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A code that implements Einstein’s equations in the characteristic formulation in 3D has been developed and
thoroughly tested for the vacuum case. Here, we describe how to incorporate matter, in the form of a perfect
fluid, into the code. The extended code has been written and validated in a number of cases where shocks do
not form. It is stable and capable of contributing towards an understanding of a number of problems in black
hole astrophysicq4.S0556-282(99)00614-]

PACS numbd(s): 04.25.Dm, 04.30.Db

[. INTRODUCTION The most popular approach to numerical relativity has

been based on a Cauchy, rather than a characteristic, formal-

A code based on the characteristic formulation of generailsm, and a number of such codes incorporate hydrodynamics
relativity (GR) has been developed for the general 3D prob{3]. Yet the type of problem envisaged in this paper—a black
lem[1]. The code computes the gravitational field of the full hole capturing some form of star—has not been solved by

Einstein equations for a vacuum spacetime between someese codes. The reason is that current 3D Cauchy gravity
inner timelike world tubd™ and future null infinity. The code codes incorporating dynamic black holes have instability
has been tested with the inner world tuBebeing the past problems, and usually can be run for only a couple of light-

horizon of a Schwarzschild black hole, with incoming gravi- crossing times. The great advantage of characteristic numeri-
tational radiation scattered off the black hole. The tests havgg| relativity is that it has been demonstrated to be long-term
included both linear and highly nonlinear regimes, and showstaple[1], even in the presence of a dynamic event horizon
the robustness of the characteristic formulation in the studys) additionally, it has recently been shown that a high reso-
of radiative problems. Here we consider whether there argion shock-capturing version of the fluid equations can be
real astrophysical problems to which the characteristic codgccesstully implemented in the characteristic formulation

alone could be applied. : :
; under the assumption of spherical symmé¢&i The robust-
Astrophysical problems that can be tackled by the COdeﬁess of the numerical implementation of the characteristic

require the existence of a natural inner world tubeon . . . o
which boundary data are known. This could be the past hof_ormulatlon and the promising results obtained(&] indi

rizon in the inner region of a known stationary black hole ofCate th&.lt a chargcteristic evoluti(_)n is a prime candidate for
Kerr-Newman type, with the matter evolving in the Outercomput!ng a Va“‘?ty of astrophysmal Processes.
region. However, boundary and initial data for the character- 1€ incorporation of matter into a characteristic code has
istic formulation are presently known only in the Schwarzs-2€€n discussed previously. An axisymmetric code with mat-
child case and in some muiti-hole vacuum spacetifigds (" has been used to consider a problem in cosmol6gy
When matter is incorporated into the code the range of pos>Pherically symmetric matter codes, which include Cauchy-
sible astrophysical applications is greatly extended. In princharacteristic matching, have been reporité@]; see also
ciple it is then possible to compute, in full nonlinear generall9]. In contrast, the present work has no symmetry require-
relativity, the gravitational field and matter flow of a black ment.
hole accreting dust and gas, and of a black hole capturing The paper restricts attention to matter in the form of a
polytropic or more realistic approximations to neutron starsperfect fluid, by which we mean that the pressprés a
This paper does not solve any of these important astrophysfunction only of the densityp. In Sec. Il we summarize
cal problems, but rather it lays the groundwork for doing soknown results, and introduce our notation, for the character-
by demonstrating the stability and convergence of a generastic formalism and perfect fluid evolution. Next, in Sec. IlI
3D characteristic code for matter plus gravity. we derive the fluid evolution equations in our characteristic
The goal of this work is to establistability of a charac- coordinates; we also find the additional tertasmpared to
teristic evolution combining matter and gravity. Our matterthe vacuum cagehat appear in Einstein’'s equations. Section
code itself is rather simplistic and would not be expected tdV describes details of the numerical implementation of the
yield accurate results in cases of shock formation. The resulffuid evolution equationgthe additional terms in Einstein’s
of this paper are intended to show the feasibility of a charequations are straightforward to cod&he resulting matter
acteristic gravity and matter evolution, which ultimately plus gravity code has been run on a variety of test problems,
would incorporate a hydrodynamic code capable of an accuand the results are described in Sec. V. In all cases, the code
rate handling of shocks. is found to be stable and convergent. We end with a conclu-

0556-2821/99/6(2)/024005%11)/$15.00 60 024005-1 ©1999 The American Physical Society



BISHOP, GtMEZ, LEHNER, MAHARAJ, AND WINICOUR

sion (Sec. V), and an appendix that contains expressions

from Sec. Il that are rather long.

