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Gravitoelectromagnetic approach to the gravitational Faraday rotation in stationary spacetimes
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Using the 3 formulation of stationary spacetimes we show, in the context of gravitoelectromagnetism,
that the plane of the polarization of light rays passing close to a black hole undergoes a rotation. We show that
this rotation has the same integral form as the usual Faraday effect; i.e., it is proportional to the integral of the
component of the gravitomagnetic field along the propagation path. We apply this integral formula to calculate
the Faraday rotation induced by the Kerr and NUT spaces using the quasi-Maxwell form of the vacuum
Einstein equationd.S0556-282(199)00214-3

PACS numbd(s): 04.20.Cv, 04.70.Bw

I. INTRODUCTION II. 1+3 FORMULATION OF STATIONARY SPACETIMES
(PROJECTION FORMALISM )

It is a well-known fact that the plane of the polarization of

light rays passing through plasma in the presence of a ma%'tationary spacetime with mettig,, andpe M:; then one

netic field undergoes a rotation which is called a Faraday.. ., <how that there is a three-dimensional manibidde-
rotation (Faraday effegt[1]. One can show that a plane- fined invariantly by the smooth mdg]

polarized wave is rotated through an anglé given by

Suppose thatM is the four-dimensional manifold of a

Ao 2mwed fan dl 0 where ¥ =¥ (p) denotes the orbit of the timelike Killing
m2cZw? ), T vector & passing througlp. The three-spack; is called the

factor spaceM/G;, whereG; is the one-dimensional group

of transformations generated By. Using a coordinate sys-
whereB|, is the component of the magnetic field along thetém adapted to the congruenég=4, we denote the pro-
line of sight. jected three-dimensional metric ol by Vap (@B

It is also a well-known consequence of general relativity= 1,2,3). These are the coordinates comoving with respect to

that light rays passing a massive object are bent towards if'€ timelike Killing vector. One can usg, to define dif-
Several authors have considered the gravitational effect offréntial operators o in the same way thag,, defines
the polarization of light rays by analogy with the Faradayd_'ffe,re”t'al operators on\/l._ For _example the covariant de-
effect[2,3]. In particular they have considered the propaga-r'v‘"‘t'\’e of a three-vectoA is defined as
tion of electromagnetic waves in Kerr spacetime[3h the
authors have used the Walker-Penrose constant to calculate
this effect for a Kerr black hole. They have shown that in the
weak field limit the rotation angle of the plane of the polar- Aup=dgRa—NlgA,,
ization is proportional to the line-of-sight component of the
black hole’s angular momentum at third order. In what fol-where\ 7 is the three-dimensional Christoffel symbol cosn-
lows we will use the Landau-Lifshitz43 splitting of sta- tructed from the components of,; in the following way:
tionary spacetimes and show that the gravitational Faraday
rotation has the same integral form as the usual Faraday ef- s 1 on
fect if one replaces the magnetic field with the gravitomag- w27 (00 gt OuYqv™ I Yiun):
netic field of the spacetime under consideration. Having
found this integral form, one can use the quasi-MaxwellThe metric of a stationary spacetime can be written in the
form of the vacuum Einstein equations to calculate the effecfollowing form [5]:
much more easily. In particular we show that the gravita-
tional Faraday rotation in Newman-Unti-TamburifidUT) ds?=h(dx°— A, dx¥)?—dlI?, 2)
space is zero, a result which needs a lot of calculation if one
uses an approach based on the Walker-Penrose constant. where

