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This paper discusses particle production in Schwarzschild-like spacetimes and in a uniform electric field.
Both problems are approached using the method of complex path analysis which is used to describe tunnelling
processes in semiclassical quantum mechanics. Particle production in Schwarzschild-like spacetimes with a
horizon is obtained here by a new and simple semiclassical method based on the method of complex paths.
Hawking radiation is obtained in the,¢) coordinate system of the standard Schwarzschild metiticout
requiring the Kruskal extension. The coordinate singularity present at the horizon manifests itself as a singu-
larity in the expression for the semiclassical propagator for a scalar field. We give a prescription whereby this
singularity is regularized with Hawking’s result being recovered. The equation satisfied by a scalar field is also
reduced to solving a one-dimensional effective Sdimger equation with a potentiak(1/x?) near the hori-
zon. Constructing the action for a fictitious nonrelativistic particle moving in this potential and applying the
above mentioned prescription, one again recovers Hawking radiation. In the case of the electric field, standard
guantum field theoretic methods can be used to obtain particle production in a purely time-dependent gauge. In
a purely space-dependent gauge, however, the tunnelling interpretation has to be resorted to in order to recover
the previous result. We attempt, in this paper, to provide a tunnelling description using the formal method of
complex paths for both the time and space dependent gauges. The usefulness of such a common description
becomes evident when “mixed” gauges, which are functions of both space and time variables, are analyzed.
We report, in this paper, certain mixed gauges which have the interesting property that mode functions in these
gauges are found to be a combinationetémentaryfunctions unlike the standard modes which are transcen-
dental parabolic cylinder functions. Finally, we present an attempt to interpret particle production by the
electric field as a tunnelling process between the two sectors of the Rindler spacetime.
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I. INTRODUCTION AND SUMMARY horizon. The ratio between these probabilities is of the form

In this paper, we present a critical review of particle pro- P[emission = P[ absorptiofe ™ #E, (1.1
duction in Schwarzschild-like spacetimes and in a uniform
electric field in Minkowski spacetime. We approach bothwhereE is the energy of the particles afgE=1/87M is the
problems by the method of complex paths discussed by Larstandard Hawking temperature. The above relation is inter-
dau in[1] where it is used to describe tunnelling processes irpreted to be equivalent to a thermal distribution of particles
nonrelativistic semiclassical quantum mechanics. This powin analogy with that observed in any system interacting with
erful technique will be used as the basis to provide a nevblack body radiation. In the latter case, the probability of
method of recovering Hawking radiation in the usualemission of radiation by the system is related to the probabil-
Schwarzschild coordinates without requiring the Kruskal ex-ty of absorption by the system by a similar relation as given
tension. It will also be used to describe particle production imabove. In Hawking'’s derivation, the Kruskal extension is of
an electric field in different nontrivial gauges and to link vital importance in obtaining the thermal spectrum.
particle production in an electric field to tunnelling processes In this paper, we propose an alternate derivation of Hawk-
occurring in the Rindler spacetime. ing radiationwithout using the Kruskal extensio®ur moti-
The Schwarzschild-like spacetimes we consider here areation for using the standard Schwarzschild coordinates
the usual black hole, the Rindler and the de Sitter spaceather than the Kruskal system are the followirid)) The
times. In the standard black-hole spacetime, particle producschwarzschild spacetime is a static spacetime. It contains a
tion was obtained by Hartle and Hawkifig] using semiclas- global Killing vector £ and the symmetry generated by this
sical analysis. In this method, the semiclassical propagatorector is respected in the usual Schwarzschild coordinates
for a scalar field propagating in the Schwarzschild spacetimét,r). That is, the surfaceis=const wherd is the Schwarzs-
is analytically continued in the time variabteto complex child “time” variable has the same structure for alsince
values. This analytic continuation gives the result that thehe metric componentg,;, is independent of. Though this
probability of emission of particles from the past horizon isKilling vector is spacelike in the region interior to the hori-
not the same as the probability of absorption into the futurezon (and timelike in the region exterior to the horizoit is
still a symmetry of the system(2) The surface area of
spheres of constant “radial” coordinate happen to be
*Electronic address: srini@iucaa.ernet.in 4712, which is that of a sphere in flat spacetime, and hence
Electronic address: paddy@iucaa.ernet.in these surfaces can be used to measurth contrast, the
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Kruskal system is an explicitlfime-dependenspacetime an inverted harmonic oscillator potential. Such an equation
since the metric components depend on the Kruskal timean be solved exactly using the standard flat spacetime quan-
coordinate. It does not possess a global Killing vector assaium field theoretic methods. Since the problem is explicitly
ciated with surfacea= const wherau is the Kruskal “time”  time dependent, the vacuum staté-at—o and att—oc are
coordinate. Indeed, the presence and structure of such a gloet the same. The Bogoliubov coefficients between the “in”
bal Killing vector is not immediately apparent from the form and “out” vacua are easily calculated and the total particle
of the metric in these coordinates. Surfaces of constant “raproduction turns out to be the same as that calculated by the
dial” coordinate do not possess the same property that corschwinger method. However, if a space dependent gauge is
responding surfaces in the Schwarzschild spacetime do. Fuased to describe the same field, the vacuum state of the field
ther, the sectors which contain the past horizon and the timaemains the same for all time and hence no particle produc-
reversed copy of the usual Schwarzschild spacetime argon can take place. To recover the standard result, it is usual
unphysical. In any realistic collapse scenario, these sectots resort to the tunnelling interpretation. This interpretation is
cannot exist. The nonstatic nature of the Kruskal manifolduseful since it provides a dynamical picture of particle pro-
imply that the “in” and “out” vacua cannot be the same duction(see, for examplg5]) and is the only way in which
and explicit particle production can take place. the standard gauge invariant result can be recovered in a time
The difficulty, of course, is that the standard Schwarzsindependent gauge.
child coordinates possess a coordinate singularity at the ho- In this paper, we attempt a tunnelling description based on
rizon. As we shall see, this bad behavior of the coordinatethe method of complex paths for both the time-dependent
appears as a singularity in the expression for the semiclassind time-independent gauges. This method is used to calcu-
cal propagator near the horizon and we have to provide &te the transmission and reflection coefficietds the tun-
specific prescription to bypass ihis prescription gives the nelling coefficients for the equivalent quantum mechanical
same result as that obtained by Hawking and can be used iproblem. Then, an interpretation of these coefficients, in or-
all spacetimes with a Schwarzschild-like metridote that der to explicitly obtain the standard gauge invariant result is
the method described above is fundamentally different fronprovided. However, the usefulness of the tunnelling descrip-
the usual method of calculating the Bogoliubov coefficientstion is seen when simple “mixed” gauges, which are func-
for an eternal black hole given, for example, in R&]. In  tions of both space and time, are considered. In some gauges,
Ref. [3], appropriate linear combinations of the Schwarzs-the scalar wave equation can be reduced to solving effective
child mode functions that are analytic on the full Kruskal Schralinger equations in suitable new variables which are
manifold (except at the past and future singularitesrat combinations of the usual spacetime coordinates. By apply-
=0) are constructed. The scalar field is then expanded iing the method of complex paths to these Sdimger equa-
terms of these modes with the vacuum state being thé&ons, the tunnelling coefficients are seen to match those ob-
Kruskal vacuum. Such an expansion provides the appropriat@ined either for the purely time or purely space dependent
connnection between the annihilation and creation operatorgauges. The gauge invariant result is now recovered using
for the scalar field in the Schwarzschild and Kruskal coordi-the appropriate interpretation needed to identify the Bogoliu-
nate systems. Then, for a given time like observer in eithebov coefficients. In certain other gauges, the mathematics
the left or right Schwarzschild sector, whose vacuum state ibecomes simpler and the field equation can be reduced to a
the Schwarzschild vacuum, the number operator is easily cafirst order differential equation rather than an effective
culated and is found to correspond to a thermal spectrum. I8chralinger equation. For such cases, the exact mode func-
our method, however, the action functional is constructedions themselves are used to set up a tunnelling scenario and
using the Hamilton-Jacobi method in the appropriate coordithe resulting tunnelling coefficients are interpreted according
nates. The singularity in the action caused by the singulato the tunnelling interpretation to recover the gauge invariant
behavior of the coordinate systertin the unextended result. The mixed gauge functions we report in this paper
Schwarzschild coordinateat the horizon is handled by the have the interesting and useful property that the mode func-
prescription to obtain particle production. We also reduce thdions are combinations oflementaryfunctions. This is in
problem of the massive scalar field propagating in such @ontrast to the standard modes which are transcendental due
spacetime to an effective Schiinger equation which has a to the presence of the parabolic cylinder functions. These
singular effective potential near the horizon. In this case, thenew modes are found to be singular on the lightcone. This
singular behavior of the coordinates manifests itself as a sirproperty is very similar to the modes of the Schwarzschild-
gularity in the potential. The nonrelativistic action for a par- like spacetimes since these too are singular on the horizon.
ticle moving under the influence of such a potential is con- In classical theory, the action of a uniform electric field
structed and the same prescription is used to bypass th@n a charge imparts a constant uniform acceleration to it. The
singularity. We again recover Hawking radiation. spacetime metric in the rest frame of the charge is the Rin-
We next consider the problem of a scalar field propagatdler frame. Quantum field theory, on the other hand, predicts
ing in flat spacetime in an uniform electric field background.particle production arising due to the presence of an electric
The total particle production due to the presence of the eledield in the spacetime. It is therefore of interest to ask if
tric field up to the one-loop approximation is correctly cal- particle production is linked in some way to the presence of
culated by the gauge invariant method proposed by Rindler frame since both are, in a sense, natural for this
Schwinger{4]. The same problem can be reduced, in a timeproblem. We attempt to link particle production by a uniform
dependent gauge, to an equivalent Sdimger equation with  electric field with processes occuring in the Rindler frame by
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proposing an interpretation of the standard result in terms ofierivation given in the paper by Hartle and Hawkif&],
tunnelling between the two Rindler sectors. We do this in ahermal radiation is derived using the semiclassical kernel by
heuristic manner and show that this tunnelling process bean analytic continuation in the time coordinat® complex
tween the Rindler sectors gives rise to the leading exponensalues and it was shown that the probability of emission
tial factors in the expression for the effective Lagrandsee  (losg from the past horizon was related to absorptigain
Eq. (4.1)] [6]. into the future horizon by the relatio2.3).

