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Strengths of singularities in spherical symmetry

Brien C. Nolan*
School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
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Covariant equations characterizing the strength of a singularity in spherical symmetry are derived and
several models are investigated. The difference between central and non-central singularities is emphasized. A
slight modification to the definition of singularity strength is suggested. The gravitational weakness of shell
crossing singularities in collapsing spherical dust is proven for timelike geodesics, closing a gap in the proof.
@S0556-2821~99!02214-6#
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I. INTRODUCTION

Over thirty years have passed since the appearance o
first of a series of theorems establishing that under very g
eral circumstances, space-times must develop singular
This first result, due to Penrose@1#, appeared in 1965 and th
body of work which grew up around the singularity theore
is contained in the book of Hawking and Ellis@2# which was
first published in 1973. However, our understanding of
nature of these singularities remains far from complete. T
lack is best exemplified by the absence of a proof, or defi
tive refutation, of the cosmic censorship conjecture~CCC!
@3,4#.

An important aspect of a singularity is its gravitation
strength@5#. A singularity is termed gravitationally strong, o
simply strong, if it destroys by crushing or stretching a
object which falls into it. The most familiar example is th
singularity atr 50 in the Schwarzschild solution.~Through-
out this paper, we will refer to a singularity atr 50 as a
central singularity, and to others as non-central.! A radially
infalling object is infinitely stretched in the radial directio
and crushed in the tangential directions, with the net resu
crushing to zero volume. A singularity is termed weak ifno
object which falls into the singularity is destroyed in th
way. The mathematical description of these ideas runs
follows @5,4#.

Let g:@t0,0)→M be a causal geodesic which approach
a singularity ast→02. DefineJn(g) for nP@t0,0) to be the
set of mapsZ:@n,0)→TM satisfying the geodesic deviatio
equation alongg such thatZ(t)PTg(t)M , gabk

a(t)Zb(t)
50 whereka is the tangent tog and

Z~n!50;

i.e. Jn(g) is the set of Jacobi fields alongg which vanish at
g(n). Along a timelike geodesic, three independent Jac
fields define, via the exterior product, a volume elem
V(t) alongg. Along a null geodesic, two such fields defin
an area element which we also denoteV(t). A timelike
~null! geodesic terminates in astrong curvature singularityif
for all nP@t0,0) and all independent triads~dyads! in Jn(g)
we have
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Then the singularity itself is said to bestrongif every causal
geodesic which approaches it terminates in a strong singu
ity. The geodesic terminates in a weak singularity if the lim
above is finite and non-zero, and the singularity is weak
every causal geodesic approaching it terminates weakly.
will argue below for a slight modification of this definitio
whereby the term strong is also attached to a singularit
the norms of the Jacobi fields themselves have zero or
nite limit.

The importance of the notion of the gravitational streng
of a singularity for the CCC is that a statement of such p
sibly need not rule out the occurrence of naked weak sin
larities. This is based on the belief that one may extend
geometry of space-time through a weak singularity witho
traumatic effects@6,7#. A general description of this exten
sion does not exist—indeed as far as the author can de
mine, only two examples of this procedure exist in the lite
ture, one due to Papapetrou and Hamoui@8# and the other
due to Clarke and O’Donnell@9#. Both deal with extending
through a shell crossing singularity in collapsing spheri
dust. However the fact that at a weak singularity one h
along any timelike geodesic, a finite non-degenerate triad
Jacobi fields, from which it may be possible to construc
metric in a canonical way, lends support to the idea.

Our aim here is to give a comprehensive analysis of
strengths of singularities in spherical symmetry. This h
been the arena of some of the most interesting developm
in general relativity in recent years, and an understanding
what can and cannot occur in spherical symmetry may b
valuable guide for more general situations. Specifically,
study the Jacobi equations for arbitrary radial causal geo
sics. This allows us to give covariant equations identifyi
the geometrical terms which control the strength of the s
gularity. As one would expect, the results are simpler th
those obtained by Clarke and Krolak@10# which apply to
general space-times. We study three different models wh
help illustrate the different situations which occur, and
way of application, demonstrate that~i! a non-central singu-
larity is always weak along null directions and~ii ! the shell-
crossing singularities in collapsing spherical dust are we
~This has only been demonstrated previously for radial n
©1999 The American Physical Society14-1
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BRIEN C. NOLAN PHYSICAL REVIEW D 60 024014
directions@11#; we complete the proof by showing that it
also true for radial timelike directions.!

