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Propagating spin modes in canonical quantum gravity
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~Received 26 January 1999; published 26 May 1999!

One of the main results in canonical quantum gravity is the introduction of spin network states as a basis on
the space of kinematical states. To arrive at the physical state space of the theory, though, we need to
understand the dynamics of the quantum gravitational states. To this aim we study a model in which we allow
for the spins, labeling the edges of spin networks, to change according to simple rules. The gauge invariance
of the theory, restricting the possible values for the spins, induces propagating modes of spin changes. We
investigate these modes under various assumptions about the parameters of the model.
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I. INTRODUCTION

There are two very important issues in the loop appro
to nonperturbative canonical quantum gravity@1–4# that we
have to address in our quest for a complete theory. The
is the problem of the evolution of gravitational quantu
states and the second one is the recovery of the clas
continuous space from the discrete structures that appe
very short scale. The problem of evolution in canonic
quantum gravity is quite nontrivial. The underlying gene
covariance principle of the theory leads not to a true Ham
tonian, but to a sum of constraints. The physical states of
theory are then the ones that are annihilated by these
straints. Imposing the gauge and the diffeomorphism c
straints has led to a Hilbert space whose basis is given
spin networks space. The Hamiltonian constraint, which g
erates infinitesimal translations in the time direction, has
be imposed in this space of states in order to obtain
physical space of states.

There are different approaches that have been propos
order to study the action of the Hamiltonian constraint. In
canonical approach, one relies on regularizing the Ham
tonian constraint as a quantum operator and investigatin
action on the states of the theory. Various regularizat
schemes have been suggested@5,6#, the most commonly ac
cepted being the one proposed by Thiemann@7#. However,
all of these suffer from various problems~see for example
@8,9#!. Another approach that has been suggested is to loo
the finite action of the Hamiltonian constraint as opposed
the infinitesimal one@10#. This has led to the study of spi
foams.

An alternative approach is to find a consistent set of ru
for quantum evolution that, in the classical limit, recover t
action of the Hamiltonian constraint@11#. It is this approach
that we study in this paper. While the idea is very intriguin
it is highly nontrivial to define an appropriate set of rules th
lead to a good classical limit. The problem of finding t
appropriate rules for evolution of the kinematical states
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now related to the problem of defining the classical limit
the theory. On the other hand, the investigation of the c
sical correspondence is also quite subtle. One of the m
results in canonical quantum gravity is that geometric ope
tors such as area and volume have discrete spectra@12#. This
means that space has a discrete structure at the Planck s
Thus, in taking the classical limit, we should also recover
continuum space-time we see around us.

According to a proposal in@11#, the problem of recover-
ing the continuum space is similar to some problems of n
equilibrium critical phenomena in statistical physics. T
long-range behavior characteristic of classical general r
tivity could arise at the critical values of some parameters
the discrete theory. This is already seen in certain disc
approaches to quantum gravity such as dynamical triang
tions. The important aspect of the proposal is that, si
there is no external agent to tune the parameters of the
verse, discrete space should be a self-organizing critical
tem. The idea of self-organized criticality~SOC! was intro-
duced by Bak, Tang, and Wiesenfeld in@13# ~for reviews see
@14,15#!. The self-organized criticality paradigm is that ce
tain systems, consisting of many parts interacting via lo
rules, self-organize themselves in a critical state. Usually
critical state is characterized by the lack of specific scale
propagation of perturbations.

In this paper, we study various models whose dynamic
suggested by canonical quantum gravity. There are cer
aspects of the action of the Hamiltonian constraint that
common to all of the proposed regularizations. These asp
guide us in the introduction of rules for graphical evolutio
of the spin networks. With the evolution rules in hand, w
develop a model along the lines of the sandpile models
self-organized criticality. First we briefly introduce the sp
network states. In Sec. III, we discuss the various regular
tions of the action of the Hamiltonian constraint and t
corresponding graphical rules for evolution. We then int
duce our model and discuss our results.

II. SPIN NETWORKS AND DUAL SIMPLICIAL
TRIANGULATIONS

The basic variables in canonical quantum gravity can
taken to be an SU~2! connectionAa

i (x) and a densitized triad

ail
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Ẽi
a that takes values in the dual ofsu(2). A convenient basis

for the space of gauge invariant states is given by the s
network states, introduced in canonical quantum gravity
Rovelli and Smolin@16# and by Baez@17#. A spin network
stateG[(g, jW,IW) is defined by the following elements.

A closed graphg, embedded in the spatial manifoldS,
consisting of finite number of oriented edgese1 ,e2 , . . . ,en
incident at verticesv1 ,v2 , . . . ,vm . A vertex is called
p-valent or of valencep if there arep edges incident at tha
vertex.