II. FORMALISM

A. Null cone: Previous results

PHYSICAL REVIEW D60 024005

U=U%s, Q=Qad% (8
as well as thgcomplex differential eth operator® and
(see[16] for full details).

The Einstein equationS,,=0 decompose into hypersur-
face equations, evolution equations and conservation laws.

The formalism for the numerical evolution of Einstein’s Naturally, the equations will require additional terms to al-

equations, in null cone coordinates, is well knoMri0] (see

low for the presence of matter, and the extended equations

also[11-14). Nevertheless, for the sake of completenessare given later in Sec. Ill B. Here we just note that the hy-
we give here a summary of the formalism, including thepersurface equations form a hierarchical set {8,
necessary equations. We will use the notation and language2qQ) ,, U, andW,, and the evolution equation is an ex-

of [1].

We use coordinates based upon a family of outgoing nul

hypersurfaces. We let label these hypersurfaces) (A

=2,3), label the null rays andbe a surface area coordinate.
In the resultingx®= (u,r,x*) coordinates, the metric takes

the Bondi-Sachs forril4,15

d=—

e?h —r2h,gUAUB

W
1+—
r

x du?—2e?dudr—2r2h,gUBdudx®

+r2hgdxAdxB, )

whereW is related to the more usual Bondi-Sachs variable

by V=r+W, and where h"Bhgc=62 and dethpg)

=det(gag), With gag @ unit sphere metric. In analyzing Ein-

stein’s equations, we also use the intermediate variable

QAzrze*ZBhABUYBr . (2)

We work in stereographic coordinated'=(q,p) for
which the unit sphere metric is

4
qAdeAde=§(dq2+dp2), 3

where
P=1+q%+p? (4)

We also introduce a complex dyag defined by

P
qA:g(l,l) (5

with i =+/—1. For an arbitrary Bondi-Sachs metrlt,z can
then be represented by its dyad component

J=hapa"q®/2, (6)

with the spherically symmetric case characterizedJsy0.
The full nonlinearh 4 is uniquely determined by, since the

Pression for ¢J) -
The remaining independent equations are the conservation
conditions, but they will not be needed here.

The null cone problem is normally formulated in the re-
gion of spacetime between a timelike or null world tube
andZ ™, with initial dataJ given on the null con&i=0 in
this domain. Boundary data fg8, Q, U, W and J is also
required onl". The metric variables used remain regular at
Z*, and we represerif ™ on a finite grid by using a com-
pactified radial coordinate=r/(1+r).

B. Perfect fluid: Previous results

The description of a perfect fluid is well understo@dg.
[17,18). The stress-energy tensor is

Tap=(p+P)Valp+ PYap 9

wherep is the densityp is the pressure;, is the 4-velocity
andg,y, is the metric. In the cases considered here, the pres-
sure dependsnly on the density, i.e.

pP=p(p). (10
The matter evolution equations follow from the conservation
law T2, =0, and are

p,ava+ (p+ p)v?a=0, (P+ p)Ua;bUb+(5g+vavb)p,b:0-
(12)

which may be rewritten as

p.a0pg%°+ (p+P)(vap— v g?P=0 (12
MaE(P+ p)(va,b_ ngvc)vdgbd+ Pat Uavcp,bgbcz ? )
13

