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Particle production and complex path analysis
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~Received 11 December 1998; published 14 June 1999!

This paper discusses particle production in Schwarzschild-like spacetimes and in a uniform electric field.
Both problems are approached using the method of complex path analysis which is used to describe tunnelling
processes in semiclassical quantum mechanics. Particle production in Schwarzschild-like spacetimes with a
horizon is obtained here by a new and simple semiclassical method based on the method of complex paths.
Hawking radiation is obtained in the (t,r ) coordinate system of the standard Schwarzschild metricwithout
requiring the Kruskal extension. The coordinate singularity present at the horizon manifests itself as a singu-
larity in the expression for the semiclassical propagator for a scalar field. We give a prescription whereby this
singularity is regularized with Hawking’s result being recovered. The equation satisfied by a scalar field is also
reduced to solving a one-dimensional effective Schro¨dinger equation with a potential (21/x2) near the hori-
zon. Constructing the action for a fictitious nonrelativistic particle moving in this potential and applying the
above mentioned prescription, one again recovers Hawking radiation. In the case of the electric field, standard
quantum field theoretic methods can be used to obtain particle production in a purely time-dependent gauge. In
a purely space-dependent gauge, however, the tunnelling interpretation has to be resorted to in order to recover
the previous result. We attempt, in this paper, to provide a tunnelling description using the formal method of
complex paths for both the time and space dependent gauges. The usefulness of such a common description
becomes evident when ‘‘mixed’’ gauges, which are functions of both space and time variables, are analyzed.
We report, in this paper, certain mixed gauges which have the interesting property that mode functions in these
gauges are found to be a combination ofelementaryfunctions unlike the standard modes which are transcen-
dental parabolic cylinder functions. Finally, we present an attempt to interpret particle production by the
electric field as a tunnelling process between the two sectors of the Rindler spacetime.
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I. INTRODUCTION AND SUMMARY

In this paper, we present a critical review of particle pr
duction in Schwarzschild-like spacetimes and in a unifo
electric field in Minkowski spacetime. We approach bo
problems by the method of complex paths discussed by L
dau in@1# where it is used to describe tunnelling processe
nonrelativistic semiclassical quantum mechanics. This p
erful technique will be used as the basis to provide a n
method of recovering Hawking radiation in the usu
Schwarzschild coordinates without requiring the Kruskal
tension. It will also be used to describe particle production
an electric field in different nontrivial gauges and to lin
particle production in an electric field to tunnelling process
occurring in the Rindler spacetime.

The Schwarzschild-like spacetimes we consider here
the usual black hole, the Rindler and the de Sitter spa
times. In the standard black-hole spacetime, particle prod
tion was obtained by Hartle and Hawking@2# using semiclas-
sical analysis. In this method, the semiclassical propag
for a scalar field propagating in the Schwarzschild spacet
is analytically continued in the time variablet to complex
values. This analytic continuation gives the result that
probability of emission of particles from the past horizon
not the same as the probability of absorption into the fut
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horizon. The ratio between these probabilities is of the fo

P@emission#5P@absorption#e2bE, ~1.1!

whereE is the energy of the particles andb51/8pM is the
standard Hawking temperature. The above relation is in
preted to be equivalent to a thermal distribution of partic
in analogy with that observed in any system interacting w
black body radiation. In the latter case, the probability
emission of radiation by the system is related to the proba
ity of absorption by the system by a similar relation as giv
above. In Hawking’s derivation, the Kruskal extension is
vital importance in obtaining the thermal spectrum.

In this paper, we propose an alternate derivation of Haw
ing radiationwithout using the Kruskal extension. Our moti-
vation for using the standard Schwarzschild coordina
rather than the Kruskal system are the following:~1! The
Schwarzschild spacetime is a static spacetime. It contai
global Killing vectorja and the symmetry generated by th
vector is respected in the usual Schwarzschild coordin
(t,r ). That is, the surfacest5const wheret is the Schwarzs-
child ‘‘time’’ variable has the same structure for allt since
the metric componentsgab is independent oft. Though this
Killing vector is spacelike in the region interior to the hor
zon ~and timelike in the region exterior to the horizon!, it is
still a symmetry of the system.~2! The surface area o
spheres of constant ‘‘radial’’ coordinater happen to be
4pr 2, which is that of a sphere in flat spacetime, and he
these surfaces can be used to measurer. In contrast, the
©1999 The American Physical Society07-1
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K. SRINIVASAN AND T. PADMANABHAN PHYSICAL REVIEW D 60 024007
Kruskal system is an explicitlytime-dependentspacetime
since the metric components depend on the Kruskal t
coordinate. It does not possess a global Killing vector as
ciated with surfacesu5const whereu is the Kruskal ‘‘time’’
coordinate. Indeed, the presence and structure of such a
bal Killing vector is not immediately apparent from the for
of the metric in these coordinates. Surfaces of constant ‘
dial’’ coordinate do not possess the same property that
responding surfaces in the Schwarzschild spacetime do.
ther, the sectors which contain the past horizon and the ti
reversed copy of the usual Schwarzschild spacetime
unphysical. In any realistic collapse scenario, these sec
cannot exist. The nonstatic nature of the Kruskal manif
imply that the ‘‘in’’ and ‘‘out’’ vacua cannot be the sam
and explicit particle production can take place.

The difficulty, of course, is that the standard Schwar
child coordinates possess a coordinate singularity at the
rizon. As we shall see, this bad behavior of the coordina
appears as a singularity in the expression for the semicla
cal propagator near the horizon and we have to provid
specific prescription to bypass it.This prescription gives the
same result as that obtained by Hawking and can be use
all spacetimes with a Schwarzschild-like metric. Note that
the method described above is fundamentally different fr
the usual method of calculating the Bogoliubov coefficie
for an eternal black hole given, for example, in Ref.@3#. In
Ref. @3#, appropriate linear combinations of the Schwar
child mode functions that are analytic on the full Krusk
manifold ~except at the past and future singularites ar
50) are constructed. The scalar field is then expanded
terms of these modes with the vacuum state being
Kruskal vacuum. Such an expansion provides the approp
connnection between the annihilation and creation opera
for the scalar field in the Schwarzschild and Kruskal coor
nate systems. Then, for a given time like observer in eit
the left or right Schwarzschild sector, whose vacuum stat
the Schwarzschild vacuum, the number operator is easily
culated and is found to correspond to a thermal spectrum
our method, however, the action functional is construc
using the Hamilton-Jacobi method in the appropriate coo
nates. The singularity in the action caused by the sing
behavior of the coordinate system~in the unextended
Schwarzschild coordinates! at the horizon is handled by th
prescription to obtain particle production. We also reduce
problem of the massive scalar field propagating in suc
spacetime to an effective Schro¨dinger equation which has
singular effective potential near the horizon. In this case,
singular behavior of the coordinates manifests itself as a
gularity in the potential. The nonrelativistic action for a pa
ticle moving under the influence of such a potential is co
structed and the same prescription is used to bypass
singularity. We again recover Hawking radiation.

We next consider the problem of a scalar field propag
ing in flat spacetime in an uniform electric field backgroun
The total particle production due to the presence of the e
tric field up to the one-loop approximation is correctly ca
culated by the gauge invariant method proposed
Schwinger@4#. The same problem can be reduced, in a ti
dependent gauge, to an equivalent Schro¨dinger equation with
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an inverted harmonic oscillator potential. Such an equat
can be solved exactly using the standard flat spacetime q
tum field theoretic methods. Since the problem is explici
time dependent, the vacuum state att→2` and att→` are
not the same. The Bogoliubov coefficients between the ‘‘i
and ‘‘out’’ vacua are easily calculated and the total parti
production turns out to be the same as that calculated by
Schwinger method. However, if a space dependent gaug
used to describe the same field, the vacuum state of the
remains the same for all time and hence no particle prod
tion can take place. To recover the standard result, it is u
to resort to the tunnelling interpretation. This interpretation
useful since it provides a dynamical picture of particle p
duction ~see, for example@5#! and is the only way in which
the standard gauge invariant result can be recovered in a
independent gauge.

In this paper, we attempt a tunnelling description based
the method of complex paths for both the time-depend
and time-independent gauges. This method is used to ca
late the transmission and reflection coefficients~or the tun-
nelling coefficients! for the equivalent quantum mechanic
problem. Then, an interpretation of these coefficients, in
der to explicitly obtain the standard gauge invariant resul
provided. However, the usefulness of the tunnelling desc
tion is seen when simple ‘‘mixed’’ gauges, which are fun
tions of both space and time, are considered. In some gau
the scalar wave equation can be reduced to solving effec
Schrödinger equations in suitable new variables which a
combinations of the usual spacetime coordinates. By ap
ing the method of complex paths to these Schro¨dinger equa-
tions, the tunnelling coefficients are seen to match those
tained either for the purely time or purely space depend
gauges. The gauge invariant result is now recovered u
the appropriate interpretation needed to identify the Bogo
bov coefficients. In certain other gauges, the mathema
becomes simpler and the field equation can be reduced
first order differential equation rather than an effectiv
Schrödinger equation. For such cases, the exact mode fu
tions themselves are used to set up a tunnelling scenario
the resulting tunnelling coefficients are interpreted accord
to the tunnelling interpretation to recover the gauge invari
result. The mixed gauge functions we report in this pa
have the interesting and useful property that the mode fu
tions are combinations ofelementaryfunctions. This is in
contrast to the standard modes which are transcendenta
to the presence of the parabolic cylinder functions. Th
new modes are found to be singular on the lightcone. T
property is very similar to the modes of the Schwarzsch
like spacetimes since these too are singular on the horiz

In classical theory, the action of a uniform electric fie
on a charge imparts a constant uniform acceleration to it.
spacetime metric in the rest frame of the charge is the R
dler frame. Quantum field theory, on the other hand, pred
particle production arising due to the presence of an elec
field in the spacetime. It is therefore of interest to ask
particle production is linked in some way to the presence
a Rindler frame since both are, in a sense, natural for
problem. We attempt to link particle production by a unifor
electric field with processes occuring in the Rindler frame
7-2
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PARTICLE PRODUCTION AND COMPLEX PATH ANALYSIS PHYSICAL REVIEW D60 024007
proposing an interpretation of the standard result in term
tunnelling between the two Rindler sectors. We do this i
heuristic manner and show that this tunnelling process
tween the Rindler sectors gives rise to the leading expon
tial factors in the expression for the effective Lagrangian@see
Eq. ~4.1!# @6#.

The layout of the paper is as follows. Section II conta
the semiclassical derivation of Hawking radiation witho
taking recourse to the Kruskal extension. It also contains
reduction to an effective Schro¨dinger equation and the sub
sequent recovery of Hawking radiation. Section III discus
particle production in a uniform electric field in a set of ne
and nontrivial gauges. It relies heavily on the method
complex paths outlined in the Appendix A. In Sec. IV, w
attempt to link particle production in the electric field
processes occuring in the Rindler frame.