II. RADIAL CAUSAL GEODESICS, JACOBI FIELDS
AND THE VOLUME ELEMENT

The line element of a spherically symmetric space-ti
may be written as

ds2522e22 fdudv1r 2dv2, ~2.1!

where f 5 f (u,v), r 5r (u,v) anddv2 is the line element of
the unit 2-sphere. The functionr is an invariant of the space
time which we will, quite properly, refer to as the radius. T
coordinatesu and v are both null, labelling the null hyper
surfaces generated by the two families of null geodesics
thogonal to the orbits of theSO(3) symmetry group of the
space-time. The form~2.1! is invariant under the transforma
tions u→u8(u), v→v8(v).

The non-vanishing Ricci tensor components are

Ruu522r 21~r uu12r uf u! ~2.2a!

Rvv522r 21~r vv12r v f v! ~2.2b!

Ruv522r 21~r uv2r f uv! ~2.2c!

Ruu5csc2uRff5112e2 f~r ur v1rr uv!. ~2.2d!

We use the convention that subscripts attached to lo
case letters refer to partial derivatives, but elsewhere refe
tensor components in the associated coordinate basis.
Misner-Sharp energy@12# is

E5
r

2
~112e2 f r ur v!, ~2.3!

and the Weyl tensor is completely determined by
Newman-Penrose termC2, calculated on a null tetrad base
on the principal null directions of the space time. ThusC2 is
an invariant of the space-time and is given by

C25
e2 f

3r
~r uv1r f uv!2

E

3r 3
. ~2.4!

We note the further invariant,

e2 f f uv5
E

r 3
12C22

R

12
, ~2.5!

whereR is the Ricci scalar.
The radial geodesic equations are

22e22 f u̇v̇5e ~2.6a!

ü22 f uu̇250 ~2.6b!

v̈22 f vv̇250 ~2.6c!
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wheree50 for null geodesics and21 for timelike; the over-
dot is respectively, differentiation with respect to affine p
rameter and proper time. Space-like geodesics will not c
cern us here.

We now look at the Jacobi fields along arbitrary rad
causal geodesics, beginning with time-like geodesics.

The unit tangent to an arbitrary time-like curveg(t) in
the radial 2-space can be written in the form

kW5h
]

]u
1

1

2
e2 fh21

]

]v
,

whereh5h(u,v). The condition thatg be geodesic is then

hv12h2e22 f~hu22 f uh!50. ~2.7!

This follows from the geodesic equations~2.6a!–~2.6c!. The
variation of any scalar quantitys along this geodesic is given
by

ṡ5ka¹as5hsu1
1

2
e2 fh21sv , ~2.8!

and using Eq.~2.7!,

s̈5h2~suu12 f usu!1
1

4
e4 fh22~svv12 f vsv!1e2 fsuv .

~2.9!

A Jacobi fieldZa alongg satisfies the geodesic deviatio
equation

Z̈a1Rcbd
a Zbkckd50, ~2.10!

which is a linear equation forZa and so a basis for the Jaco
fields may be found by obtaining all independent Jac
fields in the radial 2-space and in the tangential 2-space

We take

jW (1)5x~u,v !
]

]u
, jW (2)5y~u,v !cscu

]

]f

as candidates for the Jacobi fields in the tangential 2-sp
Note that the norms ofj (1)

a andj (2)
a arer uxu andr uyu respec-

tively. The geodesic deviation equation~2.10! applied toj (1)
a

yields the following equation forx ~the same result applies t
y):

r „4h4~xuu12 f uxu!1e4 f~xvv12 f vxv!14h2e2 fxuv…

12~2h2xu1e2 fxv!~2h2r u1e2 f r v!50.

Using Eqs. ~2.8! and ~2.9!, this assumes the remarkab
simple form

rẍ12ṙ ẋ50, ~2.11!

which can be integrated to obtain

x~t!5x0E
t1

t dt8

r 2~t8!
, ~2.12a!
4-2



di

r

he
u

Eq
ic.

a
t
ke

ke
g

n

e
w

-
J

-

esic
the

f
ke

avior

rm

the
ior

rs
e.,

STRENGTHS OF SINGULARITIES IN SPHERICAL SYMMETRY PHYSICAL REVIEW D60 024014
wherex0 is constant and we have included the initial con
tion x(t1)50, so thatjW (1)(t1)50. The second linearly in-
dependent solution isx(t)[0. We obtain the same result fo
jW (2) :

y~t!5y0E
t1

t dt8

r 2~t8!
. ~2.12b!