A=A+ N A,

INote that the Roman indices run from 0 to 3 and Greek indices
*Electronic address: nouri@iucaa.ernet.in from 1 to 3.
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— 0o polarization vector, respectively. The four-vectors corre-
A=9.= ., =g, sponding to these two three-vectors have the following rela-
g
0 tions:
and kik,=0, k3f,=0, f3f,=1, a=0,1,2,3. (11)
dlzzyaﬁdx“dxﬂ:( —gaﬁ+g°“g°ﬁ)dxadxﬁ Both of these four-vectors are parallelly transported along
null geodesicg5], i.e.,
is the spatial distance written in terms of the three- oka
dimensional metricy,; of 2 3. Using this formulation for a KJrF%nk”km:O, (12
stationary spacetime one can write the vacuum Einstein
equations in the following quasi-Maxwell forfi]: fa
- a g¢npm_
div B,=0, 3 P +I'g f"k™=0, (13
Curl E4=0, (4) where\ is an affine parameter varying along the ray. Em-
ploying an orthogonal decomposition based on the adapted
divE =—[%(\/HB )2+E2] (59) coordinates, the above three-vectors defined on the three-
g 9 9 spaceX; can be taken to be equivalent to the contravariant
a a ; E(3)koz:(4)koz ande(3)fa
curl(VhB,) = 2E, X (VhB,), 5b components ok® and @, i.e., k _
url(\hBg) o (VhBy) (5b) =@fe [7]. One should note that the covariant counterparts
ap_gaBy @ B of these three-vectors are not the spatial components of the
P Eq [(\/HBQ)(\/HBQ) covariant four-vectork, andf, but
~ (VhBy)?y*#1+ EGE, (6) ’
9 9-9 (3)kﬁ= 'Ya,g(s)k =(4)kﬂ+ ko0
where the gravitoelectromagnetic fields are and
1Vh
Eg:_v In hm:_ET' (7) (3)fB: 7a5(3)fa:(4)fﬁ+fogﬂ-

From Eq.(11) one can see that the polarization vector is
By=Curl A, (8  known up to a constant multiple of the wave vector; i.e., both

and P*# is the three-dimensional Ricci tensor constructedfa andf,=fa -+ Ck, satisfy Eq(11). This shows that there is

from the metricy,,z. It is attractive to regard the combina- a kind of gauge freedom in choosifigvhich enables one to

. > . .._put fo=0 without loss of generality and in which case
tion \/ﬁBg, appearing in the above equations, as the graV|ta(3)fB:(4)fB_2 Applying the above decomposition and equa-

tional analogue of the magnetic intensity fig¢idand denote tions of parallel transpoi12) and(13), Fayos and Llos&2]

itha/ngf. [IEn thissbway one may think of the right h":‘j’?d side have arrived at the following two equations for the evolution
( ) of Eq. (Sb) as an energy current corresponding to 4of the three-vectork andf along the ray:

Poynting vector flux of gravitational field energy. Note that
all operations in these equations are defined in the three- 3V, k=L xk+(Eq-k)k, (14)
dimensional space with metrig, ;. Using the timelike Kill-
ing vector of the spacetime one can define the above gravi- 3y, f=Lxf, (15)
toelectromagnetic fields in the following covariant forms:

a b
g LERD L, ©

|§| C
bcd

wheree;“" is the four-dimensional antisymmetric tensor and
the semicolon denotes covariant differentiation.

where

1

o (xDf|. (19

1 1
L=— Eko By— E(Bg-f)f'f'

1
Bg=—5£l¢%3™

%) } (100 Note that we have written their results in terms of the gravi-
d toelectromagnetic fields defined in Ed¥) and (8). If we
had only the second term on the RHS of Ety), that would
have meant, by comparison with the four-dimensional defi-
nition of the parallel transport, that the three-dimensional
vecor k is parallely transported along the projection of the

IIl. DERIVATION OF THE GRAVITATIONAL null geodesic in3; space. But the appearance of the first

FARADAY ROTATION

Using the analogy with the flat spacetime we take the
plane of the polarization of an electromagnetic wave to con- 2This choice corresponds ©= — f,/k, and maked orthogonal
sist of two three-vectork andf, the wave vector, and the to the time lines.
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___________
-

- ~o
- ~a

term shows thak has also been rotated by an angular veloc- . .
ity L. The same rotation happens to the polarization vefctor *+, Source
as can be seen from E({L5). Therefore the combination of .
these two equations leads to the fact that the polarization s
plane has rotated by angular velocltyalong the projected / path 2
null geodesic. The angle of rotation around the tangent vec-

tor k along the path between the source and the observer is

given by
obs 1 (obs ~ E
Q=J L~kd)\=——J KoBg- Kd\, a7 H

sou 2 sou Path 1

where we used the fact thitk =0, which follows from Eq. '
(11) and the choicé,=0. Now combining the two equations s

ko=doak?=h(k’—g.k?),
k?k,=0=h(k%— g,k*)?— y,sk*k?=0, .
Observer

we have FIG. 1. The NUT hole and a closed path around it.

