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We study the radiation reaction on cosmic strings due to the emission of dilatonic, gravitational and axionic
waves. After verifying thgon averaggconservative nature of the time-symmetric self-interactions, we con-
centrate on the finite radiation damping force associated with the half-retarded minus half-advanced “reactive”
fields. We reexamine a recent proposal of using a “local back reaction approximation” for the reactive fields.
Using dimensional continuatioms a convenient technical tool, we find, contrary to previous claims, that this
proposal leads tantidampingin the case of the axionic field, and tero (integratedl dampingin the case of
the gravitational field. One gets norndsitive dampingnly in the case of the dilatonic field. We propose to
use a suitably modified version of the local dilatonic radiation reaction as a substitute for thénexdota)
gravitational radiation reaction. The incorporation of such a local approximation to gravitational radiation
reaction should allow one to complete, in a computationally nonintensive way, string network simulations and
to give better estimates of the amount and spectrum of gravitational radiation emitted by a cosmologically
evolving network of massive stringsS0556-282(99)07112-X]

PACS numbd(s): 98.80.Cq, 11.2%d

I INTRODUCTION strings: 1 oops= act, with a~T i Gu, ik being some di-

. . ) . , mensionless measure of the network-averaged radiation effi-
Cosmic strings are predicted, within a wide class of e"ciency of kinky string§10—13. If one considers “global’”
ementary particle models, to form at phase transitions in thgtrings, i.e., strings formed when a global symmetry is bro-
ea_rly universe[l,z_]. The creation of a network of COSMIC o 3¢ 5 mass scalk,, emission of the Goldstone boson

43sociated to this symmetry breaking will be the dominant

bly for the formation of structure in the univer$8,4l. A ;adiation damping mechanism and will be characterized by

network of cosmic strings might also be a copious source o . . 2 _
the various fields or quanta to which they are coupled. Os'Ehe _glmensmnless pgramete_rfalﬂeﬁectiv_p[Iog(L/&)_] '
cillating loops of cosmic string can generate observationally™ 10 where the effective tensioneecive is renormalized
significant stochastic backgrounds of gravitational wdggs ~PY @ large logarithmisee, e.g.[2]). _

massless Goldstone bosof6, light axions[7,8], or light Present numerical simulations of string networks do not
dilatons [9]. The amount of radiation emitted by cosmic take into account the effect of radiative damping on the ac-
strings dependi) on the nature of the considered field) tual string motion. The above mentioned argument conclud-
on the coupling parameter of this field to the strifig) on  ing in the case of GUT strings to the link~T';Gu be-

the dynamics of individual strings, ar(é/) on the distribu-  tween the loop size and radiative effects has been justified by
tion function and cosmological evolution of the string net- Quashnock and Spergfl1] who studied the gravitational
work. It is important to note that the latter network distribu- back reaction of a sample of cosmic string loops. However,
tion function in turn depends on the radiation properties oftheir “exact,” nonlocal approach to gravitational back reac-
strings. Indeed, numerical simulations suggest that the chation is numerically so demanding that there is little prospect
acteristic size of the loops chopped off long strings at theo implementing it in full string network simulations. This
epocht will be on order of the smallest structures on the longlack of consideration of the dynamical effects of radiative
strings, which is itself arguably determined by radiative backdamping is a major deficiency of string network simulations
reaction[10,11]. For instance, if one considers grand unifiedwhich leaves unanswered crucial questions such as: Is the
theory (GUT) scale strings, with tension~AéUT, gravita-  string distribution function attracted to a solution which
tional radiation (possibly together with dilaton radiation “scales” with the horizon size down to the smallest struc-
which has a comparable magnitud®d) will be the dominant tures? and What is the precise amount and spectrum of the
radiative mechanism, and will be characterized by the cougravitational(or axionic, in the case of global stringsadia-
pling parameterGu~ (A gut/Mpiancd >~1078. It is then  tion emitted by the combined distribution of small loops and
natural to expect that the same dimensionless parar@gier long strings?

will control the radiative decay of the small scale structure Recently, Battye and Shellafd 4,15 proposed a new,
(crinkles and kinkson the horizon-sized strings, thereby de- computationally much less intensive, approach to the radia-
termining also the characteristic size relative to the horizortive back reaction ofgloba) strings. They proposed a “local

of the small loops produced by the intersections of longback reaction approximation” based on an analogy with the
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well-known Abraham-Lorentz-Dirac result for a self- very delicate sign compensations which ensure the positivity
interacting electron. Their approach assumes that the doméf the energy carried away by gauge fields. Thereby, one of
nant contribution to the back reaction force density at a certhe main results of the present work is to prove the unten-
tain string point comes from string segments in theability of applying a straightforward local back reaction ap-
immediate vicinity of that point. They have endeavored toproximation togauge fieldsuch as gravitational and axionic
justify their approach by combining analytical resule®n-  fields. However, this untenability does not necessarily apply
cerning approximate expressions of the local, axionic radiato the case of nongauge fields. Indeed, our work proves that
tive damping forcgand numerical simulation&comparison the application of this local approximation to the dilatonic
between the effect of their local back reaction and a direcfield (which is not a gauge fieJdeads to the correct sign for
field-theory evolution of some global string solutigns damping effects. In this nongauge field case, the argument

In this paper, we reexamine the problem of the back re{of Sec. IV B which showed the dangers of approximating
action of cosmic strings associated to the emission of gravithe field propagator for gauge fields, loses its strength. This
tational, dilatonic and axionic fields, with particular empha-leaves therefore open the question of whether the “local ap-
sis on the “local back reaction approximation” of Battye proximation” to dilatonic back reaction might definele-
and Shellard. Throughout this paper, we limit our scope tcspite its shortcomings discussed beloav phenomenologi-
the self-interaction of Nambu strings, in absence of any noneally acceptable approximation to the exact, nonlocal self-
trivial external fields. This problem can ifformally) treated  force. In this direction, we give several arguments, and
by a standard perturbative approach, i.e., by expanding afitrengthen them by some explicit numerical calculations, to-
quantities in powers of the gravitatiohatloupling constant Wward showing that the meaningf@bositive-dampiny dila-

G. We work only to first-order irG. To this order, we first toniclocal back reaction force can be used, after some modi-
verify the fact(well known to hold for self-interacting, elec- fication, as a convenient effectivgubstitutefor the exact
trically charged, point particldd.6]) that the time-symmetric  (nonloca) gravitational back reaction force.

part of the self-interactiorii.e., the part mediated by the This phenomenological proposal is somewhat of an expe-
half-retardedplus half-advanced Green functipiis, on the  dient because it rests on an “approximation” whose validity
average, conservative, i.e., that it does (after integration ~ domain is severely limited. However, pending the discovery
drain energy-momentum out of the string. As we are inter-of a better local proposal, we think that the incorporation of
ested in radiation damping, this allows us to concentrate oour proposed local reaction for¢®.1) should allow one to
the time-odd part of the self-interaction, mediated by thecomplete, in a computationally nonintensive way, string net-
half-retardedminushalf-advanced Green function. This “re- work simulations and to give better estimates of the amount
active” part of the self-interaction i&s in the case of point and spectrum of gravitational radiation emitted by a cosmo-
charges finite. [By contrast, the time-symmetric self- logically evolving network of massive strings.

interaction is (formally) ultraviolet divergent. This diver- In the next section, we present our formalism for treating
gence is not of concern for us here because, as shown Belf-interactions of strings. We describe in Sec. Ill our results
Refs.[17,18 and further discussed below, its infinite part is for the renormalizable, divergent self-action terms, and, in
renormalizable, and, as said above, its finite part does ndéec. IV, our results for the finite contributions to the “local”
globally contribute to dampingi.Contrary to the case of reaction force. In Sec. V we indicate how the local dilatonic
point charges, the reactive part is nonlocal, being given by adamping force could be used in full-scale network simula-
integral over the string. Following Battye and Shellardtions to simulate the dynamical effects of gravitational radia-
[14,15 we study the “local approximation” to this reaction tion. Section VI contains our conclusions. Some technical
effect. We find very convenient for this study to use thedetails are relegated to the Appendix.

technique ofdimensional continuatiofwell known in quan- As signs will play a crucial role below, let us emphasize
tum field theory. that we use the “mostly positive” signature—(,+,+,+)

In the case of the axionic self-field, we find that the ax-for the space-time metrig,, (x,»=0,1,2,3), and the cor-
ionic reaction force defined by the “local back reaction ap-responding ¢,+) signature for the worldsheet metric
proximation” of Ref.[14] leads toantidampingrather than y,, (a,b=0,1 being worldsheet indices
damping, as claimed in Ref§l4,15. We also investigate
below the corresponding local approximations to gravita-

tional and dilatonic self-forces and firmbro dampingn the Il. COSMIC STRINGS INTERACTING
gravitational case, and a normalpsitive dampingor the WITH GRAVITATIONAL, DILATONIC
dilatonic case. The physical origin of these paradoxical re- AND AXIONIC FIELDS

sults is explained belowSec. IV B by tracing them to the We consider a closed Nambu strirgf(o®) (with o°
modification of the field propagator implicitly entailed by the _ 7, ot=0, 0=o<L) interacting with its own gravitational
use of the local back reaction approximation. We show that, ’

. \ : o L(xMN=gn,,+h, (x"), dilatonic ¢(x), and axioniqKalb-
in the case ofjauge fieldsthis modification messes up the gR/ér%orzd é?:y(x) ﬁe(lds? The action(fo)r the string coupled to

9u», ¢ andB,, reads
!Because of our “gravitational normalization” of the kinetic N
terms, see E(q2.3), the couplings of all the three considered fields _ f A J B n v
i =- - Z*N\dZ". 2.1
are proportional taG. Ss w(e)d 2 wd d 2.9
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Here  dA=yd% [with v=—dety,p; Yab In other words, our aim in this paper is to derive, consis-
=0,,,(2) 9,2" 32" denoting the metric induced on the world- tently at the first order in the basic coupling const@ritsee
sheet is the string area element and the dilaton dependendeq. (2.3)], both the fields generated by the string
of the string tensionx can be taken to be exponential
M (X)=,0(X) = 7, = Gy, (¥) + O(G?),
= pea¢
Horm e 22 #()=0+Gel(x)+0(G),
At the linearized approximation where we shall work the
form (2.2) is equivalent to a linear coupling.(¢)=u(1
+2a¢). The dimensionless parameter measures the
strength of the coupling of to cosmic stringgour notation - ; ; e
agrees with the tensor-scalar notation of R&€l), while the cg);urggg)on, written in a specifiéd (class of worldsheet
coupling strength of the axion field is measured by the pa- '
rameter\ with dimension (masg) Due to our “gravita-
tional normalization” of the kinetic term oB,,,, the link
between\ and the mass scalg, used in Refs[14,15 is
2G\2=7f2,
The action for the fields is

B,.(X)=0+GB,, (x)+0O(G?), (2.4)

and the(noncovariant explicit form of the string equations

w1, (2 =2"")=GF ,+O(G?). (2.5

The string action(2.1) can be written(using the Polyakov
form) as

7! =~
S&=-— Ef d20 €29\ yy3Pa,z - 9p2"q .

