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Incorporation of matter into characteristic numerical relativity
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A code that implements Einstein’s equations in the characteristic formulation in 3D has been developed and
thoroughly tested for the vacuum case. Here, we describe how to incorporate matter, in the form of a perfect
fluid, into the code. The extended code has been written and validated in a number of cases where shocks do
not form. It is stable and capable of contributing towards an understanding of a number of problems in black
hole astrophysics.@S0556-2821~99!00614-1#

PACS number~s!: 04.25.Dm, 04.30.Db
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I. INTRODUCTION

A code based on the characteristic formulation of gene
relativity ~GR! has been developed for the general 3D pro
lem @1#. The code computes the gravitational field of the f
Einstein equations for a vacuum spacetime between s
inner timelike world tubeG and future null infinity. The code
has been tested with the inner world tubeG being the past
horizon of a Schwarzschild black hole, with incoming gra
tational radiation scattered off the black hole. The tests h
included both linear and highly nonlinear regimes, and sh
the robustness of the characteristic formulation in the st
of radiative problems. Here we consider whether there
real astrophysical problems to which the characteristic c
alone could be applied.

Astrophysical problems that can be tackled by the co
require the existence of a natural inner world tubeG on
which boundary data are known. This could be the past
rizon in the inner region of a known stationary black hole
Kerr-Newman type, with the matter evolving in the out
region. However, boundary and initial data for the charac
istic formulation are presently known only in the Schwarz
child case and in some multi-hole vacuum spacetimes@2#.
When matter is incorporated into the code the range of p
sible astrophysical applications is greatly extended. In p
ciple it is then possible to compute, in full nonlinear gene
relativity, the gravitational field and matter flow of a blac
hole accreting dust and gas, and of a black hole captu
polytropic or more realistic approximations to neutron sta
This paper does not solve any of these important astroph
cal problems, but rather it lays the groundwork for doing
by demonstrating the stability and convergence of a gen
3D characteristic code for matter plus gravity.

The goal of this work is to establishstability of a charac-
teristic evolution combining matter and gravity. Our mat
code itself is rather simplistic and would not be expected
yield accurate results in cases of shock formation. The res
of this paper are intended to show the feasibility of a ch
acteristic gravity and matter evolution, which ultimate
would incorporate a hydrodynamic code capable of an ac
rate handling of shocks.
0556-2821/99/60~2!/024005~11!/$15.00 60 0240
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The most popular approach to numerical relativity h
been based on a Cauchy, rather than a characteristic, for
ism, and a number of such codes incorporate hydrodynam
@3#. Yet the type of problem envisaged in this paper—a bla
hole capturing some form of star—has not been solved
these codes. The reason is that current 3D Cauchy gra
codes incorporating dynamic black holes have instabi
problems, and usually can be run for only a couple of lig
crossing times. The great advantage of characteristic num
cal relativity is that it has been demonstrated to be long-te
stable@1#, even in the presence of a dynamic event horiz
@4#. Additionally, it has recently been shown that a high res
lution shock-capturing version of the fluid equations can
successfully implemented in the characteristic formulat
under the assumption of spherical symmetry@5#. The robust-
ness of the numerical implementation of the characteri
formulation and the promising results obtained in@5# indi-
cate that a characteristic evolution is a prime candidate
computing a variety of astrophysical processes.

The incorporation of matter into a characteristic code h
been discussed previously. An axisymmetric code with m
ter has been used to consider a problem in cosmology@6#.
Spherically symmetric matter codes, which include Cauc
characteristic matching, have been reported@7,8#; see also
@9#. In contrast, the present work has no symmetry requ
ment.

The paper restricts attention to matter in the form o
perfect fluid, by which we mean that the pressurep is a
function only of the densityr. In Sec. II we summarize
known results, and introduce our notation, for the charac
istic formalism and perfect fluid evolution. Next, in Sec. I
we derive the fluid evolution equations in our characteris
coordinates; we also find the additional terms~compared to
the vacuum case! that appear in Einstein’s equations. Secti
IV describes details of the numerical implementation of t
fluid evolution equations~the additional terms in Einstein’s
equations are straightforward to code!. The resulting matter
plus gravity code has been run on a variety of test proble
and the results are described in Sec. V. In all cases, the c
is found to be stable and convergent. We end with a con
©1999 The American Physical Society05-1



n

’s

ss
he
a

u

e.
s

e

-

m

s

-
ws.
l-

ions
y-

-

tion

e-

at
-

res-

ion

led

fo-
are

are
of

l-
en-
red
the

os-
,

BISHOP, GÓMEZ, LEHNER, MAHARAJ, AND WINICOUR PHYSICAL REVIEW D60 024005
sion ~Sec. VI!, and an appendix that contains expressio
from Sec. III that are rather long.