II. PARTICLE PRODUCTION IN SPACETIMES
WITH HORIZON

Hawking’s result that a black hole radiates is essential
semiclassical result with the thermal radiation arising
cause of the presence of a horizon in the spacetime struc
We will review briefly the conventional derivation of th
thermal radiation using path integrals. Consider a patch
spacetime, which in a suitable coordinate system, has on
the following forms~we assumec51):

ds25B~r !dt22B21~r !dr22r 2
„du21 sin2~u!df2

…

~2.1!

or

ds25B~x!dt22B21~x!dx22dy22dz2, ~2.2!

whereB(r ) andB(x) are functions ofr andx respectively.
The horizon in the above spacetimes is indicated by the
face r 5r 0 (x5x0) at which B(r ) @B(x)# vanishes. We
further assume thatB8(r )5dB/dr @B8(x)5dB/dx# is fi-
nite and nonzero at the horizon. Coordinate systems of
form ~2.1! can be introduced in parts of the Schwarzsch
and de Sitter spacetimes while that of the form~2.2! with the
choice B(x)5112gx represents a Rindler frame in fla
spacetime. Given the coordinate system of Eq.~2.1! say, in
some regionR, we first verify that there is no physical sin
gularity at the horizon, which in the case of the Schwar
child black hole, is at the coordinate valuer 052M whereM
is the mass of the black hole. Having done that, we ext
the geodesics into the past and future and arrive at two
ther regions of the manifold not originally covered by t
coordinate system in Eq.~2.1! ~the Kruskal extension!. It is
now possible to show that the probability for a particle w
energyE to be lost from the regionR in relation to the
probability for a particle with energyE to be gained by the
regionR is given by the relation

Ploss5Pgaine
2bE, ~2.3!

whereb58pM . This is equivalent to assuming that the r
gion R is bathed in radiation at temperatureb21. In the
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derivation given in the paper by Hartle and Hawking@2#,
thermal radiation is derived using the semiclassical kerne
an analytic continuation in the time coordinatet to complex
values and it was shown that the probability of emiss
~loss! from the past horizon was related to absorption~gain!
into the future horizon by the relation~2.3!.

Since all the physics is contained in the (t,r ) plane@or the
(t,x) plane#, we will discuss Hawking radiation in (111)
dimensions first and show subsequently that the results
eralize naturally to (311) dimensions without modification
We first derive the semiclassical result in the (t,r ) @or (t,x)]
plane by applying a certain prescription to bypass the sin
larity encountered at the horizon. After this, we reduce
problem of the Klein-Gordon field propagating in th
Schwarzschild spacetime to an effective Schro¨dinger prob-
lem in ~111! dimensions and rederive the semiclassical
sult by using the same prescription.

A. Hawking radiation in „111… dimensions

Consider a certain patch of spacetime in~111! dimen-
sions which in a suitable coordinate system has the line
ment ~with c51)

ds25B~r !dt22B21~r !dr2, ~2.4!

whereB(r ) is an arbitrary function ofr. We assume that the
function B(r ) vanishes at somer 5r 0 with B8(r )5dB/dr
being finite and nonzero atr 0. The pointr 5r 0 indicates the
presence of a horizon. It can be easily verified that no ph
cal singularity exists at the horizon since the curvature
variants do not have a singularity on the horizon. Therefo
near the horizon, we expandB(r ) as

B~r !5B8~r 0!~r 2r 0!1O@~r 2r 0!2#5R~r 0!~r 2r 0!,
~2.5!

where it is assumed thatR(r 0)Þ0. We now use the equatio
satisfied by the minimally coupled scalar fieldF with mass
m0 propagating in the spacetime represented by the me
~2.4! to obtain the Hamilton-Jacobi equation satisfied by
action functionalS0. The semiclassical propagator can
constructed usingS0 which will be used to analyze the sin
gularity at the horizon.~We emphasize again that th
method is different from that used to compute the Bogol
bov coefficients using appropriate superpositions of mo
functions as outlined in@3#.!

The equation satisfied by the scalar field is

S h1
m0

2

\2 DF50, ~2.6!

where theh operator is to be evaluated using metric~2.4!.
Expanding the left-hand side~LHS! of equation~2.6!, one
obtains

1

B~r !

]2F

]t2 2
]

]r S B~r !
]F

]r D52
m0

2

\2 F. ~2.7!
7-3
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K. SRINIVASAN AND T. PADMANABHAN PHYSICAL REVIEW D 60 024007
The semiclassical wave functions satisfying the above eq
tion are obtained by making the standard ansatz forF which
is

F~r ,t !5expF i

\
S~r ,t !G , ~2.8!

whereS is a function which will be expanded in powers of\.
Substituting into the wave equation~2.7!, we obtain

F 1

B~r ! S ]S

]t D
2

2B~r !S ]S

]r D 2

2m0
2G1S \

i D F 1

B~r !

]2S

]t2

2B~r !
]2S

]r 2 2
dB~r !

dr

]S

]r G50. ~2.9!

ExpandingS in a power series of (\/ i ),

S~r ,t !5S0~r ,t !1S \

i DS1~r ,t !1S \

i D
2

S2~r ,t ! . . .

~2.10!

and substituting into Eq.~2.9! and neglecting terms of orde
(\/ i ) and greater, we find to the lowest order

1

B~r ! S ]S0

]t D 2

2B~r !S ]S0

]r D 2

2m0
250. ~2.11!

Equation~2.11! is just the Hamilton-Jacobi equation satisfi
by a particle of massm0 moving in the spacetime determine
by the metric~2.4!. The solution to the above equation is

S0~r ,t !52Et6E r dr

B~r !
AE22m0

2B~r !, ~2.12!

whereE is a constant and is identified with the energy. N
tice that in the case ofm050, Eq. ~2.11! can be exactly
solved with the solution

S0~r ,t;m050!5F1~ t2r * !1F2~ t1r * !, ~2.13!

where the ‘‘tortoise’’ coordinater * is defined by

r * 5E dr

B~r !
, ~2.14!

andF1 andF2 are arbitrary functions. IfF1 is chosen to be
F152Et1Er* and F2 chosen to beF252Et2Er*, then
it is clear that the solution given in Eq.~2.13! is the same as
that in Eq.~2.12! with m0 set to zero. Therefore, in the cas
m050, the semiclassical ansatz is exact. In the follow
analysis we will specialize to the casem050 for simplicity.
The casem0Þ0 will be considered later. The essential r
sults do not change in any way.

The semiclassical kernelK(r 2 ,t2 ;r 1 ,t1) for the particle
to propagate from (t1 ,r 1) to (t2 ,r 2) in the saddle point ap
proximation can be written down immediately as

K~r 2 ,t2 ;r 1 ,t1!5NexpS i

\
S0~r 2 ,t2 ;r 1 ,t1! D , ~2.15!
02400
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where S0 is the action functional satisfying the classic
Hamilton-Jacobi equation in the massless limit andN is a
suitable normalization constant.S0(r 2 ,t2 ;r 1 ,t1) is given by
the relation

S0~r 2 ,t2 ;r 1 ,t1!5S0~2,1!52E~ t22t1!6EE
r 1

r 2 dr

B~r !
.

~2.16!

The sign ambiguity~of the square root! is related to the
‘‘outgoing’’ ( ]S0 /]r .0) or ‘‘ingoing’’ ( ]S0 /]r ,0) nature
of the particle. As long as points 1 and 2, between which
transition amplitude is calculated, are on the same side of
horizon ~i.e., both are in the regionr .r 0 or in the regionr
,r 0), the integral in the action is well defined and real. B
if the points are located on opposite sides of the horizon t
the integral does not exist due to the divergence ofB21(r ) at
r 5r 0.

Therefore, in order to obtain the probability amplitude f
crossing the horizon we have to give an extra prescription
evaluating the integral@7#. Since the horizon defined b
B(r 0)50 is null we may carry out the calculation in Euclid
ean space or —equivalently—use an appropriatei e prescrip-
tion to specify the complex contour over which the integ
has to be performed aroundr 5r 0. The prescription we use is
that we should take the contour for defining the integral to
an infinitesimal semicircleabovethe pole atr 5r 0 for out-
going particles on the left of the horizon and ingoing pa
ticles on the right. Similarly, for ingoing particles on the le
and outgoing particles on the right of the horizon~which
corresponds to a time reversed situation of the previ
cases! the contour should be an infinitesimal semicirclebe-
low the pole atr 5r 0. Equivalently, this amounts to pushin
the singularity atr 5r 0 to r 5r 07 i e where the upper sign
should be chosen for outgoing particles on the left and in
ing particles on the right while the lower sign should
chosen for ingoing particles on the left and outgoing partic
on the right. For the Schwarzschild case, this amounts
adding an imaginary part to the mass sincer 052M .

The prescription outlined above has its origin and basis
the method of complex paths which is outlined in the A
pendix ~see also@1#!. This method is used to compute th
transmission and reflection coefficients in standard semic
sical quantum mechanics~and finds wide applicability in the
theory of optics! by specifying a suitable complex contou
for a given tunnelling scenario. This contour is chosen
tween two semiclassical regions~where the wave function
can be approximated using the semiclassical ansatz with
ligible error! such that the semiclassical approximation ho
all along the contour. If singularities, which represent d
tinctive features of the system under consideration,
present in the quantum system and these lie between
semiclassical regions, the appropriate complex contour c
tains useful information that decides the steady state be
ior of the system. In the black hole spacetimes considere
this section, the singularity that appears in the action fu
tional in Eq.~2.16! is directly attributable to the presence
a horizon. Since the semiclassical approximation is ap
cable on either side of the horizon and arbitrarily close to
7-4
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the complex contours needed to bypass the singularity fol
from the demand that the semiclassical approximation h
all along the contour. The type of singularity encounter
here is similar to that encountered in the one-dimensio
Schrödinger system with a potential of the form (21/x2).
The method of complex paths gives the appropriate conto
when dealing with right moving or left moving waves prop
gating across the singularity atx50. This will be further
discussed in Sec. II B@also see Appendix A 1 C where th
transmission and reflection coefficients are calculated for
(21/x2) potential using the complex paths method#.

Consider therefore, an outgoing particle (]S0 /]r .0) at
r 5r 1,r 0. The modulus square of the amplitude for this p
ticle to cross the horizon gives the probability of emission
the particle. The contribution toS0 in the ranges (r 1 ,r 0
2e) and (r 01e,r 2) is real. Therefore, choosing the conto
to lie in the upper complex plane,

S0@emission#52E lim
e→0

E
r 02e

r 01e dr

B~r !
1~real part!

5
ipE

R~r 0!
1~real part!, ~2.17!

where the minus sign in front of the integral corresponds
the initial condition that]S0 /]r .0 at r 5r 1,r 0. For the
sake of definiteness we have assumedR(r 0) in Eq. ~2.5! to
be positive, so thatB(r ),0 whenr ,r 0. ~For the case when
R,0, the answer has to be modified by a sign change.! The
same result is obtained when an ingoing particle (]S0 /]r
,0) is considered atr 5r 1,r 0. The contour for this case
must be chosen to lie in the lower complex plane. The a
plitude for this particle to cross the horizon is the same
that of the outgoing particle due to the time reversal inva
ance symmetry obeyed by the system.