Before dealing with the radial Jacobi fields along t
time-like geodesics, we describe the situation for radial n
geodesics. It turns out to be remarkably simple. From
~2.6a!, either u̇ or v̇ vanishes along a radial null geodes
Take it to be the latter. We can then integrate Eq.~2.6b! to
obtain u̇5ce2 f and so the tangent is

kW5ce2 f
]

]u
.

The variation of a scalars along the geodesic isṡ5ce2 fsu
and

s̈5c2e4 f~suu12 f usu!.

In the null case, there are only tangential Jacobi fields. C
didates for such are given byjW (1,2) as above, and it turns ou
that the normsx,y obey the same equation as in the time-li
case, and thus the solutions are given by Eq.~2.12a!.

We now treat the radial Jacobi fields along a time-li
geodesic. A space-like vector in the radial 2-space ortho
nal to ka has the form

jW5ah
]

]u
2

1

2
e2 fah21

]

]v
,

wherea5a(u,v). This has normuau. Using Eq.~2.9!, we
find that the condition forjW to satisfy the geodesic deviatio
equation alongka is

ä12e2 f f uva50. ~2.13!

Recall that according to Eq.~2.5!, e2 f f uv is an invariant of
the space-time. Thus Eqs.~2.12a!, ~2.12b!, and ~2.13! pro-
vide a covariant set of equations which will determine th
strength of the singularity. To see how this comes about,
obtain the relationship betweenV(t) and the quantities
a,x,y.

Since each ofa, x and y satisfy second order linear or
dinary differential equations, there are six independent
cobi fields along a time-like geodesicg. An arbitrary triad of
corresponding 1-forms is given by

za5aae1xar 2du1yasinudf,

wheree5(2h)21du2e22 fhdv anda51,2,3. Then the gen
eral volume element alongg has the form

V~t!5z1`z2`z3

56a[1x2y3]r
4sinuè du`df.
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The normiWi of a p-form W5W[ i 1 . . . i p]dxi 1` . . . `dxi p

is given by

iWi25Wu i 1 . . . i puW
i 1 . . . i p,

where the vertical bars indicate summation only overi 1, i 2
,•••, i p . This gives

iV~t!i56ua[1x2y3]ur 2. ~2.14!

The existence of six independent solutions of the geod
deviation equation indicates that in a general space-time,
different V(t) form a six parameter family. This surfeit o
possibilities would produce problems if one wanted to ma
statements about singularity strengths based on the beh
of all suchV(t). However the definition ofJt1

reduces the

number significantly. Note thatza vanishes if and only if
each ofaa , xa andya vanish. The general solution fora has
the form

a5c1a11c2a2

wherec6 are arbitrary constants anda6 are any two inde-
pendent solutions of Eq.~2.13!. A similar result holds forx
andy. The initial conditiona(t1)50 fixes the ratioc1 /c2 ,
so that for the problem in hand, there is onlyonechoice, up
to a constant multiple, for each ofa, x andy. Therefore the
norm of every relevant volume element has the simple fo

iV~t!i5uaxyur 2 ~2.15!

wherea, x andy here represent thegeneralsolutions of the
appropriate equations~2.12a!, ~2.12b!, and~2.13!, into which
constants may be absorbed.

We thus have a simple and direct way of assessing
strength of a singularity. We determine the limiting behav
of solutions of Eqs.~2.12a!, ~2.12b!, and~2.13! as the singu-
larity is approached and then use Eq.~2.15! to calculate
limt→02iV(t)i .

III. POSSIBLE SOLUTIONS OF THE MAIN EQUATIONS

We now consider the various possible limiting behavio
which can occur for solutions of the main equations, i.
Eqs.~2.12a!, ~2.12b!, and~2.13!.

From Eq.~2.15!, the formsrx and ry arise naturally and
occur in the following proposition which applies to bothx
andy.

Proposition One. (i) For a non-central singularity,
limt→02rx is finite and non-zero.

(ii) For a central singularity, if

lim
t→02

E
t1

t

r 22~t8!dt8,`,

then limt→02rx50. Otherwise

lim
t→02

rx52 lim
t→02

1

ṙ ~t!
.

4-3
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BRIEN C. NOLAN PHYSICAL REVIEW D 60 024014
Here and below, the limit refers to the limit ast→02

along a geodesic which approaches the singularity att50.
The proofs of part~i! and the first part of part~ii ! follow
immediately from Eq.~2.12a!, and that of the second pa
from Eq. ~2.12a! and l’Hôpital’s rule. A consequence of thi
is that the strength of a non-central singularity is complet
determined by the limiting behavior ofa at the singularity.

