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Infrared behavior of graviton-graviton scattering
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The quantum effective theory of general relativity, independent of the eventual full theory at high energy,
expresses graviton-graviton scattering at one loop orderO(E4) with only one parameter, Newton’s constant.
Dunbar and Norridge have calculated the one loop amplitude using string based techniques. We complete the
calculation by showing that the 1/(d24) divergence which remains in their result comes from the infrared
sector and that the cross section is finite and model independent when the usual bremsstrahlung diagrams are
included.@S0556-2821~99!07512-8#

PACS number~s!: 04.60.2m, 11.10.Lm
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I. INTRODUCTION

The simplest low energy process in quantum gravity
graviton-graviton scattering. Although experimentally uno
servable, this reaction forms an interesting theoretical la
ratory that illustrates the workings of quantum gravity.
general relativity is the correct low energy classical theory
gravity, then its quantum theory forms an effective fie
theory capable of analyzing the low energy quantum effe
Graviton-graviton scattering is particularly useful in illustra
ing the logic of predictions in a quantum effective theo
Indeed, at one loop order this reaction provides a mod
independentquantumprediction of general relativity.

At tree level, the graviton-graviton scattering amplitude
simple in the helicity basis, although the calculation to obt
this result from the Einstein action is not so simple. W
1 (2) representing helicity12 (22),1 all tree amplitudes
for 112→314 vanish except those related toA tree(11;
11) by crossing and@1#

A tree~11;11 !5
i

4

k2s3

tu
. ~1!

Here k2532pG and s5(p11p2)2, t5(p12p3)2, u5(p1

2p4)2 denote the usual Madelstam variables.
It is simple to show that graviton-graviton scatterin

should be finite and parameter independent at one-loop o
@2#. In the effective low energy theory@3# gravitational ef-
fects are expanded in a derivative expansion with all te
satisfying general covariance

*Email address: donoghue@phast.umass.edu
†Email address: kakukk@physics.utoronto.ca
1Note that in our notation crossing also requires one to flip the6

sign for the affected gravitons. This implies in particular th
A(22;11) must be a symmetric function ofs, t andu.
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3F 2

k2 R1c1 R21c2 RmnRmn1•••1LmatterG .
~2!

Here k2532pG and G is Newton’s constant,c1,2 are un-
known dimensionless parameters which contain informat
about the~presently unknown! ultimate high energy theory
A third covariant of orderR2, RmnabRmnab can be removed
in four dimensional space-time through the use of the Bi
chi identities. Since the curvature involves two derivatives
the metric, the Einstein action~the term withR) is seen to be
of orderE2, while R2 andRmnRmn are of orderE4.

Loop diagrams obey a power-counting theorem@4,5#. One
loop diagrams formed from vertices given by the Einste
action yield effects at orderE4 — any process with more
loops is higher order in the energy expansion. The ultravio
divergences at one loop necessarily have the same stru
as the local Lagrangian in Eq.~2!, which means that they
must be proportional toR2 or RmnRmn. Then, at this order,
the ultraviolet divergences can be absorbed into renorm
ized values of the parametersc1,2. These renormalized con
stants are unknown and will be different depending on
nature of the theory that forms the ultimate correct high
ergy theory which includes gravity. In this sense these
rameters are model dependent. However, they do not c
tribute to the process of graviton-graviton scattering. At t
order that we are working, theR2 Lagrangians are applied t
form vertices for on-shell amplitudes, which is to say that t
equations of motion are satisfied for the external sta
However, the equations of motion for the purely gravit
tional sector areRmn50, and henceR50 also. Thus the
effects of both of theR2 terms in Eq.~2! vanish in purely
gravitational processes. It is this argument that tells us
graviton-graviton scattering is finite and independent of a
unknown parameters at one loop order.

The power counting theorem is manifest in the one-lo
results calculated by Dunbar and Norridge@7#. The one-loop
amplitude is formed by using the lowest order tree amplitu
twice in order to produce a loop diagram, and hence car
coupling constantsk4;GN

2 . Dimensionally this requires tha
the result carry four powers of the external energies. Thi
seen in the results~see also@8#!

t
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A 12 loop~11;22 !52 i
k4

30720p2~s21t21u2!

A 12 loop~11;12 !52
1

3
A 12 loop~11;22 !

A 12 loop~11;11 !5
k2

4~4p!22e

G2~12e!G~11e!

