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Propagating spin modes in canonical quantum gravity
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One of the main results in canonical quantum gravity is the introduction of spin network states as a basis on
the space of kinematical states. To arrive at the physical state space of the theory, though, we need to
understand the dynamics of the quantum gravitational states. To this aim we study a model in which we allow
for the spins, labeling the edges of spin networks, to change according to simple rules. The gauge invariance
of the theory, restricting the possible values for the spins, induces propagating modes of spin changes. We
investigate these modes under various assumptions about the parameters of the model.
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I. INTRODUCTION now related to the problem of defining the classical limit of
the theory. On the other hand, the investigation of the clas-
There are two very important issues in the loop approaclsical correspondence is also quite subtle. One of the main
to nonperturbative canonical quantum gravity-4] that we  results in canonical quantum gravity is that geometric opera-
have to address in our quest for a complete theory. The firdPrs such as area and volume have discrete spitaThis
is the problem of the evolution of gravitational quantum Mmeans that space has a discrete structure at the Planck scale.
states and the second one is the recovery of the classicahus, in taking the classical limit, we should also recover the
continuous space from the discrete structures that appear @@ntinuum space-time we see around us.
very short scale. The problem of evolution in canonical According to a proposal ifl1], the problem of recover-
quantum gravity is quite nontrivial. The underlying generaling the continuum space is similar to some problems of non-
covariance principle of the theory leads not to a true Hamil-equilibrium critical phenomena in statistical physics. The
tonian, but to a sum of constraints. The physical states of th®ng-range behavior characteristic of classical general rela-
theory are then the ones that are annihilated by these cofivity could arise at the critical values of some parameters of
straints. |mposing the gauge and the diffeomorphism Conthe discrete theory. This is aIready seen in certain discrete
straints has led to a Hilbert space whose basis is given bgPpproaches to quantum gravity such as dynamical triangula-
spin networks space. The Hamiltonian constraint, which gentions. The important aspect of the proposal is that, since
erates infinitesimal translations in the time direction, has tdhere is no external agent to tune the parameters of the uni-
be imposed in this space of states in order to obtain th&erse, discrete space should be a self-organizing critical sys-
physical space of states. tem. The idea of self-organized criticalifpOC was intro-
There are different approaches that have been proposed !ced by Bak, Tang, and Wiesenfeld[ 8] (for reviews see
order to study the action of the Hamiltonian constraint. In the 14,15). The self-organized criticality paradigm is that cer-
canonical approach, one relies on regularizing the Hamiltain systems, consisting of many parts interacting via local
tonian constraint as a quantum operator and investigating itd/les, self-organize themselves in a critical state. Usually this
action on the states of the theory_ Various regu|arizatiorf:ritica| state is characterized by the lack of Specific scale of
schemes have been sugged®d], the most commonly ac- Propagation of perturbations.
cepted being the one proposed by Thiem&nh However, In this paper, we study various models whose dynamics is
all of these suffer from various problentsee for example suggested by canonical quantum gravity. There are certain
[8,9]). Another approach that has been suggested is to look &pects of the action of the Hamiltonian constraint that are
the finite action of the Hamiltonian constraint as opposed t¢common to all of the proposed regularizations. These aspects
the infinitesimal ond10]. This has led to the study of spin guide us in the introduction of rules for graphical evolution
foams. of the spin networks. With the evolution rules in hand, we
An alternative approach is to find a consistent set of ruleglevelop a model along the lines of the sandpile models of
for quantum evolution that, in the classical limit, recover theself-organized criticality. First we briefly introduce the spin
action of the Hamiltonian Constraiﬁ]_]_]_ It is this approach network states. In Sec. lll, we discuss the various regulariza-
that we Study in this paper. While the idea is very intriguing’tions of the action of the Hamiltonian constraint and the
it is highly nontrivial to define an appropriate set of rules thatcorresponding graphical rules for evolution. We then intro-
lead to a good classical limit. The problem of finding the duce our model and discuss our results.
appropriate rules for evolution of the kinematical states is
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FIG. 1. Thiemann'’s regularization. FIG. 2. Smolin’s regularization.

constraint keeps adding new edges to the original ones only,
if\us producing a weblike structure at each vertex. The prob-
em with such a definition of the action of the Hamiltonian
constraint is that it is ultralocal in the sense that the action of
the constraint at one vertex does not propagate any informa-