The numerical implementation of the fluid equations coupled
to GR has been investigated primarily within the-B or
Cauchy framework. In this formulation, the spacetime is fo-
liated by a sequence of spacelike surfaces, initial data are
given on an initial surface and the evolution equations are
used to compute the future. The numerical investigation of

determinant condition implies that the remaining dyad com+the “GR-hydro” problem started in the early 1970s by Wil-

ponent

K=hasa"q®/2 (7)

son[19] and since then it has received considerable atten-
tion. The difficulty of modeling these equations has spurred
the development of sophisticated techniques to deal with the
diverse idiosyncracies of the problem. Thus, artificial viscos-

satisfies & K2—JJ. We also introduce spin-weighted fields ity techniques, total variation diminishing flux limiters,
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;hock-capturjng schem.es, etc., are actively employgd to aid Pa=P,(PTp)p.a- (17)
in the numerical modeling; refer {&] for a recent review. ] o ) )

Another problem one faces when attempting a numerical he result of doing this is that, in the matter evolution equa-
simulation in the 3-1 formalism is that an artificial “outer tions, there is no explicit division byp(+ p) (which could be
boundary” has to be included at some radius in order to deaf€"d- From a numerical point of view, it is possible to write
with a finite grid. This introduces spurious reflections thatt€ Procedure for computing, so as to ensure its good
spoil long term evolutions. In the characteristic formulation, Pehavior in the low density limit.
on the other hand, one can use Penrose’s compactification 1€ matter evolution equations have been calculated us-
techniques to include infinity in the numerical grid. Addi- N9 MAPLE; they are rather long and are given in the Appen-
tionally, being able to access null infinity allows one to Ob_dIX. The denoml_nators are |mportant in determining whether
tain physical quantities, such as the radiation given off by thé€ré may be singular behavior, and here we note that the
system and the total mass, unambiguously. There is not 48 Of the equations is
much experience with the GR-hydro problem in the charac-

teristic formulation, but the results obtained[i] and this p UZ;F’) (18)
paper indicate that the characteristic formulation of GR will ' r3(v )2 d_P_l
be a valuable tool in the study of a variety of astrophysical Yd
problems.
1
I1l. PERFECT FLUID IN THE NULL CONE FORMALISM Viu™ 3 (d ) F1 (19)
r‘vy-—-1
A. Perfect fluid equations ! dp
In order to proceed further we represent the angular part 1
of the 4-velocity by means of the complex quantity Vangu=—5—Fv. (20)
' r U1
P
Vang= quA=§(u2+ ivg), (14 Formally, Eqs(18) and(19) could be singular itlp/dp were

to be 1, but this would correspond physically to the velocity

where theang suffix is introduced to avoid confusion with ©f sound being equal to that of light. We do not concern
the Bondi-Sachs metric variabN. The matter evolution ourselves with those cases at the moment and defer its treat-

equations are then: ment for a later work. Also, Eq$18), (19) and(20) could be
(i) Equation(12). singular if v; were to be zero; yet, starting from-1
(ii) Equation(13) in the form =v0p9%,
— AN — \%
Ml_o’ q MA_O (15) U1672E ?vl—Zvo—ZUAvA $_1, (21)

We also introduce the notation ) o )
which can never be satisfieduf,=0. Thus, from an analytic

1 dp point of view, Eqs.(18), (19) and(20) form a well-behaved
Pp= p+p dp (16 set of evolution equations.
Finally, again using the conditior 1=g2% v, , we ob-
and then write tain an expression for the remaining velocity compongyt
|
€?P(2KV angVang—IV2ng—IVZ14+ 2r2) +2rv5 (Vo — UV ang—1UVang) 22
Vo= .
0 4l) 1r2
|
B. Einstein’s equations Thus Einstein’s equations for a perfect fluid are
The introduction of matter also amends Einstein’s equa- 3p
i i i -p
tions. We write the equations as Rap=87(p+P)vavp+ Gan| P— 5
1
Rap=87| Tap— 590 bT): (23 p—P
) o2 =8| (p+P)vavyt Gan— |- (25
and note that
In the expressions below;, Ny, Ng, Ny andN; rep-
T=—(p+p)+4p=3p—p. (29 resent the nonlinear aspherical tertirsa sense specified in
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[10)). These quantities are quite long and are not repeated (iv) Rygh”B in Eq. (25) leads to
here since they have been given explicitly [i]. Using