II. FORMALISM

A. Null cone: Previous results

The formalism for the numerical evolution of Einstein
equations, in null cone coordinates, is well known@1,10# ~see
also @11–14#!. Nevertheless, for the sake of completene
we give here a summary of the formalism, including t
necessary equations. We will use the notation and langu
of @1#.

We use coordinates based upon a family of outgoing n
hypersurfaces. We letu label these hypersurfaces,xA (A
52,3), label the null rays andr be a surface area coordinat
In the resultingxa5(u,r ,xA) coordinates, the metric take
the Bondi-Sachs form@14,15#

ds252Fe2bS 11
W

r D2r 2hABUAUBG
3du222e2bdudr22r 2hABUBdudxA

1r 2hABdxAdxB, ~1!

whereW is related to the more usual Bondi-Sachs variablV
by V5r 1W, and where hABhBC5dC

A and det(hAB)
5det(qAB), with qAB a unit sphere metric. In analyzing Ein
stein’s equations, we also use the intermediate variable

QA5r 2e22bhABU ,r
B . ~2!

We work in stereographic coordinatesxA5(q,p) for
which the unit sphere metric is

qABdxAdxB5
4

P2
~dq21dp2!, ~3!

where

P511q21p2. ~4!

We also introduce a complex dyadqA defined by

qA5
P

2
~1,i ! ~5!

with i 5A21. For an arbitrary Bondi-Sachs metric,hAB can
then be represented by its dyad component

J5hABqAqB/2, ~6!

with the spherically symmetric case characterized byJ50.
The full nonlinearhAB is uniquely determined byJ, since the
determinant condition implies that the remaining dyad co
ponent

K5hABqAq̄B/2 ~7!

satisfies 15K22JJ̄. We also introduce spin-weighted field
02400
s

,
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-

U5UAqA , Q5QAqA, ~8!

as well as the~complex differential! eth operatorsZ and Zp

~see@16# for full details!.
The Einstein equationsGab50 decompose into hypersur

face equations, evolution equations and conservation la
Naturally, the equations will require additional terms to a
low for the presence of matter, and the extended equat
are given later in Sec. III B. Here we just note that the h
persurface equations form a hierarchical set forb ,r ,
(r 2Q) ,r , U ,r andW,r , and the evolution equation is an ex
pression for (rJ) ,ur .

The remaining independent equations are the conserva
conditions, but they will not be needed here.

The null cone problem is normally formulated in the r
gion of spacetime between a timelike or null world tubeG
andI1, with initial dataJ given on the null coneu50 in
this domain. Boundary data forb, Q, U, W and J is also
required onG. The metric variables used remain regular
I1, and we representI1 on a finite grid by using a com
pactified radial coordinatex5r /(11r ).

B. Perfect fluid: Previous results

The description of a perfect fluid is well understood~e.g.
@17,18#!. The stress-energy tensor is

Tab5~r1p!vavb1pgab ~9!

wherer is the density,p is the pressure,va is the 4-velocity
andgab is the metric. In the cases considered here, the p
sure dependsonly on the density, i.e.

p5p~r!. ~10!

The matter evolution equations follow from the conservat
law Tab

;b50, and are

r ,ava1~r1p!v ;a
a 50, ~r1p!va;bvb1~da

b1vavb!p,b50,
~11!

which may be rewritten as

r ,avbgab1~r1p!~va,b2Gab
c vc!g

ab50 ~12!

Ma[~r1p!~va,b2Gab
c vc!vdgbd1p,a1vavcp,bgbc50.

~13!

The numerical implementation of the fluid equations coup
to GR has been investigated primarily within the 311 or
Cauchy framework. In this formulation, the spacetime is
liated by a sequence of spacelike surfaces, initial data
given on an initial surface and the evolution equations
used to compute the future. The numerical investigation
the ‘‘GR-hydro’’ problem started in the early 1970s by Wi
son @19# and since then it has received considerable att
tion. The difficulty of modeling these equations has spur
the development of sophisticated techniques to deal with
diverse idiosyncracies of the problem. Thus, artificial visc
ity techniques, total variation diminishing flux limiters
5-2
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INCORPORATION OF MATTER INTO CHARACTERISTIC . . . PHYSICAL REVIEW D60 024005
shock-capturing schemes, etc., are actively employed to
in the numerical modeling; refer to@3# for a recent review.

