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Infrared behavior of graviton-graviton scattering
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The quantum effective theory of general relativity, independent of the eventual full theory at high energy,
expresses graviton-graviton scattering at one loop oft{&*) with only one parameter, Newton’s constant.
Dunbar and Norridge have calculated the one loop amplitude using string based techniques. We complete the
calculation by showing that the H{4) divergence which remains in their result comes from the infrared
sector and that the cross section is finite and model independent when the usual bremsstrahlung diagrams are
included.[S0556-282(199)07512-9

PACS numbsd(s): 04.60—m, 11.10.Lm

I. INTRODUCTION

Sgraz;: j d*x \/5
The simplest low energy process in quantum gravity is

graviton-graviton scattering. Although experimentally unob-

servable, this reaction forms an interesting theoretical labo-

ratory that illustrates the workings of quantum gravity. If %)

general relativity is the correct low energy classical theory of

gravity, then its quantum theory forms an effective field Here k¥*=327G and G is Newton’s constantg; , are un-

theory capable of analyzing the low energy quantum effectdknown dimensionless parameters Which contain information

Graviton-graviton scattering is particularly useful in illustrat- 220Ut the(presently unknownultimate high energy theory.

ing the logic of predictions in a quantum effective theory.A tfh'rd covariant 01; ordeRz,. RW?]BRW;B rc]an be r?mhoveq
Indeed, at one loop order this reaction provides a model) 'O4" dimensional space-time through the use of the Bian-
. . L chi identities. Since the curvature involves two derivatives of
mdependenquantumpre(_jlctlon of_general re_lat|v|ty. , ._the metric, the Einstein actigithe term withR) is seen to be

At tree level, the graviton-graviton scattering amplitude iS¢ orderE2. while R2 andR. R™" are of orderE?.
simple in the helicity basis, although the calculation to obtain Loop dia'grams obey a pozxver-counting theofl@ns). One
this result from the Einstein action is not so simple. With|oop diagrams formed from vertices given by the Einstein
+ (—) representing helicity+ 2 (—2),* all tree amplitudes action yield effects at ordeE* — any process with more
for 1+2—3+4 vanish except those related #'"®(+ +; loops is higher order in the energy expansion. The ultraviolet
++) by crossing and1] divergences at one loop necessarily have the same structure

as the local Lagrangian in Eq2), which means that they
must be proportional t&R? or R,,R*”. Then, at this order,
the ultraviolet divergences can be absorbed into renormal-
. 53 ized values of the parameters,. These renormalized con-
AU+ 4ot )= '_ﬁ_ 1) stants are unknown and will be different depending on the
' 4 tu nature of the theory that forms the ultimate correct high en-
ergy theory which includes gravity. In this sense these pa-
rameters are model dependent. However, they do not con-
tribute to the process of gravi;on—graviton scattering. At the
order that we are working, the- Lagrangians are applied to
Here 2"2: 327G and s=(py+p2)* t= (P~ P3)%U=(P1  form vertices for on-shell amplitudes, which is to say that the
—P4)* denote the usual Madelstam variables. ~ equations of motion are satisfied for the external states.

It is simple to show that graviton-graviton scattering However, the equations of motion for the purely gravita-
should be finite and parameter independent at one-loop ord@bnal sector areR,,=0, and henceR=0 also. Thus the
[2]. In the effective low energy theory8] gravitational ef-  effects of both of theR? terms in Eq.(2) vanish in purely
fects are expanded in a derivative expansion with all termgravitational processes. It is this argument that tells us that
satisfying general covariance graviton-graviton scattering is finite and independent of any
unknown parameters at one loop order.

The power counting theorem is manifest in the one-loop
results calculated by Dunbar and Norridgd. The one-loop
amplitude is formed by using the lowest order tree amplitude
twice in order to produce a loop diagram, and hence carries
coupling constantg*~ G2 . Dimensionally this requires that
the result carry four powers of the external energies. This is
seen in the resultésee alsd8])

