “strength” is in a slightly modified form to Ti- vature terms along geodesics. An advantage of our work is
p|er'S 0rigina| def|n|t|0n[5]' the modification is C|ear|y mo- that it deals with the full set of Jacobi f|9|d$ rather than the
tivated and is illustrated by the examples in Sec. Ill. volume elemenV/(7). As the toy model of Sec. Ill C shows,
Proposition One demonstrates the important point that théhis can be important. Also, the decisive term heeé'?,, is
behavior of null geodesics tells us nothing about the strengtflightly simpler than the decisive terms it0]. It may be
of a non-central singularity. Also, a null geodesic approachPOSSib'G to use the results here to investigate the connection
ing a central Singu|arity terminates in a strong Singu]aritybetween Tipler’s definition of Strengths of singularities and

unlesst has a finite, non-zero limit at the singularity. Propo- Krolak’s limiting focusing condition$24].
sition Two lists the possible ways in which strong or weak
singularities may occur. ACKNOWLEDGMENTS
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