MAPLE we have confirmed that _1 281> 1 _ aBxXAB l —20p A0 X1 L &
(i) Ryy in Eq. (25) leads to W'f_ze R—1-e%0e vy (r(8U+0V)),
=Ng+27r(p+ 2, 26 =
Bi=Ngt2mr(p+p)(vy) 8 +Ny—47e?#| (p+p) KVangVang
(i) Riag™ in Eq. (25) leads to
2 20 Ax/ . —2 —E(Jv2 +JV2 )| +(p—p)r? (29
(r Q),r:_r (6J+6K),r+2r o(r B)r 2 ang ang p—p )
+Ng+167r2(p+Pp)v1Vang. 27 \where
(iii ) The equation folJ is a definition, and so the presence ) 1 . 1
of matter does not change it: R=2K— 050K+ 5(62J+62J)+ R(éJéJ—éJéJ).
e2B o (30
U,=—(KQ-JQ). 28
2 (KQ=JQ) 8 (V) Ragg”q® in Eq. (25) leads to

2(rd) o — (r"V(rd) ) = —r~1(r2U) . +2r ~tefs?ef— (r W) J+N;

4e%P
+

—[Vangp+P)+12(p=p)]. (31)

C. Summary matter variables atn(+1/2j —1/2) are evaluated by taking

the average between the values at-(Li—1) and ,i),

while the radial derivatives are obtained from the average of
J, p, v1, Vang (320  the corresponding values at€ 1,i—3/2) and ,i +1/2).

Next, we proceed to integrate the evolution equation of
and these constitute the set of evolution variables. The authe matter variables by a simple iterative method which re-
iliary variables may then be determined on the initial null Sults in a second order in space, second order in time
cone, and they are found in the following ordprfrom the scheme, as_follows._Flrst, note that the matter equations can
equation of stated from Eq. (26), Q from Eq.(27), U from b€ schematically written as
Eqg. (28), W from Eq. (29), andv, from Eg. (22). The evo-
lution equationg31), (18), (19) and(20) may now be used to 9u=F; (33
find J, p, v; and Vg, (in that ordey on the “next” null
cone.

In order to have a properly specified problem, we will N1
also need boundary data on the timelike world tlbeFor 9i
the gravitational variables this datags Q, U, W andJ, and
for the matter variables we will negd v, and V.

The data required on the initial null cone are:

then, a direct second order discretization is obtained by
=gM+AuFPY2, (34)

Note thatF depends on the matter fields; thus without having
at hand the value aji”“, F cannot be directly evaluated at
the midpoint. However, the value &**2 can indeed be
IV. NUMERICAL IMPLEMENTATION obtained by a straightforward iteration. In the first step we

We constructed a set of algorithms to solve E@6)— setF""2=F! and use it to evaluate the right hand side of
(31). In discretizing the equations we follow closely the Eq.(34); then, the obtained approximationgd™* is used to
strategy developed for the vacuum c@&g We introduce a obtain a better approximation Eq““’z and so on. This pro-
compactified radial coordinate=r/(1+r) and define the cedure is repeated a sufficient number of times to ensure
numerical grid with coordinatesu(,x;,q;,px) =(nAu,1/2  second order convergence of the algorithm.
+(i—1)Ax,—1+(j—3)Aq,—1+(j—3)Ap) [where 2Ax However, the above procedure must be carefully applied
=1/(Ny—1), andAgq=Ap=2/(N.—1)]. Using finite differ-  at the horizon, where divergent fields can spoil the numerical
ences to discretize the equations, we center the derivatives amtodeling of the problem. The properties of our coordinates
(n+1/2j—-1/2,k). are easy to understand in the vaccum case, in which the

The evolution equation is treated ag I where the right metric quantities satish3=U=J=0, W=—2M, and the
hand side is modified to include the matter terms. Thus, thenetric (1) is the Schwarzschild metric in outgoing
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Eddington-Finkelstein form. In the Kruskal diagram for u-00 u=63
these coordinates, the past horizon isaM, u finite, and
the future horizon, ai=. There is a coordinate singularity
where the past horizon meets the future horizon=agM,
u=ow. In the presence of infalling matter, this inevitably
leads to a divergence as the inner portion approaches th
black hole. In the formulation used here, the singularity
manifests itself as a divergence in the velocity component
v,. Because the grid is based on theoordinate, the numeri-
cal method is sensitive to the details of treating the region
nearr=2M.