1
= 4 — oYM
S 167TGJ d*xVg| R—2V#eV e
_l 2 ab " v
1 5 do €*°0,2"9p2"B,,, , (2.6
=138 “PH,,HE (2.3

where the worldsheet metrig,, must be independently var-
whereH,,,,=3,B,,+3,B,,+3,B,,, g=—det(g,,), and ied and where*'=—1, ¢'°=1. The equation of motion of
where we use the curvature conventiohs, =3I}, Yab is the constraint that it be conformal to the induced met-

-, R,,=RY,. With this notation, a tree-level ric y,,=0,,(2)d.z"dpz". In the following, we shall often

COUpled fundamental Strlr@f String theory hasa=1 (In 4 use the conformal gaugdr'yfyab: \/;,yab: nab (Where 7]00

dimensiongand\ = u. =—1, n*=+1), i.e., we shall choose the ) parametri-
Everywhere in this paper, we shall assume the absence g&tion of the worldsheet so that

external fields. More precisely, the background values of the

fields we consider arg’,=17,,, ¢°=0, B,=0. Our re-

sults are derived only for this case, by usifigrmal) pertur-

bation theory around these trivial backgrounds. It is howeve

understood, as usual, that one can lateg., for cosmologi-

cal applicationy reintroduce a coupling to external fields,

varying on a scale much larger than the size of the string, by ety o

suitably covariantizing the final, trivial-background results Vr=0,,2'"2""=~09,,2"2". 28

derived here. Such an approximate treatment should be suf- . S

ficient for the cosmological applications we have in mind. -6t Us note that the string contribution to the energy-

On the other hand, the methods used here are not approprid®Mentum tensor,

for treating the general case of a string interacting with ex-

ternal gravitational and dilatonic fields of arbitrary strength wv_ 2 OSm

and spacetime variability. To treat such a case, one would \/a 09,y

need a more general formalism, such as that of Rafd].

Note, however, that the straightforward, non-explicitly cova-reads

riant, perturbation approach to radiation damping effects

used here is the string analoguef all the standard work

done on the gravitational radiation damping of binary sys- Tﬂvzif d?o e?*?Ur’ 54 (x— z( o)), (2.10

tems(see, e.g.[21] for a review. fg

zz'g,,+7'#2'"g,,=0, z'7'’g,,=0. (2.7

Herez=g,2=02/9r andz' = 9,2= 9zl 9. Note also the ex-
pression, in this gauge, of the worldsheet volume density

(2.9

where [d*x 6*(x)=1 and

2This analog is technically simpler because radiation damping ap-
pears at linear order for stringghich have a nontrivial, accelerated
motion at zeroth ordgr while it is a nonlinear phenomenon in  We shall use the conformal gauge associated to the metric
gravitationally bound systems. gun(X)= 77W+Ghi“,+ O(G?).
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UHr=—yy2Pa,z#3,2"

=z7"—7'#7'” (in conformal gauge (2.11)

is the “vertex operator” for the interaction of the string with
the gravitational fieldy,, . [The vertex operators used here
are thex-space counterparts of thespace vertex operators
used in quantum string theory, e.g.U*"(k)

= [d?0 U*"(z(o))exp(k,2'(0)).] The corresponding vertex
operator for the interaction with the dilatamis simply the
traceU=g,,U*", while the one corresponding to the axion
B,,is

wv

VA= — 30 7t g, 2" =7#2' "~ 27" .

(2.12

The exact equation of motion of the string can be wriffien
any worldsheet gauges

S
F 19, 0oy Y az) + P, (2.13

where the quantityb, is defined by
— h B
¢, ,=07+P,+d,, (2.19
with

¢f= pae?*ey d,p— ZMan“‘PgWU”B&B@ (2.15

h__ 2a v @ _,U, 2a o
) =—ue**¢g,,I' U B—Ee U9, ,h,p
—ue?*?Utg hy, (2.16
@B—ﬁvaﬁH —évaﬁa B,z+AV*9 B
I waB o u2ap aPpu -
(2.17

Let us emphasize that, whik} and CI)fi are well defined,
spacetime and worldsheet covariant obje@t%,, by contrast,
is not a covariantly defined objefibut the full combination
8S;/8z* of Eq. (2.13 is a covariant objegt It can be noted

that the sum of the dilatonic and gravitational contributions

(2.19, (2.16 simplify if they are expressed in terms of the
string metricgiyzeza“’gw to which the string is directly
coupled. Indeed,

OO+ DdE=—pgs, I ig0,]UP

_K

a S a S
2U B(?,ugaﬂ_/'l’u Baagﬁp,'

(2.18
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with &€,=ug;, 72"+ P,
(2.19

When using this gauge, one must remember that the con-
straints(2.7) [which read the same when written in terms of
the string metriogfw] involve the metric. These constraints
read(in terms of the string metrjc

— S (v V"
=g, (22" )+ D,

sz: 0,

) 1
with T3,=05,,(2) dazdpz" ~ 5 7ab7°%95, (2) dcZ 42"
(2.20

The constraintsT;,=0 are preserved by theauge-fixed
evolution(2.19. Indeed, it is easy to check the identity

7P9aThe=02(05, 7 ap2" + DL+ DD)=9.2E,, .

(2.29

In the last step of Eq(2.21) we used the algebraic identity
o"CZ“(I)EEO. When the gauge-fixed equations of motion are
satisfied, i.e., whed&, =0, the constraints satisfy the conser-
vation law 72°3,T5.=0. This conservation law together
with the algebraic identity2°T3,=0 (i.e., T3,=T3,), en-
sures that ifT3, vanishes on some initial slice= 7o, it will
vanish everywhere on the worldsheet. This shows that the
evolution equation§2.19 propagate only the physical, trans-
verse degrees of freedom of the string.

Up to this point, we have made no weak-field approxima-
tion. In the following, we shall limit ourselves to working
with formal perturbative expansions of the fof@h4), (2.5).
When doing this, it is convenient to rewrite the string equa-
tions of motion(2.19 in the explicit form

Ey=—un, (22" +F,, (2.22
where the quantityF,, is defined as
F=0,+¥,, (2.23
with
V= ul(9,,€ ) (2 =2"). (224

In the linearized approximation, the complementary contri-
bution¥, to the equations of motion read

¥, =—pu(h,,+2a¢n,,)(2"—2")+O(G?). (2.29

The total contribution, to the explicit (noncovariant
string equations of motion is not a covariantly defined object,
it is a noncovariant, pseudoforce density. For the definition

Except when otherwise specified, we shall henceforth worlef a genuine, covariant force density see R&0], notably
in the conformal gauge associated to the actual metric ifEg- (41) there. To simplify the language, we shall however

which the string evolvegand not the conformal gauge asso-

ciated to, say, a flat background metrjg, ). In this gauge
the equations of motion of the string read

£,=0,

call, in this paper, the noncovariant combinatigp a “force
density” (in the same way that when doing explicit calcula-
tions of the perturbative equations of motion of binary sys-
tems it is convenient to refer to the right-hand side of the
equations of motion as a “gravitational forcg”

023517-4
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Let us now write explicitly the weak-field approximation
of the field equations deriving from the total actiSp+ Ss. Are X) = +47Tj do'd7'%(0',7")GedX—2(0",7"))
Let us recall that we assume the absence of external fields, so
that we work with perturbative expansions of the fo{2m). + Acxd(X), (2.39

When fixing the gauge freedom of the gravitational and ax- ) ) ) )
ionic fields in the usual Waygaﬁl"ﬁ.flfo; V'B,,=0), the whereA () is an “external” field, i.e., a generic homoge-

field equations derived frorS; read, at linearized order neous solution of the field equatiofgenerated by far away
sources As said above, we assume in this work that
5 5 Acx(X)=0.
Oe(x)=—47 | d®c2¢5"(x~2(0))+O(G?), Applying  the  formula  S(F(r'))=3, &(+'
(2.260  —1o)l|dF (7o) 7|, where the sum runs over all the solu-

tions 7y of F(7')=0, one can effectuate the integral owér

Oh,,(x)= —477J d?o 3" s (x—2(0))+O(G?), in Eq. (2.35 with the result

2.2 (o', 7
(2.27 A,et(x)zf da’((—.)) . (2.39
|Q-Z] -
DBW(x)=—4wf d?0 38 64 (x—2(0))+ O(G?), T et
(2.29 Here, we have define@“(x,o’,7')=x*-2z*(¢',7"), and
Te(X,0') as being the retardedi.e., such thatx°
where the corresponding linearized source terms are definedz%(7,.(x,o’))>0] solution in 7' of 7, () Q" (7')

as =0. In the following, we use also the quantity A Which,

~ after using the formula,
S¢=aGuU, 3, =4GuU,,, 38 =4Grv,,.
229 0,5 (x,7)=,F &' (Fx, )= —r— 200
X,7'))= X,7)=————
g g (aFla7') o'

uvo

Here, DM,,EUM,,— 3 7,,U, and, ir_1 the present approxima- (2.37)
tion, the vertex operators entering these source terms are :
simplyU,,,=z,z,-2,z,, U=9*"U,,, V,,=2,z,—2,2,, and integrating by parts, can be written as

where we freely use the flat metrig,, to move indices. In
the following, we shall consistently work to first order & | 1 d Q,2%(0",7")
only, and shall most of the time omit, to save writing, the auAret(X):J’ do 10-7] dr 0.7
indication of the®(G?) error terms. ret
The field equation£2.26—(2.28 are classically solved by (2.38
introducing the four dimensional retarded Green function

T'=1

The corresponding results for the advanced fields are

1
GrelX—Yy) = 5—0(x°—y°) 8((x—y)?); 2.3 (o', 7
re(X—Y) = 5—00C=y)o((x=y)%); (230 Aadu(X)=f dor| 22T (239
Q-2 /|, _
T = Tadv
DGret(X_Y):_é(‘l)(X_Y)- (2.3
o ., L . d [Q3(c,7)
This “retarded” Green function incorporates the physical aMAad\xX)zfdg' _ & _ ,
boundary condition of the non-existence of preexisting radia- |Q-2z| d7’ Q-z R
tion converging from infinity toward the string source. The (§_V40)
(unphysical time reverse ofG,; is the “advanced” Green
function where 74(x*,¢’) is the advanced solution of

1 7,,0%(7')Q"(7')=0. Note that the scalar produ€X-z is
GaadX—Yy)= ﬁa(—(xo—yo))é((x—y)z), (2.32 negativefor 7’ = 7, andpositivefor 7' = 7,q,.

Ill. PERTURBATIVE ON SHELL FINITENESS
=Gy —X). (2.33 (AND RENORMALIZABILITY )

. OF THE STRING SELF-INTERACTIONS
Let us consider, as a general model for E@26—(2.28),

the generic field equation As said above, we consider the problem of a cosmic string
interacting with its own, linearized, gravitational, dilatonic

) and axionic fields. The equations of motion of such a string
OA(X)=—47 | d?c3(0)8*(x—2z(0)). (2.39 read

Its most general classical solution reads w1 (2" —2")=F,(2)+ O(G?),

023517-5
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with F,(2)=F i TA®(X),0A®(X)]—,,  (3.) Fh=FL A+ FL., FLe=FLz,

where the explicit expression of the linearized “force den-

sity” ]—"l'f is a linear functional of thelinearized retarded =_(FM'—Frhz =—e?(zF+(2-2)Z%). (3.5
fields ¢"{(x),h}5,(x),Bjy(X), reac pilret Tadvrg
FIA™ A =DM 9o + DI gh'e) + & 2" 9B The analogous problem for self-interacting cosmic strings
ine ret vre has been studied by Lund and Re¢@2] and Dabholkar and
+W e he, (3.2 QuashnocK23] for the coupling to the axion fielésee also

[15]), by Copeland, Haws and Hindmark®4] for the cou-
plings to gravitational, dilatonic and axionic fieldand by
Carter [25] for the couplings to electromagnetic fields
There is, however, a subtlety in the calculation of the renor-
. P malization of the string equations of motion which led Ref.
@2"”[ahre‘]=§U“B(&Mhaﬁ)—uuaﬁ(&ahﬁﬂ), [24] (and us, in the first version of this worko misinterpret
their results, and propose incorrect values of the renormal-
N izations of the string tension due to gravitational and dila-
®BIN[gBre == Vvah(y Bap) +AV(3,Bg,), tonic self-interactions. Our realization of this subtlety was
. 2 . . triggered by the work of Carter and Batty&7], who were
_ . . the first to get the correct renormalization @funder self-
Vi e.h]=—u(h,,+2aen,,)(2"~2"). (3.3 gravitational effects, in 4-dimensions, by using a covariant
. . i ) ) . approach to string dynami¢&6,20. We then obtainef18]
The right-hand side of Eq$3.3) is obtained by inserting the {he correct renormalizations gf under all three fields, and
retarded fields\(x), Eq. (2.36), and their first derivatives, i, an arbitrary spacetime dimensibiby an effective action
d,Are(X), EQ.(2.38), and by evaluating the result at a point gpproach. The subtlety which makes it delicétat not im-
x*=2z* on the string worldsheet. The sources of the fields argyossible to derive the correct renormalization @f when
given in terms of the string dynamics by Ed&.29. Note  \yorking (as Ref[24] and the present papedirectly with the
that 7, is a nonlocal functional of the string worldsheet equations of motion, at first order i@, and without adding
whose support is the intersection of the worldsheet with thexternal fields, is the following. In such a context, {her-

past light cone with vertex at the point. . , . . . S
As in the case of a self-interacting point particle, the forceturb(f}tlve string equations of motior(2.5 imply that z