The layout of the paper is as follows. Section Il contains Since all the physics is contained in ther( plane[or the
the semiclassical derivation of Hawking radiation without (t,x) plang, we will discuss Hawking radiation in (£1)
taking recourse to the Kruskal extension. It also contains thelimensions first and show subsequently that the results gen-
reduction to an effective Schdinger equation and the sub- eralize naturally to (3-1) dimensions without modification.
sequent recovery of Hawking radiation. Section Il discusse§Ve first derive the semiclassical result in ther§ [or (t,x)]
particle production in a uniform electric field in a set of new plane by applying a certain prescription to bypass the singu-
and nontrivial gauges. It relies heavily on the method oflarity encountered at the horizon. After this, we reduce the
complex paths outlined in the Appendix A. In Sec. IV, we problem of the Klein-Gordon field propagating in the
attempt to link particle production in the electric field to Schwarzschild spacetime to an effective Sclimger prob-
processes occuring in the Rindler frame. lem in (1+1) dimensions and rederive the semiclassical re-

sult by using the same prescription.

Il. PARTICLE PRODUCTION IN SPACETIMES
WITH HORIZON A. Hawking radiation in (1+1) dimensions

Hawking's result that a black hole radiates is essentially a Consider a certain patch of spacetime(in-1) dimen-
semiclassical result with the thermal radiation arising be-sions which in a suitable coordinate system has the line ele-
cause of the presence of a horizon in the spacetime structunsment (with c=1)

We will review briefly the conventional derivation of the
thermal radiation using path integrals. Consider a patch of ds*=B(r)dt*~B~*(r)dr?, (2.4
spacetime, which in a suitable coordinate system, has one of
the following forms(we assume=1): whereB(r) is an arbitrary function of. We assume that the
function B(r) vanishes at some=rg, with B’'(r)=dB/dr
ds’=B(r)dt*~B~(r)dr®~r?(d6*+ sirf(6)d¢%) being finite and nonzero at. The pointr =r, indicates the
2.9 presence of a horizon. It can be easily verified that no physi-
cal singularity exists at the horizon since the curvature in-

or variants do not have a singularity on the horizon. Therefore,
d2=B(x)dt?— B~ }(x)dx2— dy?— d22, 2.2 near the horizon, we exparg(r) as
—R' 27—
whereB(r) andB(x) are functions of andx respectively. B(r)=B'(ro)(r—=ro) +O[(r =ro)“]=R(ro)(r =ro),
The horizon in the above spacetimes is indicated by the sur- 2.9

face r=ry (Xx=Xg) at which B(r) [B(x)] vanishes. We o .
further assume thaB'(r)=dB/dr [B’(x)=dB/dx] is fi- where it is assumed th&(r ) # 0. We now use the equation

nite and nonzero at the horizon. Coordinate systems of thgatisfied by the minimally coupled scalar field with mass
form (2.1) can be introduced in parts of the SchwarzschildMo Propagating in the spacetime represented by the metric
and de Sitter spacetimes while that of the fa@2) with the (2.4) to obta!n the Hamllton—Ja_cobl equation satisfied by the
choice B(x)=1+2gx represents a Rindler frame in flat action functlon_aISo. The se_mlclassmal propagator can be
spacetime. Given the coordinate system of &gl) say, in const.ructed usingy, yvhlch will be usedl to analyze the sin-
some regiorR, we first verify that there is no physical sin- gularity at the horizon.(We emphasize again that this
gularity at the horizon, which in the case of the SchwarzsMethod is different from that used to compute the Bogoliu-
child black hole, is at the coordinate valug=2M whereM bov g:oefﬂments \using appropriate superpositions of mode
is the mass of the black hole. Having done that, we extendnctions as outlined if3].) o

the geodesics into the past and future and arrive at two fur- 1h€ equation satisfied by the scalar field is

ther regions of the manifold not originally covered by the
coordinate system in E@2.1) (the Kruskal extension It is
now possible to show that the probability for a particle with
energy E to be lost from the regiomR in relation to the
probability for a particle with energf to be gained by the

2
Mg
O+ —

+7|®=0, (2.6

where thel] operator is to be evaluated using met{24).

region’R is given by the relation Expanding the left-hand sidd.HS) of equation(2.6), one
_ obtains
Ploss™ |:)gaine PE, (2.3
where3=8mM. This is equivalent to assuming that the re- 1 30 d B(r)g _ m_cz)q) 27
gion R is bathed in radiation at temperatugs 1. In the B(r) at> or ar he '
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The semiclassical wave functions satisfying the above equawhere S; is the action functional satisfying the classical
tion are obtained by making the standard ansatzfarhich ~ Hamilton-Jacobi equation in the massless limit ahds a

is suitable normalization constarf(r,,t>;r1,t;) is given by
] the relation
i
d)(r,t):ex;{%S(r,t) , (2.8 t, dr
So(ra,ta;r,t) =S(2,1) = —E(ty—t) = EJ BN
whereSis a function which will be expanded in powersfof b 2.16

Substituting into the wave equatid8.7), we obtain

552 1 a2S The sign ambiguity(of the square rodtis related to the
_) —m§}+(.—) — “outgoing” (dSy/dr>0) or “ingoing” ( dSy/dr <0) nature
ar i /[ B(r) ot of the particle. As long as points 1 and 2, between which the
2S  dB(r) 4S transition amplitude is calculated, are on the same side of the
—B(f) —5— ——— —|=0. (2.9  horizon(i.e., both are in the region>r, or in the regionr
ar dr or <ro), the integral in the action is well defined and real. But
if the points are located on opposite sides of the horizon then
the integral does not exist due to the divergencB of(r) at
2 r= ro.
Sy(r,t) ... Therefore, in order to obtain the probability amplitude for
(2.10 crossing the horizon we have to give an extra prescription for
: evaluating the integral7]. Since the horizon defined by

and substituting into Eq2.9) and neglecting terms of order B(ro)=0 is null we may carry out the calculation in Euclid-
(41i) and greater, we find to the lowest order ean space or —equivalently—use an appropiiaterescrip-
tion to specify the complex contour over which the integral
1 [6S)\? 39S\ 2 ) has to be performed aroume-r . The prescription we use is
W(W) - B(r)<7) —my=0. (210 that we should take the contour for defining the integral to be
an infinitesimal semicircl@bovethe pole atr =r, for out-
Equation(2.11) is just the Hamilton-Jacobi equation satisfied 90ing particles on the left of the horizon and ingoing par-

by a particle of mase, moving in the spacetime determined ticles on the right. Similarly, for ingoing particles on the left

by the metric(2.4). The solution to the above equation is ~and outgoing particles on the right of the horizomhich
corresponds to a time reversed situation of the previous

rodr > case} the contour should be an infinitesimal semicirble-
Solr )=~ Etif WVE —mgB(r), (212 |ow the pole at =r,. Equivalently, this amounts to pushing
the singularity atr =rg to r=rqy+ie where the upper sign
whereE is a constant and is identified with the energy. No-should be chosen for outgoing particles on the left and ingo-
tice that in the case ofn,=0, Eqg. (2.11) can be exactly ing particles on the right while the lower sign should be
solved with the solution chosen for ingoing particles on the left and outgoing particles
on the right. For the Schwarzschild case, this amounts to
So(r,t;myg=0)=F(t—r*)+F,(t+r*), (2.13 adding an imaginary part to the mass simge=2M.
The prescription outlined above has its origin and basis in

2
oo

1 (as
B(r) | at

ExpandingSin a power series off{/i),

S(r,t)=Sy(r,t)+ fli— Si(r,t)+

where the “tortoise” coordinate* is defined by the method of complex paths which is outlined in the Ap-
pendix (see alsd1]). This method is used to compute the
* _ f i (2.14 transmission and reflection coefficients in standard semiclas-
B(r)’ ' sical quantum mechanic¢and finds wide applicability in the

theory of optic$ by specifying a suitable complex contour

andF; andF, are arbitrary functions. IF; is chosen to be for a given tunnelling scenario. This contour is chosen be-
Fi1=—Et+Er* and F; chosen to bd=,=—Et—Er*, then  tween two semiclassical regiorfehere the wave function
it is clear that the solution given in ER.13) is the same as can be approximated using the semiclassical ansatz with neg-
that in Eq.(2.12 with m, set to zero. Therefore, in the case Jigible erron such that the semiclassical approximation holds
mo=0, the semiclassical ansatz is exact. In the followingall along the contour. If singularities, which represent dis-
analysis we will specialize to the casg=0 for simplicity.  tinctive features of the system under consideration, are
The casemy#0 will be considered later. The essential re- present in the quantum system and these lie between the
sults do not change in any way. semiclassical regions, the appropriate complex contour con-

The semiclassical kernéd(r,,t,;rq,t;) for the particle  tains useful information that decides the steady state behav-
to propagate fromtg,r,) to (t,,r,) in the saddle point ap- ior of the system. In the black hole spacetimes considered in
proximation can be written down immediately as this section, the singularity that appears in the action func-
tional in Eq.(2.16 is directly attributable to the presence of
a horizon. Since the semiclassical approximation is appli-
cable on either side of the horizon and arbitrarily close to it,

., (219

i
K(ra,ty;rg,ty)= NeXF{gSo(rzltzirlltl)
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the complex contours needed to bypass the singularity follow
from the demand that the semiclassical approximation hold
all along the contour. The type of singularity encountered
here is similar to that encountered in the one-dimensionadg that
Schralinger system with a potential of the form-(L/x?).
The method of complex paths gives the appropriate contours
when dealing with right moving or left moving waves propa-
gating across the singularity at=0. This will be further
discussed in Sec. Il Balso see Appendix A 1 C where the Now time reversal invariance implies that the probability for
transmission and reflection coefficients are calculated for théhe emission process is the same as that for the absorption
(— 1/x?) potential using the complex paths method process proceeding backwards in time &iwk versaThere-
Consider therefore, an outgoing particleSj/or>0) at  fore we must interpret the above result as saying that the
r=r,<r,. The modulus square of the amplitude for this par-probability of emission of particles is not the same as the
ticle to cross the horizon gives the probability of emission ofprobability of absorption of particles. In other words, if the
the particle. The contribution t&, in the ranges 1(;,r,  horizon emits particles at some time with a certain emission
—€) and o+ €,r,) is real. Therefore, choosing the contour probability, the probability of absorption of particles at the
to lie in the upper complex plane, same time is different from the emission probability. This
result shows that it is more likely for a particular region to
. ) rote dr gain particles than lose them. Further, the exponential depen-
Spl emissior} = — Elim fr _emﬂreal park dence on the energy allows one to give a “thermal” inter-
0 pretation to this result. In a system with a temperaigré
imE the absorption and emission probabilities are related by

= ——+(real parj, (2.1
R(ro) P[emissioi=exp — BE)P[absorptiod.  (2.22

where the minus sign in front of the integral corresponds tQ:omparing Eq(2.22 and Eq.(2.21), we identify the tem-

(2.20

Plab . 27E
[absorptiofxex R )

47E

7R P[absorption.