In particular, this applies to the start-up procedure at the

inner boundary of the computational domain on the past ho =126 u=189

rizon. The following method was found to be stable. The *
matter fields at the first point outside=2M are evolved by I
employing aone sidedlifferences to evaluate radial deriva- l
tives in F. Further, the derivatives are evaluated only at the '
lower time level and are centered at,(+ 1/2) rather than at

(n+1/2j—1/2). Thus the scheme is only first order accurate “

in both Au andAx—unfortunately all second order schemes

that we investigated were unstable. The issue of the globai
accuracy of our numerical method is now discussed. At the FiG. 1. Density profiles vs time. The figure shows 4 different
analytic level, matter never reaches the past horizon, but ninapshots o at the equator. The inner part “hole” in the pictures
merical error travels faster than light, and matter, in the formcorresponds to the black hote= 2m radius while the outer part
of second order discretization error, may reach the past haorresponds to=«. The collapse of matter onto the black hole can
rizon. The error introduced by applying a first order methodbe clearly seen. The plots are for the case10™° andp+0.
to second order error remains second order. Therefore, in the
limit as Ax— 0, the global accuracy of the scheme should beFor a non-spherical initial distribution of matter, this condi-
second order. However, in practi¢due to finite computer tion is in a sense unphysical in that it will introduce spurious
resourcesAx cannot be made smaller than about 10The  incoming gravitational radiatiofi20,21]; nevertheless, it is
global accuracy of the scheme will be reduced once there isimple and is suitable for code testing. The gravitational
a non-zero analytic matter field at the second grid point fromboundary data on the world tuig which we take to be the
r=2M; for Ax=10"2 this point is located at=2.12M, and  past horizon of the black hole at=2, are[1]
analytic infalling matter reaches this point at some finite
time. The possible improvement of the boundary algorithm is B=0, Q=0, U=0, W=-2, J=0. (36
deferred to future work.

Finally, the hypersurface equations are discretized as idhe initial data for the tests include two different distribu-
[1], where the right hand sides now include the matter varitions of the matter:
ables evaluated a1, —1/2) [which is straightforward (i) Spherical shell that falls radially towards the black
having the matter fields values at{ 1) obtained in the hole.

previous step (i) Localized blob of matter falling radially towards the
black hole.
V. TESTS AND RESULTS The tests are performed for two different equations of
state:

We test the code by considering an initial localized distri- (i) Dust (p=0).
bution of matter around a Schwarzschild black hole with (i) Fluid with pocp®4
mass taken to béM=1. The gravitational initial data are

taken as A. Initial and boundary data for the matter
J(u=0,r,x"=0. (35 We assume
|
Ry—Ra Ry—Ra .
“Xp( 2R )) p( 2Ry 1) r))G(XA) T relRaRol.
p(u=0y,x*)= Ra (37)

0 otherwise.
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FIG. 2. Density profiles vs time for the localized “blob” of matter at times 0 (A), u=7.2 (B), u=14.3(C) andu=21.5(D). The
value of initial amplitude parameter for this case.is 10~ °, andp#0. The figure shows 4 different snapshotgpaity=0 (on the northern
hemisphergas a function of the compactified radial coordinate=@/3 being the black hole radius areF 1 corresponding to null infinity
The pulse collapses onto the black hole, remaining localized.