Next we summarize the possible behavior ofa in the ap-
propriate limit. Define F(t)52e2 f f uv(t) and G(t)
5t2F(t). Then Eq.~2.13! is equivalent to

t2ä1G~t!a50, ~3.1!

and we wish to determine the behavior ofa at t50 which is
a singular point of Eq.~3.1!. We quote the following results
from Bender and Orszag@13#, which should also be found in
any text on linear differential equations. All the asympto
relations below hold ast→02 and c,c6 are arbitrary con-
stants.

The equation is said to have aregular singular pointat
t50 if G(t) is analytic in a neighborhood oft50. Other-
wise,t50 is called anirregular singular point. For a regular
singular point, we defineG05G(0). In fact the results below
apply more generally, namely ifG(t)5O(1) ast→02 with
a very low degree of differentiability;GPC1(2t0,0# is suf-
ficient. The method of Frobenius applies. The roots of
indicial equation are

v1,25
1

2
6

1

2
~124G0!1/2.

The following possibilities arise.
„RSP1… v12v2¹Z. Thena(t);c1utuv11c2utuv2. Three

subcases arise depending on the value ofG0.
„RSP1a… 1/4,G0. Then a(t);cutu1/2, so that

limt→02a(t)50..
„RSP1b… 0,G0,1/4. Thenv1,2 are both positive so tha

limt→02a(t)50.
„RSP1c… G0,0. Thenv2,0 so that limt→02a(t)5`.
„RSP2… v15v2⇔G051/4 Then a(t);c1utu1/2

1c2utu1/2lnutu. Again, limt→02a(t)50.
„RSP3… v12v2PN20⇔G05(12k2)/4, kPN1. Then

a(t);c1utuv11c2(utuv21dutuv1lnutu) where d is a fixed
constant. We mention under this last heading one spe
case of particular importance, that for whichG050. This
includes singularities whereatF(t) is finite and, typically,
space-times with weak non-central singularities.

„RSP3a… G050. Then a(t);c21c1utu1c2dutu lnutu),
and so limt→02a(t) is finite and non-zero.

The second class of possibilities arises when Eq.~3.1! has
an irregular singular point att50. If limt→02uG(t)u5`,
then the WKB approximation holds. This gives

a~t!;c„F~t!…21/4expH 6E
t1

t

„F~t8!…1/2dt8J .

There are two possibilities here.
„ISP1… limt→02F(t)51`. Then limt→02a(t)51`.
„ISP2… limt→02F(t)52`. Then limt→02a(t)50.
02401
y
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This does not cover all possibilities since there are irre
lar singular points for which the limit limt→02uG(t)u does
not exist. Typically, this would occur ifG(t) is oscillatory in
a neighborhood oft50, e.g.

Gp~t!5kutu21sin~ utu2p!,

where p.0. Taking this form forG(t) and definingx

5utu21, b5x(11p21)/2a ~3.1! becomes

b91F k

p2

sinx

x22p21 1
12p22

4x2 Gb50.

The dominant coefficient ofb is the decaying oscillatory
term, and this determines the asymptotic behavior of the
lutions. There are three different cases, depending on
value ofp. We quote the result for the simplest case, which
p.1. The asymptotic behavior in this case is given by@14#

a1;x(12p21)/2, a2;x2(11p21)/2 ~x→`!.

Thus the singularity is strong and stretching forp.1. It
turns out that the singularity is strong and crushing for 1
,p<1, see@14# for details. On the other hand, if we tak
G(t)5ksin(utu21u), the same procedure leads to

b91
k

p2

sinx

x2
b50,

the asymptotic solutions of which lead to@14#

a1;1, a2;x21 ~x→`!

and so in this case the singularity is weak. Notice that
have in this caseG(t)5O(1), butG is not differentiable at
t50.

Our main point here is that both strong and weak sin
larities may occur in this class and the analysis to determ
which case obtains may be quite difficult.

„ISP3… limt→02G(t) does not exist. The singularity ma
be either strong or weak.

Keep in mind that the behavior described here is char
teristic of a particular radial timelike geodesic which ru
into the singularity, and not of the singularity itself. We w
therefore refer to, for example, atype (RSP1a) geodesic, and
to a type (RSP1a) singularityonly if all the radial timelike
geodesics terminating there are type~RSP1a!.