E;”‘ that takes values in the dual ®fi(2). A convenient basis
for the space of gauge invariant states is given by the sp
network states, introduced in canonical quantum gravity b
Rovelli and Smolin[16] and by BaeZ17]. A spin network

stateI'=(y,],1) is defined by the following elements. tion to the neighboring vertices of the spin network. Hence,
A closed graphy, embedded in the spatial manifol,  there are no long range correlations. A modification that was
consisting of finite number of oriented edgese;, ... ., aimed at fixing this problem was introduced[Bi. This new
incident at verticesvy,v, ... vm. A vertex is called yersion of the constraint action allows not only the addition
p-valent or of valence if there arep edges incident at that  of new edges but also the addition of whole loops coinciding
vertex. completely with the already present edges. In such cases the

Each edgeg; of the graphy is labeled by an irreducible  yiginal graph does not change at all but the edges of coin-
representation; of SU(2). Further onc;=2j; is referred to  cigence have their colors changed. This is shown in Fig. 2.
as the color of the edge. _ N In our work, we model the action of the Hamiltonian con-

At each vertexy; there is an intertwining operator from straint by introducing a generalization of this second type of
the tensor product of the representations carried by the iNregularization. We assume that loops can be added not only
poming edges to the tensor product of representations labgly 5 single closed cycle of edges, but also can run along any
ing the outgoing edges. . . collection of the original edges. Also, a very important as-

When considering only the combinatorial aspects of asymption is that the added loop can run many times along
spin network state it is very convenient to think of the spingne and the same edge. Since the effect of adding a loop
network on which the state is based as the dual 1-skeleton %fegment to an existing edge simply changes the color of that
a SlmpIICIaI triangulation of the Spatial manifol. In this edge’ we can move away from the |oop picture and consider

picture, a spin network is equivalent to a colored triangulasimply gauge invariant changes of the colors of the edges of
tion of the spatial manifold. In the rest of this paper, we shallihe original spin network.

consider a spin network or its dual triangulation as equiva-
lent objects. IV. THE MODEL

For simplicity, we study only planar trivalent spin net-
work states in a two-dimensional space with boundaoy

We shall now schematically describe the graphical actiorpology of a disk. It is convenient to take this space to be a
of the Hamiltonian constraint of canonical quantum gravity.triangle. The spin networks associated with that triangle are
Essentially the action of the Hamiltonian constraint can bédased on the graph, dual to the triangulation of the triangle.
thought of as adding a loop to the original spin network withThe triangulation is performed by subdividing the sides of
some extra requirements. First, the added loop should coirthe triangle intoN parts. The triangulated triangle is shown
cide with two of the edges of the original spin network in Fig. 3. The dual graph on which the spin network states
joined at one vertex in the vicinity of that vertex. Second, theare based is obtained by assigning a vertex to each 2-cell in
added loop can coincide with any oth@ortions oj edges.
Whenever the added loop runs along an already existing
edge, the recoupling theory of angular momentum deter-
mines the way the original spins change.

According to the regularization described [i], the
Hamiltonian acts only in a vicinity of the vertices of the spin
network. For simplicity let us consider a trivalent vertex. At
such a vertex the action of the Hamiltonian constraint can be
thought of as a sum of three terms, each one corresponding
to the old spin network with an added new edge of color one
connecting two of the original edgésee Fig. 1. The colors
of the original edges in their portion between the newly cre-
ated vertices and the original vertex are either increased or
decreased by one. Consecutive action of the Hamiltonian FIG. 3. The triangulated triangle and its dual graph.

lll. ACTION OF THE HAMILTONIAN CONSTRAINT
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FIG. 4. An example of an avalanche of spin changes. The initial perturbation changes the color of the color 6 edge incident at node “a”
to 8. This makes the node gauge noninvariant and forces the color 4 edge to change to color 6. This in turn affects node “b” and so on.

the triangulation and an edge crossing each 1-cell and comwe change the color of one of the remaining incident edges.
necting the vertices in the neighboring 2-cébhown using We continue this process until gauge invariance is restored at
dashed lines in Fig.)3The colors carried by the edges of the every node of the graph.

spin network can be thought of as being lengths of the cor- Depending upon the value dfc, there are various possi-
responding crossed 1-cells of the triangulatid®]. More  bilities for the exact implementation of the described proce-
precisely, the length of a side of the triangulation that isdure. For an oddAc, say Ac=*1, the gauge invariance

intersected by a spin network edge of cotois condition is always violated at the two nodes on which the
initial edge is incident, because of E®). The restoration of

c the gauge invariance of the first pair of nodes will necessarily

= EIP' oy induce violation of the gauge condition at two new nodes.