Consider next, an ingoing particle (]S0 /]r ,0) at r 5r 2
.r 0. The modulus square of the amplitude for this particle
cross the horizon gives the probability of absorption of
particle into the horizon. Choosing the contour to lie in t
upper complex plane, we get

S0@absorption#52E lim
e→0

E
r 01e

r 02e dr

B~r !
1~real part!

52
ipE

R~r 0!
1~real part!. ~2.18!

The same result is obtained when an outgoing part
(]S0 /]r .0) is considered atr 5r 2.r 0. The contour for this
case should be in the lower complex plane and the amplit
for this particle to cross the horizon is the same as that of
ingoing particle due to time reversal invariance.

Taking the modulus square to obtain the probabilityP, we
get

P@emission#}expS 2
2pE

\R D ~2.19!

and
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P@absorption#}expS 2pE

\R D , ~2.20!

so that

P@emission#5expS 2
4pE

\R D P@absorption#. ~2.21!

Now time reversal invariance implies that the probability f
the emission process is the same as that for the absorp
process proceeding backwards in time andvice versa. There-
fore we must interpret the above result as saying that
probability of emission of particles is not the same as
probability of absorption of particles. In other words, if th
horizon emits particles at some time with a certain emiss
probability, the probability of absorption of particles at th
same time is different from the emission probability. Th
result shows that it is more likely for a particular region
gain particles than lose them. Further, the exponential dep
dence on the energy allows one to give a ‘‘thermal’’ inte
pretation to this result. In a system with a temperatureb21

the absorption and emission probabilities are related by

P@emission#5exp~2bE!P@absorption#. ~2.22!

Comparing Eq.~2.22! and Eq.~2.21!, we identify the tem-
perature of the horizon in terms ofR(r 0). Equation~2.21! is
based on the assumption thatR.0. If R,0 there will be a
change of sign in the equation. Incorporating both the ca
the general formula for the horizon temperature is

b215
\uRu
4p

. ~2.23!

For the Schwarzschild black hole,

B~r !5S 12
2M

r D'
1

2M
~r 22M !1O@~r 22M !2#

~2.24!

giving R5(2M )21, and the temperatureb215\/8pM . For
the de Sitter spacetime,

B~r !5~12H2r 2!'2H~H212r !522H~r 2H21!
~2.25!

giving b215\H/2p. Similarly for the Rindler spacetime

B~r !5~112gr !52g„r 1~2g!21
… ~2.26!

giving b215g\/2p. The formula for the temperature can b
used for more complicated metrics as well and gives
same results as obtained by more detailed methods.

The prescription given for handling the singularity
analogous to the analytic continuation in time proposed
Hawking @2# to derive black hole radiance. If one started o
on the left of the horizon and went around the singularityr
5r 0 by a 2p rotation instead of a rotation byp, it can be
easily shown that it has the effect of taking the Kruskal c
ordinates (v,u) to (2v,2u). A full rotation by 2p around
the singularity can be split up into two parts to give t
7-5
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amplitude for emission and subsequent absorption of a
ticle with energyE. Since the amplitudes for the two pro
cesses are not the same in the presence of a horizon
obtains the usual Hawking radiation given in Eq.~2.21! with
the value ofR(r 0) being (2M )21. This process is similar to
that given in@2# which relates the amplitudes involving th
past and future horizons. In Hawking’s paper, analytica
continuing the time variablet to t24Mip takes the Kruskal
coordinates (v,u) to (2v,2u) and since the path integra
kernel is analytic in a strip of 4Mip below the realt axis,
Hawking radiation is obtained by deforming the contour
integration appropriately. Note however—in our
approach—we did not require the Kruskal extension a
worked entirely in the(t,r ) coordinates.

Whenm0Þ0, the validity of the semiclassical ansatz mu
be verified. To do this, consider the perturbative expans
~2.10!. Retaining the terms of order\/ i and neglecting
higher order terms, one finds, upon substituting forS0 given
by the relation~2.12! and solving forS1,

S152E1t6EE1E dr

B~r !

1

AE22m0
2B~r !

2
1

4
ln„E22m0

2B~r !…, ~2.27!

whereE1 is a constant. From the above equation, it is se
that S1 has a singularity of the same order asS0 at r 5r 0.
When calculating the amplitude to cross the horizon,
contribution from the singular term just appears as a ph
factor multiplying the semiclassical kernel and is incon
quential. The nonsingular finite terms do contribute to
kernel but they contribute the same amount toS@emission#
and S@absorption# and they do not affect the relation be
tween the probabilitiesP@emission# andP@absorption#. Sub-
sequent calculation of the termsS2 , S3, and so on, show tha
all these terms have a singularity at the horizon of the sa
order as that ofS0. Their contribution to the probability am
plitude is just a set of terms multiplied by powers of\ which
can be neglected. From this we can conclude that the s
classical ansatz, in the perturbative limit, is a valid one.

The generalization to~311! dimensions is straightfor
ward. We will work with Eq. ~2.1! which is in spherical
polar coordinates. The results obtained are extendable to
~2.2! in a straightforward manner. The Klein-Gordon equ
tion, written using the metric~2.1!, is

1

B~r !

]2F

]t2 2
1

r 2

]

]r S r 2B~r !
]F

]r D2
1

r 2 sin~u!

]

]u S sin~u!
]F

u D
2

1

r 2 sin2~u!

]2F

]f252
m0

2

\2 F. ~2.28!

Since the problem is a spherically symmetric one, one
put F5C(r ,t)Yl

m(u,f) to obtain

1

B~r !

]2C

]t2 2
1

r 2

]

]r S r 2B~r !
]C

]r D1S l ~ l 11!

r 2 1
m0

2

\2 DC50.

~2.29!
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Making the ansatzC5 exp„( i /\)S(r ,t)… and substituting
into the above equation, we obtain

F 1

B~r ! S ]S

]t D
2

2B~r !S ]S

]r D 2

2m0
22

l ~ l 11!\2

r 2 G
1

\

i F 1

B~r !

]2S

]t2 2B~r !
]2S

]r 2 2
1

r 2

d~r 2B!

dr

]S

]r G50.

~2.30!

ExpandingS in a power series as in Eq.~2.10!, we obtain, to
the zeroth order in\/ i ,

S052Et6E r dr

B~r !
AE22B~r !~m0

21L2/r 2!, ~2.31!

whereL25 l ( l 11)\2 is the angular momentum. It is easy
see from the above equation that near the horizon, the p
ence of theL2 term can be neglected since it is multiplied b
B(r ). Therefore, the semiclassical result of Sec. II A follow
even in the case of~311! dimensions. The semiclassical a
satz is valid in this case as can be seen by calculating
plictly the higher order terms in the expansion forS. All
these terms have a singularity at the horizon of the sa
order as that ofS0 and they contribute to the semiclassic
propagator either as phase factors or as terms multiplied
powers of\ which are entirely negligible. Expanding th
Klein-Gordon equation forF using the metric~2.2! gives
analogous results and will not be explictly given.

B. Reduction to an effective Schro¨dinger problem
in „111… dimensions

Consider the relativistic equation for the wave functionF
in Eq. ~2.7!. We include the massm0 here but we shall see
later that it does not appear in the final result. Setting

C~r !5
e2 iEt/\

AB~r !
Q~r !, ~2.32!

we get the equation

2
d2Q~r !

dr2 2F2
B9~r !

2B~r !
1

„B8~r !…2

4B2~r !
1

E2

\2B2~r !

2
m0

2

\2B~r !GQ~r !50, ~2.33!

whereB85(dB/dr) andB95(d2B/dr2). Near the horizon,
we use the expansion ofB(r ) given in Eq.~2.5!. Neglecting
terms of order 1/(r 2r 0) as compared to terms of orde
1/(r 2r 0)2, we get, in the limit of\→0,

2
d2Q~r !

dr2 2
g

~r 2r 0!2 Q~r !50, where g5
E2

\2R2 .

~2.34!

@Notice thatm0 does not appear to the leading order in t
above equation. Very close to the horizon, the term conta
7-6
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ing the mass does not contribute significantly. Equat
~2.34! is therefore applicable to both massless and mas
scalar particles.# Making the transformationx5(r 2r 0), we
finally obtain the effective Schro¨dinger equation for the sys
tem with \52m51 with a potential (2g/x2):

2
d2Q~x!

dx2 2
g

x2 Q~x!50. ~2.35!

This potential is symmetric but singular at the originx50.
To make the analogy with the Schro¨dinger equation, we will
replace the right-hand side of Eq.~2.35! by ẼQ(x) and fi-
nally take the limit ofẼ→0. This ‘‘energy’’ Ẽ should not be
confused with the energyE of the field in the original rela-
tivistic system. We therefore consider

2
d2Q~x!

dx2 2
g

x2 Q~x!5ẼQ~x!. ~2.36!

The energy spectrum is continuous for all values ofẼ which,
for Ẽ,0, is peculiar to this potential since, for energies le
than the potential energy, the spectrum is usually discre

The semiclassical analysis follows closely the meth
adopted in Sec. II A. The action functionalA for a classical
particle moving in a potential2g/x2 satisfies the Hamilton-
Jacobi equation

]A
]t

1S ]A
]x D 2

2
g

x2 50. ~2.37!

The solution can be immediately written down as

A52Ẽt6Exdx

x
AẼx21g. ~2.38!

Equation~2.38! has an integral which is divergent if the a
tion is computed for points lying on the opposite sides of
horizonx50. Since this has a similar form to Eq.~2.12!, the
prescription used in evaluating S@emission# and
S@absorption# can be similarly used to evaluateA@emission#
andA@absorption#. The results are

A@emission#5 ipAg1~real part!,

A@absorption#52 ipAg1~real part!.
~2.39!

Constructing the semiclassical propagator as before and
ing the modulus square to obtain the probabilities for out
ing and ingoing particles, we get

P@outgoing#5 expF2
4pE

\R GP@ ingoing#. ~2.40!

The temperatureb21 for the system is the same as that
Eq. ~2.23! and one recovers the usual result.

To verify that the semiclassical analysis is valid, one m
compute the correction terms and check that these ha
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singularity of the same order as possessed byA. To do this,
consider the effective Schro¨dinger equation~2.36! with fac-
tors of \ put in:

2\2
d2Q~x!

dx2 2
g

x2 Q~x!5ẼQ~x!. ~2.41!

Putting Q(x)5 exp„iA(x)/\…, and substituting into Eq
~2.41!,

2 i\
d2A~x!

dx2 1S dA~x!

dx D 2

5Ẽ1
g

x2 . ~2.42!

ExpandingA in powers of\/ i , we get

A5A1
\

i
A11S \

i D
2

A21•••. ~2.43!

Substituting into Eq.~2.42! and proceeding as usual, we fin
thatA is given by Eq.~2.38!. The next termA1 is given by

A15gE dx

x

1

Ẽx21g
. ~2.44!

The relation forA1 also has a singularity at the origin of th
same order asA. Explicit calculation of the subsequent term
in the expansion ofA reveals that all these terms have
singularity of the same order as that ofA and therefore their
net contribution to the kernel is either as phase factors o
the exponential of finite terms multiplied by powers of\.
Therefore, we conclude as before that the semiclassical
satz is valid.