(2.2)

P[ emissior= exr{ -

e—0

the initial condition thatgS,/dr>0 atr=r,<r,. For the
sake of definiteness we have assurd,) in Eq. (2.5 to
be positive, so thaB(r)<0 whenr <r. (For the case when
R<0, the answer has to be modified by a sign changkee
same result is obtained when an ingoing particdSq(/ Jr
<0) is considered at=r,<r,. The contour for this case

must be chosen to lie in the lower complex plane. The am-

perature of the horizon in terms 8r,). Equation(2.2]) is
based on the assumption tHat-0. If R<0 there will be a
change of sign in the equation. Incorporating both the cases,
the general formula for the horizon temperature is

plitude for this particle to cross the horizon is the same as
that of the outgoing particle due to the time reversal invari-For the Schwarzschild black hole,

ance symmetry obeyed by the system.
Consider next, an ingoing particl@$,/or<0) atr=r,

>ro. The modulus square of the amplitude for this particle to
cross the horizon gives the probability of absorption of the
particle into the horizon. Choosing the contour to lie in the

upper complex plane, we get

ro—e dr
So[absorptimj:—EIimf ° ——— +(real parj

ote B(r)

,_HIR]
1=H. (223
_ 2M _ 1 )
B(r)= 1—T ~m(r—2M)+O[(r—2M) 1
(2.29

giving R=(2M) 1, and the temperaturg =#/87M. For
the de Sitter spacetime,

B(r):(l_Hzrz)%ZH(Hil—r):—2H(r_H*1)

€0 (2.25

= %Hreal parj. (2.18 giving B~ t=#H/27. Similarly for the Rindler spacetime
0

B(r)=(14+2gr)=2g(r+(29) %) (2.26

The same result is obtained when an outgoing particle

(9Sy/r>0) is considered at=r,>r,. The contour for this ~ giving 8~ '=g#/2m. The formula for the temperature can be
case should be in the lower complex plane and the amplitudesed for more complicated metrics as well and gives the
for this particle to cross the horizon is the same as that of théame results as obtained by more detailed methods.

ingoing particle due to time reversal invariance.
Taking the modulus square to obtain the probabMfyve
get

27E
) (2.19

P[emlssmr]ocexp( -

and

The prescription given for handling the singularity is
analogous to the analytic continuation in time proposed by
Hawking[2] to derive black hole radiance. If one started out
on the left of the horizon and went around the singularity
=rqy by a 27 rotation instead of a rotation by, it can be
easily shown that it has the effect of taking the Kruskal co-
ordinates ¢,u) to (—uv,—u). A full rotation by 27 around
the singularity can be split up into two parts to give the
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amplitude for emission and subsequent absorption of a paMaking the ansatz2V = exp((i/#)S(r,t)) and substituting
ticle with energyE. Since the amplitudes for the two pro- into the above equation, we obtain
cesses are not the same in the presence of a horizon, one ) 5 )
obtains the usual Hawking radiation given in EB.21) with 9S\* 9S\* , 1+
the value ofR(r) being (2M) 1. This process is similar to ot O\ or 0 r2
that given in[2] which relates the amplitudes involving the
past and future horizons. In Hawking’'s paper, analytically = 22 B35, 7o
continuing the time variableto t—4Mi 7 takes the Kruskal B(r) ot o r?2 dr or
coordinates f,u) to (—v,—u) and since the path integral (2.30
kernel is analytic in a strip of Mi# below the real axis, '
Hawking radiation is obtained by deforming the contour of ExpandingSin a power series as in E¢R.10, we obtain, to
integration  appropriately. Note  however—in  our the zeroth order ik/i,
approach—we did not require the Kruskal extension and
worked entirely in thet,r) coordinates S= —Ets fri
Whenmg# 0, the validity of the semiclassical ansatz must —J B(r)
be verified. To do this, consider the perturbative expansion
(2.10. Retaining the terms of ordek/i and neglecting WhereL2=1(I+1)%?2 is the angular momentum. It is easy to
higher order terms, one finds, upon substitutingSgmiven  see from the above equation that near the horizon, the pres-
by the relation(2.12 and solving forS,, ence of the_? term can be neglected since it is multiplied by
B(r). Therefore, the semiclassical result of Sec. Il A follows
dr 1 even in the case dB+1) dimensions. The semiclassical an-
B(r) VEZ—m2B(r) satz is valid in this case as can be seen by calculating ex-
0 plictly the higher order terms in the expansion far All
1 these terms have a singularity at the horizon of the same
—Zln(Ez—mSB(r)), (2.27  order as that of5, and they contribute to the semiclassical
propagator either as phase factors or as terms multiplied by
whereE; is a constant. From the above equation, it is seePOwers of# which are entirely negligible. Expanding the
that'S; has a singularity of the same order @gatr=r,.  Klein-Gordon equation fob using the metrio(2.2) gives
When calculating the amplitude to cross the horizon, theétnalogous results and will not be explictly given.
contribution from the singular term just appears as a phase

1

B(r)

h[ 1 S #S 1 d(r’B) as}_o

VEZ=B(r)(m2+L?%r?), (2.3)

S]_: - Elti EE]_J

factor multiplying the semiclassical kernel and is inconse- B. Reduction to an effective Schrdinger problem
quential. The nonsingular finite terms do contribute to the in (1+1) dimensions
kernel but they contribute the same amountS{emissiorj Consider the relativistic equation for the wave functibn

and S[absorptio and they do not affect the relation be- ;, Eqg. (2.7). We include the mass, here but we shall see

tween the probabilitie®[ emissior} andP[absorption. Sub-  |ater that it does not appear in the final result. Setting
sequent calculation of the terr8s, S;, and so on, show that

all these terms have a singularity at the horizon of the same g Et/A
order as that 05;. Their contribution to the probability am- Y(r)= Q(r), (2.32
plitude is just a set of terms multiplied by powersfofvhich VB(r)

can be neglected. From this we can conclude that the semi- .

. ; S ; we get the equation
classical ansatz, in the perturbative limit, is a valid one.

The generalization tq3+1) dimensions is straightfor-

2 ” i 2 2
ward. We will work with Eq.(2.1) which is in spherical _d_Q(Zr_)_ _ B"(r) + B'(r) + 2E2
polar coordinates. The results obtained are extendable to Eq. dr 2B(r) = 4B%(r) Hh°BA(r)
(2.2) in a straightforward manner. The Klein-Gordon equa- )
tion, written using the metri€2.1), is o
g €2.1) “7BO Q(r)=0, (2.33

1 #d 14, P P P
By Tz T p2 | FB(N) - | s | sin(6) — ' " (2R d 2 -
B(r) at r<or ar resin(6) 40 0 whereB’=(dB/dr) andB"=(d“B/dr“). Near the horizon,
we use the expansion &f(r) given in Eq.(2.5). Neglecting
(2.29 terms of order 1i—ry) as compared to terms of order
' 1/(r—ry)?, we get, in the limit ofi—0,

1 P mécb
rZsi(0) ap> K2

Since the problem is a spherically symmetric one, one can d?Q(r) g E2
put ®="¥(r,t)Y["(6,¢) to obtain T4z (r—rO)ZQ(r)zo’ where g= 2R
LAY Lol ) (104D m) (239
B(r) a2 r2ar|' (05 iz g2V [Notice thatm, does not appear to the leading order in the

(2.29 above equation. Very close to the horizon, the term contain-
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ing the mass does not contribute significantly. Equatiorsingularity of the same order as possessedibffo do this,

(2.39 is therefore applicable to both massless and massiveonsider the effective Schiinger equatior(2.36 with fac-
scalar particle3.Making the transformatiox=(r —r,), we  tors of# put in:
finally obtain the effective Schdinger equation for the sys-

tem with#=2m=1 with a potential ¢ g/x?): _hzd?x(zx) 3 %Q(x)=~EQ(x). (2.4
d’Q(x) g
T dE FQ(X):O' (2.39 Putting Q(x)= exp(iA(x)/), and substituting into Eq.
(2.41),

This potential is symmetric but singular at the origis 0. > 5
To make the analogy with the Sciiager equation, we will i d A(ZX) + ( dA(X)) _EL 92 (2.4
replace the right-hand side of E(.35 by EQ(x) and fi- dx dx X

nally take the limit ofE—0. This “energy” E should not be ExpandingA in powers offi/i, we get

confused with the energlg of the field in the original rela-
tivistic system. We therefore consider

d2
ST Saw-Eew. @39

2
Agt - (2.43

h h

Substituting into Eq(2.42) and proceeding as usual, we find
that A is given by Eq.(2.38. The next termA, is given by
The energy spectrum is continuous for all value€afhich,

for E<0, is peculiar to this potential since, for energies less _gf
than the potential energy, the spectrum is usually discrete. Ar X
The semiclassical analysis follows closely the method
adopted in Sec. Il A. The action functiondl for a classical The relation forA; also has a singularity at the origin of the
particle moving in a potentiat- g/x? satisfies the Hamilton- same order asl. Explicit calculation of the subsequent terms
Jacobi equation in the expansion ofA reveals that all these terms have a
singularity of the same order as that.dfand therefore their
g net contribution to the kernel is either as phase factors or as
F_O 237 the exponential of finite terms multiplied by powers 7of
Therefore, we conclude as before that the semiclassical an-
The solution can be immediately written down as satz is valid. )
We show now that the effective Scliager equation in
~ xdX =—— (3+1) dimensions is the same as in £8.35. We consider
A= _Etij — VEx*+g. (2.3 here the reduction of the Klein-Gordon equation in spherical
polar coordinates obtained in E(.28 using metric(2.1).
Equation(2.39 has an integral which is divergent if the ac- Setting
tion is computed for points lying on the opposite sides of the i m
horizonx=0. Since this has a similar form to E.12), the W= exp( —iEUR)Y(6,4)¥(r) (2.49
prescription used in evaluating S emissio and T .
S absorption can be similarly used to evalua#f emission and substituting into Eq2.28, we obtain
and A[ absorption. The results are d?F 1 d(r?B) d¥ E2 m L2

2.4
Ex? +g 249

ot ax

dA [dA\?
gt '\ ox

B(r) 7=+ “r T\7zmy 72~ 72,2) ¥ =0.
Al emissio=im+/g+ (real par, dr® - r® odroodr AATB(r) A% A% (2.46
Al absorption= —i w\/§+(real parj. Making the substitution
(2.39
1
Constructing the semiclassical propagator as before and tak- W= Q(r), (2.47)
ing the modulus square to obtain the probabilities for outgo- NreB(r)

ing and ingoing particles, we get we get the result

" \Plingoing. (240 9Q 1((8')2 EZ) 1(5" B’ m LzﬂQ

4
P[outgoing = exp{ = Il Bl B .
"R a? |82 72 w7 Bl 2T TR A
The temperaturgg ™! for the system is the same as that in =0, (2.48
Eg. (2.23 and one recovers the usual result.
To verify that the semiclassical analysis is valid, one mustwhereB’ andB” are the first and second derivativesBifr)
compute the correction terms and check that these have raspectively. Near the horizan=r, using the expansion for
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B(r) given in Eq.(2.5), it is easy to see that theB7 term in  where the explicit modes are known but the problem cannot
the above equation dominates over thB 1érm which can  be reduced to an effective Schlinger equation.