kg
2y k*kB= 1 1 1
h o Yep 0 (18 Qz—ii(\/ﬁBg)«dlz—EJSVX(\/EBg)dS,

or, equivalently, in terms ok“=dx“/d\, )
and using Eq(5h) we have

kK3 [dl\2
L (19 1 1
h \d\ ——f(JﬁB)-dI——f(\/HB)-dI:—f(E x\/hB,)-dS.
2), 9 2), 9 A g
Finally upon substitution of Eq19) in Eq. (17) and putting (21)
kdl=di we find The second term on the LHS of the above equation is zero
1 (obs by costruction. On the other hand for the NUT space we
Q=- —f VhBg-d, (200  havé
2 sou
: . ) i 1 R
which has the same integral form as Ef); i.e., the gravi- Eg=— Ear[ln f(r)]r

tational Faraday rotation is proportional to the integral of the
component of the gravitomagnetic field along the propaga- d
tion path. But their main difference is the fact that the gravi-
tational Faraday rotation, given by E@®O), is a purely geo-

/
metrical effect while the usual Faraday effect, Ed), B :2”(”12?

depends on the frequency of the light ray. In the next two 9 r2
sections we will apply this formula to the cases of NUT and
Kerr black holes. which together show that the RHS of E@1) is also zero

and therefore
IV. GRAVITATIONAL FARADAY ROTATION

IN NUT SPACE _ %J (\/ﬁBg)'dI=0; (22)
There is no gravitational Faraday rotation induced by !

NUT space and the reason is as follows. Take a closed path
C around the NUT hole which consists of two patkse Fig.
1): path 1, a null geodesic which passes close to the black3we have used the following form of the NUT metric:
hole, and path 2, so far away that the effect of the gravita- d=f(r)(dt—2I cosfd$)2— F(r)~Ldr2—(r2+12)(d 62
tional field (including the Faraday rotatigpron the light rays
is negligible(another reason that on path 2 there is no gravi-
tational Faraday rotation is the fact thBg—0 asr—x). where
Now using the Stokes theorem, one can write @) in the 2(mr+1?)

form H)=1= 2y

+sirfgd¢?),
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i.e., there is no Faraday effect on the light rays passing and
NUT black hole close by. One can show that the same result

can be obtained for the NUT space using the approach based o0_ rma’ sin 26
on the Walker-Penrose constant. In this case one needs to 9" p*(p?—2mr)’

take into account the simplifying fact that all the geodesics in o _ _
NUT space including the null ones lie on spatial cof@ls whereA =r2+a?—2mr. Substituting the above fields in Eq.
(21) and puttingu = cosé we have

V. GRAVITATIONAL FARADAY ROTATION
IN KERR METRIC Q=— f (Egx yhBy) 4dS?
S

The Faraday effect in a Kerr metric has already been stud-
ied and it has been shown that despite previous cla8hs Bo [
when a light ray passes through the vacuum region outside :2am2J f 2
rotating matter its polarization plane rota{&d. In this sec- ~#oJTon(u) (Mt a
tion we will consider two different case&t) when the orbit
lies in the equatorial plane, i.e., for=7/2; (2) a more gen-
eral orbit which intersects the equatorial plane and is sym
metric about it.

drdu

2M2_2mr)2 !

(23

wherer () is the equatioriof the projection of the orbit

in the (r,0) plane. To find the lowest order Faraday effect
We calculate the above integral neglecting #3¢r2 andm/r
terms in which case we have

A. Orbits in the equatorial plane 2 wo (@ 1 4 2 wo 1
In this case using the definitions &, and B, and Eq. f1=2a Jﬂofrmb(ﬂ)r_“drd’““: e ad’u“'