In this language, the central singularity of Schwarzsch
space-time is type~RSP1c!, with a(t);c1utu4/31c2utu21/3.
Also, rx(t);x0utu1/3, ry(t);y0utu1/3, so that overall,
iV(t)i;dutu1/3, giving a singularity which is strong along
timelike approaches. Suppose instead the behavior
rx(t);x0utu1/6, ry(t);y0utu1/6. Then iV(t)i;d ~con-
stant!, so by the current definition, the singularity is wea
along timelike approaches. It would be of very little comfo
to an observer jumping into such a singularity to realize,
he watched his legs elongate and disintegrate, that such
ume forms were preserved on his journey. The possibility
the existence of such a singularity was noted by Tipler@5#.
4-4
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STRENGTHS OF SINGULARITIES IN SPHERICAL SYMMETRY PHYSICAL REVIEW D60 024014
We give an example of such below. This motivates the f
lowing addendum to the definition of a strong singularity

We will say that a causal geodesicg:@t0,0)→M ap-
proaching a singularity ast→02 terminates in a strong sin
gularity if for all t1P@t0,0), except some suitably small s
~finite, countable, zero-measure!, the general element o
Jt1

(g) is degenerate or infinite in the limitt→02. We will

say thatg terminates in a weak singularity if the gener
element ofJt1

(g) is finite and non-degenerate in the lim
The terms will be applied to the singularity itself ifall causal
geodesics approaching the singularity behave in one of
two ways.

By degenerate, we mean that both of the independen
cobi fields in some particular direction~or mutually orthogo-
nal directions! orthogonal toka shrink to zero magnitude. A
non-central type~RSP1b! singularity would be an exampl
of such.

We now gather the results above into some general s
ments.

Proposition Two. For a non-central singularity and for a

central singularity for which r˙ has a finite and non-zero limi
along every causal geodesic approaching the singularity,
strength of the singularity is determined by Eq. (2.13!. If the
singularity is of type (RSP3a), then it is weak. The only ot
type which may be weak is (ISP3); singularities of the ot

types are strong. A central singularity for which r˙ has zero
or infinite limit along every causal geodesic approaching t
singularity is strong.

The proof follows from Proposition One and from th
definitions above; essentially it amounts to some use
book-keeping. A great many singularities will have differe
behaviors along different geodesics approaching the sin
larity, and so will not be covered by this result. There
mains the problem of determining the behavior ofa(t) and
ṙ (t) in the limit as the singularity is approached. Howev
we have identified which elements of the geometry de
mine the strength of a singularity and listed the various p
sibilities.

We now give some applications of the results laid o
above.

IV. EXAMPLES

In this section, we study the strengths of some singul
ties in four different~classes! of space-times. The first three
two toy models and Roberts’ space-time@15#, are used to
illustrate the types of singularities which may arise and so
of the points made above. The fourth is the marginally bou
case of a Lemaıˆtre-Tolman-Bondi ~LTB! collapsing dust
sphere@16#. We use the theory above to demonstrate conc
sively the weakness of shell-crossing singularities in t
space-time.

A. A toy model

We consider the space-time with line element

ds252dudv1S v2u

2 D 2a

dv2,
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i.e. 2e22 f51 andr 5„(v2u)/2…a. We takea>1. The case
a51 is flat space-time. The Ricci scalar is

R5
2

r 2
„12~3a222a!r 222/a

…,

and so there is a scalar curvature singularity atr 50. Sincef
is constant, the radial Jacobi field orthogonal to an arbitr
timelike geodesic will satisfy, according to Eq.~2.13!, ä
50, with general solutiona5c11c2t. Thus the strength of
this central singularity will be determined by the behavior
the tangential Jacobi fields.

Along a radial null geodesic, we have~without loss of
generality! v5constant andu5ct1d, wherec,d are con-
stants andt is an affine parameter. Thus after a reparame
zation oft, we have

r 5cutua.

The same result holds for all radial timelike geodesics. Fr
Eqs.~2.12! and ~2.15!, we find

iV~t!i}~c11c2utu!utu222a.

Thus the singularity is strong. Notice thatiV(t)i→` as the
singularity is approached along any radial causal geode
The deformation results from infinite tangential stretching

The purpose of examining this model is to gave an
plicit example where the behavior at the singularity is clea
pathological and destructive, but which would not previou
have been described as a strong singularity. We note th

TabS ]

]uD aS ]

]uD b

52
a

8p
~a21!r 22/a,

so that the weak energy condition is violated for the valu
of a of interest here.