There are two cases for this pattern to end—either at a cer-

wherel is the Planck length.Thus, we shall refer to the tain step a noninvariant node contains an edge that crosses
triangulation and lengths or its dual spin network and thethe boundary of the triangle or the spin changes meet some-
corresponding colors interchangeably. where on the spin n_etwork and neutralize each .other. These
The requirement for gauge invariance at the vertices ofWo cases can be viewed from a loop perspective as corre-
the spin network state is essentially a triangle inequality thagPonding to(i) adding an open line of color 1, whose ends
the lengths of the sides of a triangle should satisfy togethepoth lie on the boundary dii) adding a closed loop of color
with the requirement that the sum of these lengths be an eveh
number. We call the triangle inequality together with the ~The case of eveAc, sayAc= =2, is more involved. Itis
requirement for an even sum of the site’s lengths a gaugBossible that the change of the color of a particular edge by
invariance condition. Ifa, b, andc are the colors of the *2 leaves both the original nodes gauge invariant. Actually

three edges at a node, the gauge invariance requires that this is true in most of the cases—requireme3jtis not vio-
lated and it is up to the conditior{®) to determine the gauge

a+b=c, invariance. We will mostly be interested in this latter case.
Let us now discuss the caae=*2 in more detail. Let
b+c=a 2) us choose an edge of the graph at random and change the

length of this edge byt2. The only case in which this can
violate gauge invariance is if the triangle was “flat” ini-
tially, that is, if one of the three inequalities in E@) is
saturated. We call such trianglégertices critical. If, for
such a critical triangle, we increase the longest side or de-
crease one of the two shorter sides, we will violate gauge

Further, we will assume that the colors of the edges of th favariance. To compensate for this, we have to adjust the

spin n_etwork crossing the_ b_o_undary are unconstrained by thI%ngth of one of the other two sides. The adjusted side also
evolution process. As an initial state for our system, we con;

c+a=b,

a+b+c=even. 3

: continue until all the triangles in the triangulation satisfy
model corresponds to changing a set of colors such that th uge invariance again. Thus, one change @fcan lead to

e e o oeeat e Pt Seres of sin changesee Fi. & o an exampeThese
mentpthis evolutién We choose, at rangdgm one of the e[()j eS in changes are analogous to the topplings in the sandpile
) ' ' 9%Rodels. Drawing further analogy with the sandpile models,

of the spin network and change its color by an amakiot we refer to the series of spin changes required to restore

Ig:jse\év'g’n'r\]’vg?c?]e;ﬁg e;f(;e(;t itgein%ziidugnet I?\gar::gtgieozhtge taV\L'JO%auge invariance after the initial change as an avalanche.
9 ' 9aUgE gince we allow arbitrary spins to start with, the number of

invariance at the nodes, which are no longer gauge InVa”"’m&ritical triangles will be negligible in comparison to the total

number of triangles. Thus if we change the spins in an arbi-
trary way almost no avalanches will occur. In the sandpile
'Recall that in(2+1) dimensions)p=7%G/cS. model the analogous situation is when we add and remove
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FIG. 5. Results for a typical run with 400 triangles. Graphshows how the average color per edge and the fraction of critical triangles
in the system evolve as the simulation proceeds. GfBpehows the distribution of avalanché&s) as a function of size.

grains of sand with equal probabilities. Hence, we introduceerage color per edge in the system increases linearly as the
a probabilityp for “flattening” of a triangle. If the arbitrary
chosen side has the biggest length in the triangle, we increase The distribution of avalanchef(s) as function of ava-
the length by 2 with a probabilitpy and decrease it with a lanche sizes is shown in graphb) of Fig. 5. This distribu-
probability 1—p. Similarly if the arbitrarily chosen side is tion can be described by an exponential decay

the smallest one or the one in the middle, we decrease the

simulation proceeds.