(21) one can see that the gravitational analogue of the Poyn-

ting vector defined byEyX JFBg has only one component Using the ¢, 0) equation of the orbit given in the Appen-
along the¢ direction and therefore is normal to the plane of dix one can calculate the above integral which gives

the orbit, which in turn leads to the fact that in this special

case there is no gravitaional Faraday effect on light rays. 0=— L—lamZJO (1_ rzmi”MZ)B/ZdM
3 Ho=\7T min
B. Symmetric orbit about the equatorial plane )
am
In this case we need to find the orbit and we will see that =(1/4) cosb, .
one just needs to find the orbit in the zeroth ordea/n and min
zéz)e(ln;x straight line approximatignwhich is done in the This expression is of third ordexm?/r3,;, which is of

the same order as the result given &.
Writing the Kerr metric in the form(2) in Boyer- given(&)

Lindquist coordinates one can see that
VI. DISCUSSION

_ _2amrsm26 We have shown that using thet+B formulation of sta-
T omr— p? ' tionary spacetimes one can cast the gravitational Faraday ro-
tation in exactly the same mathematical form as the usual
from which we have Faraday effect; i.e., the gravitational Faraday rotation is pro-
portional to the gravitomagneic field of the spacetime along
. 2amrsin 20[2mr—r?—a?] the propagation path of the light ray. One should note that

the origins of these two effects are completely different. The
usual Faraday effect originates from the interactions between
the electrons in a plasma on the one hand with the electro-
magnetic field of the light ray and the external magnetic field
i ) 5 o on the other hand and therefore depends on the frequency of
o_ 2amsir?6(a’ cos¢?—r?) the light ray. But the gravitational Faraday effect is a purely
9 Jy(emr—r2—a?co6)?’ geometrical one originating from the structure of the space-
time under consideration and it is normally attributed to the
where behavior of the reference frames outside the spacetime of a
rotating body. Using the quasi-Maxwell form of the vacuum
y=dety,z and p?=r?+a’cos6. Einstein equations we showed that there is an easy way to
] o ) o ] ] calculate the effect by transforming the line integraBgfto
Using the definition of the gravitoelectric field given in Eq. 3 surface integral of the gravitational analogue of the Poyn-

9 Jy(2mr—r2—aZcos6?)

and

(7) we have ting vector. More importantly the order of the effect can be
) ) seen without going through the detailed calculafiasin Eq.
. _Am(a®cog6-r?) (23) for the Kerr casgand in some cases like NUT space just
9 pHp?—2mr) a simple observation reveals that there is no effect at all. For
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gravitational waves of small amplitude propagating in a

curved background, one can develop the geometric optics in J dr /121 =120 /r?= (1 1in) ArCCOST min /1),

such a way that the wave and polarization four-vectors sat- (A2)
isfy the same relations as given by Eg$1) [9]. So it can

easily be seen that all the main relations that we have fo“n%herermm: JE+ 7 is the leading terniin the expansion
for the gravitational Faraday rotation of light rays are alsoy ihe largest root of ré+(a?— &2— p)r2+2m[ y+ (¢
applicable to gravitational waves of small amplitude. —a)2]r—a2»=0 for small deflectior3].

Now we evaluate the RHS of E¢AL) in the same limit.
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APPENDIX Now using the fact thaa/r ,,;,<1 andr ,;,= V&?+ 7 we can

The equation governing the projection of the orbit in theapproxiamte and evaluate the above integral as follows:
(r, ) plane for Kerr metric is given bj10]

du
r dr RHS=—f—=—(1/r inarcsin u\remin/ 7).
f 4 2 2 2 2 2 m o o
Vrit (@ = g&—mpre+2m g+ (é-a)’r—a’y (A3)
_ J"\/ do , (A1)  Equating Eqs(A2) and(A3) we have
7+ a’cosh— & coth

I min

1—(r%,/7)co6’

where¢ and » are constants of the motion and we choose the
case in whichip>0, which corresponds to the null geodesics
which intersect the equatorial plane and are symmetric about
it [10]. We perform the above integrations for the case wherwhich is the projection of the orbit in ther (6) plane for
a/r<1 andm/r<1 i.e., for weak deflections, and indeed assmall deflections and in this case in fact no deflection be-
we will see for a case in which there is no deflection in thecause there is no term dependingraror a. As one can see
(r,0) plane. First we evaluate the LHS of the above equation —» when co¥= = 7!t min Where plus and minus signs
which can be written in the following forrtafter discarding correspond to the position anglég and 65 of the observer

(Ad)

rorbz\/

the small termpg and the source, respectively.
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