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Gravitoelectromagnetic approach to the gravitational Faraday rotation in stationary spacetimes
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Using the 113 formulation of stationary spacetimes we show, in the context of gravitoelectromagnetism,
that the plane of the polarization of light rays passing close to a black hole undergoes a rotation. We show that
this rotation has the same integral form as the usual Faraday effect; i.e., it is proportional to the integral of the
component of the gravitomagnetic field along the propagation path. We apply this integral formula to calculate
the Faraday rotation induced by the Kerr and NUT spaces using the quasi-Maxwell form of the vacuum
Einstein equations.@S0556-2821~99!00214-3#

PACS number~s!: 04.20.Cv, 04.70.Bw
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I. INTRODUCTION

It is a well-known fact that the plane of the polarization
light rays passing through plasma in the presence of a m
netic field undergoes a rotation which is called a Fara
rotation ~Faraday effect! @1#. One can show that a plane
polarized wave is rotated through an angleDu given by

Du5
2pe3

m2c2v2E
a

b

nBuudl, ~1!

whereBuu is the component of the magnetic field along t
line of sight.

It is also a well-known consequence of general relativ
that light rays passing a massive object are bent toward
Several authors have considered the gravitational effec
the polarization of light rays by analogy with the Farad
effect @2,3#. In particular they have considered the propag
tion of electromagnetic waves in Kerr spacetime. In@3# the
authors have used the Walker-Penrose constant to calc
this effect for a Kerr black hole. They have shown that in t
weak field limit the rotation angle of the plane of the pola
ization is proportional to the line-of-sight component of t
black hole’s angular momentum at third order. In what f
lows we will use the Landau-Lifshitz 113 splitting of sta-
tionary spacetimes and show that the gravitational Fara
rotation has the same integral form as the usual Farada
fect if one replaces the magnetic field with the gravitoma
netic field of the spacetime under consideration. Hav
found this integral form, one can use the quasi-Maxw
form of the vacuum Einstein equations to calculate the ef
much more easily. In particular we show that the gravi
tional Faraday rotation in Newman-Unti-Tamburino~NUT!
space is zero, a result which needs a lot of calculation if
uses an approach based on the Walker-Penrose constan
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II. 1 13 FORMULATION OF STATIONARY SPACETIMES
„PROJECTION FORMALISM …

Suppose thatM is the four-dimensional manifold of a
stationary spacetime with metric1 gab and pPM; then one
can show that there is a three-dimensional manifoldS3 de-
fined invariantly by the smooth map@4#

C:M→S3 ,

where C5C(p) denotes the orbit of the timelike Killing
vectorjt passing throughp. The three-spaceS3 is called the
factor spaceM/G1, whereG1 is the one-dimensional grou
of transformations generated byjt . Using a coordinate sys
tem adapted to the congruencej t5] t we denote the pro-
jected three-dimensional metric onS3 by gab (a,b
51,2,3). These are the coordinates comoving with respec
the timelike Killing vector. One can usegab to define dif-
ferential operators onS3 in the same way thatgab defines
differential operators onM. For example the covariant de
rivative of a three-vectorA is defined as

A;b
a 5]bAa1lgb

a Ag,

Aa;b5]bAa2lab
g Ag ,

wherelgb
a is the three-dimensional Christoffel symbol cos

tructed from the components ofgab in the following way:

lmn
s 5

1

2
gsh~]nghm1]mghn2]hgmn!.

The metric of a stationary spacetime can be written in
following form @5#:

ds25h~dx02Aadxa!22dl2, ~2!

where

1Note that the Roman indices run from 0 to 3 and Greek indi
from 1 to 3.
©1999 The American Physical Society13-1
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Aa[ga5
2g0a

g00
, h[g00,

and

dl25gabdxadxb5S 2gab1
g0ag0b

g00
Ddxadxb

is the spatial distance written in terms of the thre
dimensional metricgab of S3. Using this formulation for a
stationary spacetime one can write the vacuum Eins
equations in the following quasi-Maxwell form@6#:

div Bg50, ~3!

Curl Eg50, ~4!

divEg52@ 1
2 ~AhBg!21Eg

2#, ~5a!

Curl~AhBg!52Eg3~AhBg!, ~5b!

Pab5Eg
a;b1@~AhBg

a!~AhBg
b!