Another problem one faces when attempting a numer
simulation in the 311 formalism is that an artificial ‘‘outer
boundary’’ has to be included at some radius in order to d
with a finite grid. This introduces spurious reflections th
spoil long term evolutions. In the characteristic formulatio
on the other hand, one can use Penrose’s compactifica
techniques to include infinity in the numerical grid. Add
tionally, being able to access null infinity allows one to o
tain physical quantities, such as the radiation given off by
system and the total mass, unambiguously. There is no
much experience with the GR-hydro problem in the char
teristic formulation, but the results obtained in@5# and this
paper indicate that the characteristic formulation of GR w
be a valuable tool in the study of a variety of astrophysi
problems.

III. PERFECT FLUID IN THE NULL CONE FORMALISM

A. Perfect fluid equations

In order to proceed further we represent the angular
of the 4-velocity by means of the complex quantity

Vang5qAvA5
P

2
~v21 iv3!, ~14!

where theang suffix is introduced to avoid confusion wit
the Bondi-Sachs metric variableV. The matter evolution
equations are then:

~i! Equation~12!.
~ii ! Equation~13! in the form

M150, qAMA50. ~15!

We also introduce the notation

pr5
1

p1r

dp

dr
~16!

and then write
ua
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p,a5pr~p1r!r ,a . ~17!

The result of doing this is that, in the matter evolution equ
tions, there is no explicit division by (p1r) ~which could be
zero!. From a numerical point of view, it is possible to writ
the procedure for computingpr so as to ensure its goo
behavior in the low density limit.

The matter evolution equations have been calculated
ing MAPLE; they are rather long and are given in the Appe
dix. The denominators are important in determining whet
there may be singular behavior, and here we note that
form of the equations is

r ,u5
1

r 3~v1!2S dp

dr
21D Fr ~18!

v1,u5
1

r 3v1S dp

dr
21D F1 ~19!

Vang,u5
1

r 2v1

FV . ~20!

Formally, Eqs.~18! and~19! could be singular ifdp/dr were
to be 1, but this would correspond physically to the veloc
of sound being equal to that of light. We do not conce
ourselves with those cases at the moment and defer its t
ment for a later work. Also, Eqs.~18!, ~19! and~20! could be
singular if v1 were to be zero; yet, starting from21
5vavbgab,

v1e22bS V

r
v122v022UAvAD<21, ~21!

which can never be satisfied ifv150. Thus, from an analytic
point of view, Eqs.~18!, ~19! and ~20! form a well-behaved
set of evolution equations.

Finally, again using the condition215gabvavb , we ob-
tain an expression for the remaining velocity componentv0:
v05
e2b~2KVangV̄ang2JV̄ang

2 2 J̄Vang
2 12r 2!12rv1~Vv12rUV̄ang2rŪVang!

4v1r 2
. ~22!
B. Einstein’s equations

The introduction of matter also amends Einstein’s eq
tions. We write the equations as

Rab58pS Tab2
1

2
gabTD , ~23!

and note that

T52~r1p!14p53p2r. ~24!
-

Thus Einstein’s equations for a perfect fluid are

Rab58p~r1p!vavb1gabS p2
3p2r

2 D
58pS ~r1p!vavb1gab

r2p

2 D . ~25!

In the expressions below,Nb , NU , NQ , NW andNJ rep-
resent the nonlinear aspherical terms~in a sense specified in
5-3
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@10#!. These quantities are quite long and are not repea
here since they have been given explicitly in@1#. Using
MAPLE we have confirmed that

~i! R11 in Eq. ~25! leads to

b ,r5Nb12pr ~r1p!~v1!2. ~26!

~ii ! R1AqA in Eq. ~25! leads to

~r 2Q! ,r52r 2~ZpJ1ZK ! ,r12r 4Z~r 22b! ,r

1NQ116pr 2~r1p!v1Vang . ~27!