We show now that the effective Schro¨dinger equation in
~311! dimensions is the same as in Eq.~2.35!. We consider
here the reduction of the Klein-Gordon equation in spheri
polar coordinates obtained in Eq.~2.28! using metric~2.1!.
Setting

C5 exp~2 iEt/\!Yl
m~u,f!C~r ! ~2.45!

and substituting into Eq.~2.28!, we obtain

B~r !
d2C

dr2 1
1

r 2

d~r 2B!

dr

dC

dr
1S E2

\2B~r !
2

m2

\2 2
L2

\2r 2DC50.

~2.46!

Making the substitution

C5
1

Ar 2B~r !
Q~r !, ~2.47!

we get the result

2
d2Q

dr2 2F 1

B2S ~B8!2

4
1

E2

\2D2
1

B S B9

2
1

B8

r
1

m0
2

\2 1
L2

\2r 2D GQ
50, ~2.48!

whereB8 andB9 are the first and second derivatives ofB(r )
respectively. Near the horizonr 5r 0, using the expansion fo
7-7
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B(r ) given in Eq.~2.5!, it is easy to see that the 1/B2 term in
the above equation dominates over the 1/B term which can
therefore be neglected. The resulting Schro¨dinger equation is
the same as in Eq.~2.35! in the limit of \→0. It can easily
be proved that the effective Schro¨dinger equation for the
Cartesian metric~2.2! gives exactly the same result.

III. PARTICLE PRODUCTION IN A UNIFORM ELECTRIC
FIELD

We now move on to the discussion of particle product
in a uniform electric field. We study a system consisting o
minimally coupled scalar fieldF propagating in flat space
time in a uniform electric field background. The two sta
dard gauges, namely the purely time dependent and
purely space dependent gauges, are first considered and
shown how the method of complex paths outlined in App
dix A 1 a can be used to construct a viable tunnelling int
pretation in each case. The standard quantum field theo
result will not be rederived here since it is well know
~though its results are used to construct the tunnelling in
pretation!. The tunnelling description is then applied to a fe
nontrivial but simple ‘‘mixed’’ gauges which are function
of both space and time.

The method of complex paths is a useful tool used
calculate the transmission and reflection coefficients in se
classical quantum mechanics in one space dimension@1# and
we briefly summarize it here, leaving the details to the A
pendix. ~Readers unfamiliar with this approach should re
the Appendix at this juncture since those results will be u
extensively.! First two disjoint regions are identified wher
the semiclassical wave functions can be written down.@The
Schrödinger potential that will be encountered most oft
will be the inverted harmonic oscillator potential (2x2)
which has the semiclassical, disjoint, regions located ax
→6`.# Then a tunnelling scenario is set up by imposi
appropriate boundary conditions on the semiclassical w
functions in these regions. One region is assumed to con
the transmitted wave while the other contains the incid
and reflected waves. To obtain the tunnelling coefficien
the solution is analytically continued to the complex pla
and the behavior of the transmitted wave is studied alon
complex contour~with the space variable now considere
complex! joining the two regions. The contour is chose
such that the semiclassical condition is satisfied all along
contour. Rotation along the contour transforms the transm
ted wave either to the incident wave or to the reflected w
thus relating the transmission amplitude to either the incid
or the reflected wave amplitude. Using the normalizat
condition satisfied by the tunnelling coefficients, both co
ficients can be determined.

The complex contour should be chosen so that singu
ties ~real and complex! in the potential, where the semicla
sical ansatz is invalid, are avoided. If such singularites ex
they contribute to the determination of the tunnelling coe
cients. Notice that this method works for the exact mo
functions too~as it must!. An appropriate tunnelling scenari
has to be set up and the complex path method can be app
Such situations will be encountered below in certain gau
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where the explicit modes are known but the problem can
be reduced to an effective Schro¨dinger equation.

A. Time dependent gauge

The four vector potentialAm giving rise to a constan
electric field in thex direction is assumed to be of the form

Am5~0,2E0t,0,0!. ~3.1!

The electric field isE5E0x̂. The minimally coupled scala
field F propagating in flat spacetime, satisfies the Kle
Gordon equation

@~]m1 iqAm!~]m1 iqAm!1m2#F50, ~3.2!

wherem is the mass andq is the charge of the field. The
mode functions ofF can be expressed in the formF(t,x)
5 f k(t)e

ik•x where f k(t) satisfies the equation

d2

dt2
f k1@m21k'

2 1~kx1qE0t !2# f k50; k'5~ky ,kz!.

~3.3!

Introducing the variables,

t5AqE0t1
v

AqE0

, l5
k'

2 1m2

qE0
, ~3.4!

we obtain the equation

2
d2

dt2 f k2t2f k5l f k . ~3.5!

The above equation is essentially a Schro¨dinger equation in
an inverted oscillator potential with a positive ‘‘energy’’l.
Since the energy is positive, the problem is essentially
over the barrier reflectionproblem. Using the results of Sec
A 1 b, we can calculate the reflection and transmission co
ficients exactly as

R5
e2pl

11e2pl
, T5

1

11e2pl
, ~3.6!

where we have put\52m5g151 and setE15l in Eqs.
~A24!,~A25!. To identify the Bogoliubov coefficientsal and
bl , we recast the normalization conditionR1T51 in the
form

1

T
2

R

T
51 ~3.7!

and then identifyublu2 with R/T andualu2 with 1/T. There-
fore, the Bogoliubov coefficients are given by

ublu25e2pl5 expS 2
p~k'

2 1m2!

qE0
D ,
7-8
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ualu25e2pl115 expS 2
p~k'

2 1m2!

qE0
D 11.

~3.8!

The transmission and reflection coefficients are time reve
invariant and are dependent only on the energy~magnitude
and sign!. They are also independent of the direction
which the boundary conditions are applied. To obtain a
namical picture of particle production, we have to interp
these quantities suitably. In the present case, the follow
interpretation seems adequate. A purely positive freque
wave with amplitude squareT in the infinite past,t→2`,
evolves into a combination of positive and negative f
quency waves in the infinite futuret→` with the negative
frequency waves having an amplitude squareR and the posi-
tive frequency waves having an amplitude unity. The qu
tity R/T determines the overlap between the negative
quency modes in the distant future and the posit
frequency modes in the distant past~the notation here differs
from the treatment given in@7#, @5#!. This is identified with
the modulus square of the Bogoliubov coefficientbl which
is the particle production per model. Using the normaliza-
tion condition satisfied by the Bogoliubov coefficient
ualu22ublu251, ualu2 can be calculated to be 1/T. Once the
Bogoliubov coefficients have been identified, the effect
Lagrangian can be easily calculated. This derivation will n
be repeated here. We refer the reader to Ref.@5# and Ref.@7#
for the explicit calculation. Note that the particular interpr
tation given in this case is due to its similarity with the mo
rigourous calculation by quantum field theoretic methods
the next section, in which we discuss the space depen
gauge, we will be forced to adopt a different interpretation
order to identify particle production.

B. Space dependent gauge

The four vector potentialAm giving rise to a constan
electric field in thex direction is now assumed to be of th
form

Am5~2E0x,0,0,0!. ~3.9!

The electric field isE5E0x̂ as before. The fieldF satisfies
Eq. ~3.2! as before. Substituting for the potentialAm from
Eq. ~3.9! into Eq. ~3.2!, we obtain

~] t
22¹222iqE0x] t2q2E0

2x21m2!F50. ~3.10!

We write F in the form

F5e2 ivteikyy1 ikzzf~x! ~3.11!

and obtain the differential equation satisfied byf as

d2f

dx2 1@~v1qE0x!22k'
2 2m2#f50, ~3.12!

where we have used the notationk'
2 5ky

21kz
2 . Making the

following change of variables:
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r5AqE0x1
v

AqE0

, l5
k'

2 1m2

qE0
, ~3.13!

into the differential equation forf, it reduces to the form

2
d2f

dr2 2r2f52lf. ~3.14!

In this form, we see that the above differential equation h
the form of an effective Schro¨dinger equation with an in-
verted harmonic oscillator potential and an negative ene
2l. If we apply the results of Sec. A 1 b, we obtain th
result fortunnelling through the barrier. Following the treat-
ment in Ref.@7# and using the results of Sec. A 1 b we ca
calculate the reflection and transmission coefficients exa
as

R5
epl

11epl
, T5

1

11epl
, ~3.15!

where we have put\52m5g151 and setE152l in Eqs.
~A24!,~A25!. We cast the renormalization conditionR1T
51 in the form

1

R
2

T

R
51 ~3.16!

and then identify the rate of particle production per mo
with T/R. The interpretation of particle production using th
tunnelling picture now proceeds as follows. A right movin
travelling wave of amplitude square 1/R is incident on the
potential. A fractionT/R is transmitted through it and a wav
of unit amplitude is scattered back. The tunnelling probab
ity, which is T/R, is interpreted as the rate at which particl
are being produced by the background electric field. T
matches exactly with the expression forublu2 given in Eq.
~3.8!. With this interpretation, we recover the usual gau
independent result.

C. Mixed gauges

We shall now study the problem in a new set of gaug
which prove to be useful and instructive.~As far as the au-
thors know these gauges have not been studied in the lit
ture before.! When parameters which specify these gaug
are varied, the problem can be mapped either onto a ‘‘t
nelling through the barrier’’ or ‘‘over the barrier reflection
system. Then, using the tunnelling description develop
previously for each of these systems, the gauge invar
result is obtained.

For certain ranges of these parameters, the scalar w
equation can be reduced to solving a second order equa
which can be converted to an effective Schro¨dinger equation.
This equation is studied using the complex path method a
Sec. III A and Sec. III B. The solutions to these effecti
Schrödinger equations are usually transcendental in form

For other parameter ranges, however, the scalar fi
equation reduces to afirst order differential equation whos
solution is a combination of elementary functions. To r
7-9
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cover the gauge invariant result, the solution and its comp
conjugate are used to set up a tunnelling scenario from w
the tunnelling coefficients are obtained. Then, using the t
nelling interpretation, the gauge invariant result of parti
production is recovered.

1. Gauge type 1

The first gauge type we consider is a simple general
tion of the space-dependent gauge@in Eq. ~3.9!# of the form

Am5~2E0x1D1t,0,0,0!, ~3.17!

whereE0 is as usual the magnitude of the electric field a
D1 is a gauge parameter which can be positive or negativ
is easily verified that the above gauge type gives the s
electric field as the pure time and space gauges did.
differential equation for the scalar fieldF is

@] t
22¹212iq~2E0x1D1t !] t2q2~2E0x1D1t !21 iqD1

1m2#F50. ~3.18!

We make a judicious choice of variables of the form

u52E0x1D1t, v5E0x1D1t. ~3.19!

Notice that the coefficients in Eq.~3.18! are dependent only
on the variableu and not onv, y or z and so the above
equation is separable in the variables (u,v,y,z). Expressing
the derivatives (] t ,]x) in terms of (]u ,]v) and writingF in
the form

F5eikyy1 ikzze2 igvf~u!, ~3.20!

one obtains

~D1
22E0

2!
d2f

du2 12i „qD1u2g~D1
21E0

2!…
df

du

1„m21k'
2 1 iqD12g2~D1

22E0
2!2q2u212qD1gu…

3f~u!50. ~3.21!