2
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INote that in our notation crossing also requires one to flipzthe
sign for the affected gravitons. This implies in particular that
A(— —;++) must be a symmetric function &f t andu.
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and all logarithms with negative arguments are understood téinite even in the limit when their masses vanish. However, it
have a—i imaginary part. Note that this represents a realwas only conjectured there that the same is true for massless
tour-de-force Done in conventional field theory, the calcu- matter of higher spirfa situation similar to graviton-graviton
lation is formidably difficult. It is a tribute to the string based Scattering. One also notes that the scale of the logarithm is
techniques that the results are obtainable with less than HeRot defined. This is an indication that the calculation is in-
culean effort. Indeed, after calculating the graviton loops, th&omplete. We will see that the scale in the logarithm comes
authors write down the result for massless scalars, fermion§0m an infrared regulator for soft gravitons. Finally, part of
and photons in the loops in just a few lines. However, thePUr motivation comes from a minor quibble with the argu-
result is not tied to the validity of string theory as a funda-Ment glvenzabove. In the effective Lagrangian we removed
mental theory — the technique is simply an efficient way tot"€ (Ruvap)” térm by the use of an identity that is only valid

calculate the results of usuajuantum general relativity. in exactly four dimensions. Indeed, in any higher dimension
One notices that the one loop amplitude in E8). con-

the argument given would not apply, and the graviton scat-
tains a factor of X, i.e. it isnotfinite. At first, this seems to

tering amplitude would contain a model dependent param-
tradict th | . . b Y .eter. This means that in the quantum theory we can only be
contradict the general reasoning given above. HOWEVET, g qain of the result if we use a regularization scheme that
the complete calculation of the physical process of graviton o in four dimensions. However, the only scheme that we
scattering, there will also be bremsstrahlung diagrams deg oy ahout that preserves the symmetries of general relativ-
scribing the radiation of soft gravitons off the external gravi-j is gimensional regularization, and it was that scheme used
ton lines. When calculated ind=4-—2e dimensional phase i Ret [7]. While it is unlikely that the regularization
space these infrared effects also bring in afactor. If the ¢ hame would lead to an extra divergence, we also want to

divergence in Eq(3) is an infrared divergence, and if the  qnfirm that the residual divergence is not an artifact of the
effective field theory of gravity behaves as a proper effectivg iraviolet regularization.

field theory, then the infrared loop effects should be canceled
against the soft radiation. While there are good reasons for
believing that the gravitational effective field theory should

be well behaved in the infrared, the long-standing doubts
about quantum gravity make it worthwhile to check this

property in the only complete calculation available. In Ref. We will explicitly calculate the divergences in the one-
[6] it was shown that the scattering of spin-0 fields is infraredloop differential cross section for graviton-graviton scatter-

Il. SOFT GRAVITONS IN GRAVITON-GRAVITON
SCATTERING
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FIG. 2. The four Feynman diagrams that contribute to soft
. . ) graviton radiation at lowest order in hard graviton-graviton scatter-
FIG. 1. The expansion of the cross sectionsnn graviton-

. . . ing.
graviton scattering. The quantity'"®® represents the sum of all tree g
level diagrams. Solid lines represent hard gravitons, wavy lines are

X 1
soft gravitons. l a,B,'yS:E( naynﬁﬁ—’_ 7]@577,87) (6)

ing. We will find a complete cancellation of infrared diver-

gences when we calculate the cross section u@te®),

including the Bremsstrahlung graphs, as shown in Fig. 1.
In this figure we explicitly show all factors of. The first 1

term in the figure(and five additional graphs, not shown, Papys=lapys™ 5 Naphys- (7)

with graviton exchanges between various pairs of external

legs is already included in the full one-loop scattering cal- The gauge invariance of the tree level amplitudes implies,

culation and has an infrared divergence. This divergence igr k—0,

canceled by another divergence in the second term in the

figure, a soft Bremsstrahlung process, which should be added

as it is degenerate in energy with pure hard scattering. The kgAZie(1,2;3k4+ k)=0(k) (8)

second line in the figure shows that the actual cancellation

occurs in the?(«®) terms because the leadid( «*) is tree

level and infrared finite. and also
We will derive a general formula for the infrared diver-

gences which uses the on-shell Born amplitude. The most

convenient regularization procedure is dimensional regular- 7" Au(1,2:3k4 k)= O(K). ©)

ization. We calculate the IR divergent part of the graviton

radiation term in Fig. 1 and shojef. Eq.(26)] that to do_so These restrictions can be derived as follows. Gauge invari-

we only need to know the on-shell tree level amplitudes L ; .
tree . . ._~ance implies that the on-shell amplitude is unchanged under

A"\, N2,N3,N4). We always work in the helicity basis shifting the polarization tensor b

and \;=+ stands for the helicity of thé" hard graviton. gthep y

The only divergence occurs when the gravitons have helicity

assignmentst +;+ + (and in the cases related to this by

crossing and that is the only case when the tree level ampli- etr'— e+ (KHE + EHKT— K- & M), (10

tude is nonvanishing. In the following we shd&g. (13)]

that soft graviton radiation does not flip the hard graviton

spins so that all IR divergences are proportional to the tred/ith any four-vectoré”, a transformation that keeps,“”
amplitude with the same helicity. zero. In order for an amplitud®,,, e*” to be invariant under