If G(x*)=1, p describes a spherical shell of matter between (ii) A varying between 10° and 10 3,

r=R, andr=R,, and centered about=0. We also con- (i) G(x*)=1 (spherical she)lor G(x*) given by Eq.
sider the case witlc defined as a localized Gaussian-type (38) with w=0.4 (blob of matter with center at one of the
function: poles whose density goes to zero at abést44°).
(iv) E=2.25.
(P+p*=w)* if o®+p’=up, Analytically, the matter never reaches-2, but in prac-
G(xM = (38) tice, due to numerical diffusion, boundary conditions are still
0 otherwise, needed there; we impose

which we use to describe an initial “blob” of matter. To
provide initial data for the velocity field, we s&f,,,=0 and p=0, Vang=0, v,=0. (40)

ven(U=0r,x"=—(V1+E+VE+2/r)(1—2/r) (39
B. Equation of state
wherev,, is v, renormalized to be well behaved on the g4, dust, the equation of state is=0. We also investi-

event horizonr =2 [explicitly v, =v1(1—2/)%]. E repre- gate how the code copes with nonzero pressure, and set up a

sents the energy at infinity of a unit mass particle, in thejest case with the density defined as abewith A\ =10"9),
sense that at infinitjo*|=E; note thatE>—1. In the tests  anq with the equation of state

described below we take
(i) R;=4 andR,=7. p=wpt? (41)
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FIG. 3. The “plus” component of the news on the northern hemisphere for thexcad® ° andp+0 at timesu=0 (A), u=7.2(B),
u=14.3(C) andu=21.5(D).

with o=10"1% Further, in order to keep, [Eq. (16)] well  eter R, varies between 3.2610° to 3.16x1C°. A similar
behaved for smalp, we setp=0 wheneverp<pmad0 >, analysis can be made on the pressure and we Rpd
where pmax is the maximum value op at u=0. Although =M, in the testsR,=0 andR, in the range just de-
the magnitude of the pressure is small, and our implementascribed, orR,=1.78x 10" ** andR,=3.16x 10".

tion of the fluid equations is rather simple, it is encouraging Conversion to Sl units needs the valuewfn meters. We
to see that there is no evidence of any pressure-related instaxite

bility. More realistic initial data and equations of state could

induce shocks that would require a sophisticated treatment of M=ro [m], (42)

the matter equations. We defer this to future work.
where, for example, a M, black hole hasrg

=14766 [ m]. Using the notation that quantities in geomet-

ric units will be denoted without suffix, and those in Sl units
It is useful to clarify the issue of units. We are using will have the suffixS, the conversions for spead massm,

geometric units in whiclG=c=1, and everything is given densityp and pressure are

in terms of a unit of length, which is the distance correspond-

C. Physical interpretation of the initial data

ing to a unit change in the radial coordinateFixing the vX2.998< 10P=vg [M/g]

event horizon ar =2, the geometric unit of length is the

mass of the black holwl. mx 1.34% ;X 10?"=mg [kg]
The range of initial data sets that are used can be de-

scribed by considering the ratio of the characteristic length 1.347x 1027

associated with the density M. Modulo a constant of order pX—————=ps [kg/m’]

unity, this ratio istz(\/XM)*l, and in the tests the param- o
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1.210x 10"
p><r—2= ps [Pd. (43
0

We now use these conversions to determine, in Sl units, the
various parameters describing the initial data specified
aboveg, when the mass of the black hole igML) and
=107 84 i

(i) Spherical shell;ps=8.34x10° kg/m?, v=0.9C, pg
=0 or ps=8.47x10'° Pa, m=3.37x10 *M,

(iii) Localized pulse;ps=2.14<10° kg/m®, v=0.9Cc,
ps=0 or pg=5.01x10° Pa, m=6.11x10 M,
wherev is the proper inward radial velocityn is the mass of
the shell or pulse, and the values@f, ps andv are given
at the point of maximum density at=0. For\#10 °, pg
and m scale linearly in\, ps scales as\'“ andv is un- -89 - 1
changed. The scaling with,, which represents the mass of
the black hole, is given by Edq43).

log(N,)