G~122e!
A tree~11;11 ! 3~s t u!

3F2

e S ln~2u!

st
1

ln~2t !

su
1

ln~2s!

tu D1
1

s2
f S 2t

s
,
2u

s D
12 S ln~2u!ln~2s!

su
1

ln~2t !ln~2s!

tu
1

ln~2t !ln~2s!

ts D G ~3!

where

f S 2t

s
,
2u

s D5
~ t12u!~2t1u!~2t412t3u2t2u212tu312u4!

s6 S ln2
t

u
1p2D

1
~ t2u!~341t411609t3u12566t2u211609tu31341u4!

30s5
ln

t

u

1
1922t419143t3u114622t2u219143tu311922u4

180s4
, ~4!
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and all logarithms with negative arguments are understoo
have a2 ip imaginary part. Note that this represents a r
tour-de-force. Done in conventional field theory, the calc
lation is formidably difficult. It is a tribute to the string base
techniques that the results are obtainable with less than
culean effort. Indeed, after calculating the graviton loops,
authors write down the result for massless scalars, ferm
and photons in the loops in just a few lines. However,
result is not tied to the validity of string theory as a fund
mental theory — the technique is simply an efficient way
calculate the results of usual~quantum! general relativity.

One notices that the one loop amplitude in Eq.~3! con-
tains a factor of 1/e, i.e. it is not finite. At first, this seems to
contradict the general reasoning given above. However
the complete calculation of the physical process of gravi
scattering, there will also be bremsstrahlung diagrams
scribing the radiation of soft gravitons off the external gra
ton lines. When calculated in ad5422e dimensional phase
space these infrared effects also bring in a 1/e factor. If the
divergence in Eq.~3! is an infrared divergence, and if th
effective field theory of gravity behaves as a proper effect
field theory, then the infrared loop effects should be cance
against the soft radiation. While there are good reasons
believing that the gravitational effective field theory shou
be well behaved in the infrared, the long-standing dou
about quantum gravity make it worthwhile to check th
property in the only complete calculation available. In R
@6# it was shown that the scattering of spin-0 fields is infrar
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finite even in the limit when their masses vanish. However
was only conjectured there that the same is true for mass
matter of higher spin~a situation similar to graviton-graviton
scattering!. One also notes that the scale of the logarithm
not defined. This is an indication that the calculation is
complete. We will see that the scale in the logarithm com
from an infrared regulator for soft gravitons. Finally, part
our motivation comes from a minor quibble with the arg
ment given above. In the effective Lagrangian we remov
the (Rmnab)2 term by the use of an identity that is only vali
in exactly four dimensions. Indeed, in any higher dimens
the argument given would not apply, and the graviton sc
tering amplitude would contain a model dependent para
eter. This means that in the quantum theory we can only
certain of the result if we use a regularization scheme t
works in four dimensions. However, the only scheme that
know about that preserves the symmetries of general rela
ity is dimensional regularization, and it was that scheme u
in Ref. @7#. While it is unlikely that the regularization
scheme would lead to an extra divergence, we also wan
confirm that the residual divergence is not an artifact of
ultraviolet regularization.

II. SOFT GRAVITONS IN GRAVITON-GRAVITON
SCATTERING

We will explicitly calculate the divergences in the on
loop differential cross section for graviton-graviton scatt
3-2
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ing. We will find a complete cancellation of infrared dive
gences when we calculate the cross section up toO(k6),
including the Bremsstrahlung graphs, as shown in Fig. 1

In this figure we explicitly show all factors ofk. The first
term in the figure~and five additional graphs, not show
with graviton exchanges between various pairs of exte
legs! is already included in the full one-loop scattering c
culation and has an infrared divergence. This divergenc
canceled by another divergence in the second term in
figure, a soft Bremsstrahlung process, which should be ad
as it is degenerate in energy with pure hard scattering.
second line in the figure shows that the actual cancella
occurs in theO(k6) terms because the leadingO(k4) is tree
level and infrared finite.