therefore be neglected. The resulting Sclimger equation is

the same as in Eq2.39 in the limit of #—0. It can easily A. Time dependent gauge

be proved that the effective Scldioger equation for the

Cartesian metri¢2.2) gives exactly the same resuilt. The four vector potentiaA” giving rise to a constant

electric field in thex direction is assumed to be of the form

lll. PARTICLE PRODUCTION IN A UNIFORM ELECTRIC A¥=(0,-Eqt,0,0). 3.1
FIELD A

The electric field isE=Egx. The minimally coupled scalar

field ® propagating in flat spacetime, satisfies the Klein-

4Gordon equation

We now move on to the discussion of particle production
in a uniform electric field. We study a system consisting of
minimally coupled scalar field propagating in flat space-
time in a uniform electric field background. The two stan- ; ; 21 —

d,+igqA,)(*+igA*)+m ]d=0, 3.2
dard gauges, namely the purely time dependent and the [(uFiaA.) aA™) ] 32

purely space dependent gauges, are first considered and it,{$,ere m is the mass and, is the charge of the field. The
shown how the method of complex paths outlined in Appen+,,,4e functions ofb can be expressed in the ford(t,x)
dix Al a can be used to construct a viable tunnelling inter-_ ¢ (t)el* wheref () satisfies the equation

pretation in each case. The standard quantum field theoretic k k
result will not be rederived here since it is well known 2

(though its results are used to construct the tunnelling inter- — f, +[m?+k? + (k,+ qEqt)?]f,=0; k= (ky k).
pretation. The tunnelling description is then applied to a few dt

nontrivial but simple “mixed” gauges which are functions 3.3
of both space and time. Introducing the variables
The method of complex paths is a useful tool used to '
calculate the transmission and reflection coefficients in semi- >
classical quantum mechanics in one space dimen4ipand 7= qEot+ w N = Ki+m (3.4
we briefly summarize it here, leaving the details to the Ap- JaEo' qEy
pendix. (Readers unfamiliar with this approach should read
the Appendix at this juncture since those results will be usegve obtain the equation
extensively) First two disjoint regions are identified where
the semiclassical wave functions can be written dojwine d?
Schralinger potential that will be encountered most often _ka_Tsz:Afk- (3.5

will be the inverted harmonic oscillator potentiat- &)

which has the semiclassical, disjoint, regions locatec at The above equation is essentially a Scfinger equation in
—*.] Then a tunnelling scenario is set up by IMPOSING 3y inverted oscillator potential with a positive “energy’.

apprqpria’ge boundary_ conditions on th_e semiclassical WaV8ince the energy is positive, the problem is essentially an
functions in these regions. One region is assumed to contai

: : > ) cContalfyer the barrier reflectiorproblem. Using the results of Sec.
the transmitted wave while the other contains the inciden 1b. we can calculate the reflection and transmission coef-
and reflected waves. To obtain the tunnelling coefficientsf ;
the solution is analytically continued to the complex plane
and the behavior of the transmitted wave is studied along a —m
complex contour(with the space variable now considered R= & T= ;
complexX joining the two regions. The contour is chosen 1+e ™ 1+e ™’
such that the semiclassical condition is satisfied all along the
contour. Rotation along the contour transforms the transmitwhere we have put=2m=g,=1 and setE;=\ in Egs.
ted wave either to the incident wave or to the reflected wavgA24),(A25). To identify the Bogoliubov coefficients, and
thus relating the transmission amplitude to either the incidenp, , we recast the normalization conditi®+T=1 in the
or the reflected wave amplitude. Using the normalizationform
condition satisfied by the tunnelling coefficients, both coef-
ficients can be determined. 1 R

The complex contour should be chosen so that singulari- TTT° 1 3.7
ties (real and complexin the potential, where the semiclas-
they contribute o the determination of the tunneling coeff. 219 then Ientg, | with RIT anda ? with L. There-
cients. Notice that this method works for the exact modefore’ the Bogoliubov coefficients are given by

icients exactly as

(3.6

functions too(as it must. An appropriate tunnelling scenario (K2 +m?)
has to be set up and the complex path method can be applied. |8)|2=e" ™= exp( _mART) ,
Such situations will be encountered below in certain gauges qEp
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(K2 +m?) w ki +m?
|a |2:e_7T)\+1: exi_— = EX+ ] )\: - 1 31
A = S NS qBo o

(3.9

o ] o ] into the differential equation fog, it reduces to the form
The transmission and reflection coefficients are time reversal

invariant and are dependent only on the engimggnitude d?¢ )

and sign. They are also independent of the direction in _d_pz_P ¢=—\¢. (.14
which the boundary conditions are applied. To obtain a dy-

namical picture of particle production, we have to interpretin this form, we see that the above differential equation has
these quantities suitably. In the present case, the followinghe form of an effective Schdinger equation with an in-
interpretation seems adequate. A purely positive frequencyerted harmonic oscillator potential and an negative energy
wave with amplitude squarg in the infinite pastt— —o,  —\. If we apply the results of Sec. A1b, we obtain the
evolves into a combination of positive and negative fre-result fortunnelling through the barrierFollowing the treat-
quency waves in the infinite future—c with the negative ment in Ref.[7] and using the results of Sec. A1 b we can
frequency waves having an amplitude squarmnd the posi- calculate the reflection and transmission coefficients exactly
tive frequency waves having an amplitude unity. The quanas

tity R/T determines the overlap between the negative fre-

quency modes in the distant future and the positive e™ 1
frequency modes in the distant pétste notation here differs R= 1re™’ T= 1re™’
from the treatment given ifi7], [5]). This is identified with
the modulus square of the Bogoliubov coefficight which where we have put=2m=g,=1 and se€,=—\ in Egs.

is the particle production per mode Using the normaliza- (A24),(A25). We cast the renormalization conditidR+T
tion condition satisfied by the Bogoliubov coefficients, _

(3.19

5 2 5 1 in the form
|ay|*—|B,|°=1, | @,|* can be calculated to beTl/Once the
Bogoliubov coefficients have been identified, the effective 1 7T
Lagrangian can be easily calculated. This derivation will not R R ! (3.16

be repeated here. We refer the reader to Fdfand Ref[7]

for the explicit calculation. Note that the particular interpre- gnd then identify the rate of particle production per mode
tation given in this case is due to its similarity with the more yjth T/R. The interpretation of particle production using the
rigourous calculation by quantum field theoretic methods. Inynnelling picture now proceeds as follows. A right moving
the next section, in which we discuss the space dependeﬂiave”ing wave of amplitude squareRLis incident on the
gauge, we will be forced to adopt a different interpretation inpotential. A fractiorT/R is transmitted through it and a wave

order to identify particle production. of unit amplitude is scattered back. The tunnelling probabil-
ity, which isT/R, is interpreted as the rate at which particles
B. Space dependent gauge are being produced by the background electric field. This

matches exactly with the expression i@, |2 given in Eq.
(3.8). With this interpretation, we recover the usual gauge
independent result.

The four vector potentiaA* giving rise to a constant
electric field in thex direction is now assumed to be of the
form

A#*=(—Eyx,0,0,0. (3.9 C. Mixed gauges

We shall now study the problem in a new set of gauges
which prove to be useful and instructivs far as the au-
thors know these gauges have not been studied in the litera-
ture before. When parameters which specify these gauges
are varied, the problem can be mapped either onto a “tun-
nelling through the barrier” or “over the barrier reflection”
system. Then, using the tunnelling description developed

The electric field isE=Eyx as before. The field satisfies
Eq. (3.2 as before. Substituting for the potenti&t from
Eqg. (3.9 into Eq. (3.2, we obtain

(92— V2= 2iqEpxd,— Q°E2x?+ m?)®=0. (3.10

We write @ in the form previously for each of these systems, the gauge invariant
_ siwtaikyy ik, result is obtained.
b=e e P(X) 311 For certain ranges of these parameters, the scalar wave
. . . . o equation can be reduced to solving a second order equation
and obtain the differential equation satisfied #as which can be converted to an effective Safinger equation.

P This equation is studied using the complex path method as in
+ +qEoX)2— K2 —m?2] =0, 3.1 Sec." II.I A and Sep. Il B. The solutions to these_effectlve
dx? [(w+gEex) + 1¢ (3.12 Schralinger equations are usually transcendental in form.
For other parameter ranges, however, the scalar field
where we have used the notatikﬁ=k§+ ki. Making the  equation reduces to fast order differential equation whose
following change of variables: solution is a combination of elementary functions. To re-
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cover the gauge invariant result, the solution and its complex d2Q q%E3p? (m?+k?)
conjugate are used to set up a tunnelling scenario from which T (32—_527 (p)=—F——=-Q(p). (3.23
the tunnelling coefficients are obtained. Then, using the tun- p 1 =0 (D1—Ep)

nelling interpretation, the gauge invariant result of particle

production is recovered The effective potential is clearly seen to be that of an in-

verted oscillator. Notice that, depending on whetmﬁ
1. Gauge type 1 <E3 or D{>E3, the problem reduces to a “tunnelling

through the barrier” problem or an “over the barrier reflec-

_ The first gauge type we consider is a simple generalizag, . hroplem respectively. Using the results of Sec. A1b
tion of the space-dependent gaugeEq. (3.9)] of the form and especially Eq(A21), the value of the quantity & is

A#=(—Eox+D4t,0,0,0, (3.17) found to be(with z=2m=1)

. : A \F K +m? 2_ 2 2_ 2
whereE, is as usual the magnitude of the electric field and 2e,=\/ —E;= sgnDi—Eg)=AsgnDi—Ep),
D, is a gauge parameter which can be positive or negative. It 91 B (3.24)
is easily verified that the above gauge type gives the same '
electric field as the pure time and space gauges did. Th@here sgng) is the sign function which is positive fox
differential equation for the scalar fiefll is >0 and negative fox<0 and\ is defined in Eq.(3.5).

