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On the gravitational, dilatonic, and axionic radiative damping of cosmic strings
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We study the radiation reaction on cosmic strings due to the emission of dilatonic, gravitational and axionic
waves. After verifying the~on average! conservative nature of the time-symmetric self-interactions, we con-
centrate on the finite radiation damping force associated with the half-retarded minus half-advanced ‘‘reactive’’
fields. We reexamine a recent proposal of using a ‘‘local back reaction approximation’’ for the reactive fields.
Using dimensional continuationas a convenient technical tool, we find, contrary to previous claims, that this
proposal leads toantidampingin the case of the axionic field, and tozero~integrated! dampingin the case of
the gravitational field. One gets normalpositive dampingonly in the case of the dilatonic field. We propose to
use a suitably modified version of the local dilatonic radiation reaction as a substitute for the exact~nonlocal!
gravitational radiation reaction. The incorporation of such a local approximation to gravitational radiation
reaction should allow one to complete, in a computationally nonintensive way, string network simulations and
to give better estimates of the amount and spectrum of gravitational radiation emitted by a cosmologically
evolving network of massive strings.@S0556-2821~99!07112-X#

PACS number~s!: 98.80.Cq, 11.27.1d
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I. INTRODUCTION

Cosmic strings are predicted, within a wide class of
ementary particle models, to form at phase transitions in
early universe@1,2#. The creation of a network of cosmi
strings can have important astrophysical consequence, n
bly for the formation of structure in the universe@3,4#. A
network of cosmic strings might also be a copious source
the various fields or quanta to which they are coupled.
cillating loops of cosmic string can generate observation
significant stochastic backgrounds of gravitational waves@5#,
massless Goldstone bosons@6#, light axions @7,8#, or light
dilatons @9#. The amount of radiation emitted by cosm
strings depend~i! on the nature of the considered field,~ii !
on the coupling parameter of this field to the string,~iii ! on
the dynamics of individual strings, and~iv! on the distribu-
tion function and cosmological evolution of the string ne
work. It is important to note that the latter network distrib
tion function in turn depends on the radiation properties
strings. Indeed, numerical simulations suggest that the c
acteristic size of the loops chopped off long strings at
epocht will be on order of the smallest structures on the lo
strings, which is itself arguably determined by radiative ba
reaction@10,11#. For instance, if one considers grand unifi
theory ~GUT! scale strings, with tensionm;LGUT

2 , gravita-
tional radiation ~possibly together with dilaton radiatio
which has a comparable magnitude@9#! will be the dominant
radiative mechanism, and will be characterized by the c
pling parameterGm;(LGUT/mPlanck)

2;1026. It is then
natural to expect that the same dimensionless parameterGm
will control the radiative decay of the small scale structu
~crinkles and kinks! on the horizon-sized strings, thereby d
termining also the characteristic size relative to the horiz
of the small loops produced by the intersections of lo
0556-2821/99/60~2!/023517~22!/$15.00 60 0235
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strings: l loops[âct, with â;GkinkGm, Gkink being some di-
mensionless measure of the network-averaged radiation
ciency of kinky strings@10–13#. If one considers ‘‘global’’
strings, i.e., strings formed when a global symmetry is b
ken at a mass scalef a , emission of the Goldstone boso
associated to this symmetry breaking will be the domin
radiation damping mechanism and will be characterized
the dimensionless parameterf a

2/meffective;@ log(L/d)#21

;1022, where the effective tensionmeffective is renormalized
by a large logarithm~see, e.g.,@2#!.

Present numerical simulations of string networks do
take into account the effect of radiative damping on the
tual string motion. The above mentioned argument concl

ing in the case of GUT strings to the linkâ;GkinkGm be-
tween the loop size and radiative effects has been justified
Quashnock and Spergel@11# who studied the gravitationa
back reaction of a sample of cosmic string loops. Howev
their ‘‘exact,’’ nonlocal approach to gravitational back rea
tion is numerically so demanding that there is little prosp
to implementing it in full string network simulations. Thi
lack of consideration of the dynamical effects of radiati
damping is a major deficiency of string network simulatio
which leaves unanswered crucial questions such as: Is
string distribution function attracted to a solution whic
‘‘scales’’ with the horizon size down to the smallest stru
tures? and What is the precise amount and spectrum of
gravitational~or axionic, in the case of global strings! radia-
tion emitted by the combined distribution of small loops a
long strings?