F,(x=2) is infinite because of the divergent contribution —2z* is of order(g, SO thlat any grst-order renormalization of
generated when the source poit(~',o') coincides with the tensionu=pu"+Gpu +O(G), corresponds only teec-
the field pointx“=z*(,). It was emphasized long ago by ond  order ~contributions [Gu'(z,—Z,)~G?u'F),
Dirac [16], in the case of an electron moving in its own =O(G?)] which are formally negligible at orded(G) and,
electromagnetic field, that this problem can be cured byherefore, cannot be unambiguously read off such a first-
renormalizing the mass, thereby absorbing the divergent pa@irder calculation. In other words, a first-order treatment
of the self-force. More precisely, Dirac introduced a cut-off without external fields can only prove that the string equa-
radius § around the electron and found a correspondirlg ~ tions of motion arerenormalizableby checking theiron
traviolet divergent self-force F4(8)= —(e2/25)if’“+]-‘g (perturbative) shell finiteneds.e., the fact that all formally

where 7% is a finite (renormalized contribution. If the mass divergent flrst-or(_jer contrlb.utlons vamsh_w.hen using the
of the electron plus it$-surrounding depends ofiaccord- ~ Zéroth-order string equations of ~motiorz*—2z* =0

where

(D;;: |in[&¢ret] — /-LanaBU a'B(&MQD) — 2[.LCY ﬂMaU aﬁ(aﬁ@),

ing to +O(G)], but cannot, by themselves, unambiguously deter-
mine the renormalization of the string tension. For instance,

e? the finding of Quashnock and Sperddll] that the self-
m(6) =mg— 25’ (3.4) gravity effects vanish upon using the zeroth-order equations

of motion to evaluate the first-order terms in EB.5) prove

wheremg denotes a finite, “renormalized” mass, the ultra- that they are renormalizable, but does not allow one to con-
violet divergent equations of motiom(8)z“=F*(8) give clud_e that the self-grawty contribution to the ten§|on renor-
the finite resultmgz*=F%. Note that thes-dependence of T%I.'Zatlor.]ﬁgﬂ vamshes.(l't happen; thaﬁg’“ va‘\‘nlsh'es |n”

. . . . ) -dimensions[17], but this vanishing is an “accident
m(9) (for a fixedmg) is compatible with the idea that(5) hich does not hold in other spacetime dimensid&.) To
represents the tota! mass-energy .Of the p_ar'FicIe plus th"flt e able to determine the value of the renormalizationof
the electromagnetlcaﬂild cogtlalne(g 2WIthII’.] the radlusOne must go beyond a zero-background, first-order “on-
S m(52)—m(51)=+fﬁid x(8m) “(e/r)?. Dirac als0  gpe|” treatment of the string equations of motion. Essen-
found that the remaining finite force was given tmsing a  tially, one must work with a form of the string equations of
proper-time normalization ofr:z%2= 7,,d2/dTdz"/dT=
—1) the sum of the external forcgL,; and of a finite “re-
active” self-force Fleac “Only the leading divergence was treated wien4.
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motion which allow for the unambiguous introduction of an for the retarded solution of,,,Q*(7")Q"(7")=0. Inserting

“external force” acting on the string. This is the case of thethese results in Eq$2.36), (2.38 we get

covariant-force formalism of Refl17], as well as of the

effective-action formalism of Ref18] (where an extra force 1

would mean an additional contribution to the total actidn. Are(2)=—-log
- |z°|

the present work, we do not really need the explicit value of

the tension renormalization. We only need to check the

renormalizabilityof the perturbative string equations of mo- 0. Au(2)= Iog(i)

tion, i.e. the fact that all infinities vanish “ofzeroth-order pore (z2)2 "\ 8¢

shell.” To end up with clearer results, we shall, however,

1
Jc

)[22]+finiteterms, (3.10

s " ’ Z”'Z,
-2z,+37,+43%z,

Z2

present a treatment in which the correct renormalization ap- (72 ., - o

pear (because this treatment is action-bgsehd we shall +4%z, =) +2%'z,—23z,|+finite terms.
renormalize them away by using, as external input, the re-

sults of Refs[17,18. (3.11)

Our starting point will be the explicit form, Eq$3.1)— . . )
(3.3), of the conformal gauge, variational equations of mo-The rather complicated-looking terms proportional @ (
tion S,/ 5z*=0.[We shall check below that the conformal- -2")1z% and (z-2)/Z% in Eq. (3.11) are, actually, “connec-
gauge constraint€2.7) (written with the full divergent met- tion” terms linked to the fact that the sour& is a world-
ric) do not contain any divergent contributiotat linear or-  sheet densityconformal weight 2 rather than a worldsheet
der in G).] To give a meaning to Eqgs(3.3) when x  scalar(conformal weight §. Let us associate to each source
—z(1,0) we formally introduce an ultraviolet cutoff, in 2 a corresponding worldsheet scafgralso denotec, de-
the ¢’ -integration giving the retarded fields and their deriva-fined by
tives, i.e., we replace the integral over a full periododf,

J-ZS+Ldo", on the right-hand side of Eq&2.36 and (2.39 S=$— iz (3.12
by fZ; %ed g’ +f2‘f5"do’. Later in this paper, we shall use a Vy

different way to introduce an ultraviolet cutoff, namely di- ;4,0 y=(—dety,,) 2 is the area-densityA/d?s, which
mensional regularization. Dimensional regularization has the . ab /2 2 '
advantage of always keeping Lorentz invariance manifestr.ea(_js’ n conformal_gaugeﬁzz - One ne_edfmalso
We have checked that both methods give the same resultd '{‘2"‘13,2'”‘?9 the. Invariant u“Itrawol.et cutoff5=’y Sc
(see Appendix In this section, we use the less sophisticatedE(Z )" 9 associated to the "coordinate cutoffd, . (In

Sc-cutoff approach which allows a more direct comparisons.ec' IV belovv_ anpl in the Appendix, we shall use a dimen-
with other results in the literature. sional regularization method where the cutoff parameter

; ; =4-—n, and the renormalization scalg;, are automatically
We then need the expansions in powersedf- o and ' e . PR
' — 7 of all the quantities entering Eq2.36), (2.39: Lorentz invariant Then Egs(3.10), (3.11) simplify to

1
- A =log| < |[2S]+finite t , 3.1
Q#(T,,O")z_(O',_O')Z;L_(’T,—T)Z#_E(O”_G')ZZZ ret(z) Og( 5)[ ] Inite terms ( 3)
1 - » 1 1 . , .. L
_ E(T/ _ 7,) Z#—(O',—O')(T, _ T)ZM, (36) aMAreI(Z): \/—;|Og 3 [_SZM+ Sél—ZSZM‘F 2S ZM]
+finite terms. (3.19

.. 3 -
0. / , e (! — 2 (' \2(7.
(@-2)(r",0") (' =7z Z(T niz:2) The result(3.14 for the regularized field derivative agrees

1 with the results of Ref[24], as well as with the geometric

o — )27 prescription given if25]. As a check on the above results
+ (o' —0)(Z"-2)

2 one can verify that the divergent parts satisfy

+(o'— o) —1)(z-2"), (3.7

Jd .
—Ae(2) =29, Ae(2), (319
-ZM(T/,O',)Z-Z#‘F(T,—T)EM‘F(O"—O')-Z;L. (3.8
d )
At the order needed to extract the divergent part of the inte- %Afel(z):zﬂ 9uPre2)- (3.16

grals(2.36), (2.38 (we shall use a more efficient tool below
to extract the more complicated finite reactive pattis = To check these links one must use the following conse-

enough to use quence of the conformal gauge constraints= 'lﬁb
=0,,,(2) 922" 962" = 3 72p7°°9,,,(2) :2*d4z” (written here
el 24,0 ) =1—|o— o' |+ O(Jlo—a'|?), (3.9 interms of the Einstein metnic
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0= ﬂbcabTEaEg u(z)aaZMWCd(achV""FZﬁacZa&dZB)- @ - " Ar
” (3.17) IP(V*$9,B,5)=8G\(z,~Z),)log = (3.26

As we assume everywhere in the paper a flat gravitational A
backgroundy,.,, Eq.(3.17 implies |P(vaﬁaasﬁﬂ)=—sex(iﬂ—z;;)log(?). (3.27)

Su(S M\ — TR(S My —
z2M(z,~7,)=0(hyp), 2'"(z,~2Z,) O(haﬁ)'(s 18 We have now in hands all the results needed to derive the
' infinite contributions to the right-hand side of the string

equations of motion3.1). More precisely, one obtains for

so that tangential projections af—z*" can be consistentl e
g pro) y each separate contribution in E§.2)

neglected in first-order contributions such as E@s15-

(2.17 even if one is working “off-shell.” A
Because of the logarithmic divergence entering Bdl4) IP(D?)= —4a2(;,u2(2#— 7" )|og(—R) , (3.28

we need to introduce, besides the invariant ultraviolet cutoff g . g

scaled (which can be thought of as the width of the cosmic A

string), an arbitrary, finite, renormalization length scalg. hy_ 2,5 2R

Then, we candefine precisely the “infinite parts”(IP) of IP(P),)=8Gu(z, Z")mg( o ) 3.29

Ared2) andd, Are(2), i.e., the parts which blow up whef A

—0, by replacing in Egs(3.13, (3.14 the logarithm by - .

log(Ar/8), and by discarding any other finite contribution. IP(®7) = —4G)\2(z“—z#)log(?),

To apply this definition to the three fields h,,, andB,,,, (3.30

we need to use the corresponding sources, (EQ9. For

instance, we have . o o . Ag
IP(V?)=8a"Gu(z,—z,)log 5

1 A 1 A
ret __~ oyh SRy _ T “R (3.3)
IP(h7,(2)) \/;ZEM,,Iog( 5) 8Gu \/;/Ulwlog( 5 )
(319 hy_ 2/ " AR
IP(V,)=—-8Gu(z,—z,)log 5/
A 3.3
IP(¢"(2))=—4aGpu |og(§>. (3.20 (3.32
Adding up all the terms leads to
Using the easily verified identities satisfied by the vertex A
- " R
operators, IP(F,)=C(z,— zM)Iog(?) : (3.33
~ 1 ~
UMVUWEUWU“”—EU2=O, U,,U""=0, with
. C=+4a’Gu’—4G\2. 33
u,,Um=0, (3.2 H (339
_ The crucial point in the resul3.33 is that the divergent
V,, VA= —2(7%)?, contribution to the equations of motion is proportional to the
zeroth-order equations of motion. In our present perturbative
\'/W\'/;w: — 27272427272~ A(2-2)%— 4(Z' - 2)?, treatment the formally infinite contributio8.33) is of sec-

(3.22  ond order inG and can be ignored. As we said above, this
property of perturbative on shell finiteness of the equations
we first see easily that the divergent contributions,of motion proves their renormalizability but cannot, by itself,
|p(hﬂv)('ZM'ZV+Zﬂ'ZV') and |p®lw)'zﬂzv’, to the constraints determine the physically correct value of the renormalization
(2.7 vanish. The use of the identitig8.21), (3.22 allows  Of . At this point, we can, however, use the results of Ref.
also to simplify the expression of the terms linear in the field[18], where we showed that the “bare(fegularized but not
derivatives entering Eq$3.3). We obtain renormalized string tensionw(8) appearing in the original
ultraviolet-divergent action must depend on the UV cuidff
) 1 Ag according to
lP(aM(P):_ZQGM(ZM_Z;IL)'Z_2|09<?)' (3.23 R
R
u(5)=MR+Clog(7>, (3.39
. AR
aB =— 7 _—_
IPU9ahg,) 8Gu(z, z#)log( 6 ) (3.29 where uy is the finite, renormalized tension, and where the

(“beta function”) coefficient C is precisely given by Eq.
IP(U”‘BaMhaB)=O, (3.29 (3.39. [C contains only contributions coming from dila-

023517-8



ON THE GRAVITATIONAL, DILATONIC, AND. .. PHYSICAL REVIEW D 60 023517

tonic, C,=+4a°Gu? and axionic, Cg=—4G\?, self-
interactions. The gravitational contribution vanishéa
4-dimensions[17,1§.]