The amplitude with one soft graviton radiation is the sumSUch replacement, we need for any on shell momerkum
of the four diagrams in Fig. 2. We first calculate the contri-
bution from Fig. Za):

and

28, (kA= (k- A, . (11)

This must hold for any, hence we have E@8),(9).

i ) X . .
A[ZfIAZﬁe(1,2;3k4+ k) — The graviton propagator and the triple graviton couplings
(kgtk)“+ie are shown in Fig. 3:
. K A N .
XP oyt | ETﬁﬁ'y}"’ exP e, (5) i ONANANANAS = v [n"un,,) = 1]
aof k _]i ~d
bk — ;—k i sk, ke, ks)
where writing a number in the argument of the tree ampli- py

tude means putting those lines on shell and multiplying by
the appropriate*” polarization tensor. The matricesandP
denote

FIG. 3. The graviton propagator and the triple gluon vertices in
harmonic gauge. For an expression#ff; . ; see Eq(12).
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Putting together Eqg5)—(12), we arrive at a simplified expression:

Kie,, (K \)Kj
PRI
(kg+K)?+ie

k O(k)

tree,
ATHL234% 0 e

A=~ (13)
where the “IR” index emphasizes that we keep only the leading term vitiel®. We observe indeed that tif&(1/k) term
is proportional to the Born amplitude without flipping any of the hard particles’ spins.

Now we add on the contribution from Figs. 2b,c,d. The result is

Kée, (KK k O(K)

4
A= Ate(1,234 >

+ . 14
n=1 (ko + k)2 +ie KKy (19
Next we need to square this amplitude and sum over the soft graviton spin:
4 v ay, B
S lajgte= e avege 3 0 ol 15
A " i'jzl(ki+7lik)2(kj+77jk)2,
where the sum over graviton polarization tensors is
_ 1
#eB(k)y= > e’;(k)e;(k)ei(k)eﬁ(k)zE(H““HVBJrH“BH”“—H#”H“B) (16
and
A7 (k) =Kk*N"+K"N*—=(k-N) p*7 a7
with an arbitrary vectoi, samefor all terms in the sum, chosen a$=(1,0).
Doing the algebra in the above formula gives us
, 1o,
L 2JATRP? (COSYj; — COSa;Cosa;)*— Esmzaismzaj
; AR 4K2 ; nmiEE, (1-cosa;)(1-cosa;) ’ (18

wherek now stands for the energy of the soft glugrot the  one-loop finite and all the divergences in one-loop graviton-
four-momentur, and 1y;; is the angle between the graviton scattering come from the pure gravity part only, all
(d—1)-dimensional momenta of the hard gravitoasjs the  of this 1/e should be of infrared origin and consequently be
angle between th&é" hard and the soft graviton; is the  canceled by the square of the amplitudé?®. However,
c.m. energy of thé'" graviton andp, = +1 (—1) forincom- A" itself is a tree level amplitude which doest diverge;
ing (outgoing hard gravitons. the canceling ¥ factor comes from the phase space integral.
At this point we make a comment on how dimensionalOne might wonder then why we are not getting too much
regularization works. In the one-loop amplitude we findea 1/ divergence: the leading term isk®/ so the phase space in-
divergence in dimensional regularization. As pure gravity istegral introduces
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dd-1k finite, although the integral includes a severe collinear singu-
J’ 5 (19 larity. Fortunately, in our case, we will not encounter this
kk problem: the spins “conspire” so that there is an additional

which is logarithmically divergent. In the same time the an_angular factor which takes away all collinear singularities in
this integral. In other models, however, like one with el-

gular integration is also divergent and we find that dimen- . .
sional regularizatiomioes not handle correctlgn integral of ~€Mentary massless scalars, this might be a problem which
the type requires further treatment.

Now we calculate the differential cross sectiondr4
—2e dimensions. We focus on the infrared region only, in-
dQg4_»5(n) tegrating up to a cutoffA <+/s and neglecting momenta of
é ~B(l-e,~-1-¢) (20 orderA and above. Such soft graviton radiation shogadd
will) be sufficient to cancel the IR divergences due to one-
(herea is the angle between the direction mfand a fixed loop integrals. In particular, we do not consider hard collin-
direction. The above Euler function is ear gravitons. The divergences due to hard collinear graviton
radiation(i.e. when one of they;’s is smal) are not canceled
by loops. However, these divergences are all proportional to
I'(l1-e)l'(-1-¢) A so can be unambiguously separated from the soft diver-

(1—cosa)?