Recently, Battye and Shellard@14,15# proposed a new,
computationally much less intensive, approach to the ra
tive back reaction of~global! strings. They proposed a ‘‘loca
back reaction approximation’’ based on an analogy with
©1999 The American Physical Society17-1
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well-known Abraham-Lorentz-Dirac result for a sel
interacting electron. Their approach assumes that the do
nant contribution to the back reaction force density at a c
tain string point comes from string segments in t
immediate vicinity of that point. They have endeavored
justify their approach by combining analytical results~con-
cerning approximate expressions of the local, axionic rad
tive damping force! and numerical simulations~comparison
between the effect of their local back reaction and a dir
field-theory evolution of some global string solutions!.

In this paper, we reexamine the problem of the back
action of cosmic strings associated to the emission of gr
tational, dilatonic and axionic fields, with particular emph
sis on the ‘‘local back reaction approximation’’ of Batty
and Shellard. Throughout this paper, we limit our scope
the self-interaction of Nambu strings, in absence of any n
trivial external fields. This problem can be~formally! treated
by a standard perturbative approach, i.e., by expanding
quantities in powers of the gravitational1 coupling constant
G. We work only to first-order inG. To this order, we first
verify the fact~well known to hold for self-interacting, elec
trically charged, point particles@16#! that the time-symmetric
part of the self-interaction~i.e., the part mediated by th
half-retardedplus half-advanced Green function! is, on the
average, conservative, i.e., that it does not~after integration!
drain energy-momentum out of the string. As we are int
ested in radiation damping, this allows us to concentrate
the time-odd part of the self-interaction, mediated by
half-retardedminushalf-advanced Green function. This ‘‘re
active’’ part of the self-interaction is~as in the case of poin
charges! finite. @By contrast, the time-symmetric sel
interaction is ~formally! ultraviolet divergent. This diver-
gence is not of concern for us here because, as show
Refs.@17,18# and further discussed below, its infinite part
renormalizable, and, as said above, its finite part does
globally contribute to damping.# Contrary to the case o
point charges, the reactive part is nonlocal, being given by
integral over the string. Following Battye and Shella
@14,15# we study the ‘‘local approximation’’ to this reactio
effect. We find very convenient for this study to use t
technique ofdimensional continuation~well known in quan-
tum field theory!.

In the case of the axionic self-field, we find that the a
ionic reaction force defined by the ‘‘local back reaction a
proximation’’ of Ref. @14# leads toantidampingrather than
damping, as claimed in Refs.@14,15#. We also investigate
below the corresponding local approximations to grav
tional and dilatonic self-forces and findzero dampingin the
gravitational case, and a normal,positive dampingfor the
dilatonic case. The physical origin of these paradoxical
sults is explained below~Sec. IV F! by tracing them to the
modification of the field propagator implicitly entailed by th
use of the local back reaction approximation. We show th
in the case ofgauge fields, this modification messes up th

1Because of our ‘‘gravitational normalization’’ of the kineti
terms, see Eq.~2.3!, the couplings of all the three considered fiel
are proportional toG.
02351
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very delicate sign compensations which ensure the positi
of the energy carried away by gauge fields. Thereby, one
the main results of the present work is to prove the unt
ability of applying a straightforward local back reaction a
proximation togauge fieldssuch as gravitational and axioni
fields. However, this untenability does not necessarily ap
to the case of nongauge fields. Indeed, our work proves
the application of this local approximation to the dilaton
field ~which is not a gauge field! leads to the correct sign fo
damping effects. In this nongauge field case, the argum
~of Sec. IV F! which showed the dangers of approximatin
the field propagator for gauge fields, loses its strength. T
leaves therefore open the question of whether the ‘‘local
proximation’’ to dilatonic back reaction might define~de-
spite its shortcomings discussed below! a phenomenologi-
cally acceptable approximation to the exact, nonlocal s
force. In this direction, we give several arguments, a
strengthen them by some explicit numerical calculations,
ward showing that the meaningful~positive-damping! dila-
tonic local back reaction force can be used, after some mo
fication, as a convenient effectivesubstitutefor the exact
~nonlocal! gravitational back reaction force.