Let us define the “renormalized” value of any “bare”
(i.e., cutoff-dependeint logarithmically divergent, quantity
Q(9) as its “finite part” (FP), i.e., the difference between
Q(¥) and its “infinite part” [defined above as the term

S'(z#,...) in theaction, in which case the zeroth-order
string “mass shell” is modified, and we must take into ac-
count the new infinite terms coming from the extra contribu-
tion g“’e 2%¢5S'/ 62", in which g#ve™ 2%¢ =y — IP(h*")
—2an*”IP(p) +finite.

Let us finally note that the logarithmic renormalizations
(3.39, (3.36 introduce a dependence of the renormalized

«log(Agr/d) in Q(H)]:
QR=FP(Q(8))=1im[Q(3)—IP(Q())].

6—0

(3.39

Using this definition, and formally inserting E¢.35 into
the bare equations of motid3.1), namely,

Ag
5

=F(8)=IP(F, () +Fh

urtClog

+u(8) (27 —2") = 72" —2"")

=C(z,~Z,)log

A
KR) +Fh
+0O(G?), (3.37

we see that the terms proportional to lyg/s coming from

the renormalization ofu(6) and those coming from the

renormalization ofF,(5) are identical(even if we were

quantities upon an arbitrary, renormalization length scale
Ag. [By definition, the baregregularizedl quantities.(6),
Q( ), do not depend on the choice Af.] For instance, we
see from Eqs(3.33), (3.35 that

Ag
pr(AR)=pr(AR)—C |09(A—R) ) (3.40

A

R R R A
FRAQ=Fl(AR=C(z,~Z)log 1°|. (34D

It is however, easily seen that the content of the renormalized
equations of motion3.38) is left invariant(at first order in

the field couplingsunder a change akg. [This invariance

still holds in presence of an additionélinite) contribution
8S'16z* to the equations of motiohAs we work only to

first order in the field couplings, note that the quantity
appearing inC, Eq. (3.39, can formally be considered as
being a renormalized value, rather than the bare one, thereby

working off shel), so that the equations of motion can be leading to the renormalization group equatigg/JlogAg

rewritten in the renormalized form
prN (2 =2 )= FR+ O(G?). (3.38

This simplification between the san@log(Ar/8)(z,~Z,)

=—C(up). (The nonrenormalizability of the gravitational
interaction makes it delicate to extend this argument to
higher orders irG. By contrast, if we consider only a canoni-
cally normalized axionic field, with couplingyGx

= m/2f,, C does not depend gu and the first-order renor-

contributions on both sides of the equations of motion is dugnalization result is exaqt.

to the fact that we have been working with the direct, Euler-

Lagrange variational equatio®S,/5z*, i.e., with a form of

Finally, we note that the axionic contributio@g=
—4G\? to C agrees with the result of previous dynamical

the equations of motion which is ready to receive an addicalculations[22,24,11,14,15 while the dilatonic contribu-

tional “external force” §S'/ 5z, as the variational deriva-
tive of an additional piec&’ in the action. Had we worked
with another form of the equations of motion, say,

5 .- " ~
> v a0, = - u(8) (34— 2+ B,

oz
(3.39

T — M
=95

with ®#=gt"e 2%¢d | the infinite part of theinearized

field-contributiond* '[9, Ared would have been identical to

7@ 3, Ared, with @) given in Eq.(3.3) above. In such
a case, Eq¥3.28—(3.30 show that the infinite part ab# "

would not have matched the
IP(u(8))(z*—2z*")=C log(Ar/8)(z*—2*"). This apparent

tion C,=+4a°Gu? disagrees with Ref[24] which pro-
posed a vanishing dilatonic contributi@, .

IV. RENORMALIZED FORCE DENSITY AND THE
LOCAL BACK-REACTION APPROXIMATION

A. Renormalized equations of motion
In the previous section we have shown that the perturba-
tive equations of motioiin absence of external fielgdsould
be written, at first order i, in the renormalized form

prNu(Z =27 )= FR oA ]+ O(G?),  (4.2)

infinite  contribution where the right-hand sidéRHS)is the sum of three renor-

malized contributions

discrepancy is, however, not at all a sign of inconsistency of
the type of noncovariant perturbative equations of motion we
have been using. Either one works on shell, and all the for-
mally infinite terms can be consistently neglected as being of
order G2, or one introduces an additional mechanical inter-
action of the string, e.g., through the addition of a new piecewith

Fia "ToAed =F ;R 0red + F, " M hred

+F5 R 9B, (4.2
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}-'ﬁR "n(t?(,D):,U«aﬂagUaﬁ(au‘P)R_ ZManﬂaUaﬁ(aﬁﬁo)R,

4.3
; M
‘}-ZR Im((?h):EUa'B(‘;,uha,B)R_’uU aﬁ(éahB#)R,
(4.9
. A
IER lin (9B) :Evaﬁ( a#Baﬂ)R-i- AV“B( &aBﬁM)R'
(4.9

Here @,Aed®, with A= (@™ 05 ,B)), denotes, as de-
fined by Eq.(2.36), the finite part of the logarithmically di-
vergent retarded integré?.38. Note that, due to the absence
of external fields, the supplementary contributibr to 7, ,
in Eq. (3.3, is negligible, being of orde6? becauseh,,,
+2ae=0(G) and @,~z])=0O(G). [Both the infinite part
and the finite part oft’, are O(G?).]

The expressiong4.3)—(4.5 are linear(nonloca) func-
tions of the field derivatives. Following Dirdd 6] it is useful
to decompose any field«(X) in two parts:

ArelX) = Asym(x) +Aread X), (4.6)

1
Asyr'n(x)E E[Aret(x)"'Aad\xx)]: (47)

1 1
Area(()()E EArad(X)EE[AreI(X)_Aad\KX)]- (4-8)

Note the definition of two fieldsA.,candA, g4, differing by
a factor 2, associated to the differerfgg— A,qy- Both fields

play a special role in the discussion below. They are bot

finite, as well as their derivatives, when considered at a poi

n

PHYSICAL REVIEW D 60 023517

any field(in the linear approximatignwe can define a field
(pseudd energy-momentum tensor{”(A) which is qua-
dratic in (the derivatives gfA. The total energy tensor*”
=TEY+ T (whereT%” denotes the energy tensor of source
including any possible field-interaction energy localized on
the sourcgis conserved: & d,T#”. This leads to the equa-
tions of the source:d,TE"=F#(A) where F#(A)=
—3d,T{"(A) represents the spacetin{eather than world-
sheet version of the force density acting on the souifdée
work here with the bare force densifyet us consider, as a
formal simplification, the case where the coupling between
the source and the field is (adiabatically turned off in the

far past and the far futur€This means, in particular, that any
possible field-interaction energy localized on the source van-
ishes in the far past and the far futdr@hen the energy-
momentum lost by the source during the entire interaction
with the field, PX o= — [d3X[ T£O(+ %) — T#%(— )], can

be written as

PEios= — J d*x 3,T6"=— f d4XFM(A) = P#gained’
(4.10

where P e + JEX[TEO(+0) —T{%(—=)] is the
energy-momentum gained by the field. When applying this
result to the wusual interaction forceF#(A)=

-3, T#"(Ae) One has zero energy i in the far past, so
that PX, = S d3x T#"(Ae{t=+)). The field energy mo-
mentum tensoif#”(A) is quadratic in the field and can al-
ways be written as the diagonal value of a symmetric qua-
dratic form T¢#"(A)=Q*”(A,A). It is easy to see that the

Eeneric structur&#(A)=—9,T{"(A)=S8a- JA, whereS, is

source term for the field, and where the dot product

x=z of the source. Therefore the contribution to the self-yanotes some contraction of indices, is generalized, when

force corresponding té..is finite and does not need to be

renormalized. Hence, we shall dispense in the following with

the label R when consideringi(Aead - TO simplify the no-
tation we henceforth drop the label “lin” orf,, , and freely
move indices byz,, because we shall consistently work
only to first order inG. [As said above, in the preseffirst-
order, no-external-fieJdapproximation, we could even for-
mally dispense with renormalizing*(As,,) because the di-
vergent contributions (3.28—(3.30 are O(G(iﬂ—z;))
=(O(G?). But, for clarity we continue to work with
Fh(Asym) ]

B. Reactive part of the self-force

Let us first prove why, very generally, in the decomposi-

tion of the force corresponding to E(.6),

FR(Are) = ]:'lFs(Asym) + FH(Aread =Tk sym+ reac! @9
4.

considering Q*” to —3,Q*"(A;,Az)=3[Sa,- Az+Sh,
-dA1]. We can apply this to the case whetg¢=A; and
A2= Arag= Arer— Aqgy (for which S, =0) with the result

1

ES' Araq=S* IAreac= F*(Aread = — 9,Q""(Arets Arad)»

(4.11

whereS is the usual source, arféF(Aead the result of re-
placing A by Aea= 3Aq in the usual force density. Inte-
grating the latter formula over spacetime gives

. f dix F(A ) = f X[ (Arets v+

_QMO(Arethrad)|t:—oc]- (4-12)

the termF% .can be considered as defining the full radiationAgain, one has zero energy from the far past contribution
reaction force, responsible for draining out of the mechanicalbecauseA( — <) =0], while the far future contribution is

system on which it actgthe string in our cagethe energy
lost to infinity in the form of waves of thA field. Indeed, for

simply, thanks t0A.gf+2) =0, Q“°(Aer, Ared = TH(Are)
so that
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- [ A= [ X Tl ) B (o) = 2] | — i(ﬂﬂz("_ ’T ))
a 21|92 d7’ 0.z -
T T Tret
— _ 4 —
= j d*x F’U‘(Aret)— Pglost‘ - 1 i QME(O',,T’))
(4.13 |Q-2z| d7’ 0z e '
This proves, for any field treated in the linear approximation, (4.16

that the contribution to the self-force due A, contains,

when integrated over time, the full effect of radiation damp-The integrandB;, (o) is the finite difference between two
ing, ensuring conservation with the energy-momentum losterms that blow up wherr’—o [0 being such thatz
to radiation. The contributioF#(A,.,) can be called the =2z(o,7)]. When o' is well away fromo (say, for long,
“reactive” part of the self-forceF*(A). horizon-sized strings B} (0') is expected to decrease