length by 2 with probabilityp and increase it with probabil- f(s)~exp(—slo)
ity 1—p. Thus it is clear that fop close to 1, we will be
pushing the triangles in the triangulation towards criticality.to a good accuracy.
The rest of the avalanch@ any) proceeds a deterministic The results for a larger system sige0 000 trianglesare
way as described above. As a further modification of theshown in Fig. 6. The fraction of critical triangles reaches its
above update rule, we introduce the probabilistic update intequilibrium value more slowly as compared to the smaller
the entire avalanche. Then, there is a probabilitthat a  system. The equilibrium value of 0.Z®.005 is similar to
gauge noninvariant node is restored to gauge invariance aritiat for 400 triangles. As expected, the average color per
probability 1— p for it to go further away from gauge invari- edge increases at a slower rate as well. The avalanche distri-
ance. bution can again be described well by a decaying exponen-
We performed simulations for system sizes ranging frontial. Thus, our results scale with the system size.
400 to 10000 triangles with a typical run covering a million  The simulations for the case where we introduce the prob-
iterations of the system. ability p into the first move were performed next. Depending
upon the value op, a certain fraction of the triangles in the
system became critical. Once reached, the fraction of critical
V. RESULTS AND INTERPRETATION triangles remained almost constant. The avalanche distribu-
To start with, we simulated the system with the determin-tion was again described by an exponential decay with the
istic evolution rule for system size of 400 triangles. The re-decay constant decreasing with decreasing probability. The
sults of these simulations are shown in Fig. 5. As can be seetiata remained qualitatively similar to Figs. 5 and 6.
from graph(a) in the figure, the fraction of critical triangles Finally, we simulated the case where the probabilistic up-
in the system rises very rapidly from an initial value of 0.24 date was also included in the avalanche phase of the dynam-
to reach an equilibrium value of around 0:6@.01. The av- ics. The frequency distribution of the avalanches was still
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FIG. 6. Results for a typical run with 10 000 triangles. Graphshows how the average color per edge and the fraction of critical
triangles in the system evolve as the simulation proceeds. Glamhows the distribution of avalanchégs) as a function of size.
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then check if such spin changes would propagate in a scale
free behavior, characteristic for a SOC system. The answer
to this question to a very large extent depends on the specific
features of the model we proposed. It turned out that, with
the rules we proposed, the system does not exhibit SOC be-
. havior. Instead we found that for particular values of the
or 1 parameters in the system we got a phase transition. At this
.. . point, it cannot be decided if using a different set of rules
2p 1 will lead to the kind of self-organized behavior that we were

seeking. There are various possibilities for modification of
the evolution rules that we are exploring currently. These
include the following.

Mixed color updates—for each vertex, at which the gauge
FIG. 7. Behavior of the decay constant as a function of prob-condition is violated byAc=+2 we introduce with certain
ability. probabilities gauge invariance restoration either by update of

the color of one of the edges kyc=*2 or of two of the

described by an exponential decay. The decay constant hogd9es byAc==1. _
ever did not decrease as we decreased the probability from 1, Conserved total color—after adding a color of 2 to a par-
It initially increases tillp=0.4 and then decreases agésne ticular edge, we continue by red|str|but|r_lg the added color
Fig. 7). among the adjacent edges, thus preserving the total color of

Figure 7 seems to indicate that our system undergoes T'Qe spin r_1etwprk. . .
phase transition aroung=0.4. However, if we look at the One directional .propagat_lon—staru.ng frpm an edge, one
avalanche distribution more carefully, we find that while weOf the node§ Of.Wh'Ch. remains gauge invariant after the spin
get some extremely large avalanches, the number of site@"’mge'.Th'S will avoid the probl_em of order of overlapp_mg
involved in these avalanches is very small. For example, th‘gresent in the case when the spin changes propagate in two

80 - .

60 |

Decay constant

0 . . | T SRR
0.0 0.2 04 08 08 1.0

Probability (p)

largest avalanche that we got for the 400 triangles case co lirections.

sisted of 819 topplings that affected only 12 edges. This Spin changes starting at the boundaries and propagating

implies that while we seem to have a phase transition, it doe@t?:thfh systerrll. . ded to show if iat t of
not lead to long-range correlations. urther work is needed to show if an appropriate set o

evolution rules can result in the definition of the spin net-

work states as a self-organizing critical system.
VI. CONCLUSIONS
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