This phenomenological proposal is somewhat of an ex
dient because it rests on an ‘‘approximation’’ whose valid
domain is severely limited. However, pending the discov
of a better local proposal, we think that the incorporation
our proposed local reaction force~5.1! should allow one to
complete, in a computationally nonintensive way, string n
work simulations and to give better estimates of the amo
and spectrum of gravitational radiation emitted by a cosm
logically evolving network of massive strings.

In the next section, we present our formalism for treati
self-interactions of strings. We describe in Sec. III our resu
for the renormalizable, divergent self-action terms, and,
Sec. IV, our results for the finite contributions to the ‘‘local
reaction force. In Sec. V we indicate how the local dilaton
damping force could be used in full-scale network simu
tions to simulate the dynamical effects of gravitational rad
tion. Section VI contains our conclusions. Some techni
details are relegated to the Appendix.

As signs will play a crucial role below, let us emphasi
that we use the ‘‘mostly positive’’ signature (2,1,1,1)
for the space-time metricgmn (m,n50,1,2,3), and the cor-
responding (2,1) signature for the worldsheet metri
gab (a,b50,1 being worldsheet indices!.

II. COSMIC STRINGS INTERACTING
WITH GRAVITATIONAL, DILATONIC

AND AXIONIC FIELDS

We consider a closed Nambu stringzm(sa) ~with s0

5t, s15s, 0<s,L) interacting with its own gravitationa
gmn(xl)[hmn1hmn(xl), dilatonicw(x), and axionic~Kalb-
Ramond! Bmn(x) fields. The action for the string coupled t
gmn , w andBmn reads

Ss52E m~w!dA2
l

2E Bmndzm`dzn. ~2.1!
7-2
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ON THE GRAVITATIONAL, DILATONIC, AN D . . . PHYSICAL REVIEW D 60 023517
Here dA5Agd2s @with g[2detgab ; gab
[gmn(z)]azm]bzn denoting the metric induced on the world
sheet# is the string area element and the dilaton depende
of the string tensionm can be taken to be exponential

m~w!5me2aw. ~2.2!

At the linearized approximation where we shall work t
form ~2.2! is equivalent to a linear couplingm(w).m(1
12aw). The dimensionless parametera measures the
strength of the coupling ofw to cosmic strings~our notation
agrees with the tensor-scalar notation of Ref.@19#!, while the
coupling strength of the axion field is measured by the
rameterl with dimension (mass)2. Due to our ‘‘gravita-
tional normalization’’ of the kinetic term ofBmn , the link
betweenl and the mass scalef a used in Refs.@14,15# is
2Gl25p f a

2 .
The action for the fields is

Sf5
1

16pGE d4xAgFR22¹mw¹mw

2
1

12
e24awHmnrHmnrG , ~2.3!

where Hmnr5]mBnr1]nBrm1]rBmn , g[2det (gmn), and
where we use the curvature conventionsR nrs

m 5]rGns
m

2•••, Rmn5R mrn
r . With this notation, a tree-leve

coupled fundamental string~of string theory! hasa51 ~in 4
dimensions! andl5m.

Everywhere in this paper, we shall assume the absenc
external fields. More precisely, the background values of
fields we consider aregmn

0 5hmn , w050, Bmn
0 50. Our re-

sults are derived only for this case, by using~formal! pertur-
bation theory around these trivial backgrounds. It is howe
understood, as usual, that one can later~e.g., for cosmologi-
cal applications! reintroduce a coupling to external field
varying on a scale much larger than the size of the string
suitably covariantizing the final, trivial-background resu
derived here. Such an approximate treatment should be
ficient for the cosmological applications we have in min
On the other hand, the methods used here are not approp
for treating the general case of a string interacting with
ternal gravitational and dilatonic fields of arbitrary streng
and spacetime variability. To treat such a case, one wo
need a more general formalism, such as that of Ref.@20#.
Note, however, that the straightforward, non-explicitly cov
riant, perturbation approach to radiation damping effe
used here is the string analogue2 of all the standard work
done on the gravitational radiation damping of binary s
tems~see, e.g.,@21# for a review!.