B. Roberts’ solution

Roberts’ solution has been used in studies of cosmic c
sorship@15# and critical collapse@17#. The line element is

ds252dudv1
1

4
„u222uv1~12p2!v2

…dv2,

wherep is constant.p50 gives flat space-time. The Ricc
scalar is

R5
1

2r 4
p2uv,

and so there is a central scalar curvature singularity.
above, the strength of the singularity is determined by
tangential Jacobi fields. In this case we find thatr 5cutu
along any radial causal geodesic terminating atr 50 at pa-
rameter valuet50. We use Eqs.~2.12a!, ~2.12b!, and~2.15!
to obtain

iV~t!i;k~c11c2utu!
4-5
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BRIEN C. NOLAN PHYSICAL REVIEW D 60 024014
with rx,ry;constant ast→02, and so this central singular
ity is weak. Thus the examples where this singularity is
ked may not be genuine counterexamples to cosmic cen
ship. See also@3# for related comments.

C. Another toy model

A model with slightly more complicated dynamics an
which illustrates well some of the points made above is t
with the line element

ds252S v2u

2 D 2a

dudv1S v2u

2 D 2

dv2.

We takea>0; a50 is flat space-time. We find that

2e2 f f uv524a~2a11!r 24a22, ~4.1!

and so there is a scalar curvature singularity atr 50 ~recall
that this term is an invariant!.

For an arbitrary radial null geodesic, we make takeu
5u05constant. Then we find

v2u5v2u05~ct1d!1/(2a11),

so that

r 5kutu1/(2a11)

after an appropriate shift in the affine parametert. Applying
the second part of Proposition One, we see that all radial
geodesics approachingr 50 terminate in a strong curvatur
singularity with the area element obeyingiV(t)i→0 in ev-
ery case.

To solve for the radial timelike geodesics, we make
change of variablesr 5(v2u)/2, t5(v1u)/2. Then the line
element takes the form

ds25r 2a~2dt21dr2!1r 2dv2.

The geodesic equations for radial infall yield

ṙ 52r 22a~c22r 2a!1/2.

According to Eqs.~2.13! and~3.1!, we need to determine th
behavior of r as proper timet→0. @As usual, we fix the
origin of proper time so thatr (0)50.# The previous equa
tion may be solved asymptotically by expanding the rig
hand side and then inverting the resulting integral with
result

r 5cutu1/(2a11)1O~ utub! ~4.2!

whereb.1/(2a11).
Then the tangential Jacobi fields have the asymptotic

havior

rx;cutu2a/(2a11) ~aÞ1/2!,

rx;cutu1/2lnutu ~a51/2!.

The behavior of the radial Jacobi fields is dictated by E
~4.1! which from the above has the behavior
02401
-
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e
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F~t!;c1utu22

wherec1 is a negativeconstant. Then in the notation use
above, G0 is a negative constant, and so this is a ty
~RSP1c! singularity. The asymptotic behavior ofa is

a~t!;c1utuv11c2utuv2

wherev1,25„16(124G0)1/2
…/2, and so

iV~t!i;V0utuv214a/(2a11).

Therefore, for any value ofa, there will exist radial timelike
geodesics along whichiV(t)i diverges, has zero limit and
has finite limit as the singularity is approached. These diff
ent possibilities arise from the different choices available
c in Eq. ~4.2! which give the value G0524a(2a
11)c24a22. Starting from some fixed valuer 5r * at t
5t* ,0, we see thatc is essentially a measure of the initia
velocity of an observer falling radially inwards fromr * . By
tuning this velocity, an observer could in principle ensu
that his iV(t)i is finite in the approach to the singularity
However, in practice this would be of little help to him sinc
as pointed out above, the observer experiences infinite
gential crushing and radial stretching in the infall. Furthe
more, his initial velocity would have to be tuned with infinit
precision to obtain 0Þ limt→02iV(t)i,`. According to the
definition above, this is a strong singularity.

D. Marginally bound spherical dust

The marginally bound LTB space-time~spherically sym-
metric inhomogeneous dust! has line element

ds252dt21~r 8!2dh21r 2dv2,

where the prime indicates differentiation with respect to
coordinateh. For the collapsing case,

r 3~h,t !5
9

2
m~h!„t0~h!2t…2,

wherem,t0 are arbitrary functions ofh. See@16# for details.
The energy densityr of the dust, which is proportional to th
Ricci scalar, is given by

4pr5
m8

r 2r 8
.