D. Spherical collapse

The first test was the collapse of a spherical shell onto a
black hole. We set the black hole mas4, the inner bound- 04 s s
ary of the shell aR,=4 and the outer boundary &,=7. -22 -2.0 -1.8 -1.6 -14
The resulting spacetime is spherically symmetric. This sym- log(Ax)
me_try p_rovidg; che_cks on the accuracy of the r_]umerical eV0- fiG. 4. Convergence of therosspolarization mode in an axi-
lution since it implies that no gravitational radiation should gy mmetric spacetime. The figure shows the logarithmNof{u
be emitted and that must vanish everywhere. =0.15) vs the logarithm of the discretization size. The slope of 1.9

We confirmed this behavior by monitoring the norms s in good agreement with second order convergence. The plot is for
of J and the news function for different initial amplitudes the casen =102 andp+0.

A=10 ("*5 (with n=0,...,4) over time (with u
€[0,2]). At any given time, the value dfiJ||, and each “blob” of matter collapses onto the black hole and the plus
polarization mode converges to zero as the discretization igolarization mode of the news is obtained at null infirigge
refined. The matter collapses onto the black hole and the ruRig. 3.
proceeds smoothly. Figure 1 shows the evolutiop &dr the Although an analytic solution to this problem is unknown,
case with pressure. one can check consistency of the obtained simulation by ob-
Additionally, it is straightforward to calculate analytically serving that thecrosspolarization mode A/) must vanish
the total Bondi mass of the system; usimgPLE we found  (since the problem is still axisymmetyidVe confirmed this
that (for p=0, A=10"%) M;=1.0007395. By increasing behavior, by increasing the number of grid points and plot-
the resolution, we checked that this value is approached, tiing the logarithm of thel., norm of N (at u=0.15) vs
second order accuracy, by the value computed from théiscretization size and observing its convergence to zero. As
code; the test was performed at batk-0 andu=2. For  shown in Fig. 4 the slope of 1.9 is in agreement with second
instance, with a grid oN,=165 andN,= 65, the value ob- order convergence. The convergence test was performed
tained for the mass at=2 is M= 1.0007408, which agrees with \=10"° and with non-zero pressure. We should add,

quite well with the expected value. however, that at later timesi& 10), the convergence rate is
reduced to about 1.5. This is expected because of the non-
E. Black-hole—matter ball collision centered scheme used at the black hole bountig Sec.

. V).
To study the collision of a dustball-black-hole system we A qher check made was that the path of the peak density
again set the black hole mabt=1 and the inner and outer g4 pe a geodesic of the background spacetime. This was
radii of the blob withR,=4 andR,=7; finally, the localiza- ; qeed found to be the case. For example, UsingLE we

tion on the sphere is set by choosipg=0.4. This configu-  f5nq that au=2, r should be 4.9169, and numerically we
ration describes a ball of dust with center at one of the pole§, ;4. for the case.= 107 and non-zero pressure, that

that goes to zero at abouét=44° with compact support in  _ i _ _
[4,7] in the radial direction. Note that in this case, although 4.9180(for a grid with N,=85 andN,=65).
we initially setV,,,=0, the self-gravitational field of the
dustball induces a non-zeko,,, towards the pole. Figure 2
displays the evolution op for the case with pressure\ ( In this paper, we have incorporated matter, in the form of
=10"9). Again, the evolution proceeds smoothly as thea perfect fluid, into the characteristic code for the Einstein

VI. CONCLUSION
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field equations: we have found explicit forms for the variouspresent code is capable of modeling a variety of situations
evolution and field equations, we have shown how thesevhere matter is captured by a black hole, although our treat-
equations are discretized, and we have carried out a numbeatent of the hydrodynamics would need to be amended in
of tests on the resulting code. The code is stable and convesrder to be able to handle shock waves. Even so, the present
gent, and its validation has included the following tests.  code should be able to contribute towards an understanding

(i) The peak of the matter “blob” follows a geodesic of of a number of problems in black hole astrophysics.
the background spacetime.