It is easy to see from the above equation that two dist
cases can be identified here, namely,uD1uÞuE0u and D1
56E0. In the first case, the differential equation is a seco
order one and the effective Schro¨dinger equation can be ob
tained by eliminating the first derivative. In the second ca
however, the resulting equation is afirst order differential
equation whose solution is an elementary function.

Consider first the caseuD1uÞuE0u. Writing f(u) in the
form

f~u!5Q~u! exp2 i F qD1

2~D1
22E0

2!
u22

g~D1
21E0

2!

~D1
22E0

2!
uG
~3.22!

and defining a new variabler5u2(2gD1 /q), one obtains
the effective Schro¨dinger equation as
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2
d2Q

dr2 2
q2E0

2r2

~D1
22E0

2!2 Q~r!5
~m21k'

2 !

~D1
22E0

2!
Q~r!. ~3.23!

The effective potential is clearly seen to be that of an
verted oscillator. Notice that, depending on whetherD1

2

,E0
2 or D1

2.E0
2, the problem reduces to a ‘‘tunnellin

through the barrier’’ problem or an ‘‘over the barrier refle
tion’’ problem respectively. Using the results of Sec. A 1
and especially Eq.~A21!, the value of the quantity 2«1 is
found to be~with \52m51)

2«15A 1

g1
E15

k'
2 1m2

qE0
sgn~D1

22E0
2!5l sgn~D1

22E0
2!,

~3.24!

where sgn(x) is the sign function which is positive forx
.0 and negative forx,0 and l is defined in Eq.~3.5!.
Thus, the tunnelling coefficients are given by either Eq.~3.6!
or Eq. ~3.15! depending on sgn(D1

22E0
2) but are neverthe-

less independent ofD1 as expected. The tunnelling interpre
tation required to recover the standard result proceeds
cordingly. Note that only theQ(u) part of the full solution to
F contributes to the transmission and reflection coefficien
The solutions toQ(u) are the usual parabolic cylinder func
tions.

Now, consider the more interesting caseD151E0 with
u5E0(t2x). The differential equation in Eq.~3.21! for f
reduces to

2i ~qE0u22gE0
2!

df

du

1~m21k'
2 1 iqE02q2u212qE0gu!f~u!50. ~3.25!

The solution is easily obtained to be

f~u!5FA q

E0
u22gAE0

q G il/221/2

e2 iqu2/4E0, ~3.26!

with l being defined in Eq.~3.13!. This solution resembles
the asymptotic forms for some of the parabolic cylind
functions except that it isexactand is clearly a combination
of elementary functions.~Notice that the solution is singula
on the surfacet2x52g/q which is reminiscent of the be
havior of black hole modes near the horizon. The implic
tions of this will be discussed in a future publication.! To
recover the gauge invariant result in this case, notice that
complex conjugatef* (u) is also a solution. With this pair o
independent modes, one can apply the theory given in S
A 1 a to set up a tunnelling problem with the appropria
boundary conditions atu56`. This is most conveniently
done by defining a new dimensionless variable

s5A q

E0
u. ~3.27!

The mode functionf now becomes

f~s!5~s22gAE0 /q! il/221/2e2 is2/4, ~3.28!
7-10
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with an analogous expression forf* (s). We now assume
that the wave function is a right moving travelling wavefR
ass→1` while ass→2`, it is a superposition of an inci
dent wave of unit amplitude and a reflected wave given
fL . Therefore, we have

fR5C3s2 il/221/2eis2/4 ~s→1`!,

fL5~2s! il/221/2e2 is2/4

1C2~2s!2 il/221/2eis2/4 ~s→2`!, ~3.29!

whereC3 andC2 are the transmission and reflection amp
tudes respectively. We have made the approximatios
22gAE0 /q's which holds in the limits→6`. Applying
the method of complex paths~see Appendix A! to rotatefR
about theupper complex contour~in accordance with the
semiclassical ansatz!, one obtains

C252 iC3 expS pl

2 D . ~3.30!

Using the normalization conditionuC2u21uC3u251, we get

R5uC2u25
epl

11epl
, T5uC3u25

1

11epl
, ~3.31!

which are the usual tunnelling coefficients given in E
~3.15!. It is therefore seen that the system corresponds
tunnelling through the barrier problem. The interpretation,
course, follows that given in Sec. III B.

For the caseD152E0, the modes are given by

f~u!5FA q

E0
u12gAE0

q G2 il/221/2

eiqu2/4E0. ~3.32!

An analysis similar to the caseD151E0 shows that the
tunnelling coefficients are the same as in Eq.~3.31!. This
system also corresponds to tunnelling through the bar
with the corresponding interpretation given in Sec. III B r
quired in order to recover particle production. Therefore, i
seen that, for the caseuD1uÞuE0u, the magnitude ofD1 de-
cides the appropriate tunnelling interpretation even thoug
does not appear in the final expressions for the tunnel
coefficients. In contrast, for the casesD156E0, the system
reduces to a tunnelling through the barrier with the sign
D1 not playing any role in deciding the appropriate interp
tation.

The above considerations also work for an analogous g
eralization of the time-dependent gauge of the form

Am5~0,2E0t1D1x,0,0,0! ~3.33!

in an obvious manner and we will not repeat the discuss

2. Gauge type 2

The second gauge type we consider is of the form

Am5~D1t2D2x,D2x2D1t,0,0!, ~3.34!
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whereD1 and D2 are arbitrary constants such thatE05D1
1D2. The magnitude and direction of the uniform electr
field is seen to be the same. It is in this gauge that, forD1
5D2, the mode functions have the simplest form possib
Writing out the differential equation for the scalar fieldF
and defining new variables

u5D1t2D2x, v5D1t1D2x ~3.35!

and settingF5eikyy1 ikzze2 igvf(u) as before, one obtains

~D1
22D2

2!
d2f

du212i @q~D11D2!u2g~D1
21D2

2!#
df

du

1@m21k'
2 1 iq~D11D2!2g2~D1

22D2
2!

12gq~D12D2!u#f~u!50. ~3.36!

Here too, two distinct cases can be distinguished, nam
D1ÞD2 and D15D2 ~we will discuss the caseD252D1,
which corresponds to a ‘‘pure gauge’’ with zero electric fie
a little later!.

Consider first the caseD1ÞD2. Writing f in the form

f~u!5exp2 i S q

2~D12D2!
u22

g~D1
21D2

2!

~D1
22D2

2!
uDQ~u!

~3.37!

and introducing a new variabler5u2(2gD1D2 /qE0), one
obtains an effective Schro¨dinger equation as

2
d2Q

dr2 2
q2E0

2r2

~D1
22D2

2!2 Q~r!5
~m21k'

2 !

~D1
22D2

2!
Q~r!, ~3.38!

where we have usedE05D11D2. This equation has the
same form as that in Eq.~3.23!. Depending on whetherD1

2

,D2
2 or D1

2.D2
2, the problem reduces to a ‘‘tunnellin

through the barrier’’ problem or an ‘‘over the barrier refle
tion’’ problem respectively. Using the results of Sec. A 1
and especially Eq.~A21!, one finds the value of the quantit
2«1 to be ~with \52m51)

2«15A 1

g1
E15

k'
2 1m2

qE0
sgn~D1

22D2
2!5l sgn~D1

22D2
2!.

~3.39!

Thus, the tunnelling coefficients are given by either Eq.~3.6!
or Eq. ~3.15! depending on sgn(D1

22D2
2) and are dependen

only on E0 as expected. The tunnelling interpretation r
quired to recover the standard result proceeds according

However, whenD15D2, the differential equation for
f(u) reduces to

4i ~qD1u2gD1
2!

df

du
1~m21k'

2 12iqD1!f~u!50

~3.40!

with the solution
7-11
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f~u!5SA2q

E0
u2gAE0

2qD il/221/2

. ~3.41!

This is the simplest mode function possible for any gauge
the electric field. This solution is also singular just like t
modes in Eq.~3.26! but on the surfacet2x5g/q. The form
of the functionf(u) clearly indicates the factor responsib
for the nonzero tunnelling coefficients. One can, in a man
similar to that outlined for the modes~3.26!, use the inde-
pendent mode functionsf and f* to set up a tunnelling
problem in the limitu→6`. Rotating the transmitted wav
in theuppercomplex plane~this is the only contour possibl
in accordance with the semiclassical ansatz! the tunnelling
coefficients are found to be those in Eq.~3.6!. The system, in
this case, corresponds to over the barrier reflection and
interpretation required to obtain particle production follow
that in Sec. III A.

Finally, we look at the caseD252D1. The electric field,
in this pure gauge, is identically zero. Solving Eq.~3.36! for
this case, the solution forf is found to be

f~u!5e2 ilu/2gD1e2 iqu2/2D1. ~3.42!

It is clear from the above form off that the transmission
coefficient is unity and the reflection coefficient is zero. N
particle production takes place. Explicit calculations,
course, verify this. The tunnelling interpretation gives a n
result in this case.

The mixed gauge types in Eq.~3.17! and Eq.~3.34! rep-
resent the same electric field. Hence, these gauges mu
related to the pure space and time gauges in Eqs.~3.1!,~3.9!
by gauge transformations of the formÃa5Aa1]a f wheref
is a suitable gauge function. Choosing the base gaugeAa as
the space-dependent gauge in Eq.~3.9!, one obtains the fol-
lowing gauge functions for the two mixed gauge types:

Aa→Ãa5~2E0x1D1t,0,0,0!,

f 5
1

2
D1t2,

Aa→Ãa5~D1t2D2x,D2x2D1t,0,0!,

f 5D1tx1
1

2
~D1t22D2x2!. ~3.43!

The gauge transformed scalar fields in theÃa gauge ought to
be related to those in theAa gauge by a phase factorei f . But
the solutions give in Eq.~3.23! ~with D15E0) and Eq.~3.41!
~with D15D25E0/2) are clearly not gauge transformatio
of the mode functions of gauge~3.9! which contain parabolic
cylinder functions. These modes are intrinsic to the gau
themselves and cannot be obtained by a simple gauge t
formation of the modes of the space-dependent gauge.
is reminiscent of the situation in the Rindler and Minkows
frames. The Rindler plane wave modes of the fo
e2 ivt f (j) ~wheret andj are the time and space coordinat
in the Rindler frame! are not obtained from the Minkowski
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plane wave modes of the forme2 ivt1kx ~wheret andx are
the Minkowski time and space coordinates! by a coordinate
transformation.

The solutions given in Eq.~3.23! and Eq.~3.41! can be
obtained in a more general and elegant fashion as follo
Consider the Minkowski metric expressed in the (u,v,y,z)
coordinate system whereu5t2x andv5t1x:

ds25dudv2dy22dz2. ~3.44!