Thus as well as the central singularity atr 50 @occurring
when t5t0(h)#, there are so-called shell-crossing singula
ties occurring whenr 850 @18#. These generally occur befor
the central singularity, at non-zero radius and so are n
central. It has long been believed that these scalar curva
singularities are weak. However, it seems that this has o
been properly established for null geodesics approaching
singularity @6,11#. As we have seen above, this weakness
completely independent of the structure and nature of
singularity apart from the fact that it is non-central. We fi
this gap by proving that all radial timelike geodesics term
nate in a weak singularity.
4-6



ll-

ve
o

la

t
re

t

n the

sed

iso-
e-
that

-

p-

s in

e.

-

is

STRENGTHS OF SINGULARITIES IN SPHERICAL SYMMETRY PHYSICAL REVIEW D60 024014
According to Proposition Two, the strength of a she
crossing singularity is governed by~2.13!. Using Eq.~2.5!,
we find that

F52e2 f f uv5
m8

r 2r 8
22

m

r 3
.

The termsm8/r 2 and m/r 3 will both be finite in general in
the approach to the singularity, the former being positi
assuming positive energy density. Thus the behavior is g
erned byF51/r 8. We will show that

lim
t→02

t2

r 8
50 ~4.3!

along any radial timelike geodesic approaching the singu
ity. This shows that the singularity is type~RSP3a!, and is
therefore weak by Proposition Two.

The radial timelike geodesic equations are

2 ṫ21~r 8!2ḣ2521 ~4.4a!

r 8ḧ12r t8 ṫ ḣ1r 9ḣ250 ~4.4b!

ẗ1r 8r t8ḣ
250 ~4.4c!

where the overdot indicates differentiation with respect
proper time along the geodesic and the subscript is diffe
tiation with respect to the global time coordinatet. Along
each geodesic approaching the singularity, we choose
origin of proper time so that the singularity is att50.

We find that

r 85
r

3 S m8

m
1

2t08

t02t D ,

so that at a shell-crossing singularity,

m8

m
52

2t08

t02t
.

The following terms will enter into our analysis:

r t85
2

3

rt 08

~ t02t !2
~4.5!

r 95
~r 8!2

r
1

r

3 S m9

m
2S m8

m D 2

1
2t09

t02t
2

2t08

~ t02t !2D .

~4.6!

Then

r 9~0!5
r

3m2t08
S mm9t082

3

2
~m8!2t082mm8t09D , ~4.7!
02401
,
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where here and subsequently, evaluation at zero means i
limit t→02 along a geodesic.

Generically, r t8(0) and r 9(0) will be non-zero. If this
were not the case, there would be extra conditions impo
on m andt0 for all values ofh, which would result in a loss
of generality. For example, ifr t8(0)50, then t08(h)[0 for
all h. In this case, the space-time is homogeneous and
tropic. The conditionr 9(0)50 imposes less severe but non
theless significant restrictions. So we assume henceforth
r t8(0) andr 9(0) are non-zero.

We also need to track the evolution ofr andr 8 along the
geodesics. We have

ṙ 5r t ṫ1r 8ḣ5A2m

r
ṫ1r 8ḣ ~4.8!

~ ṙ 8!5
2

3

rt 08

~ t02t !2
1r 9ḣ. ~4.9!

We now prove Eq.~4.3!, which demonstrates the weak
ness of the singularity.

Case One:limt→02uḣu,`u.
By Eq. ~4.4a!, ṫ (0)51. The sign comes from the assum

tion that the geodesic is future directed and the fact thatt is
a global time coordinate. The past directed case proceed
an identical manner. By Eq.~4.9!, ( ṙ 8) will be finite in the
limit t→02. If this limit is non-zero, we can apply
l’Hôpital’s rule tot2/r 8 to prove Eq.~4.3!. The other possi-
bility is that (r̈ 8)(0)50 So now assume this to be the cas

Suppose further thatuḧ(0)u,`. Then (r 8ḧ)(0)50, and
so taking the limit of Eq.~4.4b!, we have

05 lim
t→02

~2r t8 ṫ1r 9ḣ !

5 lim
t→02

„r t8 ṫ1~ ṙ 8!…,

which gives r t8(0)50, in contradiction of one of our as

sumptions. So if (ṙ 8)(0)50, then we must haveuḧ(0)u
5`.

Using l’Hôpital’s rule twice, we have in this case

lim
t→02

t2

r 8
5 lim

t→02

2

~ r̈ 8!
.