Summarizing the results at this point, the renormalizedoughly as the inverse spatial distar€e- il, i.e., roughly as
self-interaction forcegreturning now to the worldsheet dis- |0-’—0-|_1_ In other words, a very rough representation of

tributed force densifycan be written as the typical behavior of B,(0) is B(a')~(2(o"
—a)) Yf(r— (o' —0))—f(r+ (o' —0))], where the “ef-
Fr=FPF#=FPFg,(0) + Freao (4.14  fective source function™f(7) is expected to oscillate as
varies. If we think in terms of one Fourier mode, skyr)
where FP denotes Hadamard's finite péiartie Finie”) =f,e '“7, these considerations suggest that the field deriva-

operation[27] (i.e., in our case, the result of subtracting ative A is roughly given by an integral of the form
term «log(d/Ag) from the ultraviolet-cutoff integralF#( )

o— 6, ogt+L . ’
= ‘do'[---]+ % do'[---]). Note that only the . +o  sSinw(o’'—o
fo'o '0- [ ] -{0-4—50 (o [ ]) . y &A:f dO'/B(O'/)"‘ifwe_lef da/#
symmetriccontribution, obtained by replacing,e; by Agym — (o' —0)
=3 (At Asqy in the force density, needs to be renormal- (4.17

ized (and, as we said above, one can even formally dispense

with considering this renormalizationThis symmetric con- The latter integral is equal ta, so that one can finally re-

tribution does not contribute, after integration over time, toplace the oscillatory and decreasing integr&ia') by an

the overall damping of the source. The finite reactive contri-effective §-function, Beg(o')=B(0)AS(o’ — ), with (in

bution Fle,=F*(Aread €mbodies(on the averagethe full  our example B(0)=—f(0)=iwf, and A=m/w, or, in

effect of radiation damping. other words,dA= [do'B(c") is replaced byAB(0). The
The advantage of the above decomposition is to isolateanalogous proposal of replacing the complicated, nonlocal

very cleanly, the radiation damping force from the other non-integral(4.15 giving d,AreacSIMply by the local expression
cumulative, self-interactions. Its disadvantage is to write the

nonlocal, butcausalself-force FEF#(Are) as a sum of two [auAreac]localeBZ(o)v (4.18
acausal (meaning future-dependentontributions. Indeed,

both FP(,y) and Fie,care given by integrals whose sup- \yherea is some length scale linked to the wavelength of the
port is the intersection of the worldsheet with theo-sided  ain Fourier component of the radiation, was made by Bat-
light cone with vertex located a*. In principle one can tye and Shellard14,15 (see alsd23)). In effect, this pro-
work directly with the full, causalF; (as done, e.g., in Ref. posal is equivalent to replacing the’-extended source
[11]), but this is computationally very intensiveA simpli- (7' o') by the ¢’-local effective sourc&3.(7',0) (o’
fication, used by the latter authors, and mentioned above, is o). One of the main aims of the present paper is to study
that the self-forceF#(8) becomes, as is clear from Egs. critically the consequences of this proposal.
(3.28—(3.30, finite as5—0 when evaluated on free-string  Though this “local back reaction approximation” drasti-
trajectories, satisfying”—z* =0.] We shall follow Refs. cally simplifies the evaluation of the reaction forge.,,
[14,15 in working only with the(finite) reactive forceFl,.  there remains the nontrivial analytical task of computing the
and in trying to define a simple local approximation for it. ¢’—0 limit of the difference between the two complicated
(and divergent terms making urBfL(a’). We found very
C. Local back-reaction terms in dimensional regularization helpful in this respect to usdéimensional regularizationi.e.,
. o i o to use, instead of the normdsingulay four dimensional
The reaction forceFe,.is linear ind,Aread2), Which is  Green's functiong2.30, (2.32, their analytic continuation

itself given by the following integral: to a spacetime offormal) dimensionn=4—¢. [We shall
L keep computing the index algebra in 4-dimensions. This is
9, Aread )= fo dngZ(U'), (4.15 allowed here because our use of dimensional regularization

is, simply, a technical trick for computing the finite object
B;(o) .] This technique is well known to be quite useful in
with quantum field theory, but itor, at least, a variant of)ithas
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also been shown long ago to be technically very convenienfome simplifications occur if we introduce, instead of the

in the classical theory of point particl¢88—31. worldsheet density., the corresponding worldsheet scalar
Riesz [28] has shown that the retarded and advanced=3/./y. We find

Green'’s functions in dimension=4— ¢ read

. z-7
[Aead 2)]°%%=A —s—s(.— ) (4.26)
M N b 212N 2( ()2 z2
Gégtv(x y) Hn(Z)[ (x=y)7] 6(—(x—y))
X 0+ (X°—y?), (419 (o Al 2002 [S L g(z)
z Z
with H,(2)=27""2"21'[(4—n)/2] and ,
. Z-Z . Z-Z
OGM(x—y)=—&"(x—y). (4.20 +22M(-Z—2> _Z,u('z_z)]
Note that, whene=4—n—0, the coefficient appearing in L
Eqg. (4.19 becomes -2,5-2,S|. (4.27
N = 4i[1+(9(6)]. (4.21) Note that Eqs(4.24), (4.25 and Egs.(4.26), (4.27) satisfy
n o

the compatibility conditionz3,A=A, but because of the
lack of worldsheet covariand®roken by the introduction of

To save writing, we shall neglect in the following the factor A) the analog condition for’ is not verified

1+ O(e) in EqQ. (4.21 which plays no role in the terms we
consider. Then, we write the retarded solution of our model D. Dilat giati i
field equation(2.1) in dimensionn=4— € as - biiaton radiation reaction

Let us first apply our results to the case of the dilaton field

L[, 2(2-M2a 32 ¢, which has not been previously studied in the literature.
Are(X)=€ | do %d" 2(Q%) 0(Q2%), The correspondingworldsheet scalarsource is then simply
(4.22 1
o= 2= ,aGulU=—-2aG 4.2
where )%= —[x—z(7',0')]?. (Note the inclusion of a mi- 7’2 2 224K et (4.29
nus sign so thaf2?>0 within the light cong Again neglect-
ing a factor 1 O(e€), the field derivative reads S, being a constant, the preceding formulas simplify very
much:
a#Aret(X)=26J dcr’J “dr'30,(0%) 7 "20(02). - -
- 2)]°¥=2aGuA| —|, 4.2
4.23 [¢read2)] M 72 (4.29
Using some efficient tools of dimensional regularization All. 2 [zz
(which are explained in Appendix)Ave get our main tech- [0, Pread 2)]°=2aGu = 3 Zut 3%l =
nical results: the explicit expressions of the reactive field, z?
and its derivatives, in the local back reaction approximation .5\ 2 5.5
ZZ _ZZM ? +ZM —2)1 (43@
[Aread 2)]°%%'=- {2—2< = H (4.24)
z Inserting these results in the dilaton self-fofde3), we get
4 (zz -z
[’9 Areac(Z ]Iocal ) EZ +EZ +EZ j:;i'oca':g ZGMZA Z —Z ( ZZ )+ZM 7)
z
_ _ (4.3)
z-Z . |zz . L
—422 (—2 —222M<7) For notational simplicity, we henceforth drop the label “lo-
z z cal” on the local approximations to the reactive forces. Con-
. sistently with our choice of conformal gaugehich, in the
S5 zz) fzz -z case of the dilaton coupling, is the same as in flat space, see
m\ 22 37 22 Eq. (3.17)], we see that the reaction for(?é.3]) is orthogo-
S a2 nal to the two worldsheet tangent vectar$,andz’ #:
. [zz
* 622#( ?) (429 HFe=0=7'MF?. (4.32
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Let us now show that the putative, local approximation to the , 1

dilaton reaction force, Eq4.31) conveys some of the correct F§ e =auU f?wreac:gz 09 uPreac: (4.38
physical characteristics expected from a radiation damping

force. In particular, let us check that the overall sign of Ed.inserting Eq.(4.25, or better, Eq.(4.27 into Eq. (4.38

(4.31) is the correct one. First, we remark that we can workyie|ds, after integration by parts, a total 4-momentum loss
iteratively and therefore consider that the reaction force

(4.31), and its integrated effects, can be evaluated on a free lostp 4 o o
string trajectory. In other words, when evaluating the total P, =32 Cu Af drdom,, (4.39
four momentum Iost,P'S"St:P'S'“(—OO)—P'S";(+00) [with,
- .- 2 e ae
) -z -z
( 22) ( o

L
n
: . : _ ., _The square ofr, reads
we can insert a free string trajectory on the right-hand side of a "

say, the convenient definitioR{,(1)=/gdo urz,(o,7)],  Wwith integrand
by the string under the action (ﬂ’ﬂ=]-";j+]-'z+ ]—"2,

Eq. (4.33.° This being the case, we can now further restrict

the worldsheet gauge by choosingtemporal conformal T ot =—
gauge, i.e., such that=2z%(r,0)=7. Geometrically, this (z%)*
means that the= const. sections of the worldsheet coincide (4.41)

with x=const. space-time coordinate plan€Bhe choice This is negative definite in the temporal gau showin
%= is consistent for free string trajectories because for 9 P gadger, 9

them2*—2¢'—0.) In this gauge, we have that|P'$5‘1<E'£S‘, as physically expected.

W#:ZM +22# Z— . (440}

PO=— f dodrF,, (4.33

[122%(z- 2)*+(2D)3(22)% - 474224 (z- 2)?].

: : s - - E. Gravitational and axionic radiation reaction
=1, —Z22=1-Vv?=7'2% z.z=v-v, 7 -z=7-v,

(4.39 We are going to see that the generalization of the dilaton
_ results to the case of the gravitational and axionic fields is
where we have introduced the 3-velocity=z. The zero nontrivial, and leads to physically nonsensical results. Let us

component of Eq(4.33 then reads first generalize Eq(4.38. The relations
0 4 2 2 V- V u aB&ahB,u,: - (93( \/;‘yabha/l,abza) + ha,uaa( \/;,yababza),
.7:¢=+§a G,U« A]_—Vz. (435) (442)

VMO, B, = dp(€22,2"B, ) — dp(€2°9,2")B,
Assuming that the scal& is constant, we can integrate by Nm : . : . (4.43
parts and write for the total energy lost by the string
show that, as far as their integrated effects are concerned, the

ot 4 o V2 (V.\',)Z gravitational and axionic reaction forc€2.16), (2.17) are
B, =3a°Gu"A [ dodr -y +2(1—v2)2 : equivalent, respectively, to
(4.36) ]_-h equiv._l Uaﬁ hreac 4.4
M _EM 07;/. aB ( . 4)

The integrand of Eq(4.36 is positive definite, ensuring that
the reaction forcé4.31) has the correct sign for representing

a radiation damping force. B equi\,__l @B 5 mreac
We can further check that the total 4-momentum lost by Fu _2)\V uBag (4.45
the string is, as it should, timelike. First, let us note that the
relation It is important to note that, as in the dilaton case &qg38),
these equivalent reaction forces are simple bilinear forms in
UPEG o= — da(\Nyy*Panzre) + @da(\Ny y*Popz") the vertex operators and the derivatives of the fields. They
(4.37 can both be written as
shows that, as far as its integrated effects are concerned, the equiv
dilaton reaction forc€2.15 is equivalent to Fou :@2 -0 Areacs (4.49

where, as in Eq(2.34), 2 denotes the source of the fieid
Sstrictly speaking the integral in E¢4.33 is infinite because free  =MNag OF B, and where the dot denotes a certain symmet-
string trajectories are periodic. The meaning of @933, and simi-  IC blllne_ar form acting on _symmetrlc or antlsymme;t_rlc ten-
lar integrals below is to give, after division by the total coordinatesors. With the normalization of Eq4.46 these bilinear
time spanr, the time-averaged energy-momentum loss. forms are, respectively,
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1 _ Cadl 2 2 b [m_2_ _ 2
Uup=Usg: U-UEUQBU“B—EUZEUaBU“ﬂ, ds?=e?(—dr2+do?), e’=\y=z z

(4.56
(4.47) .
and we defined thenit time like vectoru*=e~ %z, and its
Vog=—Vga: V-V=V, Bvaﬁ, (4.489 first derivative
One can recognize here the quadratic forms defined by the d 2 1
residues of the gauge-fixed propagators ofhtzndB fields. UM=—(e‘ ¢/2'ZM), ul=— —+-¢*>0. (4.5
Note that if we wish to rewrite the scalar reaction force dr 2 4
(4.38 in the same format4.46) as the tensor ones we have
to define the dot product for scalar sources as Let us now prove the remarkable result that the contribution
proportional toS- S in Eq. (4.55 vanishes for all three fields
3, 3,=8%72. (449  when evaluatedas we are iteratively allowed to don a

. . . . free string trajectory:
Using this notation, and the results above on the reaction

fields, it is possible to compute in a rather streamlined way o
the total 4-momentum lost under the action of the local re- J f dodrz,(S-§=0. (4.58
action force:

1 Indeed, for the scalar case=—2 andlj =0, while for the
lost_ _ _— . local N _ X )
Pu= SGJ j dod72[0,Awad ™™ (450 Giper fields a straightforward calculation gives

The calculation is simple if one uses the fo(h27). Let us SR 1,
note that the worldsheet-scalar sourc&=./\/y) for the UV _EU =—Uy9. (4.59
three fields we considerg, h andB) satisfy
S-S=const, (4.51 Vg VeP=+0,¢, (4.60
S.S=0. (4.52 when taking into account the vanishing of terms proportional

to the worldsheet derivatives &fl,z4=—2z*+2z*". (These
Indeed, if we introduce the scalarized vertex operateith  results have a nice geometrical interpretation linked to the

conformal dimension zeyjoU=U/\/y, Oaﬁzuaﬁ/\/; and Gauss-Codazzi relationsintegrating by parts, we see that

f/aBEVaB/\/;, it is easily seen that the contrit_mution(4.58) is proportional tof fdo d.T(D”.Z’u)q.S
which vanishes, again because of the free string equations of
¢: U.U=8U?=+32, motion.