We will derive a general formula for the infrared dive
gences which uses the on-shell Born amplitude. The m
convenient regularization procedure is dimensional regu
ization. We calculate the IR divergent part of the gravit
radiation term in Fig. 1 and show@cf. Eq. ~26!# that to do so
we only need to know the on-shell tree level amplitud
A tree(l1 ,l2 ,l3 ,l4). We always work in the helicity basi
and l i56 stands for the helicity of thei th hard graviton.
The only divergence occurs when the gravitons have heli
assignments11;11 ~and in the cases related to this b
crossing! and that is the only case when the tree level am
tude is nonvanishing. In the following we show@Eq. ~13!#
that soft graviton radiation does not flip the hard gravit
spins so that all IR divergences are proportional to the
amplitude with the same helicity.

The amplitude with one soft graviton radiation is the su
of the four diagrams in Fig. 2. We first calculate the con
bution from Fig. 2~a!:

A (a)
rad5A mn

tree~1,2;3,k41k!
i

~k41k!21 i e

3Pmn,m8n8 i
k

2
tab,lr

m8n8 e4
ab elr, ~5!

where writing a number in the argument of the tree am
tude means putting those lines on shell and multiplying
the appropriateemn polarization tensor. The matricesI andP
denote

FIG. 1. The expansion of the cross section ink in graviton-
graviton scattering. The quantityA tree represents the sum of all tre
level diagrams. Solid lines represent hard gravitons, wavy lines
soft gravitons.
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I ab,gd5
1

2
~haghbd1hadhbg! ~6!

and

Pab,gd5I ab,gd2
1

2
habhgd . ~7!

The gauge invariance of the tree level amplitudes impli
for k→0,

k4
mA mn

tree~1,2;3,k41k!5O~k! ~8!

and also

hmnAmn~1,2;3,k41k!5O~k!. ~9!

These restrictions can be derived as follows. Gauge inv
ance implies that the on-shell amplitude is unchanged un
shifting the polarization tensor by

emn→emn1~kmjn1jmkn2k•j hmn!, ~10!

with any four-vectorjm, a transformation that keepskmemn

zero. In order for an amplitudeAmnemn to be invariant under
such replacement, we need for any on shell momentumk

2jm~knAmn!5~k•j!Am
m . ~11!

This must hold for anyj, hence we have Eq.~8!,~9!.
The graviton propagator and the triple graviton couplin

are shown in Fig. 3:

FIG. 2. The four Feynman diagrams that contribute to s
graviton radiation at lowest order in hard graviton-graviton scat
ing.

FIG. 3. The graviton propagator and the triple gluon vertices
harmonic gauge. For an expression oftab,gd

mn see Eq.~12!.

re
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tab,gd
mn ~k1 ,k2 ,k3!5Pab,gdFk2

mk2
n1~k22k1!m~k22k1!n1k1

mk1
n2

3

2
hmnk1

2G12 ~k1!l~k1!s@ I ab
ls, I gd

mn, 1I gd
ls, I ab

mn

2I ab
lm I gd

sn, 2I ab
sn, I gd

lm #1~k1!lk1
m~habI gd

ln, 1hgdI ab
ln, !1~k1!lk1

n~habI gd
lm, 1hgdI ab

lm, !

2k1
2~habI gd

mn, 1hgdI ab
mn, !2hmnk1

lk1
s~habI gd,ls1hgdI ab,ls!12 k1

l@ I ab
sn, I gd,ls~k22k1!m

1I ab
sm, I gd,lr~k22k1!n2I gd

sn, I ab,lsk2
m2I gd

sm, I ab,lsk2
n#1k1

2~ I ab
sm, I gd,s

n1I ab,s
n I ad

sm, !

1hmnk1
l~k1!s~ I ab,lrI gd

rs, 1I gd,lrI ab
rs, !1@k2

21~k22k1!2#S I ab
sm, I gd,s

n1I ab
sn, I gd,s

m2
1

2
hmnPab,gdD

2@k2
2hgdI ab

mn, 1~k22k1!2habI gd
mn, #. ~12!

Putting together Eqs.~5!–~12!, we arrive at a simplified expression:

A (a)IR
rad 52k

k4
memn~k,l!k4

n

~k41k!21 i e
A tree~1,2,3,4!1

k O~k!

k•k41 i e
~13!

where the ‘‘IR’’ index emphasizes that we keep only the leading term whenk→0. We observe indeed that theO(1/k) term
is proportional to the Born amplitude without flipping any of the hard particles’ spins.