~iii ! The equation forU is a definition, and so the presenc
of matter does not change it:

U ,r5
e2b

r 2
~KQ2JQ̄!. ~28!
u
ul

il

e
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02400
ed ~iv! RABhAB in Eq. ~25! leads to

W,r5
1

2
e2bR212ebZZpeb1

1

4
r 22

„r 4~ZŪ1ZpU !…,r

1NW24pe2bF ~r1p!S KVangV̄ang

2
1

2
~JV̄ang

2 1 J̄Vang
2 ! D1~r2p!r 2G , ~29!

where

R52K2ZZpK1
1

2
~Zp2J1Z2J̄!1

1

4K
~ZpJ̄ZJ2ZpJZJ̄!.

~30!

~v! RABqAqB in Eq. ~25! leads to
2~rJ ! ,ur2„r 21V~rJ ! ,r…,r52r 21~r 2ZU ! ,r12r 21ebZ2eb2~r 21W! ,rJ1NJ

1
4e2bp

r
@Vang

2 ~r1p!1r 2J~r2p!#. ~31!
of

of
re-
ime
can

ng
t

we
of

ure

lied
ical
tes
the

g

C. Summary

The data required on the initial null cone are:

J, r, v1 , Vang , ~32!

and these constitute the set of evolution variables. The a
iliary variables may then be determined on the initial n
cone, and they are found in the following order:p from the
equation of state,b from Eq. ~26!, Q from Eq. ~27!, U from
Eq. ~28!, W from Eq. ~29!, andv0 from Eq. ~22!. The evo-
lution equations~31!, ~18!, ~19! and~20! may now be used to
find J, r, v1 and Vang ~in that order! on the ‘‘next’’ null
cone.

In order to have a properly specified problem, we w
also need boundary data on the timelike world tubeG. For
the gravitational variables this data isb, Q, U, W andJ, and
for the matter variables we will needr, v1 andVang .

IV. NUMERICAL IMPLEMENTATION

We constructed a set of algorithms to solve Eqs.~26!–
~31!. In discretizing the equations we follow closely th
strategy developed for the vacuum case@1#. We introduce a
compactified radial coordinatex5r /(11r ) and define the
numerical grid with coordinates (un,xi ,qj ,pk)5„nDu,1/2
1( i 21)Dx,211( j 23)Dq,211( j 23)Dp… @where 2Dx
51/(Nx21), andDq5Dp52/(Nj21)]. Using finite differ-
ences to discretize the equations, we center the derivativ
(n11/2,i 21/2,j ,k).

The evolution equation is treated as in@1# where the right
hand side is modified to include the matter terms. Thus,
x-
l

l

at

e

matter variables at (n11/2,i 21/2) are evaluated by taking
the average between the values at (n11,i 21) and (n,i ),
while the radial derivatives are obtained from the average
the corresponding values at (n11,i 23/2) and (n,i 11/2).

Next, we proceed to integrate the evolution equation
the matter variables by a simple iterative method which
sults in a second order in space, second order in t
scheme, as follows. First, note that the matter equations
be schematically written as

g,u5F; ~33!

then, a direct second order discretization is obtained by

gi
n115gi

n1DuFi
n11/2. ~34!

Note thatF depends on the matter fields; thus without havi
at hand the value ofgi

n11 , F cannot be directly evaluated a
the midpoint. However, the value ofFi

n11/2 can indeed be
obtained by a straightforward iteration. In the first step
setFi

n11/25Fi
n and use it to evaluate the right hand side

Eq. ~34!; then, the obtained approximation togi
n11 is used to

obtain a better approximation toFi
n11/2 and so on. This pro-

cedure is repeated a sufficient number of times to ens
second order convergence of the algorithm.

However, the above procedure must be carefully app
at the horizon, where divergent fields can spoil the numer
modeling of the problem. The properties of our coordina
are easy to understand in the vaccum case, in which
metric quantities satisfyb5U5J50, W522M , and the
metric ~1! is the Schwarzschild metric in outgoin
5-4
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INCORPORATION OF MATTER INTO CHARACTERISTIC . . . PHYSICAL REVIEW D60 024005
Eddington-Finkelstein form. In the Kruskal diagram f
these coordinates, the past horizon is atr 52M , u finite, and
the future horizon, atu5`. There is a coordinate singularit
where the past horizon meets the future horizon atr 52M ,
u5`. In the presence of infalling matter, this inevitab
leads to a divergence as the inner portion approaches
black hole. In the formulation used here, the singular
manifests itself as a divergence in the velocity compon
v1. Because the grid is based on ther coordinate, the numeri
cal method is sensitive to the details of treating the reg
nearr 52M .