Assume a vector potential of the form

Am5@g~u!,h~u!,0,0#, ~3.45!

where g(u) and h(u) are arbitrary functions withAm

5(Au,Av,Ay,Az) being expressed in the (u,v,y,z) coordi-
nate system andnot in the (t,x,y,z) system. The electric
field is given byE5„]g(u)/]u…x̂. Notice that thev compo-
nent of the vector potential,Av5h(u), does not contribute to
the electric field and is a ‘‘pure’’ gauge function. Writin
down the scalar wave equation in the (u,v,y,z) system and
settingF5eikyy1 ikzze2 igvf(u), one obtains the general so
lution for f(u) as

ln„f~u!…52
k'

2 1m2

2i E du

qg~u!22g
2

1

2
ln„qg~u!22g…

1
i

2E duh~u!. ~3.46!

For the uniform electric field,g(u)5E0u1C0 with C0 being
a constant. Both the gauges in Eq.~3.17! ~with D15E0) and
Eq. ~3.34! ~with D15D25E0/2) have a similar form for
g(u), but differ in the form ofh(u). To set up a tunnelling
scenario the explicit form ofh(u) must be known as this will
determine whether the system is a tunnelling through
barrier or an over the barrier reflection system. For m
general forms forg(u), it is clear that the gauge invarian
quantityE22B2Þ0 which implies nonzero particle produc
tion. This is related to the pole structure of the first term
Eq. ~3.46! and will be explored further in a future publica
tion.

In summary, it is seen that by a judicious choice of inte
pretation of the transmission and reflection coefficients
each of the two pure gauges, the standard gauge inva
result can be obtained. This tunnelling interpretation wo
in the case of the mixed gauges too with the gauge par
eters deciding whether the system is an ‘‘over the bar
reflection’’ one or a ‘‘tunnelling through the barrier’’ one
The effective Schro¨dinger equation that is analyzed in the
gauges is expressed in suitable variables that are comb
tions of the usual spacetime variables. In cases where the
no explicit reduction to an effective Schro¨dinger form, the
exact modes themselves are used to set up a tunnelling
nario with the recovery of the tunnelling coefficients. Th
two mixed gauges that were considered lend themselve
easy solutions but more complicated ones may be consid
in a similar manner. The mode functions in Eq.~3.26! and
Eq. ~3.41! are a combination of elementary functions unli
7-12
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the previously known modes. The tunnelling coefficien
arise solely due to the presence of a factors6 il/2 in the
semiclassical wave functions and in the exact mode fu
tions. It is interesting to note that, in the case of black h
spacetimes too, it is precisely a factor of the forms6 i« near
the horizon that gives rise to the nontrivial result of Hawki
radiation.

In the last section, we go on to interpret particle produ
tion by an electric field in terms of tunnelling between t
two sectors of the Rindler spacetime.

IV. COMPLEX PATHS INTERPRETATION OF PARTICLE
PRODUCTION IN ELECTRIC FIELD

In Sec. III, we noted how particle production can be c
culated using the tunnelling interpretation. This interpre
tion gives the same result in both the space as well as
time dependent gauges. The spectrum of particles produ
by the electric field is not thermal in contrast to the spectr
seen by a Rindler observer. We use the formal tunnel
method to show, in a heuristic manner, how this parti
production can be obtained by tunnelling between the
sectors of the Rindler spacetime.

The imaginary part of the effective Lagrangian Im Leff for
the scalar field in a constant electric field, which is related
the probability of the system to remain in the vacuum st
for all time, is given by@7#

Im Leff5 (
n51

`
1

2

~qE0!2

~2p!3

~21!n11

n2
expS 2

pm2

qE0
nD ,

~4.1!

wherem is the mass,q is the charge andE0 is the magnitude
of the electric field. We will derive the above expression
Im Leff using the general arguments given in Sec. A 1.

Consider the Hamilton-Jacobi equation for the motion
a particle in an electromagnetic field in (111) dimensions:

1

2 S ]F

]t
1qAtD 2

2
1

2 S ]F

]x
2qAxD 2

2
1

2
m250, ~4.2!

whereF is the action andAm5(At,Ax,0,0) is the four vector
potential. We have neglected the dependence ofF on they
and z coordinates since it does not change the results.
time-dependent gauge, given by Eq.~3.1!, the actionF can
be easily solved for by using the ansatzF5pxx1 f (t) to
give

F~ t1 ,x1 ;t0 ,x0!5px~x12x0!6E
t0

t1
dtA~px1qE0t !21m2,

~4.3!

wherepx is the momentum of the particle in thex direction.
The trajectory of the particle in the (t,x) plane is the usua
hyperbolic trajectory given by

~ t2t i !
22~x2xi !

252S m

qE0
D 2

, ~4.4!
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wheret i , xi are constants. For any fixed positiont, there are
thus two disjoint trajectories corresponding to motion in t
two Rindler wedges.

Let us consider the tunnelling of a particle from on
branch of the hyperbola to the other branchand backin the
imaginary time coordinatet ~see Fig. 1!. This means that the
particle comes back to the same spacetime point as it sta
from. Choosing the positive sign in Eq.~4.3! ~this choice
gives a tunnelling probability that is exponentially dampe!,
we have

F~ t0 ,x0 ;t0 ,x0!5 R dtA~px1qE0t !21m2

5
m2

qE0
R duA11u2

5 i
m2

qE0
R dtA12t2

5 i
m2

qE0
E

0

2p

du cos2~u!

5
ipm2

qE0
, ~4.5!

where we have made the following changes of variablepx
1qE0t)/m5u5 i t and t5 sin(u). The expression for
exp(iF) from the above equation is seen to be exactly
same as the exponential term in Eq.~4.1! for n51. The same
argument can be repeated for the particle tunnellingn times
to and fro to give

Fn~ t0 ,x0 ;t0 ,x0!5 i
m2

qE0
E

0

2np

du cos2~u!5
ipm2

qE0
n.

~4.6!

FIG. 1. AB and CD are the hyperbolic branches representi
motion in the two disjoint Rindler sectors for a fixedt. The particle
tunnels fromB to C and back in a circular path along the imagina
time-space plane. If the particle makesn-loops around the circle,
the imaginary part of the action will ben times the value for a
single loop.
7-13
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Again, the quantity exp(iFn) is seen to match with the expo
nential part of thenth term in Eq.~4.1!. Therefore, the imagi-
nary part of the total effective Lagrangian can be writt
down immediately as

Im Leff5 (
n51

`

~prefactor! expS 2
pm2

qE0
nD , ~4.7!

where the prefactor can only be calculated using the e
kernel. However, the dependence of the prefactor onn and
the phase factor (21)n11 present in Eq.~4.1! can be de-
duced using the following arguments.

The formal expression of the path integral kernel for t
above electric field problem, in the time dependent gauge
given by @7#

K~a,b;s!5^aueishub&, ~4.8!

whereK(a,b;s) is the kernel for the particle to propaga
between the spacetime pointsa5(x0,x) andb5(y0,y) in a
proper times andh is the Hamiltonian given by

h5
1

2
~ i ] i2qAi !~ i ] i2qAi !2

1

2
m2, ~4.9!

whereAi is the four vector potential given in Eq.~3.1! andq
and m are the charge and mass of the particle respectiv
Going over to momentum coordinates and considering
coincidence limitx5y, the kernel can be written in the form

K~x0,y0;x,x;s!52
i

2~2p!2E2`

` dpx

s
G~x0,y0;s!,

~4.10!

whereG(x0,y0;s) is given by

G~x0,y0;s!5^x0ueisHuy0& ~4.11!

andH is the Hamiltonian

H52
1

2 S ]2

]t2
1~px1qE0t !21m2D

52
1

2 S ]2

]r2
1q2E0

2r21m2D , ~4.12!

with r5(t1px /qE0). In the expression for the kernel i
momentum coordinates, we have integrated over the tr
verse momentum variablespy and pz . The above Hamil-
tonian is that of an inverted harmonic oscillator.@Since all
references topy and pz have disappeared inH, the depen-
dence ofF on they and z coordinates was neglected whe
writing down the expression for the Hamilton-Jacobi equ
tion in Eq. ~4.2!.# The expression for the effective Lagran
ian is then given by
02400
ct

is

y.
e

s-

-

Leff52 i E
0

`ds

s
K~x0,x0;x,x;s!

52
1

2~2p!2E0

`ds

s2E2`

`

dpxG~x0,x0;s!. ~4.13!

We would like to evaluate the propagatorG(x0,x0;s) for a
tunnelling situation where the particle tunnels from the po
x0 and back in loops. Since the path integral is not w
defined for closed loops, it will have to be evaluated in so
approximate limiting procedure which is outlined below.

Since the tunnelling potential is that of an inverted osc
lator, we can use all the results of Sec. A 1 b with the se
classical wave functions given in Eqs.~A19!,~A20!. We
would like to first account for the factor (21)n that arises
when a particle tunnels from one side of the barrier to
other and back. Consider an incident wave to the right of
barrier and impinging on it. Using the method of compl
paths, we rotate this wave in the lower complex plane~this is
the only route possible for the same reason as that g
when rotating a right moving travelling wave in the upp
complex plane! to obtain a wave again incident on the barri
with a ~energy independent! phase factor exp(ip/2) being
picked up ~other factors dependent on the energy are a
picked up but these are not important here!. Since this wave
is moving in the wrong direction, we assume that the parti
that has tunnelled through has the same amplitude as
rotated wave but is moving away from the barrier. This ju
involves changing the sign of the argument of the expon
tial in the expression for the rotated wave. Rotating this l
moving wave again in the upper complex plane now,
final wave obtained is a right moving wave with anoth
extra phase factor of exp(ip/2) being picked up. The tota
phase change with respect to the incident wave is t
exp(ip). Since this phase factor is independent of the ene
the propagator for the tunnelling process too, after one s
rotation, will pick up a phase of exp(ip). Similarly, for n
rotations,n taking the values 1,2,3, . . . , thephase acquired
will be exp(inp)5(21)n.

Therefore, the propagatorG for n loops,Gn(x0,x0;s), can
be written as

Gn~x0,x0;s!5N~px ,m,E!einpeiSn(x0,x0;s), ~4.14!

whereSn(x0,x0;s) is the classical action for the tunnellin
process andN is the prefactor that arises after evaluating t
‘‘sum over paths.’’ This prefactor is not expected to depe
on the proper times since the tunnelling process takes pla
instantaneously or on the number of rotationsn. So the only
quantities it may depend on arepx , m and E. Though the
form of N cannot be determined, we can obtain the constra
on N so as to give the correct result thereby showing
existence of such a factor. The action for the tunnelli
process can be determined by solving the Hamilton-Jac
equation

1

2 S ]S

]t
1qAtD 2

2
1

2 S ]S

]x
2qAxD 2

2
1

2
m21

]S

]s
50. ~4.15!
7-14
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The solution to the above equation is

S52Es1pxx6E dtA~px1qE0t !21~m212E!. ~4.16!

Choosing the positive sign and settingpx1qE0t
5 iAm212E sin(u), we obtain

S52Es1pxx6 i
m212E

2qE0
E du„11 cos~2u!…. ~4.17!

For closedpaths, withu taking the values from 0 to 2np,
the above action can be written as

Sn52Es6 i
m212E

2qE0
u. ~4.18!