Now we add on the contribution from Figs. 2b,c,d. The result is

A IR
rad52k A tree~1,2,3,4! (

n51

4 kn
memn~k,l!kn

n

~kn1hnk!21 i e
1

k O~k!

k•kn
. ~14!

Next we need to square this amplitude and sum over the soft graviton spin:

(
l

uA IR
radu25k2 uA treeu2 (

i , j 51

4 ki
mki

n Pmn,ab~k! kj
akj

b

~ki1h ik!2 ~kj1h j k!2
, ~15!

where the sum over graviton polarization tensors is

Pmn,ab~k![(
6

e6
m ~k!e6

n ~k!e6
a ~k!e6

b ~k!5
1

2
~PmaPnb1PmbPna2PmnPab! ~16!

and

Pmn~k!5kmln1knlm2~k•l! hmn ~17!

with an arbitrary vectorl, samefor all terms in the sum, chosen aslm5(1,0).
Doing the algebra in the above formula gives us

(
l

uA IR
radu25

k2 uA treeu2

4k2 (
i j

h ih jEiEj

~cosg i j 2cosa icosa j !
22

1

2
sin2a isin2a j

~12cosa i !~12cosa j !
, ~18!
e

a
/
i

n-
all
be

al.
ch
-

wherek now stands for the energy of the soft gluon~not the
four-momentum!, and g i j is the angle between th
(d21)-dimensional momenta of the hard gravitons,a i is the
angle between thei th hard and the soft gravitons;Ei is the
c.m. energy of thei th graviton andh i511 (21) for incom-
ing ~outgoing! hard gravitons.

At this point we make a comment on how dimension
regularization works. In the one-loop amplitude we find a 1e
divergence in dimensional regularization. As pure gravity
02400
l

s

one-loop finite and all the divergences in one-loop gravito
graviton scattering come from the pure gravity part only,
of this 1/e should be of infrared origin and consequently
canceled by the square of the amplitudeA rad. However,
A rad itself is a tree level amplitude which doesnot diverge;
the canceling 1/e factor comes from the phase space integr
One might wonder then why we are not getting too mu
divergence: the leading term is 1/k2, so the phase space in
tegral introduces
3-4
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E dd21k

k k2
~19!

which is logarithmically divergent. In the same time the a
gular integration is also divergent and we find that dime
sional regularizationdoes not handle correctlyan integral of
the type

R dVd22~n!

~12cosa!2
;B~12e,212e! ~20!

~herea is the angle between the direction ofn and a fixed
direction!. The above Euler function is

B~12e,212e!5
G~12e!G~212e!

G~22e!
→221O~e!

~21!
02400
-
-

finite, although the integral includes a severe collinear sin
larity. Fortunately, in our case, we will not encounter th
problem: the spins ‘‘conspire’’ so that there is an addition
angular factor which takes away all collinear singularities
this integral. In other models, however, like one with e
ementary massless scalars, this might be a problem w
requires further treatment.

Now we calculate the differential cross section ind54
22e dimensions. We focus on the infrared region only,
tegrating up to a cutoffL!As and neglecting momenta o
orderL and above. Such soft graviton radiation should~and
will ! be sufficient to cancel the IR divergences due to o
loop integrals. In particular, we do not consider hard coll
ear gravitons. The divergences due to hard collinear grav
radiation~i.e. when one of thea i ’s is small! are not canceled
by loops. However, these divergences are all proportiona
L so can be unambiguously separated from the soft div
gences. Some rather tedious algebra leads to an integral
the directionm of the soft Bremsstrahlung graviton
e from
tor does,

from soft
ds IR
rad

dVd21~n!
5

k2 uA treeu2

~2p!3d2722d12 (i j h ih jE
0

Ldk

k
kd24 R dVd21~m!

~cosg i j 2cosa icosa j !
22

1

2
sin2a isin2a j

~12cosa i !~12cosa j !
. ~22!

Thek integral has a 1/e infrared divergence. All divergences that are collinear and infrared simultaneously should com
the second integral. However, we observe that the numerator in the angular integral vanishes when the denomina
actually canceling out the singularity. This fact is necessary to allow us to consistently separate collinear divergences
ones. In order to find the divergent part, we need to calculate only the leading term in

F (0)~g!1eF (1)~g!1 . . . 5 R dVd21~m!