Each edgeei of the graphg is labeled by an irreducible
representationj i of SU~2!. Further on,ci52 j i is referred to
as the color of the edge.

At each vertexv j there is an intertwining operator from
the tensor product of the representations carried by the
coming edges to the tensor product of representations la
ing the outgoing edges.

When considering only the combinatorial aspects o
spin network state it is very convenient to think of the sp
network on which the state is based as the dual 1-skeleto
a simplicial triangulation of the spatial manifoldS. In this
picture, a spin network is equivalent to a colored triangu
tion of the spatial manifold. In the rest of this paper, we sh
consider a spin network or its dual triangulation as equi
lent objects.

III. ACTION OF THE HAMILTONIAN CONSTRAINT

We shall now schematically describe the graphical act
of the Hamiltonian constraint of canonical quantum gravi
Essentially the action of the Hamiltonian constraint can
thought of as adding a loop to the original spin network w
some extra requirements. First, the added loop should c
cide with two of the edges of the original spin netwo
joined at one vertex in the vicinity of that vertex. Second,
added loop can coincide with any other~portions of! edges.
Whenever the added loop runs along an already exis
edge, the recoupling theory of angular momentum de
mines the way the original spins change.

According to the regularization described in@7#, the
Hamiltonian acts only in a vicinity of the vertices of the sp
network. For simplicity let us consider a trivalent vertex.
such a vertex the action of the Hamiltonian constraint can
thought of as a sum of three terms, each one correspon
to the old spin network with an added new edge of color o
connecting two of the original edges~see Fig. 1!. The colors
of the original edges in their portion between the newly c
ated vertices and the original vertex are either increase
decreased by one. Consecutive action of the Hamilton

FIG. 1. Thiemann’s regularization.
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constraint keeps adding new edges to the original ones o
thus producing a weblike structure at each vertex. The pr
lem with such a definition of the action of the Hamiltonia
constraint is that it is ultralocal in the sense that the action
the constraint at one vertex does not propagate any infor
tion to the neighboring vertices of the spin network. Hen
there are no long range correlations. A modification that w
aimed at fixing this problem was introduced in@8#. This new
version of the constraint action allows not only the additi
of new edges but also the addition of whole loops coincid
completely with the already present edges. In such cases
original graph does not change at all but the edges of c
cidence have their colors changed. This is shown in Fig.

In our work, we model the action of the Hamiltonian co
straint by introducing a generalization of this second type
regularization. We assume that loops can be added not
to a single closed cycle of edges, but also can run along
collection of the original edges. Also, a very important a
sumption is that the added loop can run many times al
one and the same edge. Since the effect of adding a
segment to an existing edge simply changes the color of
edge, we can move away from the loop picture and cons
simply gauge invariant changes of the colors of the edge
the original spin network.

IV. THE MODEL

For simplicity, we study only planar trivalent spin ne
work states in a two-dimensional space with boundary~to-
pology of a disk!. It is convenient to take this space to be
triangle. The spin networks associated with that triangle
based on the graph, dual to the triangulation of the trian
The triangulation is performed by subdividing the sides
the triangle intoN parts. The triangulated triangle is show
in Fig. 3. The dual graph on which the spin network sta
are based is obtained by assigning a vertex to each 2-ce

FIG. 2. Smolin’s regularization.

FIG. 3. The triangulated triangle and its dual graph.
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FIG. 4. An example of an avalanche of spin changes. The initial perturbation changes the color of the color 6 edge incident at n
to 8. This makes the node gauge noninvariant and forces the color 4 edge to change to color 6. This in turn affects node ‘‘b’’ an
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the triangulation and an edge crossing each 1-cell and
necting the vertices in the neighboring 2-cells~shown using
dashed lines in Fig. 3!. The colors carried by the edges of th
spin network can be thought of as being lengths of the c
responding crossed 1-cells of the triangulation@18#. More
precisely, the length of a side of the triangulation that
intersected by a spin network edge of colorc is

l 5
c

2
l P, ~1!

where l P is the Planck length.1 Thus, we shall refer to the
triangulation and lengths or its dual spin network and
corresponding colors interchangeably.

The requirement for gauge invariance at the vertices
the spin network state is essentially a triangle inequality t
the lengths of the sides of a triangle should satisfy toge
with the requirement that the sum of these lengths be an e
number. We call the triangle inequality together with t
requirement for an even sum of the site’s lengths a ga
invariance condition. Ifa, b, and c are the colors of the
three edges at a node, the gauge invariance requires tha

a1b>c,

b1c>a, ~2!

c1a>b,

a1b1c5even. ~3!