We have thrown away thepxx term while retaining the
2Es term since the dependence on thex coordinate is really
irrelevant. Defining a new variableū5 iu/2qE0 and rescaling
s5as8, one obtains

Sn52Eas81~m212E!ū. ~4.19!

Choosinga appropriately,Sn can be cast into a form tha
matches the action for a fictitious free particle in (111)
dimensions with ‘‘energy’’ aE and ‘‘momentum’’ (m2

12E) satisfying the classical energy-momentum relation

aE5
1

2
~m212E!2, ~4.20!

where the particle’s ‘‘mass’’ is set to unity for convenienc
The above equation determines the quantitya andSn can be
written in the form

Sn~ ū2 ,ū1 ;s!5
~ ū22 ū1!2

2s8
5

a~ū22 ū1!2

2s
, ~4.21!

where ū1 and ū2 are the initial and final states of the fre
particle withs8 being the proper time taken.@Note that (ū2

2 ū1)52inp/2qE0.# Substituting this into the expression fo
Gn(x0,x0;s) in Eq. ~4.14! and evaluating only the integra
over s in the expression for the effective Lagrangian in E
~4.13! without taking the limits, we obtain

E ds

s2
Gn~x0,x0;s!

5N~px ,m,E!einpE ds

s2
expS ia~ū22 ū1!2

2s
D

52N~px ,m,E!einp
2

ia~ū22 ū1!2
exp„iSn~ ū2 ,ū1 ;s!….

~4.22!

Notice that the prefactor to the exponential term has no
pendence on the proper times. Now, we use the form for the
02400
.

.

e-

action given by Eq.~4.18! and taking the limits fors from 0
to `, the effective Lagrangian forn loops, Leff(n), can be
written in the form

Leff~n!5
i

2

~qE0!2

~2p!3

~21!n11

n2
expS 2

pm2

qE0
nD 8

a

3expS 2
2pE

qE0
nD E

2`

` dpx

2p
N~px ,m,E!,

~4.23!

where we have set (ū22 ū1)52inp/2qE0. Taking the limit
E→0, so as to obtain the correct result, and using the
pression fora in Eq. ~4.20!, we find thatN must satisfy the
relation

lim
E→0

16E

~m212E!2E2`

` dpx

2p
N~px ,m,E!51 ~4.24!

so that the imaginary part of the effective Lagrangian fon
loops,Leff(n), matches thenth term in Eq.~4.1!. Therefore,
in this manner, the contributions to the imaginary part of t
effective Lagrangian for the uniform electric field can b
thought of as arising from the tunnelling of particles betwe
the two Rindler sectors.

V. CONCLUSIONS

In conclusion, we see that particle production can be
tained in Schwarzchild-like spacetimes in the standard co
dinate systems without requiring the maximally extend
manifold. The method of complex paths used in ordina
quantum mechanics is modified appropriately to produc
prescription that regularizes the singularity in the acti
functional and Hawking radiation is recovered as a con
quence. In the case of the electric field, particle production
different gauges has been described using the tunnelling
scription which gives a correspondence between the tra
mission and reflection coefficients and the standard Bogo
bov coefficients. The interesting feature of the mixed gau
that were considered was that the mode functions could
combinations of elementary functions for certain values
the gauge parameters. The method of complex paths
gives a simple interpretation of particle production in
electric field as arising due to tunnelling between the t
disjoint sectors of the Rindler spacetime. Though we ha
only given a heuristic argument in this paper, we will explo
this issue further in a future publication.
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APPENDIX: FACETS OF TUNNELLING

In this section we briefly review the basic concepts
semiclassical quantum mechanics in one dimension and
mally describe the tunnelling process. We then apply
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formalism to two potentials, namely,V1(x)52x2 and
V2(x)521/x2, and calculate the transmission and reflect
coefficients for both.

1. Semiclassical limit of quantum mechanics

Consider a simple one dimensional quantum mechan
system with an arbitrary potentialV(x) wherex denotes the
space variable~see Ref.@1# for details!. To describe the tran
sition of the system from one state to another, we first so
the corresponding classical equations of motion and de
mine the path of transition. This path is, in general, comp
since many processes like tunneling through a potential
rier cannot occur classically. Therefore, the transition po
q0 where the system formally makes the transition is a co
plex number determined by the classical conservation la
Then, the actionS for the transition from some initial statexi
to a final statexf given by

S~xf ,xi !5S~xf ,q0!1S~q0 ,xi ! ~A1!

is calculated. Here,S(q0 ,xi) is the action for the system t
move from the initial statexi to the transition pointq0 while
S(xf ,q0) is that to move fromq0 to xf . The probabilityP
for the transition to occur is given by the formula

P;expS 2
2

\
Im@S~xf ,q0!1S~q0 ,xi !# D . ~A2!

The above formula is valid only when the argument of t
exponential is large. Further, if the potential energy has
gular points, these must also be considered as possible v
for q0. If the position of the transition point is not uniqu
then it must be chosen so that the exponent in Eq.~A2! has
the smallest absolute value but still must be large enoug
that the above formula be valid.

If the transition pointq0 is real, but lies in the classically
inaccessible region, then the above formula gives the tra
mission coefficient for penetration through a potential b
rier, while if the transition point is complex, it solves th
problem finding the over the barrier reflection coefficie
The; sign in the above formula is used since the coeffici
in front of the exponential is not determined. This can
determined by calculating the exact semiclassical wave fu
tions. Generally, it is desirable to find the ratios of two d
ferent transitions so that this coefficient does not matter.

The physics of the tunnelling and the ‘‘over the barrie
reflection processes are very different. In the tunnelling p
cess, the semiclassical analysis gives a transmission co
cient that is an exponentially small quantity with the cor
sponding reflection coefficient being unity. In contrast, in t
‘‘over the barrier’’ reflection process, just the reverse is o
tained. The transmission coefficient is unity while the refle
tion coefficient is an exponentially small quantity. Both the
processes will be encountered when the electric field is s
ied in different gauges.

We will now review the method of calculating the tran
mission and reflection coefficients for a typical quantum m
chanical problem using the method of complex paths fo
general potentialV(x).
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a. Description of the method of complex paths

Consider the motion of a particle of massm in a region
characterized by the presence of a potentialV(x) in one
space dimension. The problem is to calculate the transm
sion and reflection coefficients between two asymptotic
gions labeledL andR where the semiclassical approximatio
to the exact wave function is valid. After identifying thes
regions and writing down the semiclassical wave functio
definite boundary conditions are imposed. The usual bou
ary conditions considered are that in one region, sayL, the
wave function is a superposition of an incident wave an
reflected wave while in the second regionR, the wave func-
tion is just a transmitted wave. Then, a complex path~in the
plane of the now complex variablex) is identified fromR to
L such that~a! all along the path the semiclassical ansatz
valid and~b! the reflected wave is exponentially greater th
the incident wave at least in the latter part of the path n
the regionL. The transmitted wave is then moved along t
path to obtain the reflected wave and thus the amplitude
reflection is identified in terms of the transmission amplitud
Having done this, the normalization condition is used, i.
the sum of the modulus square of the transmission and
flection amplitudes should equal unity, to determine the
act values of the transmission and reflection coefficients.

For a given potential, the turning pointsq0 ~or transition
points! are given by solving the equation

p~q0!5A2m„E2V~q0!…50, ~A3!

wherep(x) is the classical momentum of the particle andE
is the energy of the particle. In general,q0 is complex. At
these points, the semiclassical ansatz is not valid since
momentum is zero. Further, the potential can possess si
larities. At these points too, the semiclassical approximat
is invalid. Therefore the contour between the two regio
should be chosen to be far away from such points. In gen
the contour will enclose them. Therefore, the relation b
tween the transmission and reflection amplitudes is de
mined by taking into account the turning points and the s
gularities of the potential.

The Schro¨dinger equation to determine the wave functi
c of the particle is

2
\2

2m

d2c

dx2 5„E2V~x!…c. ~A4!

Referring to@1#, the semiclassical wave function, in the cla
sically allowed region whereE.V(x), is given by the for-
mula

c5C1p21/2expS i

\E p~x!dxD
1C2p21/2expS 2

i

\E p~x!dxD , ~A5!

while in the classically inaccessible regions of space wh
E,V(x), the function p(x) is purely imaginary and the
wave function is now given by the relation
7-16
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c5C1upu21/2expS 2
1

\E up~x!udxD
1C2upu21/2expS 1

\E up~x!udxD . ~A6!

The condition on the potential for semiclassicality of t
wave function to be valid is

U d

dx S \

p~x! D U!1, ~A7!

or, in another form,

m\uFu
upu3

!1, F52
dV

dx
. ~A8!

It ought to be noted that the accuracy of the semiclass
approximation is not such as to allow the superposition
exponentially small terms over exponentially large on
Therefore, it is inapplicable in general to retain both terms
Eq. ~A6!. We will consider a few cases of interest in th
paper and refer the reader to@1# for an exhaustive discussio
along with suitable illustrative examples.

Consider the case in which the semiclassical condit
~A8! holds in the regionsx→6`. As x→2`, the wave
function is assumed to be a superposition of incident
reflected waves and is written in the form

c5p21/2expS i

\E p~x!dxD1C2p21/2expS 2
i

\E p~x!dxD ,

~A9!

where the incident wave has unit amplitude while the
flected wave has amplitude given byC2. As x→1`, the
wave function is assumed to be a right moving travelli
wave

c5
C3

Ap
expS i

\E pdxD . ~A10!

The method of complex paths can now be applied on
function ~A10!. The contour is chosen either in the upper
lower complex plane such that the reflected wave is alw
exponentially greater than the incident wave along that p
of the path near the regionx→2`. If this is satisfied along
one of the contours thenC2 is determined in terms ofC3. To
carry out the above procedure however, the exact semic
sical wave functions asx→6` have to be determined. Thi
will be done explicitly later for the relevant cases.

A different case arises when the semiclassical an
holds in the vicinity of the originx50 rather than atx
56`. The boundary conditions assumed in this case are
same as above with the conditionx→` replaced byx
→01 andx→2` by x→02. Here, the required contour i
about the origin and is chosen to be small. But it must still
large enough so that the reflected wave is much larger
the incident wave along the latter part of the contour near
regionx,0.
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In the above cases the method of complex paths gives
exact transmission and reflection amplitudes. But, in cer
cases it is enough to assume that the transmission and
dent amplitudes are equal to unity while the reflection a
plitude is exponentially damped and consequently v
small. Here, the ‘‘over the barrier’’ reflection coefficient fo
energies large enough so that the reflection coefficient is
ponentially small, has to be determined. In this case,
conditionE.V(x) is always satisfied. Therefore, the trans
tion pointq0 at which the particle reverses its direction is t
complex root of the equationV(q0)5E. Let q0 lie in the
upper complex plane for definiteness. Now, the amplitu
of the incident and transmitted waves are equal~both are set
to unity within exponential accuracy!. To calculate the re-
flection coefficient, the relation between the wave functio
far to the right of the barrier and far to the left of the barri
must be determined. The transmitted wave can be writte
the form

cT5
1

Ap
expS i

\Ex1

x

pdxD , ~A11!

wherex1 is any point on the real axis. We follow the varia
tion of cT along a pathC in the upper complex plane whic
encloses the turning pointq0. The latter part of this path
must lie far enough to the left ofq0 so that the error in the
semiclassical incident wave is less than the required sm
reflected wave. Passage aroundq0 only causes a change i
the sign of the rootAE2V(x) and after returning to the rea
axis, the functioncT becomes the reflected wavecR . Going
around a complex path in the lower complex plane conve
cT into the incident wave. Since the amplitudes of the in
dent and transmitted waves may be regarded as equal
required reflection coefficient is given by

R5UcR

cT
U2

5expS 2
2

\
ImE

C
pdxD . ~A12!