2~AhBg!2gab#1Eg
aEg

b , ~6!

where the gravitoelectromagnetic fields are

Eg52¹ ln h1/252
1

2

“h

h
, ~7!

Bg5Curl A, ~8!

and Pab is the three-dimensional Ricci tensor construc
from the metricgab . It is attractive to regard the combina
tion AhBg , appearing in the above equations, as the grav
tional analogue of the magnetic intensity fieldH and denote
it by Hg . In this way one may think of the right hand sid
~RHS! of Eq. ~5b! as an energy current corresponding to
Poynting vector flux of gravitational field energy. Note th
all operations in these equations are defined in the th
dimensional space with metricgab . Using the timelike Kill-
ing vector of the spacetime one can define the above gr
toelectromagnetic fields in the following covariant forms:

Eg
b52

1

2

~jaja! ;b

uju2
, uju5h1/2, ~9!

Bg
b52

1

2
ujuja«a

bcdF S jd

uju2D
;c

2S jc

uju2D
;d
G , ~10!

where«a
bcd is the four-dimensional antisymmetric tensor a

the semicolon denotes covariant differentiation.

III. DERIVATION OF THE GRAVITATIONAL
FARADAY ROTATION

Using the analogy with the flat spacetime we take
plane of the polarization of an electromagnetic wave to c
sist of two three-vectorsk and f, the wave vector, and th
02401
-

in

d

-

t
e-

i-

e
-

polarization vector, respectively. The four-vectors cor
sponding to these two three-vectors have the following re
tions:

kaka50, kaf a50, f af a51, a50,1,2,3. ~11!

Both of these four-vectors are parallelly transported alo
null geodesics@5#, i.e.,

]ka

]l
1Gmn

a knkm50, ~12!

] f a

]l
1Gmn

a f nkm50, ~13!

wherel is an affine parameter varying along the ray. E
ploying an orthogonal decomposition based on the adap
coordinates, the above three-vectors defined on the th
spaceS3 can be taken to be equivalent to the contravari
components ofka and f a, i.e., k[ (3)ka5 (4)ka and f[ (3)f a

5 (4)f a @7#. One should note that the covariant counterpa
of these three-vectors are not the spatial components of
covariant four-vectorska and f a but

(3)kb5gab
(3)ka5 (4)kb1k0gb

and

(3)f b5gab
(3)f a5 (4)f b1 f 0gb .

From Eq. ~11! one can see that the polarization vector
known up to a constant multiple of the wave vector; i.e., bo
f a and f a85 f a1Cka satisfy Eq.~11!. This shows that there is
a kind of gauge freedom in choosingf which enables one to
put f 050 without loss of generality and in which cas
(3)f b5 (4)f b .2 Applying the above decomposition and equ
tions of parallel transport~12! and~13!, Fayos and Llosa@2#
have arrived at the following two equations for the evoluti
of the three-vectorsk and f along the ray:

3¹kk5L3k1~Eg•k!k, ~14!

3¹kf5L3f, ~15!

where

L52
1

2
k0FBg2

1

2
~Bg•f!f1

1

ufu
Eg•~k3f!fG . ~16!

Note that we have written their results in terms of the gra
toelectromagnetic fields defined in Eqs.~7! and ~8!. If we
had only the second term on the RHS of Eq.~14!, that would
have meant, by comparison with the four-dimensional d
nition of the parallel transport, that the three-dimensio
vecor k is parallely transported along the projection of t
null geodesic inS3 space. But the appearance of the fi

2This choice corresponds toC52 f 0 /k0 and makesf orthogonal
to the time lines.
3-2
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term shows thatk has also been rotated by an angular vel
ity L . The same rotation happens to the polarization vectf
as can be seen from Eq.~15!. Therefore the combination o
these two equations leads to the fact that the polariza
plane has rotated by angular velocityL along the projected
null geodesic. The angle of rotation around the tangent v
tor k̂ along the path between the source and the observ
given by

V5E
sou

obs

L• k̂dl52
1

2Esou

obs

k0Bg• k̂dl, ~17!

where we used the fact thatf–k50, which follows from Eq.
~11! and the choicef 050. Now combining the two equation

k05g0aka5h~k02gaka!,

kaka50[h~k02gaka!22gabkakb50,

we have

k0
2

h
2gabkakb50 ~18!

or, equivalently, in terms ofka5dxa/dl,

k0
2

h
5S dl

dl D 2

. ~19!