(ii) The code is not written with any symmetries, yet sym-
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tional radiation vanishing.
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APPENDIX

The evolution equations for the matter variables are given below; noté&/ghat 1+W/r:

Py
[2

{[282'8(6P)V2 + Zezﬁvang(ép)vang] K— 4Vangp,rU0r2_ 2Vangp,rvangur2

Vangu=
gu an
4 9

U1
— 4V ggp 011 2+ 4€2P(8p) 12— 2628(3p)V2 | I — 2V 400 1(8p)Ur2— 2V, 1(8p)Ur?

+ 4Vangp,rv 1VWI’2— 2V§ngp,rUr2_ Zezﬂvang(ép)vang‘]}

+

r2{4vlr2U(6,8)Vang— e2P(8I)V4,4— €2P(3I)VA g+ 401120 (8B)Vang
U1

— AV a0 0f 2+ 4V Vang 1017 2= 262P(8V ang) Vangd — 2011 2(8U) Vapg
+ [2e2'8( 6Vang)vang+ Zezﬁ( ésVang)vang] K—=4Vyv il’ 2(6B) - 2ezﬁ(ésvamg)vang‘] +2e%8) K(éj)vangvang
+2€?PIK(83)VangVang— 201U (8Vang)r2

—26%P(8K)VangVang+ 2031 2(8V,,) — 462P33(5K)VangVang— 2VangrUVang' 2

+8uu1r2(38) — 201U (8Vang) 12— 2r201(3U)Vang— 2VangrUVang 2}, (A1)
_ AF@iFuptp)] _eH(-FotFoip) o)
P viAp(ptp) -1 " vip(pp)-1]

with F, andF, given by
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p+p — - — — _
Ffw{[ —2(3K)Vang€® = 2(0K) V20 82P13I— 2(8I)Van @ + [ (8I)Vange®”

+(03)Vang@ IKI+[(03)Vang@?+ (03)Van 1KJ

+801rV = 400,12 = 201r2(0U) +[ — 2(8Vang) €27 — 4(3B)V an €13+ 4Vy0 4, 12
—2(83)Van g€ +[ — 4(0B)Vange? — 2(0Vng) €2F13

+[2(8Vang) €2P + 4(8B)Vang€? + 4(3B)Vang€® + 2(8V ang €2 1K
—2UVang F 2= 2UV g F2+ 40112V, — 8uor —2r2U  Vng— 2U (8u,)r2

—4rUVgng— 41UV ang— 2r2U V,ng— 201r2(0U) — 2U(dvq)r?
ang ang ,r Vang 1 1

1 _ . _ _
+——={=2p VangUr?=2(3p)Van€®?I—4p ;vor 2= 2(3p)Vang€*?I—2p ;VangUr?

4e%Pr?
—201(8p)Ur?+[2(3p)Vang€??+ 2(3p)Van 2P 1K+ 4p 01V 2= 201(8p)Ur?}, (A3)
a=4 22 3{—2v1pyrvangUr3—205(6p)Ur3—ZUi(c;)p)Ur3—4vlpyrvor3+4v§p'rvwr3—erl(ép)vangezﬁ\]
e“Pr

- 2rvl(6p)Vange2ﬁJ—+ [2rvl(ép)Vangezﬂ+ 2rv 1(6p)vangezﬁ] K

—2v 1p’rVangUr3+ 4p r3e®P}

1 _ ]
+ W{[ =21 (8v1)Vang® +2V3,£2P13+ 88 v 1vor 3~ 2v,U(Bv ) r3+ 2033V,

— 201, UV gt 34+ 48,0130V 00— 20130 Vang+ 4V 1,017 — 201, UV g3
+KIND VangVang@ — 201U (80 1)r°+ 48 ,01r3UV,ng— 4 0or—1d V2, €2
+[ - 4Vangvangezﬁ+ 2r (dv 1)Vange23+ 2r (dv 1) VangeP1K - av,B v

—201r%U Vang+[ = 2r(801)Vang® +2V2 €213 23K VangVange?”

+KIrd VangVan€?’—13 V2, %} (A4)

ang
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