In particular, this applies to the start-up procedure at
inner boundary of the computational domain on the past
rizon. The following method was found to be stable. T
matter fields at the first point outsider 52M are evolved by
employing aone sideddifferences to evaluate radial deriva
tives in F. Further, the derivatives are evaluated only at
lower time level and are centered at (n,i 11/2) rather than at
(n11/2,i 21/2). Thus the scheme is only first order accur
in bothDu andDx—unfortunately all second order schem
that we investigated were unstable. The issue of the glo
accuracy of our numerical method is now discussed. At
analytic level, matter never reaches the past horizon, but
merical error travels faster than light, and matter, in the fo
of second order discretization error, may reach the past
rizon. The error introduced by applying a first order meth
to second order error remains second order. Therefore, in
limit as Dx→0, the global accuracy of the scheme should
second order. However, in practice~due to finite computer
resources! Dx cannot be made smaller than about 1022. The
global accuracy of the scheme will be reduced once ther
a non-zero analytic matter field at the second grid point fr
r 52M ; for Dx51022 this point is located atr 52.12M , and
analytic infalling matter reaches this point at some fin
time. The possible improvement of the boundary algorithm
deferred to future work.

Finally, the hypersurface equations are discretized a
@1#, where the right hand sides now include the matter v
ables evaluated at (n11,i 21/2) @which is straightforward
having the matter fields values at (n11,i ) obtained in the
previous step#.

V. TESTS AND RESULTS

We test the code by considering an initial localized dis
bution of matter around a Schwarzschild black hole w
mass taken to beM51. The gravitational initial data are
taken as

J~u50,r ,xA!50. ~35!
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For a non-spherical initial distribution of matter, this cond
tion is in a sense unphysical in that it will introduce spurio
incoming gravitational radiation@20,21#; nevertheless, it is
simple and is suitable for code testing. The gravitatio
boundary data on the world tubeG, which we take to be the
past horizon of the black hole atr 52, are@1#

b50, Q50, U50, W522, J50. ~36!

The initial data for the tests include two different distrib
tions of the matter:

~i! Spherical shell that falls radially towards the bla
hole.

~ii ! Localized blob of matter falling radially towards th
black hole.

The tests are performed for two different equations
state:

~i! Dust (p50).
~ii ! Fluid with p}r1.4.

A. Initial and boundary data for the matter

We assume

FIG. 1. Density profiles vs time. The figure shows 4 differe
snapshots ofr at the equator. The inner part ‘‘hole’’ in the picture
corresponds to the black holer 52m radius while the outer par
corresponds tor 5`. The collapse of matter onto the black hole c
be clearly seen. The plots are for the casel51029 andpÞ0.
r~u50,r ,xA!5H l expS 2
Rb2Ra

2~r 2Ra! DexpS 2
Rb2Ra

2~Rb2r ! DG~xA! if r P@Ra ,Rb#,

0 otherwise.

~37!
5-5
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FIG. 2. Density profiles vs time for the localized ‘‘blob’’ of matter at timesu50 ~A!, u57.2 ~B!, u514.3 ~C! andu521.5 ~D!. The
value of initial amplitude parameter for this case isl51029, andpÞ0. The figure shows 4 different snapshots ofr at y50 ~on the northern
hemisphere! as a function of the compactified radial coordinate (x52/3 being the black hole radius andx51 corresponding to null infinity!.
The pulse collapses onto the black hole, remaining localized.
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pe
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th
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If G(xA)51, r describes a spherical shell of matter betwe
r 5Ra and r 5Rb , and centered aboutr 50. We also con-
sider the case withG defined as a localized Gaussian-ty
function:

G~xA!5H ~q21p22m!4 if q21p2<m,

0 otherwise,
~38!

which we use to describe an initial ‘‘blob’’ of matter. T
provide initial data for the velocity field, we setVang50 and

v rn~u50,r ,xA!52~A11E1AE12/r !~122/r ! ~39!

where v rn is v1 renormalized to be well behaved on th
event horizonr 52 @explicitly v rn5v1(122/r )2]. E repre-
sents the energy at infinity of a unit mass particle, in
sense that at infinityuv1u25E; note thatE.21. In the tests
described below we take

~i! Ra54 andRb57.
02400
n

e

~ii ! l varying between 1025 and 10213.
~iii ! G(xA)51 ~spherical shell! or G(xA) given by Eq.