Finally upon substitution of Eq.~19! in Eq. ~17! and putting
k̂dl5dl we find

V52
1

2Esou

obs
AhBg•dl, ~20!

which has the same integral form as Eq.~1!; i.e., the gravi-
tational Faraday rotation is proportional to the integral of
component of the gravitomagnetic field along the propa
tion path. But their main difference is the fact that the gra
tational Faraday rotation, given by Eq.~20!, is a purely geo-
metrical effect while the usual Faraday effect, Eq.~1!,
depends on the frequency of the light ray. In the next t
sections we will apply this formula to the cases of NUT a
Kerr black holes.

IV. GRAVITATIONAL FARADAY ROTATION
IN NUT SPACE

There is no gravitational Faraday rotation induced
NUT space and the reason is as follows. Take a closed
C around the NUT hole which consists of two paths~see Fig.
1!: path 1, a null geodesic which passes close to the b
hole, and path 2, so far away that the effect of the grav
tional field ~including the Faraday rotation! on the light rays
is negligible~another reason that on path 2 there is no gra
tational Faraday rotation is the fact thatBg→0 as r→`).
Now using the Stokes theorem, one can write Eq.~20! in the
form
02401
-
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V52
1

2 R
C
~AhBg!•dl52

1

2Es
¹3~AhBg!•dS,

and using Eq.~5b! we have

2
1

2E1
~AhBg!•dl2

1

2E2
~AhBg!•dl52E

s
~Eg3AhBg!•dS.

~21!

The second term on the LHS of the above equation is z
by costruction. On the other hand for the NUT space
have3

Eg52
1

2
] r@ ln f ~r !# r̂

and

Bg5
2l f ~r !1/2

r 2
r̂ ,

which together show that the RHS of Eq.~21! is also zero
and therefore

2
1

2E1
~AhBg!•dl50; ~22!

3We have used the following form of the NUT metric:

ds25f~r!~dt22l cosudf!22 f ~r !21dr22~r 21 l 2!~du2

1sin2udf2!,
where

f ~r !512
2~mr1 l 2!

~r 21 l 2!
.

FIG. 1. The NUT hole and a closed path around it.
3-3
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i.e., there is no Faraday effect on the light rays passin
NUT black hole close by. One can show that the same re
can be obtained for the NUT space using the approach b
on the Walker-Penrose constant. In this case one need
take into account the simplifying fact that all the geodesics
NUT space including the null ones lie on spatial cones@6#.

V. GRAVITATIONAL FARADAY ROTATION
IN KERR METRIC

The Faraday effect in a Kerr metric has already been s
ied and it has been shown that despite previous claims@8#,
when a light ray passes through the vacuum region out
rotating matter its polarization plane rotates@3#. In this sec-
tion we will consider two different cases:~1! when the orbit
lies in the equatorial plane, i.e., foru5p/2; ~2! a more gen-
eral orbit which intersects the equatorial plane and is sy
metric about it.

A. Orbits in the equatorial plane

In this case using the definitions ofEg and Bg and Eq.
~21! one can see that the gravitational analogue of the Po
ting vector defined byEg3AhBg has only one componen
along thef direction and therefore is normal to the plane
the orbit, which in turn leads to the fact that in this spec
case there is no gravitaional Faraday effect on light rays

B. Symmetric orbit about the equatorial plane

In this case we need to find the orbit and we will see t
one just needs to find the orbit in the zeroth order ina/r and
m/r ~i.e., straight line approximation! which is done in the
Appendix.

Writing the Kerr metric in the form~2! in Boyer-
Lindquist coordinates one can see that

A5Af5
2amr sin2u

2mr2r2
,

from which we have

Bg
r 5

2amr sin 2u@2mr2r 22a2#

Ag~2mr2r 22a2 cosu2!

and

Bg
u5

2amsin2u~a2 cosu22r 2!

Ag~2mr2r 22a2 cos2u!2
,

where

g5detgab and r25r 21a2cos2u.