Further, we will assume that the colors of the edges of
spin network crossing the boundary are unconstrained by
evolution process. As an initial state for our system, we c
struct a spin network based on the dual graph and as
random colors to the edges of the spin network in a ga
invariant fashion. The evolution of spin networks in o
model corresponds to changing a set of colors such tha
gauge invariance condition remains satisfied at each nod
the spin network. We use the following procedure to imp
ment this evolution. We choose, at random, one of the ed
of the spin network and change its color by an amountDc.
This will, in general, affect the gauge invariance of the tw
nodes on which the edge is incident. To restore the ga
invariance at the nodes, which are no longer gauge invar

1Recall that in~211! dimensions,l P5\G/c3.
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we change the color of one of the remaining incident edg
We continue this process until gauge invariance is restore
every node of the graph.

Depending upon the value ofDc, there are various possi
bilities for the exact implementation of the described pro
dure. For an oddDc, say Dc561, the gauge invariance
condition is always violated at the two nodes on which t
initial edge is incident, because of Eq.~3!. The restoration of
the gauge invariance of the first pair of nodes will necessa
induce violation of the gauge condition at two new nod
There are two cases for this pattern to end—either at a
tain step a noninvariant node contains an edge that cro
the boundary of the triangle or the spin changes meet so
where on the spin network and neutralize each other. Th
two cases can be viewed from a loop perspective as co
sponding to~i! adding an open line of color 1, whose en
both lie on the boundary or~ii ! adding a closed loop of colo
1.

The case of evenDc, sayDc562, is more involved. It is
possible that the change of the color of a particular edge
62 leaves both the original nodes gauge invariant. Actua
this is true in most of the cases—requirement~3! is not vio-
lated and it is up to the conditions~2! to determine the gauge
invariance. We will mostly be interested in this latter cas

Let us now discuss the caseDc562 in more detail. Let
us choose an edge of the graph at random and change
length of this edge by62. The only case in which this ca
violate gauge invariance is if the triangle was ‘‘flat’’ ini
tially, that is, if one of the three inequalities in Eq.~2! is
saturated. We call such triangles~vertices! critical. If, for
such a critical triangle, we increase the longest side or
crease one of the two shorter sides, we will violate gau
invariance. To compensate for this, we have to adjust
length of one of the other two sides. The adjusted side a
belongs to one of the triangle’s neighbors. If this chan
violates the gauge invariance condition in the neighbor
triangle, we adjust the colors there as well. This process
continue until all the triangles in the triangulation satis
gauge invariance again. Thus, one change of62 can lead to
a series of spin changes~see Fig. 4 for an example!. These
spin changes are analogous to the topplings in the sand
models. Drawing further analogy with the sandpile mode
we refer to the series of spin changes required to res
gauge invariance after the initial change as an avalanche

Since we allow arbitrary spins to start with, the number
critical triangles will be negligible in comparison to the tot
number of triangles. Thus if we change the spins in an a
trary way almost no avalanches will occur. In the sandp
model the analogous situation is when we add and rem
2-3
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FIG. 5. Results for a typical run with 400 triangles. Graph~a! shows how the average color per edge and the fraction of critical trian
in the system evolve as the simulation proceeds. Graph~b! shows the distribution of avalanchesf (s) as a function of size.
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grains of sand with equal probabilities. Hence, we introdu
a probabilityp for ‘‘flattening’’ of a triangle. If the arbitrary
chosen side has the biggest length in the triangle, we incr
the length by 2 with a probabilityp and decrease it with a
probability 12p. Similarly if the arbitrarily chosen side is
the smallest one or the one in the middle, we decrease
length by 2 with probabilityp and increase it with probabil
ity 12p. Thus it is clear that forp close to 1, we will be
pushing the triangles in the triangulation towards criticali
The rest of the avalanche~if any! proceeds a deterministi
way as described above. As a further modification of
above update rule, we introduce the probabilistic update
the entire avalanche. Then, there is a probabilityp that a
gauge noninvariant node is restored to gauge invariance
probability 12p for it to go further away from gauge invari
ance.

We performed simulations for system sizes ranging fr
400 to 10 000 triangles with a typical run covering a millio
iterations of the system.

V. RESULTS AND INTERPRETATION
To start with, we simulated the system with the determ

istic evolution rule for system size of 400 triangles. The
sults of these simulations are shown in Fig. 5. As can be s
from graph~a! in the figure, the fraction of critical triangle
in the system rises very rapidly from an initial value of 0.
to reach an equilibrium value of around 0.6760.01. The av-
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erage color per edge in the system increases linearly as
simulation proceeds.

The distribution of avalanchesf (s) as function of ava-
lanche size,s is shown in graph~b! of Fig. 5. This distribu-
tion can be described by an exponential decay

f ~s!;exp~2s/s!

to a good accuracy.
The results for a larger system size~10 000 triangles! are

shown in Fig. 6. The fraction of critical triangles reaches
equilibrium value more slowly as compared to the sma
system. The equilibrium value of 0.7060.005 is similar to
that for 400 triangles. As expected, the average color
edge increases at a slower rate as well. The avalanche d
bution can again be described well by a decaying expon
tial. Thus, our results scale with the system size.