2This analog is technically simpler because radiation damping
pears at linear order for strings~which have a nontrivial, accelerate
motion at zeroth order!, while it is a nonlinear phenomenon i
gravitationally bound systems.
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In other words, our aim in this paper is to derive, cons
tently at the first order in the basic coupling constantG @see
Eq. ~2.3!#, both the fields generated by the string

hmn~x![gmn~x!2hmn5Ghmn
1 ~x!1O~G2!,

w~x!501Gw1~x!1O~G2!,

Bmn~x!501GBmn
1 ~x!1O~G2!, ~2.4!

and the~noncovariant! explicit form of the string equations
of motion, written in a specified3 ~class of! worldsheet
gauge~s!,

mhmn~ z̈n2z9n!5GF m
1 1O~G2!. ~2.5!

The string action~2.1! can be written~using the Polyakov
form! as

Ss52
m

2E d2s e2awAĝĝab]azm]bzngmn

2
l

2E d2s eab]azm]bznBmn , ~2.6!

where the worldsheet metricĝab must be independently var
ied and wheree01521, e1051. The equation of motion of
ĝab is the constraint that it be conformal to the induced m
ric gab5gmn(z)]azm]bzn. In the following, we shall often

use the conformal gaugeAĝĝab5Aggab5hab ~whereh00

521, h11511), i.e., we shall choose the (t,s) parametri-
zation of the worldsheet so that

żmżngmn1z8mz8ngmn50, żmz8ngmn50. ~2.7!

Here ż[]0z[]z/]t andz8[]1z[]z/]s. Note also the ex-
pression, in this gauge, of the worldsheet volume density

Ag5gmnz8mz8n52gmnżmżn. ~2.8!

Let us note that the string contribution to the energ
momentum tensor,

Tmn5
2

Ag

dSm

dgmn
, ~2.9!

reads

Tmn5
m

Ag
E d2s e2awUmnd4

„x2z~s!…, ~2.10!

where*d4x d4(x)51 and

p-

3We shall use the conformal gauge associated to the me
gmn(x)5hmn1Ghmn

1 1O(G2).
7-3
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ALESSANDRA BUONANNO AND THIBAULT DAMOUR PHYSICAL REVIEW D 60 023517
Umn[2Aggab]azm]bzn

5 żmżn2z8mz8n ~in conformal gauge! ~2.11!

is the ‘‘vertex operator’’ for the interaction of the string wit
the gravitational fieldgmn . @The vertex operators used he
are thex-space counterparts of thek-space vertex operator
used in quantum string theory, e.g. Ûmn(k)
5*d2s Umn

„z(s))exp(iklz
l(s)….# The corresponding verte

operator for the interaction with the dilatonw is simply the
traceU[gmnUmn, while the one corresponding to the axio
Bmn is

Vmn[2eab]azm]bzn5 żmz8n2 żnz8m. ~2.12!

The exact equation of motion of the string can be written~in
any worldsheet gauge! as

05
dSs

dzm
[mgmne2aw]a~Aggab]bzm!1Fm , ~2.13!

where the quantityFm is defined by

Fm[Fm
w1Fm

h 1Fm
B , ~2.14!

with

Fm
w5mae2awU]mw22mae2awgmaUab]bw, ~2.15!

Fm
h 52me2awgmnGab

n Uab5
m

2
e2awUab]mhab

2me2awUab]ahbm , ~2.16!

Fm
B5

l

2
VabHmab5

l

2
Vab]mBab1lVab]aBbm .

~2.17!

Let us emphasize that, whileFm
w and Fm

B are well defined,
spacetime and worldsheet covariant objects,Fm

h , by contrast,
is not a covariantly defined object@but the full combination
dSs /dzm of Eq. ~2.13! is a covariant object#. It can be noted
that the sum of the dilatonic and gravitational contributio
~2.15!, ~2.16! simplify if they are expressed in terms of th
string metricgmn

s [e2awgmn to which the string is directly
coupled. Indeed,

Fm
h 1Fm

w52mgmn
s Gab

n @grs
s #Uab

5
m

2
Uab]mgab

s 2mUab]agbm
s . ~2.18!

Except when otherwise specified, we shall henceforth w
in the conformal gauge associated to the actual metric
which the string evolves~and not the conformal gauge ass
ciated to, say, a flat background metrichmn). In this gauge
the equations of motion of the string read

Em50,
02351
s

k
in

with E m[mgmn
s hab]abz

n1Fm

[2mgmn
s ~ z̈n2zn9!1Fm . ~2.19!