We calculate

~ r̈ 8!5r tt8 ṫ21r t8 ẗ12r t9 ṫ ḣ1r 9ḧ1r-ḣ2.

From Eq.~4.4c!, ẗ (0)50 and the termsr tt8 , r t9 and r- will
be finite in the appropriate limit. Thus the dominant term
r 9ḧ, giving limt→02u r̈ 8u5`, proving Eq.~4.3!.

Case Two: limt→02uḣu5`.
4-7
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Suppose thatur 8ḣu(0),`. Then by Eq.~4.4a!, ṫ (0) is
finite and so Eq.~4.9! gives u( ṙ 8)u(0)5`. We then use
l’Hôpital’s rule to prove Eq.~4.3!.

Finally, suppose thatur 8ḣu(0)5`. Then by Eq.~4.4a!,

lim
t→02

ṫ5 lim
t→02

Xur 8ḣuS 11
1

ur 8ḣu
D 1/2C

5 lim
t→02

ur 8ḣu.

Then by Eq.~4.9!,

lim
t→02

u~ ṙ 8!u5ur 96r 8r t8u~0! lim
t→02

uḣu.

This can be finite only if (r 96r 8r t8)(0)50. But this limit is
generically equal tor 9(0), which is non-zero, and so w
have u(r 8 )̇u(0)5`. Again, l’Hôpital’s rule is used to prove
Eq. ~4.3!.

This completes the proof of Eq.~4.3! for all radial time-
like geodesics and thus demonstrates the weakness o
singularity.

V. CONCLUSIONS

The central results here are contained in Eqs.~2.12a!,
~2.12b!, ~2.13! and ~2.15!. These provide a set of covarian
equations, the asymptotic solutions to which~which require
information about causal geodesics! determine the strength
of singularities in spherically symmetric space-times. T
notion of ‘‘strength’’ is in a slightly modified form to Ti-
pler’s original definition@5#; the modification is clearly mo-
tivated and is illustrated by the examples in Sec. III.

Proposition One demonstrates the important point that
behavior of null geodesics tells us nothing about the stren
of a non-central singularity. Also, a null geodesic approa
ing a central singularity terminates in a strong singular
unlessṙ has a finite, non-zero limit at the singularity. Prop
sition Two lists the possible ways in which strong or we
singularities may occur.

In addition to studying the toy models, we were able
demonstrate conclusively the weakness of the naked si
larity in Roberts’ space-time and the shell-crossing singul
ties in collapsing spherical dust. This latter proof shows t
e,

r-

02401
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while detailed qualitative information about causal geodes
is required, we do not need the full solution of the geode
equations. Therefore there is good hope that the res
above may be successfully applied to other situations.

One of these is the case where the singularity occurs
point where the metric is continuous and non-degene
„det(gab)Þ0… ~we will refer to such as a continuous non
degenerate singularity!. It seems plausible that in such a sit
ation, the singularity must necessarily be weak. The ar
ment goes roughly as follows. Solutions of the time-li
geodesics of Sec. II typically behave asu̇5O(1), v̇
5O(1) ast→0. Then to obtain a strong curvature singula
ity, the Riemann tensor components must diverge faster t
O(t22); integrating twice cannot yield a finite metric. How
ever this argument might not hold for an~ISP3! singularity,
and perhaps not for other cases. A careful analysis of E
~2.6a!–~2.6c! and~2.13! should be able to yield either a theo
rem stating that a continuous non-degenerate singularit
indeed weak, or produce examples to the contrary. The s
ment that a continuous non-degenerate singularity is ne
sarily weak has been made, or the conclusion been used
several occasions in the literature in connection with stud
of the Cauchy horizon singularity in black holes and sing
larities in plane wave space-times. This has usually b
accompanied by separate calculations verifying that the
gularity is indeed weak@19,20#, but this has not always bee
the case@21–23#. Thus it appears to be of importance
determine exactly when one can conclude weakness f
continuous non-degenerate singularity.

Clarke and Krolak@10# have given necessary and suf
cient conditions, in arbitrary space-times, for a singularity
be strong, the conditions involving integrals of certain cu
vature terms along geodesics. An advantage of our wor
that it deals with the full set of Jacobi fieldsJt rather than the
volume elementV(t). As the toy model of Sec. III C shows
this can be important. Also, the decisive term here 2e2 f f uv is
slightly simpler than the decisive terms in@10#. It may be
possible to use the results here to investigate the connec
between Tipler’s definition of strengths of singularities a
Krolak’s limiting focusing conditions@24#.
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