Finally, remembering the constancy 8fS, we get the
very simple result

N NN 1.

h: U,z U*=0,,0%¢- S02=0, (4.53
2

PIOSI:EAS.—SJ f dodrw (4.61)
C Ny XJeB_ » 378G me '
B: V,p V*=-2.
The relations(4.51), (4.52 simplify very much the evalua- Where the integrand
tion of P';’St. In particular, the constancy & S allows one 1
to integrate by parts o, , etc. without having to differen- Wu:iu( U2+ Z¢2
tiate theS- S factors. By some simple manipulations, using
also the consequence

+2,¢ (4.62

is easily seen to coincide with the one which appeared above,

.. a Eq. (4.40, in our direct calculation of the dilaton reaction.

S:$+S-5=0, (4.54 Let us recall that the present calculation applies uniformly to

of Eq. (4.52, we get all three fields if we define the dot product between dilatonic

vertex operators with an extra factor 8, see Eg49.

1. 1. The conclusion is that the local approximation to back

§U2+1—2¢2} reaction for the three fieldgp, h and B leads to energy-
momentum losses which are proportional to the same quan-

Pll?st:%f fdgdq-f 'ZM[(S-S)+(S-S)

1. . tity [ [d%c m,, With coefficients respectively given fusing
+32,(S 99 (459  Egs.(4.53 abovd
Here we introduced a special notation for the conformal fac- é Se S, _é 2,72 f 2 2
tor (Liouville field), 3 86 3 aCw (U =+34aGa%wt, (463
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AS,;S, A (461“)2.” - above for the three casds B and ¢. Introducing Fourier

378G 3 8G «pU**=0, (4.64  transforms, with the conventions

A S5-Sg A (4GN)7. . 4 J(p)=f d*x e 'PXJ(x) (4.68

—_— = — aﬁ: —_— 2 ) .

386 ~3 8g VetV zAG\Z (469

4

The result(4.63 coincides with Eq(4.39 above(for which _ E _ :f d"p +ipx
we have verified that the overall sign is corpeae there- Gread X) Z[G’e‘(X) Gaal )] (27-,)46“’6“( pye ™,
fore conclude that the “local reaction approximatiot#.18 (4.69
yields (i) a vanishing net energy-momentum loss for the
gravitational field, andii) the wrong sign(antidamping for ~ the energy los4.66 reads
the axionic field. The latter result disagrees with Refs. .
[14,15 (see the Appendjxwhich claimed to obtain positive lost_ d’p
damping. It is for clarifying this important sign question that P =k (277)4'D#Gfea<§p)‘](_ P)-I(p). (4.70

we have presented above a streamlined calculation showing
that the overall sign can simply be read from the contractionrg see the positivity properties &°' we need to insert the

cal energy-loss sign is simply determined by the easily The Fourier decomposition of the retarded and advanced
checked(andsignature independensigns in Eqs(4.53). Green functions [1G= — &%) read

F. Gauge invariance and mass-shell-only positivity d4p elPx d4p giPx
. . N - Grey(x)= = ;
Why is the “local back reaction approximation” giving 2l X) f (27)* p?>—(p°=in)? f (2m)* p?>Finp°
physically unacceptable answers in the cases of gravitational (4.70

and axionic fields but a physically acceptable one in the case
of the dilatonic field? The basic reason for this differencewhere 7 is any positive infinitesimal. Using the formula
betweerh,, andB,,, on one side, ang on the other is the
gauge invarianceof the former. Indeed, a gauge symmetry
(here h,,—h,,+d,€,+3d,¢,, B,,—B,,+3d,A,—dA,)
means that some of the componentsgf andB,,, are not o _
real physical excitations. This is associated with the fact tha{'hereP denotes the principal part, one finds
some of the components ¢f,, andB,, (namelyhg and
Bgi) have kinetic terms with thevrong sign i.e., that they
(formally) carry negative energy. Therefore, approximating
radiation damping is very delicate for gauge fields. A slight
violation of gauge invariance by the approximation proce-
dure can lead to antidampinthe literature of gravitational
radiation damping is full of such errors, see, e[@1]). A
more precise way of seeing why the local back reaction ap-
proximation is dangerous in this respect is the following.
We have proven above that an exact expression for the
4-momentum of the source lost to radiation is givéor ¢,
h,, andB,,, and more generally for any linearly coupled
field) by an expression of the form

1 1
P aIlw&(x—a), (4.72

x—a*ip = x—

1
Gread P)= E[Gret(p)_Gad\xp)]ziWSigr(po) 5(p2)-
(4.73
Inserting Eq.(4.73 into Eq.(4.70 one gets

d4
PL‘ESt: + kﬂf
(2

‘; sign(p)p,,8(p?)(—p)-I(p)

T 4
=+kfv'adpp#3*(p)-J(p), (4.74

where V., denotes the positive mass shpfl=+p? and

p';;st:_kf d*% 3(X) - 9, Aread X). (466 dp=(2m) *d®p/2p° the natural integration measure on
V, . Here, we have used the reality of the sourd&(x)
i =J(x)=J*(p)=J(—p).
whereJ(x) is the source ofA(X
) (x) As in the case of Eq4.33 and its kin, the meaning of
OA(X)=—J(x), (4.67  Eq. (4.74 is formal when evaluated on éperiodig free

string trajectory. However, it is, as usual, easy to convert Eq.
(4.74) in a result for the average rate of 4-momentum loss by
using Fermi’s golden rule:

and wherek is a positive coefficient which depends on the
normalization of the kinetic terms oA(x) [4wk=1/8G
when using the above normalizations, the extra facter 4
compensating for our present way of writing the field equa-
tion (4.67)]. The spacetime sourck¥x) is linked to our
previous  string  distributed  sources by J(x)

[5(p°—nw)]2=%5(p°—nw)J dr.  (4.75

=4m[d%0 3 6*(x—z). The dot product in Eq(4.66 is the
symmetric bilinear form defined in Eq&t.47), (4.48), (4.49

One then recovers known results for the average energy ra-
diation from periodic string motiong2,9].
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The integrand in the last result has the good dige., Even when considering in more detail the physically impor-
defines a vector within the future directed light cpifethe  tant problem of the amount of radiation from cusps, it was
dot productJ* (p)-J(p)>0. This is clearly the case for a found that(despite an expected difference linked to the spin
scalar source, but for the gauge fiells, andB,,, one has 2 transversality projection both radiations were again
integrands roughly similar.

Let us also recall that this similarity, or better brother-

Y 1 hood, between gravitational and dilatonic couplings is tech-

’ﬁw(p)Jﬁ (p)— me(p”z (4.76 nically apparent in the similarity of their vertex operators
(which are both subsumed in the fordy,°z*d,z" with a

(5.9

and generic symmetric polarization tensgy,) and is a very im-
portant element of superstring theory. This leads us to pro-
8.(P)IE"(P), (4.77  pose to use, after a suitable normalization, the physically

_ o N _acceptable local dilatonic back reaction force asubstitute
which are not explicitly positive because of the wrong signfor the gravitational radiation one. In other words, we pro-
of the mixed componentd, . As is well known this poten-  pose to use as “approximation” to gravitational radiation
tial problem is cured by one consequence of gauge invarigamping a local reaction force of the fortm conformal
ance, namely some conservation conditions which must bgayuge
satisfied by the source. In our case the gravitational source
I ()T ,,(x) must satisfyg”d}, =0, while the axionic w27 7.7

2 ’

source must satisfy*J% (x) =0. In the Fourier domain this Fu=3C6r"2,-2, =3 +z, |
gives p*J3) (p)=0 or p"J% (p)=0. These transversality
constraints are just enough to ensure that the integrands/e note also that, though there are more differences between
(4.76), (4.77) are positivewhen evaluated on the mass shell axionic and gravitational radiations than between the dila-
V., . What happens in the “local back reaction approxima-tonic and gravitational ones, they are still roughly similar in
tion” is that one replaces the Green functi@).,{x) by a  many ways(as witnessed again by the brotherhood of their
distributional kernelGo(x) with support(in x spacg local-  vertex operatorg ,,d°z*d,z" with now a generic asymmet-
ized atx=0. Its Fourier transfornt,,(p) is no longer lo-  ric polarization tensgrso that one can hope to be able also to
calized on the light con@?=0, and therefore the delicate represent in an acceptable manner axionic radiation damping
compensations ensuring the positivity of the integrandsy a force of the type(5.1) with the replacemenGu?
(4.76), (4.77) do not work anymore. This explains why the — G\? and another, suitable choice Af (Actually, due to
local back reaction approximation is prone to giving unreli-their sign error, this last proposal agrees with the practical
able expressions for the damping duggtugefields. On the  proposition made in Ref$14,15.)
other hand, in the case of a scalar field the crucial source It remains to clarify the choice of in Eq. (5.1). Up to
integrandJ* (p)J(p) in Eq. (4.74 remains positive-definite  now we have implicitly assumed thAtwas constant. There
even off the correct mass shell. This explains why, in theare, however, several reasons for suggesting a non-constant
case of the dilatonic field, the local back reaction approximaA. The first reason concerns energy-momentum losses asso-
tion might (as it was found above to dlaefine a physically ciated with cusps. To see things better, let us use a temporal
acceptable approximation to the exact, nonlocal damping efyauget=r and concentrate on the energy loss implied by
fects. Eq. (5.2). One finds simply