When using this gauge, one must remember that the c
straints~2.7! @which read the same when written in terms
the string metricgmn

s ] involve the metric. These constraint
read~in terms of the string metric!

Tab
s 50,

with Tab
s [gmn

s ~z!]azm]bzn2
1

2
habh

cdgmn
s ~z!]cz

m]dzn.

~2.20!

The constraintsTab
s 50 are preserved by the~gauge-fixed!

evolution ~2.19!. Indeed, it is easy to check the identity

hab]aTbc
s []cz

m~gmn
s hab]abz

n1Fm
w1Fm

h ![]cz
mEm .

~2.21!

In the last step of Eq.~2.21! we used the algebraic identit
]cz

mFm
B[0. When the gauge-fixed equations of motion a

satisfied, i.e., whenEm50, the constraints satisfy the conse
vation law hab]aTbc

s 50. This conservation law togethe
with the algebraic identityhabTab

s [0 ~i.e., T00
s 5T11

s ), en-
sures that ifTab

s vanishes on some initial slicet5t0, it will
vanish everywhere on the worldsheet. This shows that
evolution equations~2.19! propagate only the physical, trans
verse degrees of freedom of the string.

Up to this point, we have made no weak-field approxim
tion. In the following, we shall limit ourselves to workin
with formal perturbative expansions of the form~2.4!, ~2.5!.
When doing this, it is convenient to rewrite the string equ
tions of motion~2.19! in the explicit form

Em52mhmn~ z̈n2z9n!1Fm , ~2.22!

where the quantityFm is defined as

Fm[Fm1Cm , ~2.23!

with

Cm[2m~gmne2aw2hmn!~ z̈n2zn9!. ~2.24!

In the linearized approximation, the complementary con
bution Cm to the equations of motion read

Cm52m~hmn12awhmn!~ z̈n2zn9!1O~G2!. ~2.25!

The total contributionFm to the explicit ~noncovariant!
string equations of motion is not a covariantly defined obje
it is a noncovariant, pseudoforce density. For the definit
of a genuine, covariant force density see Ref.@20#, notably
Eq. ~41! there. To simplify the language, we shall howev
call, in this paper, the noncovariant combinationFm a ‘‘force
density’’ ~in the same way that when doing explicit calcul
tions of the perturbative equations of motion of binary sy
tems it is convenient to refer to the right-hand side of t
equations of motion as a ‘‘gravitational force’’!.
7-4
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Let us now write explicitly the weak-field approximatio
of the field equations deriving from the total actionSf1Ss .
Let us recall that we assume the absence of external field
that we work with perturbative expansions of the form~2.4!.
When fixing the gauge freedom of the gravitational and
ionic fields in the usual way (gabGab

m 50; ¹nBmn50), the
field equations derived fromSf read, at linearized order

hw~x!524pE d2s Swd4
„x2z~s!…1O~G2!,

~2.26!

hhmn~x!524pE d2s Smn
h d4

„x2z~s!…1O~G2!,

~2.27!

hBmn~x!524pE d2s Smn
B d4

„x2z~s!…1O~G2!,

~2.28!

where the corresponding linearized source terms are defi
as

Sw5aGmU, Smn
h 54GmŨmn , Smn

B 54GlVmn .
~2.29!

Here, Ũmn[Umn2 1
2 hmnU, and, in the present approxima

tion, the vertex operators entering these source terms
simply Umn5 żmżn2zm8 zn8 , U5hmnUmn , Vmn5 żmzn82 żnzm8 ,
where we freely use the flat metrichmn to move indices. In
the following, we shall consistently work to first order inG
only, and shall most of the time omit, to save writing, t
indication of theO(G2) error terms.

The field equations~2.26!–~2.28! are classically solved by
introducing the four dimensional retarded Green function

Gret~x2y!5
1

2p
u~x02y0!d„~x2y!2

…; ~2.30!

hGret~x2y!52d (4)~x2y!. ~2.31!

This ‘‘retarded’’ Green function incorporates the physic
boundary condition of the non-existence of preexisting rad
tion converging from infinity toward the string source. Th
~unphysical! time reverse ofGret is the ‘‘advanced’’ Green
function

Gadv~x2y!5
1

2p
u„2~x02y0!…d„~x2y!2

…, ~2.32!

5Gret~y2x!. ~2.33!