Using the definition of the gravitoelectric field given in E
~7! we have

Eg
r 5

Dm~a2 cos2u2r 2!

r4~r222mr!
02401
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and

Eg
u5

rma2 sin 2u

r4~r222mr!
,

whereD5r 21a222mr. Substituting the above fields in Eq
~21! and puttingm5cosu we have

V52E
s
~Eg3AhBg!fdSf

52am2E
2m0

m0 E
r orb(m)

` drdm

~r 21a2m222mr!2
, ~23!

wherer orb(m) is the equation~of the projection! of the orbit
in the (r ,u) plane. To find the lowest order Faraday effe
we calculate the above integral neglecting thea2/r 2 andm/r
terms in which case we have

V52am2E
2m0

m0 E
r orb(m)

` 1

r 4drdm52
4

3
am2E

0

m0 1

r orb
3

dm.

Using the (r ,u) equation of the orbit given in the Appen
dix one can calculate the above integral which gives

V52
4

3
am2E

m05Ah/r min

0 S 12
r 2

min

h
m2D 3/2

dm

5~1/4!p cosu0

am2

r 3
min

.

This expression is of third orderam2/r 3
min which is of

the same order as the result given in@3#.

VI. DISCUSSION

We have shown that using the 113 formulation of sta-
tionary spacetimes one can cast the gravitational Farada
tation in exactly the same mathematical form as the us
Faraday effect; i.e., the gravitational Faraday rotation is p
portional to the gravitomagneic field of the spacetime alo
the propagation path of the light ray. One should note t
the origins of these two effects are completely different. T
usual Faraday effect originates from the interactions betw
the electrons in a plasma on the one hand with the elec
magnetic field of the light ray and the external magnetic fi
on the other hand and therefore depends on the frequenc
the light ray. But the gravitational Faraday effect is a pure
geometrical one originating from the structure of the spa
time under consideration and it is normally attributed to t
behavior of the reference frames outside the spacetime
rotating body. Using the quasi-Maxwell form of the vacuu
Einstein equations we showed that there is an easy wa
calculate the effect by transforming the line integral ofBg to
a surface integral of the gravitational analogue of the Po
ting vector. More importantly the order of the effect can
seen without going through the detailed calculation@as in Eq.
~23! for the Kerr case# and in some cases like NUT space ju
a simple observation reveals that there is no effect at all.
3-4
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gravitational waves of small amplitude propagating in
curved background, one can develop the geometric optic
such a way that the wave and polarization four-vectors
isfy the same relations as given by Eqs.~11! @9#. So it can
easily be seen that all the main relations that we have fo
for the gravitational Faraday rotation of light rays are a
applicable to gravitational waves of small amplitude.
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APPENDIX

The equation governing the projection of the orbit in t
(r ,u) plane for Kerr metric is given by@10#

E r dr

Ar 41~a22j22h!r 212m@h1~j2a!2#r 2a2h

5Eu du

Ah1a2 cos2u2j2 cot2u
, ~A1!

wherej andh are constants of the motion and we choose
case in whichh.0, which corresponds to the null geodesi
which intersect the equatorial plane and are symmetric ab
it @10#. We perform the above integrations for the case wh
a/r !1 andm/r !1 i.e., for weak deflections, and indeed
we will see for a case in which there is no deflection in t
(r ,u) plane. First we evaluate the LHS of the above equat
which can be written in the following form~after discarding
the small terms!:
. D

02401
in
t-

d

-

e

ut
n

n

E dr /r 2A12r 2
min /r 25~1/r min!arccos~r min /r !,

~A2!

wherer min5Aj21h is the leading term~in the expansion!
of the largest root of r 41(a22j22h)r 212m@h1(j
2a)2#r 2a2h50 for small deflection@3#.

Now we evaluate the RHS of Eq.~A1! in the same limit.
This integral can be written in the following form:

RHS52E dm

Ah1m2~a22j22h!2a2m4
.

Now using the fact thata/r min!1 andr min5Aj21h we can
approxiamte and evaluate the above integral as follows:

RHS52E dm

Ah2m2r 2
min

52~1/r min!arcsin~mAr 2
min /h!.

~A3!

Equating Eqs.~A2! and ~A3! we have

r orb5
r min

A12~r 2
min /h!cos2u

, ~A4!

which is the projection of the orbit in the (r ,u) plane for
small deflections and in this case in fact no deflection
cause there is no term depending onm or a. As one can see
r→` when cosu56Ah/r min where plus and minus sign
correspond to the position anglesuo andus of the observer
and the source, respectively.
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