V. IMPROVED DILATONIC REACTION AS SUBSTITUTE V-V
—y2'

4
lost__ 2
TO GRAVITATIONAL REACTION E¥=—3Gu f f dUdTAl (5.2

As the main motivation of the present study is to find a )
physically reasonable, and numerically acceptable, approxwherev(o,7)=2(c,7). At a cuspv?(a,7)=1. Asv?(o,7)
mation to gravitational radiation damping, the results of the<1 everywhere, near a cusp one will hav&(o,7)=1
previous section would seem to suggest that the local back (ao®+bor+c7?)+ O((o+ 7)%) where the parenthesis is
reaction approach fails to provide such an approximationa positive definite quadratic form. This shows thatAifis
However, we wish to propose a more positive interpretationconstant, the integréf'*s'~ [ fdo d(1—v?) ! is logarith-
Indeed, both the direct verification of Sec. IV D, and themically divergent(as we explicitly verified on specific string
argumentin Fourier spaceof Sec. IV F shows that the local solutiong. As the real energy loss to gravitational or dila-
back reaction approximation can make sense when applied tonic radiation from(momentary cusps is finite, this shows
scalar fields. On the other hand, Damour and Vilef®hin  that Eq.(5.1) overestimates the importance of back reaction
a recent study of dilaton emission by cosmic strings havelue to cusps. In other words, if one tries to complete the
found that, in spite of their genuine physical differences,equations of motion of a string by adding the foféel) with
gravitational radiation and dilatonic radiation from strings A= const, this reaction force will prevent the appearance of
are globally rather similar. For the samples of cuspy or kinkyreal cusps. As the calculations of Rgf1], using the “ex-
loops explored in Ref9], the global energy losses into these act” nonlocal gravitational radiation, find that cusps are
fields turned out to be roughly proportional to each otherweakened but survive, it is clear that one must somehow
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soften the “local” force(5.1) if we wish to represent ad- worldsheet vector field/d7 is well defined(both in direc-
equately the physics of cusps. At this point it is important totion and in normalization which means thaf, , Eq.(5.1) is

note that the proposal5.1) lacks worldsheet covariance, well defined, on the worldsheet, as a spacetime vector locally
which means, on the one hand, thahas introduced a local orthogonal to the worldsheet. We shall admit that the defini-
coordinate length or time scale on the worldsheet, rather thation of 7, can be smoothly extended to the case where the
an invariant interval and, on the other hand, that one musiNamby string moves in a curved background spacetime
specify a particular time-slicing of the worldsheet. As the(say a Friedmann universéWhen working in the approxi-
ratio between coordinate lengths and times and proper intemation of a flat background the expressi®nl) can be used
vals is locally given by the square root of the conformaldirectly as right-hand side of the standard, flat-space, confor-
factor e?=z'?=—27% (=1-v? in temporal gauge it is  mal gauge string equations of motion;, (z"—2"")=F,.
natural to think that a better measure of the coordinate intefNote that we use here a flat-space worldsheet gauge, Eg.
val A to use in Eq.(5.1) might vary along the worldsheet (2.7) with g,,— 7,,.] Note finally that the actual numerical
because it incorporates some powee6f This might(if this  simulations of a string network introduce a particular time
power is positive prevent the logarithmic divergence of the slicing and one might also decidfor pragmatic reasongo
integral (5.2). At this stage, a purely phenomenological pro- use it to define the-=const slices of Eq(5.1) (i.e., to ne-

posal is to take\ in Eq. (5.1) of the form glect the Lorentz-transformation effects associated to the
_ center of mass-motion of the strings
A(o,7)=F(—2%)"2\, (5.3 A first check of the physical consistency of the proposal

(5.3) consists in verifying that, despite the nonconstancy of

wheref is a dimensionless factof; is a positive power, and A, the integrated energy 0$5.2) will be positive for all
\ the wavelength of the radiatively dominant mode emittedpossible loop trajectories. Integrating by parts E%j2) one
by the string. We introduced a factor two for conveniencefinds
because, in the case of loops for which the fundamental
mode is dominant, the wavelength 2 wherelL is the
invariant length of the loop. On the other hand, if we con-
sider a loop carrying mainly high-frequency excitations, or
an infinite string, it is clear thak should not be related to the
total lengthL, but to a length linked to the scale of the X
principal modes propagating on the string.

Let us briefly comment on the lack of worldsheet covari-This is manifestly positivéand finite as long as & 7<1.
ance of Eq(5.1) and on its consequences. Ef.1) emerged Assuming this to be the case, the question is then: Are there

as a local approximation to an integral which had the samg o5 off and 5 (after having decided on a precise defini-

formal expression in all conformal gauges. The “local bathion of \) such that the corresponding damping fot6el)
reaction approximation” procedure has, among other things

ol he f | b q h Id gives a reasonably accurate description of the “exact” ef-
V;? ated the c;:mfa syrr|1mgtry fetyveerr?n IU On]f eworld- - fects of energy loss to gravitational radiation? We did not try
sheet. From the formal point of view this 10Ss of symmetry ISy, 4nsyer this question in full generality. For simplicity, we

certainly unpleasant and it would be nicer to be able to Writeﬁxed the powery to the valuep=1 (which seems intuitively
2

a Iolgalh force d;ansnyl which respzc(tjs the symr|1|1etr);£of the referred as it evokes a Lorentz contraction factor arising
worldsheet conformal gauges, and does as we ad¥d) because we look at string elements “moving” with relativ-

Sstic speeds Then we compared the energy loss due to Eq.
(5.1) to the energy radiated in gravitational waves(esm-

E'°St=fG,u2f(2)\)J fdadr(l—vz)’7
3

V-V f21 ) (v-v)2
1 2 (1-v3)2|

(5.9

to the result(5.2) (which will be seen below to be an ad-

equate representaf[ion of the actual e”efgyﬂm f_ailed to puted[using Eq.(4.74)] in the literature(both energy losses
find such a covariant local force density. This is why webeing evaluated in the rest frame of a free strings a

propose to use E45.1), despite its formal "T‘p‘?rfeC“O”Sz as sample of loop trajectories we consider Burden lofg3
a substitute to the exact, nonlocal gravitational radiation

damping. From this point of view, the asymmetry between 1

ando in Eq. (5.1) can be interpreted as a sign that the purely z(1,0)= E[a(u)+ b(v)], (5.9
local expressior{5.1) tries its best to incorporate the, in re-

ality, global damping effects by selecting special time slic- L1 1
ings of the worldsheet#(= const lines, and their orthogonal a= ——| —cog mu)e;+—sin(mu)e;
trajectorie. A natural physical choice of special time slices 2w m m
[necessary to define properly the meaning of G&ql)] is to

consider the spatial sections associated tqitteantaneoys b=
center of mass-frame of the strinidNote that the numerical 2
calculations below of the energy 106s.2) are performed in

the string center of mass framiezor a free Nambu-Goto Wwhere

string in flat space, this definition is compatible with using a

worldsheet gauge which is both conformal and temp@rl, 2m

77
T Pff”"gz/‘). Therefore, in such a case, th{erthogonal U=T (r=0), v L (r+0),

; (5.9

: (5.7)

1 -1 -
ﬁcos( nv )e3—ﬁsin( nv)e;
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The fact that our present “best fit” value of the facfdeads
to values ofA which are numerically comparable kg when
(m,n)=(1,1)] rather than to a smaller fraction bfshould
not be considered as physically incompatible with the idea of
using a local approximation to back reaction. Indeed, on the
other hand, the rough justification of the local approximation
given in Sec. IV suggested ~w/w~\/2, i.e., something
like L/4, and, on the other hand, numerical computations
show that the energy lost to dilaton wavegith coupling
a=1) is smallerthan that lost to gravitational waves by a
factor of order 3 or s@part of which is simply due to the fact
that there are two independent tensor modes against one sca-
lar modg. Therefore, as we us& only as aneffectivepa-
rameter to model gravitational damping it is normal to end
up with an increased value df/L.

Clearly, more work would be needed to confirm that the

modified local dilaton reactio5.1) can be used as a phe-
FIG. 1. Dimensionless energy loss rate Burden loops withnomenological representation of gravitational reaction. Our
(m,n)=(1,1) and (1,3). main purpose here was to clarify the crucial sign problems
associated to gauge fields, and to give a first bit of evidence
indicating that Eq(5.1) deserves seriously to be considered
as an interesting candidate for mimicking, in a computation-
ally nonintensive way, the back reaction of gravitational ra-
diation. We are aware that several important issues will need
to be further studied before being able to use &ql) in a
network simulation. Some numerically adequate definition of
N\ will have to be provided beyond a case by case definition,

leads us to choosing\2=2T=L/mn in Eq. (5.3). With this ~ Which in the case of long loops decorated by a regular array
choice we computed the energy Id&s2). The calculation is  Of kinks, as in Ref.[11], would be something like 2

simplified by noting, on the one hand, that, for this family of ~L/N whereN is the total number of kinks. We note in this
loops, v-v=— (2#/L)[(m?+n?)/2]v?, and on the other respect that a Burden loop with=1 andn>1 provides a

hand that the worldsheet integral in E§.2) can be rewrit- simple model of a long, circular loop decorated by a travel-

ten in terms of an average over linear combinations of th(%ing pattern _of s_maII transverse oscillations. However, the
two angles zrm(7—o)/L and 2rn(r+o)/L. This yields ocal approximation(5.1) cannot be expected to be accurate
simply for the average rate of energy loss in this case, because the radiation from purely left-moving or

right-moving modes is known to be suppresg2d This sup-
pression is not expected to hold in the more physical generic
case where the transverse oscillations move both ways. The
accuracy of the local approximatids.1) should therefore be
tested only in such more generic cases.

The explicit expressiofb.1) must be rewritten in the tem-
poral, but not necessarily conformal, worldsheet gauges used
in numerical simulations, and the higher time derivatives in
F,, must be eliminated by usin@s is standard in electrody-
namics [34] and gravitodynamicd32]) the lowest-order
equations of motion(These last two issues have already

1 1 1 been treated in Refd14,15.) Finally, we did not try to
v2=—[ 1— =(1+ cosy) cosx— =(1— cosy) cosy|. explore whethem=1/2 is the phenomenologically preferred
2 2 2 value. To study this point one should carefully compare the
(5.1 effects of Eq(5.1) on the weakening of cusps and kinks with

We plot in Fig. 1T',, , as a function of the angle, for the the results based on the exact, nonlocal reaction fdtdg
nominal valuef=1 and for the two casesn(n)=(1,1) (The facts that the curves in Fig. 1 are flatter than the corre-

(m,n)=(1,3). (As said above there is a simple scaling law spondin.g figures irﬁ3.3,2] suggest that a smaller value gf
for the dependence am andn.) If one compares this figure Might give a better fil.

with the figures published ifi33,2] (Fig. 7.6, p. 205 thepe

one sees that they give a roughly adequate numerical repre-
sentation of energy losses to gravitational radiation if

(5.12

€)= cosye;+ sinye,. (5.9
This family of solutions depends on the overall scale
which is the total invariant length of the loop(= «L), on
two integersm andn, and on the anglg. Our parametery
coincides with the angles in [33], denotede in [2]. The
actual oscillation period of the loop i5=L/(2mn) which

Elost 4 rn2_,_[.]2
Fm'”EGM2=§ 2mn 7’