Let us consider, as a general model for Eqs.~2.26!–~2.28!,
the generic field equation

hA~x!524pE d2s S~s!d4
„x2z~s!…. ~2.34!

Its most general classical solution reads
02351
so

-

ed

re

l
-

Aret~x!514pE ds8dt8S~s8,t8!Gret„x2z~s8,t8!…

1Aext~x!, ~2.35!

whereAret(x) is an ‘‘external’’ field, i.e., a generic homoge
neous solution of the field equations~generated by far away
sources!. As said above, we assume in this work th
Aext(x)50.

Applying the formula d„F(t8)…5(t0
d(t8

2t0)/u]F(t0)/]t0u, where the sum runs over all the solu
tionst0 of F(t8)50, one can effectuate the integral overt8
in Eq. ~2.35! with the result

Aret~x!5E ds8S S~s8,t8!

uV• żu
D U

t85tret

. ~2.36!

Here, we have definedVm(x,s8,t8)[xm2zm(s8,t8), and
t ret(x,s8) as being the retarded@i.e., such that x0

2z0
„t ret(x,s8)….0] solution in t8 of hmnVm(t8)Vn(t8)

50. In the following, we use also the quantity]mAret which,
after using the formula,

]md„F~x,t8!…5]mFd8„F~x,t8!…5
]mF

~]F/]t8!

]d~F !

]t8
~2.37!

and integrating by parts, can be written as

]mAret~x!5E ds8F 1

uV• żu

d

dt8
S VmS~s8,t8!

V• ż
D GU

t85tret

.

~2.38!

The corresponding results for the advanced fields are

Aadv~x!5E ds8S S~s8,t8!

uV• żu
D U

t85tadv

, ~2.39!

]mAadv~x!5E ds8F 1

uV• żu

d

dt8
S VmS~s8,t8!

V• ż
D GU

t85tadv

,

~2.40!

where tadv(x
m,s8) is the advanced solution o

hmnVm(t8)Vn(t8)50. Note that the scalar productV• ż is
negativefor t85t ret andpositivefor t85tadv.

III. PERTURBATIVE ON SHELL FINITENESS
„AND RENORMALIZABILITY …

OF THE STRING SELF-INTERACTIONS

As said above, we consider the problem of a cosmic str
interacting with its own, linearized, gravitational, dilaton
and axionic fields. The equations of motion of such a str
read

mhmn~ z̈n2zn9!5Fm~z!1O~G2!,
7-5
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with Fm~z!5F m
lin@Aret~x!,]Aret~x!#x5z , ~3.1!

where the explicit expression of the linearized ‘‘force de
sity’’ F m

lin is a linear functional of the~linearized! retarded
fields w ret(x),hmn

ret (x),Bmn
ret (x),

F m
lin@Aret,]Aret#5Fm

w lin@]w ret#1Fm
hlin@]hret#1Fm

Blin@]Bret#

1Cm
lin@w ret,hret#, ~3.2!

where

Fm
w lin@]w ret#5mahabUab~]mw!22mahmaUab~]bw!,

Fm
h lin@]hret#5

m

2
Uab~]mhab!2mUab~]ahbm!,

Fm
B lin @]Bret#5

l

2
Vab~]mBab!1lVab~]aBbm!,

Cm
lin@w,h#52m~hmn12awhmn!~ z̈n2zn9!. ~3.3!

The right-hand side of Eqs.~3.3! is obtained by inserting the
retarded fieldsAret(x), Eq. ~2.36!, and their first derivatives
]mAret(x), Eq. ~2.38!, and by evaluating the result at a poi
xm5zm on the string worldsheet. The sources of the fields
given in terms of the string dynamics by Eqs.~2.29!. Note
that Fm is a nonlocal functional of the string worldshe
whose support is the intersection of the worldsheet with
past light cone with vertex at the pointzm.