~38! with m50.4 ~blob of matter with center at one of th
poles whose density goes to zero at aboutu544°).

~iv! E52.25.
Analytically, the matter never reachesr 52, but in prac-

tice, due to numerical diffusion, boundary conditions are s
needed there; we impose

r50, Vang50, v rn50. ~40!

B. Equation of state

For dust, the equation of state isp50. We also investi-
gate how the code copes with nonzero pressure, and set
test case with the density defined as above~with l51029),
and with the equation of state

p5vr1.4, ~41!
5-6
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FIG. 3. The ‘‘plus’’ component of the news on the northern hemisphere for the casel51029 andpÞ0 at timesu50 ~A!, u57.2 ~B!,
u514.3 ~C! andu521.5 ~D!.
nt
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e
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with v510211. Further, in order to keeppr @Eq. ~16!# well
behaved for smallr, we setp50 wheneverr,rmax1025,
wherermax is the maximum value ofr at u50. Although
the magnitude of the pressure is small, and our impleme
tion of the fluid equations is rather simple, it is encourag
to see that there is no evidence of any pressure-related i
bility. More realistic initial data and equations of state cou
induce shocks that would require a sophisticated treatmen
the matter equations. We defer this to future work.

C. Physical interpretation of the initial data

It is useful to clarify the issue of units. We are usin
geometric units in whichG5c51, and everything is given
in terms of a unit of length, which is the distance correspo
ing to a unit change in the radial coordinater. Fixing the
event horizon atr 52, the geometric unit of length is th
mass of the black holeM.

The range of initial data sets that are used can be
scribed by considering the ratio of the characteristic len
associated with the density toM. Modulo a constant of orde
unity, this ratio isRr5(AlM )21, and in the tests the param
02400
a-
g
ta-

of

-

e-
h

eter Rr varies between 3.163102 to 3.163106. A similar
analysis can be made on the pressure and we findRp
5v1.25/M , in the testsRp50 andRr in the range just de-
scribed, orRp51.78310214 andRr53.163104.

Conversion to SI units needs the value ofM in meters. We
write

M5r 0 @m#, ~42!

where, for example, a 10M ( black hole has r 0
514766 @m#. Using the notation that quantities in geome
ric units will be denoted without suffix, and those in SI un
will have the suffixS, the conversions for speedv, massm,
densityr and pressurep are

v32.99831085vS @m/s#

m31.347r 0310275mS @kg#

r3
1.34731027

r 0
2

5rS @kg/m3#
5-7
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p3
1.21031044

r 0
2

5pS @Pa#. ~43!

We now use these conversions to determine, in SI units,
various parameters describing the initial data speci
above, when the mass of the black hole is 10M ( and l
51029:

~i! Spherical shell:rS58.343108 kg/m3, v50.90c, pS
50 or pS58.4731010 Pa, m53.3731026M ( ,

~iii ! Localized pulse:rS52.143107 kg/m3, v50.90c,
pS50 or pS55.013108 Pa, m56.1131029M ( ,
wherev is the proper inward radial velocity,m is the mass of
the shell or pulse, and the values ofrS , pS andv are given
at the point of maximum density atu50. For lÞ1029, rS
and m scale linearly inl, pS scales asl1.4, and v is un-
changed. The scaling withr 0, which represents the mass
the black hole, is given by Eq.~43!.

D. Spherical collapse

The first test was the collapse of a spherical shell ont
black hole. We set the black hole mass51, the inner bound-
ary of the shell atRa54 and the outer boundary atRb57.
The resulting spacetime is spherically symmetric. This sy
metry provides checks on the accuracy of the numerical e
lution since it implies that no gravitational radiation shou
be emitted and thatJ must vanish everywhere.

We confirmed this behavior by monitoring theL2 norms
of J and the news function for different initial amplitude
l5102(2n15) ~with n50, . . . ,4) over time ~with u
P@0,2#). At any given time, the value ofuuJuu2 and each
polarization mode converges to zero as the discretizatio
refined. The matter collapses onto the black hole and the
proceeds smoothly. Figure 1 shows the evolution ofr for the
case with pressure.