2 oo o 5 . Thus, the tunnelling coefficients are given by either €6)
[0f—V+2iq(—Eox+D1t)di—q°(—Eox+D1)*+iqDy  or Eq. (3.15 depending on sgil(>—E2) but are neverthe-
+m?]d=0 (3.18 less independent db,; as expected. The tunnelling interpre-
' ' tation required to recover the standard result proceeds ac-
cordingly. Note that only th€(u) part of the full solution to
@ contributes to the transmission and reflection coefficients.
(3.19 The solutions tdQ(u) are the usual parabolic cylinder func-
' tions.
Now, consider the more interesting ca3e= + Ey with
u=Ey(t—x). The differential equation in Eq3.21) for ¢

We make a judicious choice of variables of the form
U:_EOX+D1t, U:EOX+D1t.

Notice that the coefficients in E¢3.18 are dependent only
on the variableu and not onv, y or z and so the above

equation is separable in the variablesu,y,z). Expressing reduces to
the derivatives ¢;,d,) in terms of @,,d,) and writing® in do
the form 2i(qEou—27Eg) 5
® = ek Hikazg 1w ), (3.20 +(m?+ k2 +iqEy—q?u?+2qEyyu) ¢(u)=0. (3.29
one obtains The solution is easily obtained to be
d2¢> dé \/E \/E\o iN2-12 ,
2_ g2 7 : _ 2 2\ " — LI N —iqu“/4E

(Df—E§) g7 *+2i(aDyu— (DI +EY) pw=| VEu-27\y e 0, (3.26

+(m?+k? +igD; — y*(Di—Ej) —q?u?+ 29Dy yu) with X being defined in Eq(3.13. This solution resembles

% b(U)=0. (3.21) the asymptotic forms for some of the parabolic cylinder

functions except that it isxactand is clearly a combination

. . .. of elementary functiongNotice that the solution is singular

It is easy to see from the above equation that two dIStInCBn the surface —x=2/q which is reminiscent of the be-

cases can be_ldentlfled he“?’ namg}ly,1|¢|E_0| gnd D, avior of black hole modes near the horizon. The implica-

=+ Eo. Inthe first case, the differential equation is a seconGjqng of this will be discussed in a future publicatipo

order one and the effective Schifoger equation can be ob- oqqyer the gauge invariant result in this case, notice that the

tained by eliminating the first derivative. In the second Casecomplex conjugate* (u) is also a solution. With this pair of

howeyer, the resultmg equation isfiest order dlf_ferentlal independent modes, one can apply the theory given in Sec.

equation who_se solution is an e'emem"?‘fy f“”C“Of?- Ala to set up a tunnelling problem with the appropriate
Consider first the casfDy|#[Eo|. Writing $(u) in the  p,n4ary conditions a=+c. This is most conveniently

form done by defining a new dimensionless variable
[ ab; , ¥(DI+E) } [q
u)=Q(u) exp—i uc— u =/ —
d(u)=Q(u) exp— 2(D§—E§) (Di—ES) S EOu. (3.27
(3.22

The mode functionp now becomes
and defining a new variable=u—(2yD,/q), one obtains ‘ =
the effective Schidinger equation as d(s)=(s—2y\Eylq) N2~ 12emis"4 (3.28
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with an analogous expression far*(s). We now assume whereD; andD, are arbitrary constants such tHag=D,
that the wave function is a right moving travelling wagg +D,. The magnitude and direction of the uniform electric
ass— +o while ass— —oo, it is a superposition of an inci- field is seen to be the same. It is in this gauge that,Cfeor
dent wave of unit amplitude and a reflected wave given by=D,, the mode functions have the simplest form possible.
¢, - Therefore, we have Writing out the differential equation for the scalar field
and defining new variables
¢R:C33—i)\/2—1/26i52/4 (5 +),
U:Dlt_sz, U:D1t+D2X (333
bL=(— 5)M2-112g= is2/4
and settingd =e'*vkzZe~ 17 4 (u) as before, one obtains
+C2(_S)7i}\/271/26i52/4 (S—)—oo)’ (329)
. : C M2 N2 d*¢ 2. 42,19%
whereC; andC, are the transmission and reflection ampli- (D1=D3) 7z+2i[A(D1+Dy)u—¥(D1+D3) I 5
tudes respectively. We have made the approximaton
—2y\Eo/g~s which holds in the limits— +%. Applying  +[m?+k?+iq(D;+D,)— y*(D?-D3)
the method of complex patlisee Appendix Ato rotate¢gr
about theupper complex contour(in accordance with the +2yq(D1—D2)u]é(u)=0. (3.3

semiclassical ansgtzone obtains o o )
Here too, two distinct cases can be distinguished, namely,

_ A D,#D, andD;=D, (we will discuss the cas®,=—Dj,
C,=-iCzex > (3.30  which corresponds to a “pure gauge” with zero electric field
a little latep.
Using the normalization conditiofC,|2+|Cs|2=1, we get Consider first the casb; # D,. Writing ¢ in the form
2 2
™ 1 . q , v(D1+Dj)
— 2_ - 2_ u)=exp—i us— u u)
R |C2| 1+e77)\’ T |C3| 1+e7r)\' (33]) ¢( P 2(D1_D2) (DE_DE) Q(
(3.39

which are the usual tunnelling coefficients given in Eq. . . )
(3.19. It is therefore seen that the system corresponds to "d introducing a new variabje=u—(2yD1D,/qE), one
tunnelling through the barrier problem. The interpretation, ofoPtains an effective Schednger equation as
course, follows that given in Sec. Il B. 5 o2 o by 2
For the casd®,= — E,, the modes are given by _d°Q  qEpp (m"+k7)

_ Q p)=——
dp® (Df{-D3%)? (D2-D?)
\/iu+2 \/E
Eo 4 q

An analysis similar to the casB;=+E, shows that the <D2 or D?>D?2, the problem reduces to a “tunnelling

tunnelling coefficients are the same as in E§31). This  hrough the barrier” problem or an “over the barrier reflec-
system also corresponds to tunnelling through the barrief;q,» problem respectively. Using the results of Sec. A1b

with the corresponding interpretation given in Sec. Il B re- 54 especially EA21), one finds the value of the quantity
quired in order to recover particle production. Therefore, it iszs1 to be (with A=2m=1)

seen that, for the cag®,|# |E|, the magnitude oD, de-

Q(p), (3.39

—iN2-1/2
v, (3.32

d(u)=

where we have use#,=D;+D,. This equation has the
same form as that in E43.23. Depending on whetheb?

cides the appropriate tunnelling interpretation even though it 1 K2 +m?

does not appear in the final expressions for the tunnelling 2¢,= \/:E1= - sgr(D5—D3)=\ sgn{DZ—D3).
coefficients. In contrast, for the cases= * E, the system 1 9Eo

reduces to a tunnelling through the barrier with the sign of (339
D, not playing any role in deciding the appropriate interpre-

Thus, the tunnelling coefficients are given by either 806

tation. . 2_ N2
The above considerations also work for an analogous ger" Ed-(3-19 depending on sgilf; — D) and are dependent
eralization of the time-dependent gauge of the form only on E, as expected. The tunnelling interpretation re-
quired to recover the standard result proceeds accordingly.
A#=(0,—Eot+D;x,0,0,0 (3.33 However, whenD,;=D,, the differential equation for

¢(u) reduces to
in an obvious manner and we will not repeat the discussion.

. d¢ .
2. Gauge type 2 4i(qDyu— ’)’Di)ﬁ +(m?+k%+2igD;) (u)=0
The second gauge type we consider is of the form (3.40
A#=(Dt—Dyx,D,ox—Dqt,0,0), (3.39  with the solution
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plane wave modes of the forer '“'*** (wheret and x are
(34D the Minkowski time and space coordinatdy a coordinate

2q Eo
sw=| Vg u-r\3z,
Eo 2q )
transformation.

This is the simplest mode function possible for any gauge of The solutions given in Eq3.23 and Eq.(3.41) can be

the electric field. This solution is also singular just like the obtained in a more general and elegant fashion as follows.

modes in Eq(3.26) but on the surfacé—x=1y/qg. The form  Consider the Minkowski metric expressed in theu,y,z)

of the functiong(u) clearly indicates the factor responsible coordinate system where=t—x andv =t+x:

for the nonzero tunnelling coefficients. One can, in a manner

similar to that outlined for the mode8.26), use the inde- ds’=dudy —dy*~dz’. (3.49

pendent mode functiong and ¢* to set up a tunnelling )

problem in the limitu— + . Rotating the transmitted wave ASSume a vector potential of the form

in the uppercomplex plandthis is the only contour possible

in accordance with the semiclassical ansake tunnelling A*=[g(u),h(u),0,0], (349

co_efflments are found to be those in 553-6)- The system, in where g(u) and h(u) are arbitrary functions withA#

this case, corresponds to over the barrier reflection and the AUAU AY AD) bei din th di-

interpretation required to obtain particle production follows (A%A"A,A €ing expressed In al(v.y,z) coor -

that in Sec. Il A. nate system andot in the (t,xA,y,z) system. The electric
Finally, we look at the casB,= —D,. The electric field, field is given byE=(dg(u)/u)x. Notice that they compo-

in this pure gauge, is identically zero. Solving £§.36) for ~ nent of the vector potentiah”=h(u), does not contribute to

this case, the solution fap is found to be the electric field and is a “pure” gauge function. Writing
down the scalar wave equation in the,¢,y,z) system and
B(u)=e " Nu2D1g-iquii2D; (3.42  settingd=e*wW*k%e™17 ¢(u), one obtains the general so-

lution for ¢(u) as

It is clear from the above form of that the transmission
coefficient is unity and the reflection coefficient is zero. No kf+m2 du
particle production takes place. Explicit calculations, of In(¢(u))=— 2i f qg(u)—2y
course, verify this. The tunnelling interpretation gives a null _
result in this case. I