As in the case of a self-interacting point particle, the for
Fm(x5z) is infinite because of the divergent contributio
generated when the source pointzm(t8,s8) coincides with
the field pointxm5zm(t,s). It was emphasized long ago b
Dirac @16#, in the case of an electron moving in its ow
electromagnetic field, that this problem can be cured
renormalizing the mass, thereby absorbing the divergent
of the self-force. More precisely, Dirac introduced a cut-
radiusd around the electron and found a corresponding~ul-
traviolet divergent! self-force F m(d)52(e2/2d) z̈m1FR

m

whereFR
m is a finite~renormalized! contribution. If the mass

of the electron plus itsd-surrounding depends ond accord-
ing to

m~d!5mR2
e2

2d
, ~3.4!

wheremR denotes a finite, ‘‘renormalized’’ mass, the ultr
violet divergent equations of motionm(d) z̈m5F m(d) give
the finite resultmRz̈m5FR

m . Note that thed-dependence o
m(d) ~for a fixedmR) is compatible with the idea thatm(d)
represents the total mass-energy of the particle plus tha
the electromagnetic field contained within the rad
d:m(d2)2m(d1)51*d1

d2d3x(8p)21(e/r 2)2. Dirac also

found that the remaining finite force was given by~using a
proper-time normalization oft: ż25hmndzm/dt dzn/dt5
21) the sum of the external forceFext

m and of a finite ‘‘re-
active’’ self-forceFreac

m ,
02351
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FR
m5Fext

m 1Freac
m , Fext

m 5Fext
mnżn ,

Freac
m [

1

2
~F ret

mn2Fadv
mn !żn5

2

3
e2
„ ẑm1~ ż• ẑ!żm

…. ~3.5!

The analogous problem for self-interacting cosmic strin
has been studied by Lund and Regge@22# and Dabholkar and
Quashnock@23# for the coupling to the axion field~see also
@15#!, by Copeland, Haws and Hindmarsh@24# for the cou-
plings to gravitational, dilatonic and axionic fields~and by
Carter @25# for the couplings to electromagnetic fields!.
There is, however, a subtlety in the calculation of the ren
malization of the string equations of motion which led Re
@24# ~and us, in the first version of this work! to misinterpret
their results, and propose incorrect values of the renorm
izations of the string tension due to gravitational and di
tonic self-interactions. Our realization of this subtlety w
triggered by the work of Carter and Battye@17#, who were
the first to get the correct renormalization ofm under self-
gravitational effects, in 4-dimensions, by using a covari
approach to string dynamics@26,20#. We then obtained@18#
the correct renormalizations ofm under all three fields, and
in an arbitrary spacetime dimension,4 by an effective action
approach. The subtlety which makes it delicate~but not im-
possible! to derive the correct renormalization ofm when
working ~as Ref.@24# and the present paper! directly with the
equations of motion, at first order inG, and without adding
external fields, is the following. In such a context, theper-

turbative string equations of motion~2.5! imply that z̈m

2zm9 is of orderG, so that any first-order renormalization o
the tension,m5m01Gm11O(G2), corresponds only tosec-

ond order contributions @Gm1( z̈m2zm9 );G2m1F m
1

5O(G2)# which are formally negligible at orderO(G) and,
therefore, cannot be unambiguously read off such a fi
order calculation. In other words, a first-order treatme
without external fields can only prove that the string equ
tions of motion arerenormalizableby checking theiron
(perturbative) shell finiteness@i.e., the fact that all formally
divergent first-order contributions vanish when using t
zeroth-order string equations of motionz̈m2zm950
1O(G)], but cannot, by themselves, unambiguously det
mine the renormalization of the string tension. For instan
the finding of Quashnock and Spergel@11# that the self-
gravity effects vanish upon using the zeroth-order equati
of motion to evaluate the first-order terms in Eq.~2.5! prove
that they are renormalizable, but does not allow one to c
clude that the self-gravity contribution to the tension ren
malization,dgm vanishes.~It happens thatdgm vanishes in
4-dimensions@17#, but this vanishing is an ‘‘accident’’
which does not hold in other spacetime dimensions@18#.! To
be able to determine the value of the renormalization ofm
one must go beyond a zero-background, first-order ‘‘o
shell’’ treatment of the string equations of motion. Esse
tially, one must work with a form of the string equations

4Only the leading divergence was treated whenn.4.
7-6
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motion which allow for the unambiguous introduction of a
‘‘external force’’ acting on the string. This is the case of t
covariant-force formalism of Ref.@17#, as well as of the
effective-action formalism of Ref.@18# ~where an extra force
would mean an additional contribution to the total action.! In
the present work, we do not really need the explicit value
the tension renormalization. We only need to check
renormalizabilityof the perturbative string equations of m
tion, i.e. the fact that all infinities vanish ‘‘on~zeroth-order!
shell.’’ To end up with clearer results, we shall, howev
present a treatment in which the correct renormalization
pear ~because this treatment is action-based!, and we shall
renormalize them away by using, as external input, the
sults of Refs.@17,18#.