~cosg i j 2cosa icosa j !
22

1

2
sin2a isin2a j

~12cosa i !~12cosa j !
. ~23!
ed
e in

kes
Substituting this into Eq.~22! we find

ds IR
rad

dVd21~n!
52

k2 uA treeu2

~2p!526e21124e (
i j
F (0)~g i j ! h ih j

3F1

e
22 lnL16 ln ~2p!14 ln 21

F (1)~g i j !

F (0)~g i j !
G .

~24!

The result in four dimensions is

F (0)~g!54pF31cosg

6
2~12cosg!ln

2

12cosgG .
~25!

With this, we finally find for the cross section
ds IR
rad

dV
52

k2 uA treeu2

27~2p!4 S t

s
ln

2t

s
1

u

s
ln

2u

s D

3F 1

e
22 lnL16 ln ~2p!14 ln 2

1

(
i j

h ih jF (1)~g i j !

(
i j

h ih jF (0)~g i j !
G1OS L

As
D . ~26!

We have found that the infrared divergent part is inde
proportional to the square of the Born amplitude. Becaus
the (11;22) and (11;12) helicity cases there is no IR
divergence to cancel, the vanishing of the Born terms ma
sure none emerges in the radiative process.
3-5
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In the (11;11) helicity case we need to use the cro
section formula

S ds@gg→gg#

dV D
nonrad

5
2Re~A treeA 12 loop!

~2p!225s
~27!
m
t

ns

a-
ity
fe
r-

.

v

02400
in order to calculate theO(k6) contribution to the
cross section ~see Fig. 1!. Using the Dunbar-
Norridge @7# 1-loop amplitude amplitude, Eq.~3!, we find
the O(k6) contribution to the cross section for the 2→2
process:
ional
n. Our
S ds~11;11 !

dV D
nonrad

5
k2 uA treeu2

27~2p!4 H S t

s
ln

2t

s
1

u

s
ln

2u

s D S 1

e
1 ln 4p2 ln s2g D1F ln

2t

s
ln

2u

s
1

tu

2s2
f S 2t

s
,
2u

s D G J .

~28!

We observe that the 1/e divergence cancels when we add together Eqs.~26! and~28!. The finite term in Eq.~28! contains
an undetermined scale due to the logarithm ofs. The occurrence of such a scale is a common feature of dimens
regularization in the presence of infinities. This scale is provided by the ‘‘ultraviolet’’ cutoff in the radiative cross sectio
final result for the sum of the cross sections is

S ds

dV D
tree

1S ds

dV D
rad.

1S ds

dV D
nonrad.

5
k4s5

2048p2t2u2 H 11
k2s

16p2F ln
2t

s
ln

2u

s
1

tu

2s2
f S 2t

s
,
2u

s D2S t

s
ln

2t

s
1

u

s
ln

2u

s D

3S 3 ln~2p2!1g1 ln
s

L2
1

(
i j

h ih jF (1)~g i j !

(
i j

h ih jF (0)~g i j !
D G J . ~29!
one-
ted
er-

sible

r-
rgy
n-

t of
rgy
ve

ell
In this form all divergences are canceled and all logarith
are dimensionless. There is a logarithmic dependence on
scale where we cut off the non-infrared radiative gravito
We remind the reader that the finite functionsf (2t/s,
2u/s) and ( i j h ih jF (1)(g i j )/( i j h ih jF (0)(g i j ) are respec-
tively given in Eq.~4! and can be extracted from Eq.~23!.

III. CONCLUSIONS

This has been the first explicit investigation of the infr
red properties of a one loop amplitude in quantum grav
We have achieved our goal in demonstrating that the ef
tive theory of gravitation is not plagued by infrared dive
s
he
.

.
c-

gences, its soft divergences even cancel in the case of
loop graviton-graviton scattering, and also demonstra
that, similarly to the case of QED, summation over degen
ate states in the final state suffices to get a final and sen
cross section.

The result for graviton-graviton scattering to one-loop o
der is beautiful and significant because it forms a low ene
theorem for quantum gravity. No matter what the high e
ergy theory of gravity may turn out to be, and independen
the massive particles in the theory, as long as the low ene
limit leads to general relativity the scattering rate must ha
the model independent form shown in Eq.~29!. As expected,
the quantum effective field theory of general relativity is w
behaved in the infrared.
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