Now we can deform the contour in any way provided it s
encloses the pointq0. In particular, the contour can be de
formed to go fromx1 to q0 and back. This gives

R5expS 2
4

\
ImE

x1

q0
pdxD . ~A13!

Sincep(x) is real everywhere, the choice ofx1 on the real
axis is immaterial. The above formula determines the ab
the barrier reflection coefficient. It must be emphasized t
to apply the above formula the exponent must be large
that 12R is very nearly equal to unity.

Finally consider a situation where the amplitudes of t
reflection and incident wave are equal. The transmission
efficient is now an exponentially small quantity. This ca
corresponds to the standard tunnelling process. The prob
is characterized by the presence of real turning points
tween which lies the classically forbidden region where
energyE,V(x). For definiteness, let there be two real tur
7-17
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ing points labeledq2 and q1 . The potentialV(x), in the
immediate vicinity of the turning points of the barrier,
assumed to be of the form

E2V~x!'F0~x2q6!, F052
dV

dx U
x5q6

. ~A14!

This assumption is equivalent to saying that the particle, n
the turning points, moves in a homogeneous field. With t
assumption, the amplitude of transmissionC3 is given by
~refer to Ref.@1#, p. 181!

C35expS 2
1

\Eq2

q1

up~x!udxD . ~A15!

The transmission coefficient is then given byuC3u2. The
above formula holds only when the exponent is large. In
derivation above, we have assumed that the semiclas
condition holds across the entire barrier except in the imm
diate vicinity of the turning points. In general, however, t
semiclassical condition need not hold over the entire ex
of the barrier. The potential, for example, could drop stee
enough so that Eq.~A14! is not valid. In these cases, th
exact semiclassical equations have to be determined be
applying the method of complex paths. The cases enco
tered in this paper all satisfy Eq.~A14!.

We now apply the above results to two potentials. T
first is the well known inverted harmonic oscillator potent
V1(x)52g1x2 with g1.0 while the other is V2(x)
52g2 /x2 with g2.0. The first potential arises when th
propagation of a scalar field in a constant electric field ba
ground is studied. The second potential arises when
propagation of a scalar field in Schwarzschild-like spa
times is considered in the vicinity of the horizon.

b. Application to the potential V1„x…52g1x2

Consider the potential given by

V1~x!52g1x2, ~A16!

whereg1.0 is a constant. This potential is the inverted h
monic oscillator potential and is discussed extensively
many places~see for example@1,7,8,9#!. We will follow the
semiclassical treatment given in Ref.@1# and briefly review
the calculation of the reflection and transmission coefficie
for both the tunneling and over the barrier reflection case

The semiclassicality condition~A8! for the above poten-
tial is

U \g1x

A2m@E11g1x2#3/2U!1, ~A17!

wherem is the mass of the particle andE1 is its energy. The
above condition definitely holds for large enoughuxu and for
any value ofE1, either positive or negative. Therefore th
motion of a particle moving under such a potential is se
classical for large enoughuxu and hence holds asx→6`.

Since the motion is semiclassical for largeuxu, we can
expand the momentump(x) as
02400
ar
s

e
cal
-

nt
y

re
n-

e
l

-
e
-

-
n

ts
.

i-

p~x!5A2m~E11g1x2!'A2mg1S x1
E1

2g1xD . ~A18!

Using Eq. ~A18!, the semiclassical wave functions can
written as follows with the following boundary conditions
As x→`, we assume that the wave function is a right mo
ing travelling wavecR while asx→2`, it is a superposition
of an incident wave of unit amplitude and a reflected wa
given bycL . Therefore, we have

cR5C3j i«121/2ei j2/2 ~j→1`!, ~A19!

cL5~2j!2 i«121/2e2 i j2/21C2~2j! i«121/2ei j2/2 ~j→2`!,
~A20!

where we have made the definitions

j5S 2mg1

\2 D 1/4

x, «15
1

\
A m

2g1
E1 . ~A21!

Following the variation of Eq.~A19! around a semicircle of
large radiusr in the upper half plane of the now complex
variablej, we obtain

C252 iC3exp~2p«1!. ~A22!

The conservation of particles is expressed by the condi
that

uC3u21uC2u251. ~A23!

From Eq.~A22! and Eq.~A23!, the transmission coefficien
is

T5uC3u25
1

11e22p«1
5

1

11e2(1/\)pA2m/g1E1
, ~A24!

while the reflection coefficient is

R5uC2u25
e2~1/\!pA2m/g1E1

11e2~1/\!pA2m/g1E1
. ~A25!

Note that the passage through thelower half complex plane
to determineC2 is unsuitable since on the part of the pa
2p,f,2p/2, wheref is the phase of the complex var
able j, the incident wave@first term in Eq.~A20!# is expo-
nentially large compared with the reflected wave. The ab
formula holds for all energiesE1. This is because, even fo
negative energies, the semiclassical wave functions give
Eqs. ~A19!,~A20! are exactly the same with the bounda
conditions being fully satisfied.

If E1 is large and negative, Eq.~A24! gives T
'e2pA2m/g1uE1u/\ and thusR;1. This is in accordance with
the formula in Eq.~A15!. To apply Eq.~A15! it is necessary
to calculate the turning points first. The real turning poin
areq052AuE1u/g1 andq15AuE1u/g1. Therefore,

C35expS 2
1

\Eq0

q1
up~x!udxD
7-18
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5expS 2
1

\
A2mg1E

q0

q1UAx22
uE1u
g1

UdxD
5expS 2

1

2\
pA2m/g1uE1u D .

~A26!

This gives the same answer.
We can calculate the over the barrier reflection coeffici

using Eq.~A13! for E1 large andpositive. The turning points
now are given by solving the equationp(q0)50 with the
condition thatE1.V1(x) always. SinceE1.0, the turning
points areq056 iAE1 /g1. Choosing the positive sign forq0
and settingx150, the integral in Eq.~A13! is evaluated as
follows:

E
0

q0
p~x!dx5A2mg1E

0

q0AE1 /g11x2

5 iA2m/g1E1E
0

1
A12y2

5
1

4
ipA2m/g1E1 . ~A27!

Therefore,

R5expS 2
1

\
pA2m/g1E1D . ~A28!

The above formula can also be obtained directly from E
~A25! by neglecting the exponential term compared to un
which means that the energy has to be large.

c. Application to the potential V2„x…52g2 /x2

Consider the potential given by

V1~x!52
g2

x2 , ~A29!

whereg2 is a positive constant. The potential has a singu
ity at the origin. This potential arises when the effecti
Schrödinger equation is calculated for Schwarzschild-li
spacetimes.

The semiclassical condition~A8! for this potential takes
the form

U \g2

A2m

1

@E2x21g2#3/2U!1, ~A30!

where E2 is the energy. It is clear that the above relati
holds for largeuxu. It also holds for smalluxu if A2mg2@\.
Notice that the quasiclassicality condition for smalluxu is
independent of the sign and magnitude of the energyE2. For
this potential, we will be concerned only with the smalluxu
behavior in contrast with the potentialV1. Since the motion
is semiclassical for smalluxu, we expand the momentum
p(x) as
02400
t
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p~x!5A2mS E21
g2

x2D'A2mg2

x
1A m

2g2
E2x.

~A31!

Notice the similarity between Eq.~A18! and Eq.~A31!.
We will calculate the over the barrier reflection coefficie

with E2.0 and small, which will be of interest later. Usin
the expansion in Eq.~A31!, the semiclassical wave function
with the following boundary conditions, namely, that forx
.0 the wave function is a right moving travelling wav
while it is a superposition of an incident wave of unit amp
tude and reflected wave forx,0, are

cR5C3j i«211/2ei j2/2 ~j.0!, ~A32!

cL5~2j!2 i«211/2e2 i j2/21C2~2j! i«211/2ei j2/2 ~j,0!,
~A33!

where we have made the definitions

j5S mE2
2

2g2
D 1/4

x, «25A2mg2

\
. ~A34!

Following the variation of Eq.~A32! around a small semi-
circle of radiusr,Ag2 /uE2u ~in contrast to the potentialV1
where the radiusr was large! in the upper half complex
plane, we obtain

C25C3expS 2p«21
ip

2 D . ~A35!

SettingT5uC3u251 andR5uC2u2, we finally obtain

R5Te22p«25Te2(1/\)2pA2mg2. ~A36!

Using the normalization conditionR1T51, we obtain

T5
1

11e2(1/\)2pA2mg2

and

R5
e2~1/\!2pA2mg2

11e2~1/\)2pA2mg2
. ~A37!

Notice that the above result is independent of the energyE2
and hence holds forE2,0 too. For smalluxu, the lack of
dependence onE2 is not too surprising since the contour
such that it is not too close to the real turning pointsq0

56Ag2 /uE2u. Anyway, whenE2;01, r is ‘‘large’’ and
therefore the contour is chosen to lie in the upper comp
plane for the same reason as given in the analysis of
potentialV1 in the previous section.

We will derive the result in Eq.~A36! using Eq.~A12!.
The complex turning pointsq0 are the roots of the equatio
E252g2 /q0

2 whereE2.0 and therefore, the turning point
areq056 iAg2 /E256 ip0. Hence, we have to evaluate th
integral
7-19
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E
C

pdx5A2mE2E
C
A11

p0
2

x2dx, ~A38!

where the contourC encircles the pointx5 ip0 in the upper
half complex plane. However, since there is a singularity
the origin, we cannot deform the contour as was done w
deriving Eq.~A13!. Therefore, as a means of regularizatio
we modify the potential to

Vmod~x!52
g2

x21e2 , ~A39!

where the limite→0 must be taken at the end of the calc
lation. The turning points for the modified potential a
xmod56 iAe21g2 /E2 while the poles of the modified poten
tial are atx56 i e,xmod. Even in this case, there is a sin
gularity on the path of integration which contributes to t
integral rather than the turning point. Therefore, integrat
up to 1 i e using the modified potential and back, we obta
-
2

d

02400
t
n

,

g

E
C

pdx5 lim
e→0

2A2mE2E
0

i eA11
p0

2

x21e2dx

5 lim
e→0

2iA2mE2eE
0

1

dyA11
p0

2/e2

12y2

'2iA2mE2p0E
0

1 dy

A12y2

5 ipA2mE2p05 ipA2mg2. ~A40!

We therefore recover the result given in Eq.~A36!. From the
above calculation it is clear that, due to the singularity at
origin, the reflection coefficient has no contribution from t
turning point at all.
ep.
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