The simulations for the case where we introduce the pr
ability p into the first move were performed next. Dependi
upon the value ofp, a certain fraction of the triangles in th
system became critical. Once reached, the fraction of crit
triangles remained almost constant. The avalanche distr
tion was again described by an exponential decay with
decay constant decreasing with decreasing probability.
data remained qualitatively similar to Figs. 5 and 6.

Finally, we simulated the case where the probabilistic u
date was also included in the avalanche phase of the dyn
ics. The frequency distribution of the avalanches was s
ical
FIG. 6. Results for a typical run with 10 000 triangles. Graph~a! shows how the average color per edge and the fraction of crit
triangles in the system evolve as the simulation proceeds. Graph~b! shows the distribution of avalanchesf (s) as a function of size.
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described by an exponential decay. The decay constant h
ever did not decrease as we decreased the probability fro
It initially increases tillp50.4 and then decreases again~see
Fig. 7!.

Figure 7 seems to indicate that our system undergoe
phase transition aroundp50.4. However, if we look at the
avalanche distribution more carefully, we find that while w
get some extremely large avalanches, the number of s
involved in these avalanches is very small. For example,
largest avalanche that we got for the 400 triangles case
sisted of 819 topplings that affected only 12 edges. T
implies that while we seem to have a phase transition, it d
not lead to long-range correlations.

VI. CONCLUSIONS

We developed a model of evolving spin networks
which we keep the underlying graph fixed and consi
changes of the colors of the edges. In the case when
colors are changed byDc561, these changes involve eithe
sets of edges that form closed cycles or run between
boundaries of the space. When the colors are change
Dc562, the response of the system is more involved. O
aim was to prescribe a set of rules for the spin changes

FIG. 7. Behavior of the decay constant as a function of pr
ability.
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then check if such spin changes would propagate in a s
free behavior, characteristic for a SOC system. The ans
to this question to a very large extent depends on the spe
features of the model we proposed. It turned out that, w
the rules we proposed, the system does not exhibit SOC
havior. Instead we found that for particular values of t
parameters in the system we got a phase transition. At
point, it cannot be decided if using a different set of rul
will lead to the kind of self-organized behavior that we we
seeking. There are various possibilities for modification
the evolution rules that we are exploring currently. The
include the following.

Mixed color updates—for each vertex, at which the gau
condition is violated byDc562 we introduce with certain
probabilities gauge invariance restoration either by updat
the color of one of the edges byDc562 or of two of the
edges byDc561.

Conserved total color—after adding a color of 2 to a p
ticular edge, we continue by redistributing the added co
among the adjacent edges, thus preserving the total colo
the spin network.

One directional propagation—starting from an edge, o
of the nodes of which remains gauge invariant after the s
change. This will avoid the problem of order of overlappin
present in the case when the spin changes propagate in
directions.

Spin changes starting at the boundaries and propaga
into the system.

Further work is needed to show if an appropriate set
evolution rules can result in the definition of the spin n
work states as a self-organizing critical system.
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Pérez-Mercaderet al. ~World Scientific, Singapore, 1992!.
@5# C. Rovelli and L. Smolin, Phys. Rev. Lett.72, 446 ~1994!.
@6# R. Borissov, Phys. Rev. D55, 6099~1997!.
@7# T. Thiemann, Class. Quantum Grav.15, 839 ~1998!; 15, 875

~1998!.
@8# L. Smolin, gr-qc/9609034.
@9# R. Gambini, J. Lewandowski, D. Marolf, and J. Pullin, Int.

Mod. Phys. D7, 97 ~1998!.
@10# M. Reisenberger and C. Rovelli, Phys. Rev. D56, 3490
~1997!.

@11# F. Markopoulou and L. Smolin, Nucl. Phys.B508, 409~1997!.
@12# C. Rovelli and L. Smolin, Nucl. Phys.B442, 593 ~1995!.
@13# P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381

~1987!.
@14# P. Bak, How Nature Works~Springer-Verlag, New York,

1996!.
@15# H. J. Jensen,Self Organized Criticality~Cambridge University

Press, Cambridge, England, 1998!.
@16# C. Rovelli and L. Smolin, Phys. Rev. D52, 5743~1995!.
@17# J. Baez, Adv. Math.117, 253 ~1996!; in ‘‘The Interface of

Knots and Physics,’’ edited by L. Kauffman~American Math-
ematical Society, Providence, 1996!, pp. 167–203.

@18# C. Rovelli, Phys. Rev. D48, 2702~1993!.
2-5