The mixed gauge types in E3.17 and Eq.(3.34) rep- + EJ duh(u). (3.46
resent the same electric field. Hence, these gauges must be
related to the pure space and time gauges in E3%,(3.9 For the uniform electric fieldy(u) = Equ+ Cq with Cy being

by gauge transformations of the forif' =A%+ 9%f wheref ~ a constant. Both the gauges in E8.17) (with D;=E,) and
is a suitable gauge function. Choosing the base ga&dgas Ed. (3.34 (with D;=D,=Ey/2) have a similar form for
the space-dependent gauge in E319), one obtains the fol- 9g(u), but differ in the form ofh(u). To set up a tunnelling
lowing gauge functions for the two mixed gauge types: scenario the explicit form dfi(u) must be known as this will
determine whether the system is a tunnelling through the
Aaﬁﬂa:(_onjL D,t,0,0,0), barrier or an over the barrier reflection system. For more
general forms forg(u), it is clear that the gauge invariant
quantity E2— B2+ 0 which implies nonzero particle produc-
f= §D1t2, tion. This is related to the pole structure of the first term in
Eq. (3.46 and will be explored further in a future publica-
tion.
In summary, it is seen that by a judicious choice of inter-
pretation of the transmission and reflection coefficients in
f=Dytx+ E(Dltz_szz)_ (3.43 each of the two pure gauges, the standard gauge invariant
2 result can be obtained. This tunnelling interpretation works
_ in the case of the mixed gauges too with the gauge param-
The gauge transformed scalar fields in Afegauge oughtto eters deciding whether the system is an “over the barrier
be related to those in th&” gauge by a phase factel’. But  reflection” one or a “tunnelling through the barrier” one.
the solutions give in Eq3.23 (with D;=E,) and Eq.3.41)  The effective Schidinger equation that is analyzed in these
(with D;=D,=E/2) are clearly not gauge transformations gauges is expressed in suitable variables that are combina-
of the mode functions of gaud8.9) which contain parabolic tions of the usual spacetime variables. In cases where there is
cylinder functions. These modes are intrinsic to the gaugeso explicit reduction to an effective Schioger form, the
themselves and cannot be obtained by a simple gauge transxact modes themselves are used to set up a tunnelling sce-
formation of the modes of the space-dependent gauge. Thigario with the recovery of the tunnelling coefficients. The
is reminiscent of the situation in the Rindler and Minkowski two mixed gauges that were considered lend themselves to
frames. The Rindler plane wave modes of the formeasy solutions but more complicated ones may be considered
e '°7f(&) (wherer and¢ are the time and space coordinatesin a similar manner. The mode functions in E8.26 and
in the Rindler framg are not obtained from the Minkowski Eq. (3.41) are a combination of elementary functions unlike

1
- Eln(qg(U)—Zy)

A“—A%= (D t—D,x,D,x—D1t,0,0),
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the previously known modes. The tunnelling coefficients A Re
arise solely due to the presence of a facsdtM? in the
semiclassical wave functions and in the exact mode func-
tions. It is interesting to note that, in the case of black hole m()
spacetimes too, it is precisely a factor of the fosil® near A

the horizon that gives rise to the nontrivial result of Hawking B /‘
radiation. q’

In the last section, we go on to interpret particle produc-
tion by an electric field in terms of tunnelling between the c
two sectors of the Rindler spacetime. x

IV. COMPLEX PATHS INTERPRETATION OF PARTICLE

PRODUCTION IN ELECTRIC FIELD FIG. 1. AB and CD are the hyperbolic branches representing

In Sec. Ill, we noted how particle production can be cal-motion in the two disjoint Rindler sectors for a fixedThe particle
culated using the tunnelling interpretation. This interpretatunnels fromB to C and back in a circular path along the imaginary
tion gives the same result in both the space as well as thi@me-space plane. If the particle makedoops around the circle,
time dependent gauges. The spectrum of particles producéBe imaginary part of the action will ba times the value for a
by the electric field is not thermal in contrast to the spectruntndle 100p.
seen by a Rindler observer. We use the formal tunnelling
method to show, in a heuristic manner, how this particlewheret;, x; are constants. For any fixed positigrthere are
production can be obtained by tunnelling between the twdhus two disjoint trajectories corresponding to motion in the
sectors of the Rindler spacetime. two Rindler wedges.

The imaginary part of the effective Lagrangian Irglfor Let us consider the tunnelling of a particle from one
the scalar field in a constant electric field, which is related tdranch of the hyperbola to the other brarefd backin the
the probability of the system to remain in the vacuum statémaginary time coordinate(see Fig. 1 This means that the

for all time, is given by[7] particle comes back to the same spacetime point as it started
from. Choosing the positive sign in E¢4.3) (this choice
“ 1 (qE)? (— 1)t F{ m? ) gives a tunnelling probability that is exponentially damped
ImLex= 2, 5 - nl, we have
=12 (2m)%  n? qEo

4.1

) _ 20 2
wheremis the massyg is the charge ani, is the magnitude F(to,Xo:t0,Xo) jg dty(px+gEgt)*+m

of the electric field. We will derive the above expression for

Im Ly using the general arguments given in Sec. A 1. :m_z % duy1+u?
Consider the Hamilton-Jacobi equation for the motion of aEo
a particle in an electromagnetic field in €11) dimensions:
2
1oF  \2 1(oF |2 1, :iﬂjEde—l_Tz
2(&t+qA) 5| 7% qA) 5Mm =0, 4.2 o] =
m2 2
whereF is the action and\*= (A!,A*,0,0) is the four vector =i q_Ef d6 cos'(6)
potential. We have neglected the dependencE oh they 070
and z coordinates since it does not change the results. In a
time-dependent gauge, given by KEg.1), the actionF can i 7rm?
be easily solved for by using the ansdtz p,x+f(t) to T (4.5
give

ty where we have made the following changes of varialple (
F(tlaxl;tOvXO)zpx(Xl_XO)tJ dty(py+qEgt)*+m?, +qEgt)/m=u=ir and 7=sin(d). The expression for
o 4.3 exp(F) from the above equation is seen to be exactly the
' same as the exponential term in E4.1) for n=1. The same
argument can be repeated for the particle tunnelfirigmes

wherep, is the momentum of the particle in thedirection. ,
to and fro to give

The trajectory of the particle in the,k) plane is the usual
hyperbolic trajectory given by

71'm2

(o] =4

n.

(4.6

m2 2nw i
m |? Fn(toyxoito,xo):i—EJ décog(6)=
(t—ti)z—(x—xi)2=—(q—E) : (4.4 qEoJo
0
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Again, the quantity expi,) is seen to match with the expo- ods

nential part of theath term in Eq.(4.1). Therefore, the imagi- Ler=—1i J ?K(XO,XO;X.X;S)
nary part of the total effective Lagrangian can be written 0

down immediately as 1

_ Fdsfidpxg(xo,xo;sy (4.13

" 202m2)o &2

- m?
Im L= ngl (prefactoy exp — En , 4.7

We would like to evaluate the propagai@fx®,x%;s) for a
tunnelling situation where the particle tunnels from the point
where the prefactor can only be calculated using the exact’ and back in loops. Since the path integral is not well
kernel. However, the dependence of the prefacton@nd  defined for closed loops, it will have to be evaluated in some
the phase factor£1)""! present in Eq(4.1) can be de- approximate limiting procedure which is outlined below.
duced using the following arguments. Since the tunnelling potential is that of an inverted oscil-
The formal expression of the path integral kernel for thelator, we can use all the results of Sec. A 1 b with the semi-
above electric field problem, in the time dependent gauge, islassical wave functions given in Eq$A19),(A20). We
given by[7] would like to first account for the factor{(1)" that arises
when a particle tunnels from one side of the barrier to the
K(a,b;s):(a|e‘5h| b), 4.9 other and back. Consider an incident wave to the right of the
barrier and impinging on it. Using the method of complex

whereK(a,b;s) is the kernel for the particle to propagate paths, we rotate this_wave in the lower complex plgthis is .
between the spacetime poirds= (x°,x) andb=(y°,y) in a the only route possible for the same reason as that given

proper times andh is the Hamiltonian given by when rotating a right. moving travglling wave in the upper
complex plangto obtain a wave again incident on the barrier

with a (energy independentiphase factor expf/2) being
1 : 1 .
h=>(i6,—qA)(id' —qA)—5m?, (4.9  picked up(other factors dependent on the energy are also
2 2 picked up but these are not important he®&ince this wave
' is moving in the wrong direction, we assume that the particle
whereA' is the four vector potential given in E8.1) andg  that has tunnelled through has the same amplitude as the
andm are the charge and mass of the particle respectivelyotated wave but is moving away from the barrier. This just
Going over to momentum coordinates and considering thénvolves changing the sign of the argument of the exponen-
coincidence limitx=y, the kernel can be written in the form tial in the expression for the rotated wave. Rotating this left
moving wave again in the upper complex plane now, the
= dp, final wave obtained is a right moving wave with another
f —G(x%,y%s), extra phase factor of expt/2) being picked up. The total
- S phase change with respect to the incident wave is thus
(4.10 exp(m). Since this phase factor is independent of the energy,
the propagator for the tunnelling process too, after one such

i
2(2m)?

K(x%,y%x,x;8)=—

whereG(x°,y%s) is given by rotation, will pick up a phase of exif). Similarly, for n
. rotations,n taking the values 1,2,3. ., thephase acquired
G(x%,y%s)=(xe"*"|y°) (4.1)  will be expinm)=(—1)".
Therefore, the propagatgr for n loops,G,(x%x%;s), can
andH is the Hamiltonian be written as

Gn(X®,x%;5)=N(py,m,E)e" 7€' %9, (414

— 1 (?2 2 2
H==5| 5+ (PraE’+m

2 where S, (x°,x%;s) is the classical action for the tunnelling

1/ 2 process and\ is the prefactor that arises after evaluating the
=— 2| — +2E3p2+m?|, (4.1  “sum over paths.” This prefactor is not expected to depend

2\ gp? on the proper times since the tunnelling process takes place

instantaneously or on the number of rotatienso the only

with p=(t+p,/qEp). In the expression for the kernel in quantities it may depend on apg, m and E. Though the
momentum coordinates, we have integrated over the trandorm of N cannot be determined, we can obtain the constraint
verse momentum variablgs, and p,. The above Hamil- on N so as to give the correct result thereby showing the
tonian is that of an inverted harmonic oscillatpgince all ~ €xistence of such a factor. The action for the tunnelling
references t@, and p, have disappeared iH, the depen- Process can be determined by solving the Hamilton-Jacobi
dence ofF on they andz coordinates was neglected when €quation

writing down the expression for the Hamilton-Jacobi equa- ) )
tion in Eq. (4.2).] The expression for the effective Lagrang- - ‘9_8+ At) _ }(‘9_5_ Ax) _ Em2+‘9_szo (4.15
ian is then given by A EE AR 2 as '
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The solution to the above equation is action given by Eq(4.18 and taking the limits fos from 0
to o, the effective Lagrangian fon loops, L.¢(n), can be

S=—Es+pxxijdt\/(px+qEOt)2+(m2+2E). (419  Writen inthe form
i (qEy)* (-1 p( Tm? )8
———€X

——n
2 (2m)® n?