Bl-e~1-¢) I'(—2e) —=2+0(e) gences. Some rather tedious algebra leads to an integral over
(21)  the directionm of the soft Bremsstrahlung graviton
2 1. ;
doiad k2| Atree? (cosy;; —Ccosa;cosa;)?— Esmzaismzaj

= > JAdkkd-“ é do -
dQq_1(n)  (27)30-7p20+2 4] KN Ny d-1(m) (22)

(1—cosa;)(1—cosa))
Thek integral has a ¥ infrared divergence. All divergences that are collinear and infrared simultaneously should come from
the second integral. However, we observe that the numerator in the angular integral vanishes when the denominator does,
actually canceling out the singularity. This fact is necessary to allow us to consistently separate collinear divergences from soft
ones. In order to find the divergent part, we need to calculate only the leading term in

1
(cosy;; — cosa;cosa;)®— Esinzaisinzaj

(0) (1) =
FE(y)y+eFH(y)+ ... édﬂd,l(m) (1= cosay)(1—cosa)) (23
|
Substituting this into Eq(22) we find do{Sd K2|Atree|2 t -t u -u
=— —In—+ =In—
dQ 2"2m* \s s s s
do_lrsd K2 |Atree|2 ©
Qg 4(N)  (27)5 Bepit-4e ; F0yi) mim;
1
1 f(l)(yij) X E—ZInA+6In(277)+4In2
X|=—2InA+6In(27)+4 In2+0— )
€ FOCyy)
(24)
% i F (i) A
The result in four dimensions is + +0 TS) : (26)
%: 7 FOyy))
0) 3+cosy 2 _ _ o
F(y)=4m| ——F——(1—cosy)In)———|. We have found that the infrared divergent part is indeed
6 1-—cosy . ; ;
(25) proportional to the square of the Born amplitude. Because in
the (++;——) and (+ +;+ —) helicity cases there is no IR
divergence to cancel, the vanishing of the Born terms makes
With this, we finally find for the cross section sure none emerges in the radiative process.

024003-5



JOHN F. DONOGHUE AND TIBOR TORMA PHYSICAL REVIEW D60 024003

In the (+ +;+ +) helicity case we need to use the crossin order to calculate theO(«®) contribution to the
section formula cross section (see Fig. 1 Using the Dunbar-
— 1 Norridge [7] 1-loop amplitude amplitude, Eq3), we find
tree 4 1-loop
(M) =2Re(A A ) (27) the O(«®) contribution to the cross section for the-2
d€) nonrad (277)2253 process:

1
Z+In4w—lns—y +

do(++;++)
( s s

dQ

K2|Atree|2 t —t u —u
nonrad 2 (2) S S
(28

We observe that the d/divergence cancels when we add together E2@. and (28). The finite term in Eq(28) contains
an undetermined scale due to the logarithmsofThe occurrence of such a scale is a common feature of dimensional
regularization in the presence of infinities. This scale is provided by the “ultraviolet” cutoff in the radiative cross section. Our
final result for the sum of the cross sections is

(do) +<d0') +(do’) k4s® 14 K’s I —tI —qutu]c —t —u) (tl —t+uI —u)
— — — = 5| In—In—+—f—,—|—|zIn—+ -In—
dQ/ o \dQ/)  \dQ) ¢ 204872t2u? 16 S s 2¢g? S S s s s
% mmFD(yip)
X 3|n(2772)+y+|n—2+ . (29
A S i F Oy
o i mMj Yij

In this form all divergences are canceled and all logarithmgences, its soft divergences even cancel in the case of one-
are dimensionless. There is a logarithmic dependence on tHeop graviton-graviton scattering, and also demonstrated
scale where we cut off the non-infrared radiative gravitonsthat, similarly to the case of QED, summation over degener-
We remind the reader that the finite functiofi§—t/s, ate states .in the final state suffices to get a final and sensible
—u/s) and = 77, F M (i) 125 mi 9 F () are respec-  Cross section. . _ .

tively given in Eq.(4) and can be extracted from E@®3). The result for graviton-graviton scattering to one-loop or-
der is beautiful and significant because it forms a low energy

theorem for quantum gravity. No matter what the high en-
ergy theory of gravity may turn out to be, and independent of
the massive patrticles in the theory, as long as the low energy

This has been the first explicit investigation of the infra- limit leads to general relativity the scattering rate must have
red properties of a one loop amplitude in quantum gravitythe model independent form shown in E9). As expected,
We have achieved our goal in demonstrating that the effecthe quantum effective field theory of general relativity is well
tive theory of gravitation is not plagued by infrared diver- behaved in the infrared.

IIl. CONCLUSIONS
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