(5.9

where

—4J7djwd 1 ! 1
y= oxoy— —V+W, (5.10

with

VI. CONCLUSIONS

In this paper we studied the problem of the radiation re-

f=0.8. action on cosmic strings caused by the emission of gravita-
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tional, dilatonic and axionic fields. We assume the absencgravitational radiation[We recall that the exact, nonlocal
of external fields. We use a straightforward perturbative apapproach to gravitational back reaction, defined by Eq.
proach and work only to first order @. Our main results are (4.14), is numerically so demanding that there is little pros-
the following. pect to implementing it in full string-network calculatiohs.
Using the results of Ref$17,1§ for the renormalization More work is needefe.g., by comparing the dynamical evo-
of the string tensiornu, we write down the explicit form, at lution of a representative sample of cosmic string loops un-
linear order inG, of the renormalized equations of motion of der the exact renormalized self-for@e14) and our proposed
a string interacting with its owrflinearized gravitational, (5.1)] to confirm that our proposed substit(te1) is a phe-
dilatonic and axionic fieldgWithin our framework, we veri- nomenologically acceptable representation of gravitational
fied the on shell finiteness of the bare equations of motionreaction(or of the combined dilatonic-gravitational reaction,
which is equivalent to their renormalizabilijy. as string theory suggests that the dilaton is a model-
We have extended a well-known result of Dirac by prov-independent partner of the Einstein gravjton
ing for general linearized fields that, in the decomposition It will be interesting to see what are the consequences of
(4.14 of the renormalized self-force, only the time- considering the effective reaction force, E§.1), in full-
antisymmetric contributiot? ;%= 7, (Aread, WhereA,{x)  scale network simulation&one for several different values
is the half-retarded minus half-advanced field, contributespf Gu) of gravitational radiation. Until such simulations
after integration over time, to the overall damping of the(keeping track of the damping of small scale structure on
source(This result had been assumed without proof in predong strings are performed, one will not be able to give any
vious work on the topig.The “reactive” self-force]-‘;facis precise prediction for the amount and spectrum of stochastic
manifestly finite (and independent of the renormalization gravitational waves that the forthcoming Laser Interferomet-
length scaleA ), and is nonlocal. ric Gravitational Wave Observatol.IGO) or VIRGO net-
We have critically examined the proposal of Battye andWork of interferometric detectors, possibly completed by
Shellard[14,15 (based on an analogy with the Abraham- cryogenic bar detectors, might observe.
Lorentz-Dirac treatment of self-interacting point chayges
approximate the nonlocal integri@.15 entering the reactive ACKNOWLEDGMENTS
self-force 77 by the local expressiot¥.18. For this pur-
pose we found very convenient to udenensional continu-
ation, a well known technique in quantum field theory. We
found that the local back reaction approximation gives anti
damping for the axionic field, and a vanishing net energy-
momentum loss for the gravitational one. We argued that the APPENDIX
ultimate origin of these physically unacceptable results come
from trying to apply the local back reaction approximation t04io
gaugefields. The nonpositivity of the local approximation to
the damping COMES fro'm cpr'nb.ining the modification Of,theone to work “as if” many singular terms were regular. For
field Green functions implicit in the local back reaction instance, the factors1?)2~"2 and ?) "2 that appear in

rr;]etlrrod,l Wgh ttrf]]etdelicate sli%n comtpe_nstatiofrli ensured, 0 gs.(4.22, (4.23 blow up on the light cone®@?=0) when
shell only, by the transversality constraints of theé SOUrces of, _ 4 - However, if we take the real part @=4—n large

gauge fields. enou ; ;
. L gh[even so large as corresponding to negative values
. By (':ontrast., we find that the local ap.prOX|mat|on .to' thefor Re(n)], these-dependent factors become finite, and
dilatonic reaction force has the correct sign for describing aactuallyvanishing on the light cone. This remark allows one

radiation damping. In the case of a nongauge field such % deal efficiently with the()-dependent factors appearing in
the scalar dilaton there are no delicate sign compensatlorE

taking place, and the coarse approximation of the field Greeﬂ as.(4.22, (4.23. We are here interested in the contribu-
function, implicit in the local back reaction method, damd 0ns t0Aw(2) andd,Are(2) coming from a small neighbor-

does lead to physically acceptable results hoodz'=z(7',0") of z=z(7,0) on the worldsheet. Let us,
cad 1o pny y P T for simplicity, denotew=0Q2. We first remark that when
Taking into account the known similarity between the

’ ’ _ ’ \\2 H
gravitational and dilatonic radiatior(e.g.,[9]), we propose (r,0")=(7,0), ©= _,(Z(T’U)_%(T ,0'))” admits an ex-
to use as effective substitute to the exawnloca) gravita- ~ Pansion N Powers ot'—rando’—o of ihe form
tional radiation damping the “dilatonlike” local reaction
force (5.1), with a suitably “redshifted” effective lengtih,
Eq. (5.3). This force is to be used in the right-hand side of . I 2 , 2
the standard, flat-space conformal-world-sheet-gauge strinvg\;”th wz=—2(7'=7)"= (0" =0)7], and
equations of motion, withr-slicing linked, say, to the global _ r_ )3 "2 " 1 N2
center-of-mass frame of the string. The numerical calcula- 03=0((7" =D+ (7' = DHe" ~ ) ¥ (7' = 7)o" )
tions exhibited in Fig. 1 give some evidence indicating that + (o' —0)3),etc. (A2)
Eq. (5.1 deserves seriously to be considered as an interest-
ing candidate forphenomenologically approximatingn a  Then we can formally expand th@-dependent factors of
computationally nonintensive way, the back reaction ofEgs.(4.22), (4.23 in powers ofr’ — 7 ando’ — o as follows:

We are grateful to Bruce Allen, Richard Battye, Francois
Bouchet, Brandon Carter, and Alex Vilenkin for useful ex-
changes of ideas.

In this Appendix we will give some details on the deriva-
n of Egs.(4.24), (4.295 using dimensional continuation.
A nice feature of analytic continuation is that it allows

w=wytwztwst---, (A1)
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o+Al2 + oo
Tlw*0(w)]=| w5+ aws Nws+ws+---) [(?MAad\)(Z)]A=26J / do’f ‘ IdT/T(EQ"w_n/Z)'
o—A/2 7+|Ao
a(a—1) (AB)

2 wgiz(waﬁ—...)z—'—...

As a check, we first computed the ultraviolet divergent con-

tributions toA¢(2z) andd, A.(2). We find
X[0(wy) + 8(wy) (w3t wst - +)

+6' (wp) (wg+ )%+ ], Aret(z)z—%(é)ZE, (A7)
z

Here and below, the symbdlwill be used to denote éor-

mal) Taylor expansion of any quantity following it. This ex- .
pansion is valid(at any finite order when Reg) is large 9 A(2) =" 2(;){_22/#222
enough, and is therefore valithy analytic continuationin (z%)

our case wherer=(2—n)/2 or —n/2. A technically very 7
useful aspect of the above expansion is that all the terms +4EZ’;<
containingd(w,) or its derivatives giveranishingcontribu-

tions [becausews 60 (w,) vanishes if Ref) is large

enough, so that, by analytic continuatiang 6" (w,)=0 +237'7' =237
for all values of«]. The net effect is that the contribution . g
coming from a small string segmentA/2<(o’'—0o)<A/2 _ i _
aroundo (with A being much smaller that the local radius of AS it should, Eq(A8) yields exactly the same divergences as

curvature of the worldsheetan be simply(and correctly ~ W€ found in Sec. Il by introducing a cut-ofé in the o
written as the following expansion: integration in four d|me_n5|ons. More precisely, £48) co-
incides with Eq.(3.11) if we change 2—log 1/5. Let us
ot AJ2 note that, in the present approach, the renormalization scale
[Aret(z)]AEff A2 dO',J

+43; (.Z'i
Z,u -
z

! "

22

. (A8)

1
d7’ 3w M20(w) Agr would enter by being introduced as a dimension-
- preserving factor in the dimensionful coupling constants, like
Newton’s constanG, sayG(W=GM=4Ag.
a+AI2 T A : “ . _
:EJ da’f A7 T(S 0@ V2) 6 w,) . OHr main interest is to compute the “local approxima
o—A/2 — tions” to the reaction field

1
:EJUJrA/de_I fTAUdT’T(Ew(Z_n)IZ). Areac(x)= E[Aret(x)_Aad\xx)]a (A9)
a—A/2 —

and its derivatives. Dimensional continuation gives an effi-
Here, we have introduced an arbitrary upper limit sub-  cient tool for computing these. Indeed, combining the previ-
mitted only to the constraint,< 7,<,q, (for instancer;  ous expansions we can write

could ber), and which replaces the missing theta function

6(z°—2z'%) by selecting the retarded portion of the other _ J’A/Z ,f” L2
theta functiond(w). As above, the symbadl denotes a for- Aread X) =~ € ,A,zda THMdT 0(€2)
mal Taylor expansion. The expansid(2 w®) is simply ob-

tained by multiplying the expansiof\l) of w with that of XT (7~ ryodd 2 (%) E~M2), (A10)
3(7',0'), namely

A2 + o
9, Aread X) = — 2€ f Alzda’ f dr' 6(Q2)

T[E(T/,O',)]:E(T,O')'F(T,_T).E‘f'(O'/_O')E"f‘--~. - +|Ad]
A3 _
(A3) XT( ol EQ,(007™),  (ALD)
Similarly we have where T, _ ;044 denotes the part of the Taylor expansion
A2 _|ad] which is odd in7’' — 7. Moreover, as we know in advance
[9,A [(Z)]AZZGJU da’fT (rdT’T(EQ 0= (and easily chedkthat thes’ -integrands in Eqs(A10) and
we o— A2 — # ’ (A11) are regular ar’ =0, we can very simply write the

(Ad4)  result of the local approximatio(.18 [with a correspond-

ing definition for Al%¢(z)] by replacingo’ = o in the inte-

as well as corresponding expressions for the advanced fieldfands of Eqs(A10), (A11)

+

o+A/2 + o % L
[Aad\xz)]A: GJ do’ f | ldT’T(Ew(Z_n)lz)- [Area&z)]localz - GAJ‘ dT,T?T,:i)odc[z(ﬂz)(z_“)/z]’
o—A/2 T+|Ao r

(A5) (A12)
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[9uAread 2)1°%

(A13)

+oo . B
—2eAfT A7 T0 "7 0ad 20,0772,

Here,TE’T,,i"T)odd denotes the operation of replaciog by o

and keeping only the odd terms in the remaining Taylor ex-

pansion int’ — 7. This simplifies very much the computation
of the reactive termg¢making it only a slight generalization

of the well known point-particle results, as given for a gen-and d,Al22

eral source in, e.d31]). Indeed, inserting the following ex-
pansions:

, , . 1 - 1 3o
Q, (7" o)=—(1"-7)z,— E(’T —7) ZH—E(T —7)°Z,,

(A14)
o1 .
E(T’,O’):E(T,O')'F(T'—T)E‘FE(T,—T)ZE,
(A15)
QZ(T’,U)Z—ZZ(T’—T)Z 1+(T'—T)(L;)
z
1, Llzz\ 1 Llzz
+Z(T—T) ? +§(T—T) ? ,
(Al16)
in Egs.(A12), (A13) we get our main results
Al - z-z
[Area&z)]localz ;{E _E( ?) ] ) (A17)
[9,A c(z)]'mﬂ:i Ivs 155 437
ptrea ('22)2 3 1% 1% 12
. |zz . [zz
—422ﬂ ? —ZEZ’U_ Z—
(zz\ 4_. [zz
—EZIM Z_ —522,M ?
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ey 2
zZ-Z
Z2

These results were also obtaingas a check from Egs.
(A10), (A11) without using in advance the simplification of
putting o’ = o in the integrand.
We have also performed a direct check on these final
expressions by comparing them to the well known point-
particle cas¢29—31. Indeed, we have seen above tAf2
could be thought of as being generated by the
effective sourceS™(7',0')=68(c’ — o)A (7' ,0), i.e., a
source along the world-ling ., defined byo’ =¢. For any
given value ofo, by transforming the coordinate tinté into
the proper times= fe??dr’ along L, and by renormalizing
in a suitable way the sourc&3(',0)=e??3(s) [so that
the stringy spacetime sourcefd?c’ 3™ (7", 0") 6% (x
—z(o')] transforms into the standard point-particle source
fdsgs)8*x—z(s)), we recovered from Eq$A17), (A18)
known point-particle result$31]. This check is powerful
enough to verify the correctness of all the coefficients in Eqgs.
(A17), (A18).

In order to compare directly our expressions with what
was derived by Battye and Shellard [ib4,15, let us write
Eqg. (A18) for the axion field. We get

+632, (A18)

HMV=4(C.;2);2A %ZD\VM]+i[7\\'/w]+'z[>\\"/w]
VA
o z-7 . z:
—4zhve] .2—2)—22“v#vl =it (A19)

whereK M = K M4 Kuvh KM Note that, when identi-
fying the basiccontravarianttensorsz* and V*”, the tensor
H ¥ (and the force density¥*) must be identical in our
conventions and in the ones of Refd4,15 (who use the
opposite signatuse However, our result Eq(A19) differs,
after the substitutio® — f /8, in many terms from the sec-
ond Eq.(31) of Ref.[15]. Whatever the corrections are that
we could think of doing on the second term in their E3fl)
(which is dimensionally wrong, probably by a copying error
leading to a forgotten overdot on one of the two texmee
saw no way of reconciling their result with oufsven after

expanding explicithyv~’=z#z"" —z'z*").
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