Choosing the positive sign and setting,+qEgt Len(n )_

E
=im?+ 2E sin(#), we obtain %o

27wE f‘” deN E
X ex —qun Com (px,m,E),

(4.23
For closedpaths, withé taking the values from O torpm, o
the above action can be written as where we have setth— 0,) = 2inw/2qE,. Taking the limit
E—O0, so as to obtain the correct result, and using the ex-

m?+2E
S=—Es+pX=*i f do(1+ cog20)). (4.17
2qE,

2
S = —Es+i m"+2E _ (4.18 pression fora in Eq. (4.20, we find thatN must satisfy the
n 29k, relation
We have thrown away th@,x term while retaining the 16E < d
: . ; . Px
— Esterm since the dependence on theoordinate is really lim ﬁj —N(py,,mE)=1 (4.29
E_o(mM?+2E)2) —=2m

irrelevant. Defining a new variable= i 6/2q E, and rescaling

s=as’, one obtains so that the imaginary part of the effective Lagrangianrfor

loops,Lc#(n), matches thath term in Eq.(4.1). Therefore,

in this manner, the contributions to the imaginary part of the
effective Lagrangian for the uniform electric field can be
thought of as arising from the tunnelling of particles between
the two Rindler sectors.

S,= —Eas’ +(m?+ 2E) 6. (4.19

Choosinga appropriately,S, can be cast into a form that
matches the action for a fictitious free particle in+1)
dimensions with “energy” «E and “momentum” (m?

+2E) satisfying the classical energy-momentum relation
V. CONCLUSIONS

1 : . .
E=—=(m?+2E)?, (4.20 In conclusion, we see that particle production can be ob-
2 tained in Schwarzchild-like spacetimes in the standard coor-
dinate systems without requiring the maximally extended
manifold. The method of complex paths used in ordinary
quantum mechanics is modified appropriately to produce a
prescription that regularizes the singularity in the action
(G007 a(6y—0.)2 functional and Hawking radiation is recovered as a conse-
S.(6,,0,:5)= 2 Pl _ 2 1 . (421  Quence.In the case of the electric field, particle production in
2s’ 2s different gauges has been described using the tunnelling de-
. . scription which gives a correspondence between the trans-
where §; and @, are the initial and final states of the free mission and reflection coefficients and the standard Bogoliu-
particle withs’ being the proper time takefiNote that @, R0V coefficients. The interesting feature of the mixed gauges
— 6,) =2in7/2qE,.] Substituting this into the expression for that l\)/yerg cons?je:ed was th?t thg mo?e funct|pns CIOU|d t}e
Ga(x%,x%s) in Eq. (4.14 and evaluating only the integral Cr?m Inations o eement%r]y uncﬂogs for cert?m va T]es cl)
over s in the expression for the effective Lagrangian in Eq.t e gauge parameters. The method of complex paths also

(4.13 withouttaking the limits, we obtain gives a simple interpretation of particle production in an
' 9 ' electric field as arising due to tunnelling between the two

ds disjoint sectors of the Rindler spacetime. Though we have
f —Zgn(XO,XOiS) or?ly.given a heuri;tic argument in this paper, we will explore
this issue further in a future publication.

where the particle’s “mass” is set to unity for convenience.
The above equation determines the quantitgndS,, can be
written in the form

N(p,.m, E)eme' p('“(02 61) ) ACKNOWLEDGMENT
K.S. is being supported by the Council of Scientific and
2 Industrial Research, India.
= _N(px imrE)einw—eXFxls 02 01 S))
ia( 0,— ) APPENDIX: FACETS OF TUNNELLING

(4.22 : . : : .
In this section we briefly review the basic concepts of
Notice that the prefactor to the exponential term has no desemiclassical quantum mechanics in one dimension and for-
pendence on the proper ti,seNow, we use the form for the mally describe the tunnelling process. We then apply the
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formalism to two potentials, namelyy,(x)=—x? and a. Description of the method of complex paths
V,(x)=—1/x2, and calculate the transmission and reflection

)~ Consider the motion of a particle of massin a region
coefficients for both.

characterized by the presence of a potentigk) in one
_ S _ space dimension. The problem is to calculate the transmis-
1. Semiclassical limit of quantum mechanics sion and reflection coefficients between two asymptotic re-

Consider a simple one dimensional quantum mechanicalions labeled. andR where the semiclassical approximation
system with an arbitrary potenti®(x) wherex denotes the {0 the exact wave function is valid. After identifying these
space variablésee Ref[1] for detail9. To describe the tran- '€9iONs and writing doyvn the sermclassmal wave functions,
sition of the system from one state to another, we first solv&l€finite boundary conditions are imposed. The usual bound-
the corresponding classical equations of motion and dete@rY conditions considered are that in one region, lsathe
mine the path of transition. This path is, in general, complexv@ve function is a superposition of an incident wave and a
since many processes like tunneling through a potential baféflected wave while in the second regiBnthe wave func-
rier cannot occur classically. Therefore, the transition pointion is just a transmitted wave. Then, a complex pattthe
qo Where the system formally makes the transition is a comPlane of the now complex variablg is identified fromRto
plex number determined by the classical conservation lawd: Such that(@ all along the path the semiclassical ansatz is
Then, the actior§ for the transition from some initial staie valid and(b) the reflected wave is exponentially greater than

to a final statex; given by the incident wave at least in the latter part of the path near
the regionL. The transmitted wave is then moved along the
S(X5,Xi) = S(X5 ,0g) + S(g, Xi) (A1)  path to obtain the reflected wave and thus the amplitude of

reflection is identified in terms of the transmission amplitude.
is calculated. Here$(qq,X;) is the action for the system to Having done this, the normalization condition is used, i.e.,
move from the initial state; to the transition poing, while  the sum of the modulus square of the transmission and re-
S(Xt,0o) is that to move frong to x;. The probabilityP  flection amplitudes should equal unity, to determine the ex-
for the transition to occur is given by the formula act values of the transmission and reflection coefficients.
For a given potential, the turning poindgg (or transition
points are given by solving the equation

p(do) = V2M(E—V(qy))=0, (A3)
The above formula is valid only when the argument of the

exponential is large. Further, if the potential energy has sinwherep(x) is the classical momentum of the particle &ad

gular points, these must also be considered as possible valuissthe energy of the particle. In genergly is complex. At

for go. If the position of the transition point is not unique, these points, the semiclassical ansatz is not valid since the

then it must be chosen so that the exponent in(B§) has  momentum is zero. Further, the potential can possess singu-

the smallest absolute value but still must be large enough darities. At these points too, the semiclassical approximation

that the above formula be valid. is invalid. Therefore the contour between the two regions
If the transition pointy is real, but lies in the classically should be chosen to be far away from such points. In general

inaccessible region, then the above formula gives the tranghe contour will enclose them. Therefore, the relation be-

mission coefficient for penetration through a potential bartween the transmission and reflection amplitudes is deter-

rier, while if the transition point is complex, it solves the mined by taking into account the turning points and the sin-

problem finding the over the barrier reflection coefficient.gularities of the potential.

The ~ sign in the above formula is used since the coefficient The Schrdinger equation to determine the wave function

in front of the exponential is not determined. This can bey of the particle is

determined by calculating the exact semiclassical wave func-

tions. Generally, it is desirable to find the ratios of two dif- h? d?y

ferent transitions so that this coefficient does not matter. ©2m dx?
The physics of the tunnelling and the “over the barrier”

reflection processes are very different. In the tunnelling proReferring to[1], the semiclassical wave function, in the clas-

cess, the semiclassical analysis gives a transmission coeffically allowed region wher&>V(x), is given by the for-

cient that is an exponentially small quantity with the corre-mula

sponding reflection coefficient being unity. In contrast, in the

2
PNeXF<_%Im[s(xfaQO)"'S(Qvai)] - (A2

=(E-V(X)¢. (A4)

“over the barrier” reflection process, just the reverse is ob- B 1 i d

tained. The transmission coefficient is unity while the reflec- $=Cip exp | P(x)dx

tion coefficient is an exponentially small quantity. Both these )

processes will be encountered when the electric field is stud- _1p T

ied in different gauges. +Cop Xy — 5| p(X)dx], (A5)

We will now review the method of calculating the trans-
mission and reflection coefficients for a typical quantum me-while in the classically inaccessible regions of space where
chanical problem using the method of complex paths for &<V(x), the functionp(x) is purely imaginary and the
general potential/(x). wave function is now given by the relation
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1 In the above cases the method of complex paths gives the
Y= Cllpl_”zexi{ - gf |P(X)|dX) exact transmission and reflection amplitudes. But, in certain
cases it is enough to assume that the transmission and inci-
1 dent amplitudes are equal to unity while the reflection am-
+C2|p|_llzex4 gf Ip(x)[dx]. (AB)  plitude is exponentially damped and consequently very
small. Here, the “over the barrier” reflection coefficient for
The condition on the potential for semiclassicality of theenergies large enough so that the reflection coefficient is ex-
wave function to be valid is ponentially small, has to be determined. In this case, the
conditionE>V(x) is always satisfied. Therefore, the transi-
tion pointqg at which the particle reverses its direction is the
complex root of the equatioW(gy)=E. Let qq lie in the
upper complex plane for definiteness. Now, the amplitudes
or, in another form, of the incident and transmitted waves are eqbath are set
to unity within exponential accuragyTo calculate the re-
m#|F| Y flection coefficient, the relation between the wave functions
Ip|® <1, F=- dx” (A8) far to the right of the barrier and far to the left of the barrier
must be determined. The transmitted wave can be written in
It ought to be noted that the accuracy of the semiclassicahe form
approximation is not such as to allow the superposition of
exponentially small terms over exponentially large ones. 1 i [x
Therefore, it is inapplicable in general to retain both terms in ¢//T=—exp<—f pdx), (A11)
Eqg. (A6). We will consider a few cases of interest in this \/E h)xy
paper and refer the reader(tb] for an exhaustive discussion
along with suitable illustrative examples. wherex; is any point on the real axis. We follow the varia-
Consider the case in which the semiclassical conditiorfion of ¢+ along a patiC in the upper complex plane which
(A8) holds in the regionsk— +x. As x— —ox, the wave encloses the turning poirdy. The latter part of this path
function is assumed to be a superposition of incident andnust lie far enough to the left afy so that the error in the
reflected waves and is written in the form semiclassical incident wave is less than the required small
reflected wave. Passage aroumylonly causes a change in
_12 [ the sign of the root/E—V(x) and after returning to the real
+Cop Texp - ﬁf p(x)dx |, axis, the functiony; becomes the reflected wavg,. Going
(A9 around a complex path in the lower complex plane converts
Y7 into the incident wave. Since the amplitudes of the inci-
where the incident wave has unit amplitude while the redent and transmitted waves may be regarded as equal, the
flected wave has amplitude given I§. As x—+=, the  required reflection coefficient is given by
wave function is assumed to be a right moving travelling
2 2
—exr{ hlmfcpdx

wave wR
Now we can deform the contour in any way provided it still

R_ _
T
. encloses the poing,. In particular, the contour can be de-
The method of complex paths can now be applied on th S
function (A10). The contour is chosen either in the upper Or‘?ormed to go fromx, 1o go and back. This gives

lower complex plane such that the reflected wave is always
R= exp(

d
dx

i) ‘ <1 (A7)
p(x) '