Additionally, it is straightforward to calculate analyticall
the total Bondi mass of the system; usingMAPLE we found
that ~for p50, l51026) MT51.0007395. By increasing
the resolution, we checked that this value is approached
second order accuracy, by the value computed from
code; the test was performed at bothu50 and u52. For
instance, with a grid ofNx5165 andNj565, the value ob-
tained for the mass atu52 is MT51.0007408, which agree
quite well with the expected value.

E. Black-hole–matter ball collision

To study the collision of a dustball–black-hole system
again set the black hole massM51 and the inner and oute
radii of the blob withRa54 andRb57; finally, the localiza-
tion on the sphere is set by choosingm50.4. This configu-
ration describes a ball of dust with center at one of the po
that goes to zero at aboutu544° with compact support in
@4,7# in the radial direction. Note that in this case, althou
we initially set Vang50, the self-gravitational field of the
dustball induces a non-zeroVang towards the pole. Figure 2
displays the evolution ofr for the case with pressure (l
51029). Again, the evolution proceeds smoothly as t
02400
e
d

a

-
o-

is
un

to
e

s

‘‘blob’’ of matter collapses onto the black hole and the pl
polarization mode of the news is obtained at null infinity~see
Fig. 3!.

Although an analytic solution to this problem is unknow
one can check consistency of the obtained simulation by
serving that thecrosspolarization mode (N3) must vanish
~since the problem is still axisymmetric!. We confirmed this
behavior, by increasing the number of grid points and pl
ting the logarithm of theL` norm of N3 ~at u50.15) vs
discretization size and observing its convergence to zero
shown in Fig. 4 the slope of 1.9 is in agreement with seco
order convergence. The convergence test was perfor
with l51029 and with non-zero pressure. We should ad
however, that at later times (u>10), the convergence rate i
reduced to about 1.5. This is expected because of the
centered scheme used at the black hole boundary~see Sec.
IV !.

Another check made was that the path of the peak den
should be a geodesic of the background spacetime. This
indeed found to be the case. For example, usingMAPLE we
found that atu52, r should be 4.9169, and numerically w
found, for the casel51027 and non-zero pressure, thatr
54.9180~for a grid with Nx585 andNj565).

VI. CONCLUSION

In this paper, we have incorporated matter, in the form
a perfect fluid, into the characteristic code for the Einst

FIG. 4. Convergence of thecrosspolarization mode in an axi-
symmetric spacetime. The figure shows the logarithm ofN3(u
50.15) vs the logarithm of the discretization size. The slope of
is in good agreement with second order convergence. The plot i
the casel51029 andpÞ0.
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field equations: we have found explicit forms for the vario
evolution and field equations, we have shown how th
equations are discretized, and we have carried out a num
of tests on the resulting code. The code is stable and con
gent, and its validation has included the following tests.

~i! The peak of the matter ‘‘blob’’ follows a geodesic o
the background spacetime.

~ii ! The code is not written with any symmetries, yet sy
metric initial data lead to the appropriate part of the grav
tional radiation vanishing.

~iii ! In the spherically symmetric case, the mass of
system, as calculated by the code, is conserved and ag
with the initial mass calculated analytically.

Taken together, and also with earlier validations of t
pure gravity code@1#, these tests provide substantial ev
dence that the code is correct in a regime free of shocks.
geodesic test provides evidence that the matter flow is
rect, and the mass test shows that mass is being conse
during radial motion. Gravitational radiation is generated
angular asymmetries and motion, and the symmetry
shows that any error in the angular dependence of the m
variables would have to be carefully contrived so as to p
serve the symmetries.

This paper has not computed a solution to any real pr
lem in astrophysics. Nevertheless, we have shown that
02400
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er-
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present code is capable of modeling a variety of situati
where matter is captured by a black hole, although our tre
ment of the hydrodynamics would need to be amended
order to be able to handle shock waves. Even so, the pre
code should be able to contribute towards an understan
of a number of problems in black hole astrophysics.
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APPENDIX

The evolution equations for the matter variables are given below; note thatVw is 11W/r :