= p‘l’zexi;i—J p(x)dx

. (A12)

_Cs if d) A10
I#—\/—Bexg pdx|. (A10)

exponentially greater than the incident wave along that part
of the path near the region— — oo, If this is satisfied along
one of the contours the@, is determined in terms af5. To
carry out the above procedure however, the exact semiclagincep(x) is real everywhere, the choice gf on the real
sical wave functions as— = have to be determined. This axis is immaterial. The above formula determines the above
will be done explicitly later for the relevant cases. the barrier reflection coefficient. It must be emphasized that
A different case arises when the semiclassical ansatio apply the above formula the exponent must be large so
holds in the vicinity of the originx=0 rather than ax that 1-R is very nearly equal to unity.
=+, The boundary conditions assumed in this case are the Finally consider a situation where the amplitudes of the
same as above with the condition— replaced byx reflection and incident wave are equal. The transmission co-
—0" andx— —= by x—0". Here, the required contour is efficient is now an exponentially small quantity. This case
about the origin and is chosen to be small. But it must still becorresponds to the standard tunnelling process. The problem
large enough so that the reflected wave is much larger thais characterized by the presence of real turning points be-
the incident wave along the latter part of the contour near théween which lies the classically forbidden region where the
regionx<<0. energyE<V(x). For definiteness, let there be two real turn-

4 do
— %Imf pdx). (A13)

X1
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ing points labeledq_ and q. . The potentialV(x), in the 5
immediate vicinity of the turning points of the barrier, is p(X)=V2m(E;+9:x*)~\2mg,
assumed to be of the form

B ) ans
X+ 2g.x)° ( )

Using Eq.(A18), the semiclassical wave functions can be
(A14)  Written as follows with the following boundary conditions.
X=q. As x—, we assume that the wave function is a right mov-
- ing travelling waveyr while asx— — oo, it is a superposition
This assumption is equivalent to saying that the particle, neasf an incident wave of unit amplitude and a reflected wave
the turning points, moves in a homogeneous field. With thiggiven by ¢, . Therefore, we have
assumption, the amplitude of transmissiGy is given by

dv
E-VO)=Fo(x—0.), Fo=—,

(refer to Ref[1], p. 18)) Y= Caéi®1™ V261 €2 (£, 1 o0), (A19)
1 (a+ e\ —ieq—12a—iE202 _ gyieg— 1241 £202 _

= - P =(=§ 1% +Cy(—§)ler Y% (£——=),

C, exp( ﬁfq |p(x)|dx). (A15) L 2 (A20)

The transmission coefficient is then given b@;2. The  where we have made the definitions

above formula holds only when the exponent is large. In the

derivation above, we have assumed that the semiclassical _[2mg va 1 /m

condition holds across the entire barrier except in the imme- 1 A2 S 2_glE1'

diate vicinity of the turning points. In general, however, the

semiclassical condition need not hold over the entire exterfeollowing the variation of Eq(A19) around a semicircle of

of the barrier. The potential, for example, could drop steeplylarge radiusp in the upper half plane of the now complex

enough so that EqA14) is not valid. In these cases, the variable£, we obtain

exact semiclassical equations have to be determined before

applying the method of complex paths. The cases encoun- Co=—iCgzexp(—mey). (A22)

tered in this paper all satisfy E¢A14). ] ] , -
We now apply the above results to two potentials. Thelhe conservation of particles is expressed by the condition

first is the well known inverted harmonic oscillator potential that

Vi(x)=—g;x> with g;>0 while the other isV,(x)

=—g,/x? with g,>0. The first potential arises when the

propagation of a scalar field in a constant electric field back

ground is studied. The second potential arises when th

propagation of a scalar field in Schwarzschild-like space-

(A21)

|C3%+]Cyl?=1. (A23)

From Eq.(A22) and Eq.(A23), the transmission coefficient

times is considered in the vicinity of the horizon. 1 1
b. Application to the potential (x) = —g;x? T=1CI= 1+e 271 B 1+ e~ (LA)mZMg E,y (A24)
Consider the potential given by while the reflection coefficient is
Vi(x)=—g;x?, (A16) o (Uh)m\2mig E,
whereg; >0 is a constant. This potential is the inverted har- R= |Cz|2:1+e_(1/h)w o EL (A25)

monic oscillator potential and is discussed extensively in

many Iplac_es{ls?e f?r ex;amplél,_?,SR,Q}_. We dv‘g”. f?lllow the Note that the passage through tbaver half complex plane
semiclassical treatment given in Ret] and briefly review to determineC, is unsuitable since on the part of the path

o o i s oo RSt < < /. ahere [ h prase of e compie v
g "able &, the incident wavdfirst term in Eq.(A20)] is expo-

. The semiclassicality conditiofA8) for the above poten- nentially large compared with the reflected wave. The above
tial is . o

formula holds for all energieg;. This is because, even for
‘ negative energies, the semiclassical wave functions given in
<1, (A17) Egs. (A19),(A20) are exactly the same with the boundary

V2mlE;+ 13217 conditions being fully satisfied.
, , o If E; is large and negative, Eq(A24) gives T

wherem s the mass of the particle arfif} is its energy. The ~e~™2WGIE and thusR~1. This is in accordance with

above condition dgfinitely h.o_lds for Iarge_enodglh and for the formula in Eq(A15). To apply Eq.(A15) it is necessary
any value ofE,, either positive or negative. Therefore the_ to calculate the turning points first. The real turning points

motion of a particle moving under such a potential is semi- _ _
. rego=—|E ndq;=|E . Therefor
classical for large enougfx| and hence holds as— * . areo [Eal/g; andq, = |E,]/g,. Therefore,

Since the motion is semiclassical for larpd, we can 1 (o
e
)

QX

expand the momentum(x) as
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E
\/xz—u dx)
01

1
:eXF< - %W\/Zm/gllEﬂ) .

1 q
=exp( - —\/2mglJ’ '
h Yo

(A26)

This gives the same answer.
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_ 2mg, [ m
p(X)—\/Zm "’\/ X + 2—g2E2X.

(A31)
Notice the similarity between E¢A18) and Eq.(A31).
We will calculate the over the barrier reflection coefficient
with E,>0 and small, which will be of interest later. Using
the expansion in EqA31), the semiclassical wave functions

92
E,+ Vel

We can calculate the over the barrier reflection coefficientVith the following boundary conditions, namely, that for

using Eq.(A13) for E, large andpositive The turning points
now are given by solving the equatigqgy)=0 with the
condition thate;>V,(x) always. SinceE;>0, the turning
points areqo= *iyE1/9;. Choosing the positive sign fay,
and settingk; =0, the integral in Eq(A13) is evaluated as
follows:

q q
f *p(x)dx= Jnglf "VE g+ X2
0 0

1
=i \/2m/glElf \/1—y7
0
1
—Zim\2migsE,. (A27)
Therefore,
1
R=exp( - %m/Zm/glEl). (A28)

The above formula can also be obtained directly from Eq._ . _
(A25) by neglecting the exponential term compared to unity>€ttingT=

which means that the energy has to be large.

c. Application to the potential (x)=—g,/x?
Consider the potential given by

(A29)

whereg, is a positive constant. The potential has a singular
ity at the origin. This potential arises when the effective
Schralinger equation is calculated for Schwarzschild-like

spacetimes.
The semiclassical conditiofA8) for this potential takes
the form
h 1
SP) <1,
v2m [Ex*+ 92]3/2‘

(A30)

>0 the wave function is a right moving travelling wave
while it is a superposition of an incident wave of unit ampli-
tude and reflected wave for<0, are
Pr=Caé 2" V%€ (£>0), (A32)
¢L=(—§)_i£2+llze_i§2/2+ Cz(_g)i82+1/2ei§2/2 (§<O),
(A33)

where we have made the definitions

mE3)| ¥4 [2mg,
2—92 X, &= P

Following the variation of Eq(A32) around a small semi-
circle of radiusp<+g,/|E,| (in contrast to the potentiaf;
where the radiugp was large in the upper half complex
plane, we obtain

&= (A34)

i
CZZ CseXF{ - 7782+ ? . (A35)
|C5/2=1 andR=|C,|?, we finally obtain
R=Te 2m2=Te (M27\2MG; (A36)

Using the normalization conditioR+T=1, we obtain

1
T= 1+ e (Uh27Tmg,

and

e~ (Uh)2m\2mg,
R= 1+ e—(l/h)zm/zmgz'

(A37)

Notice that the above result is independent of the eng&rgy
and hence holds foE,<0 too. For small|x|, the lack of
dependence ok, is not too surprising since the contour is
such that it is not too close to the real turning poiggs

==+40,/|E,|. Anyway, whenE,~0", p is “large” and

where E, is the energy. It is clear that the above relationtherefore the contour is chosen to lie in the upper complex

holds for large|x|. It also holds for smallx| if y2mg,>%.
Notice that the quasiclassicality condition for smpd| is
independent of the sign and magnitude of the en&gyFor
this potential, we will be concerned only with the smjad
behavior in contrast with the potentisll,. Since the motion

plane for the same reason as given in the analysis of the
potentialV, in the previous section.

We will derive the result in Eq(A36) using Eq.(A12).
The complex turning pointg, are the roots of the equation
E,= —gzlqg whereE,>0 and therefore, the turning points

is semiclassical for smallx|, we expand the momentum areqy=*i\g,/E>==*ip,. Hence, we have to evaluate the

p(x) as

integral
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2
f pdx= \/2mE2j \/1+ ;gdx, (A38)
C c

where the contou€ encircles the poink=ip, in the upper
half complex plane. However, since there is a singularity at
the origin, we cannot deform the contour as was done when
deriving Eq.(A13). Therefore, as a means of regularization,
we modify the potential to

g
Vinod )=~ 777 2, (A39)

where the limite—0 must be taken at the end of the calcu-
lation. The turning points for the modified potential are
Xmod= * i /€2+ g, /E, while the poles of the modified poten-

PHYSICAL REVIEW D 60 024007

J’pdx—llmz\/ Ezf \/l+7p%dx

1 po/ €
=Iim2i\/2mEzef dy\/1+ ——
e—0 0 1_y
Vszzpo *
=imy2mEpo=imy2mag,. (A40)

tial are atx= *ie<X,o4. Even in this case, there is a sin- We therefore recover the result given in E436). From the
gularity on the path of integration which contributes to theabove calculation it is clear that, due to the singularity at the
integral rather than the turning point. Therefore, integratingorigin, the reflection coefficient has no contribution from the
up to +ie using the modified potential and back, we obtainturning point at all.
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