Vang,u5
pr

4v1r 2
$@2e2b~Zr̄ !Vang

2 12e2bVang~Zr!V̄ang#K24Vangr ,rv0r 222Vangr ,r V̄angUr 2

24Vangr ,uv1r 214e2b~Zr!r 222e2b~Zr!Vang
2 J̄22Vangv1~Zr!Ūr 222Vangv1~Zpr!Ur 2

14Vangr ,rv1Vwr 222Vang
2 r ,r Ūr 222e2bVang~Zpr!V̄angJ%

1
1

4v1r 2
$4v1r 2U~Zb!V̄ang2e2b~ZJ!V̄ang

2 2e2b~ZJ̄!Vang
2 14v1r 2Ū~Zb!Vang

24Vang,rv0r 214VwVang,rv1r 222e2b~ZVang!VangJ̄22v1r 2~ZŪ !Vang

1@2e2b~ZVang!V̄ang12e2b~ZpVang!Vang#K24Vwv1
2r 2~Zb!22e2b~ZpVang!V̄angJ12e2bJK~ZJ̄!VangV̄ang

12e2bJ̄K~ZJ!VangV̄ang22v1U~ZpVang!r
2

22e2b~ZK !VangV̄ang12v1
2r 2~ZVw!24e2bJ̄J~ZK !VangV̄ang22Vang,rUV̄angr

2

18v0v1r 2~Zb!22v1Ū~ZVang!r
222r 2v1~ZU !V̄ang22Vang,r ŪVangr

2%, ~A1!

r ,u52
e2b@Fov12Fa~p1r!#

v1
2@pr~p1r!21#

, v1,u5
e2b~2Fa1Fov1pr!

v1@pr~p1r!21#
, ~A2!

with Fo andFa given by
5-9
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Fo5
p1r

4e2br 2
$@22~ZK !V̄ange

2b22~ZpK !Vange
2b#JJ̄22~ZJ̄!Vange

2b1@~ZJ!V̄ange
2b

1~ZpJ!Vange
2b#KJ̄1@~ZJ̄!V̄ange

2b1~ZpJ̄!Vange
2b#KJ

18v1rVw24v0,r r
222v1r 2~ZpU !1@22~ZVang!e

2b24~Zb!Vange
2b# J̄14Vwv1,r r

2

22~ZpJ!V̄ange
2b1@24~Zpb!V̄ange

2b22~ZpV̄ang!e
2b#J

1@2~ZV̄ang!e
2b14~Zpb!Vange

2b14~Zb!V̄ange
2b12~ZpVang!e

2b#K

22UV̄ang,r r
222ŪVang,r r

214v1r 2Vw,r28v0r 22r 2Ū ,rVang22U~Zpv1!r 2

24rŪVang24rUV̄ang22r 2U ,r V̄ang22v1r 2~ZŪ !22Ū~Zv1!r 2%

1
1

4e2br 2
$22r ,rVangŪr 222~Zpr!V̄ange

2bJ24r ,rv0r 222~Zr!Vange
2bJ̄22r ,r V̄angUr 2

22v1~Zpr!Ur 21@2~Zpr!Vange
2b12~Zr!V̄ange

2b#K14r ,rv1Vwr 222v1~Zr!Ūr 2%, ~A3!

Fa5
pr

4e2br 3
$22v1r ,r V̄angUr 322v1

2~Zr!Ūr 322v1
2~Zpr!Ur 324v1r ,rv0r 314v1

2r ,rVwr 322rv1~Zpr!V̄ange
2bJ

22rv1~Zr!Vange
2bJ̄1@2rv1~Zpr!Vange

2b12rv1~Zr!V̄ange
2b#K

22v1r ,rVangŪr 314r ,r r
3e2b%

1
1

4e2br 3
$@22r ~Zv1!Vange

2b12Vang
2 e2b# J̄18b ,rv1v0r 322v1U~Zpv1!r 312v1

2r 3Vw,r

22v1,r ŪVangr
314b ,rv1r 3ŪVang22v1r 3Ū ,rVang14Vwv1,rv1r 322v1,rUV̄angr

3

1KJrJ̄,rVangV̄ange
2b22v1Ū~Zv1!r 314b ,rv1r 3UV̄ang24v1,rv0r 32rJ̄ ,rVang

2 e2b

1@24VangV̄ange
2b12r ~Zv1!V̄ange

2b12r ~Zpv1!Vange
2b#K24Vwb ,rv1

2r 3

22v1r 3U ,r V̄ang1@22r ~Zpv1!V̄ange
2b12V̄ang

2 e2b#J22JJ̄rK ,rVangV̄ange
2b

1KJ̄rJ ,rVangV̄ange
2b2rJ ,r V̄ang

2 e2b%. ~A4!
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