Our starting point will be the explicit form, Eqs.~3.1!–
~3.3!, of the conformal gauge, variational equations of m
tion dSs /dzm50. @We shall check below that the conforma
gauge constraints~2.7! ~written with the full divergent met-
ric! do not contain any divergent contributions~at linear or-
der in G).# To give a meaning to Eqs.~3.3! when x
→z(t,s) we formally introduce an ultraviolet cutoffdc in
thes8-integration giving the retarded fields and their deriv
tives, i.e., we replace the integral over a full period ofs8,
*s0

s01Lds8, on the right-hand side of Eqs.~2.36! and ~2.38!

by *s0

s2dcds81*s1dc

s01Lds8. Later in this paper, we shall use

different way to introduce an ultraviolet cutoff, namely d
mensional regularization. Dimensional regularization has
advantage of always keeping Lorentz invariance manif
We have checked that both methods give the same re
~see Appendix!. In this section, we use the less sophistica
dc-cutoff approach which allows a more direct comparis
with other results in the literature.

We then need the expansions in powers ofs82s and
t82t of all the quantities entering Eqs.~2.36!, ~2.38!:

Vm~t8,s8!.2~s82s!zm8 2~t82t!żm2
1

2
~s82s!2zm9

2
1

2
~t82t!2z̈m2~s82s!~t82t!żm8 , ~3.6!

~V•z!~t8,s8!.2~t82t!ż22
3

2
~t82t!2~ ż• z̈!

1
1

2
~s82s!2~z9• ż!

1~s82s!~t82t!~ z̈•z8!, ~3.7!

żm~t8,s8!. żm1~t82t!z̈m1~s82s!żm8 . ~3.8!

At the order needed to extract the divergent part of the in
grals~2.36!, ~2.38! ~we shall use a more efficient tool belo
to extract the more complicated finite reactive part! it is
enough to use

t ret~zm,s8!5t2us2s8u1O~ us2s8u2!, ~3.9!
02351
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for the retarded solution ofhmnVm(t8)Vn(t8)50. Inserting
these results in Eqs.~2.36!, ~2.38! we get

Aret~z!5
1

uż2u
logS 1

dc
D @2S#1finite terms, ~3.10!

]mAret~z!5
1

~ ż2!2
logS 1

dc
D F2S z̈m1Szm9 14Szm8 S z9•z8

ż2 D
14S żmS z̈• ż

ż2 D 12S8zm8 22ṠżmG1finite terms.

~3.11!

The rather complicated-looking terms proportional to (z8

•z9)/ ż2 and (ż• z̈)/ ż2 in Eq. ~3.11! are, actually, ‘‘connec-
tion’’ terms linked to the fact that the sourceS is a world-
sheet density~conformal weight 2! rather than a worldshee
scalar~conformal weight 0!. Let us associate to each sour
S a corresponding worldsheet scalarS, also denotedŜ, de-
fined by

S[Ŝ[
1

Ag
S. ~3.12!

HereAg5(2detgab)
1/2 is the area-densitydA/d2s, which

reads, in conformal gauge:Ag5z8252 ż2. One needs also
to introduce the invariant ultraviolet cutoffd[g1/4dc
[(z82)1/2dc associated to the ‘‘coordinate cutoff’’dc . ~In
Sec. IV below and in the Appendix, we shall use a dime
sional regularization method where the cutoff parametee
542n, and the renormalization scaleDR, are automatically
Lorentz invariant!. Then Eqs.~3.10!, ~3.11! simplify to

Aret~z!5 logS 1

d D @2S#1finite terms, ~3.13!

]mAret~z!5
1

Ag
logS 1

d D @2Sz̈m1Szm9 22Ṡżm12S8zm8 #

1finite terms. ~3.14!

The result~3.14! for the regularized field derivative agree
with the results of Ref.@24#, as well as with the geometric
prescription given in@25#. As a check on the above resul
one can verify that the divergent parts satisfy

]

]t
Aret~z!5 żm]mAret~z!, ~3.15!

]

]s
Aret~z!5zm8]mAret~z!. ~3.16!

To check these links one must use the following con
quence of the conformal gauge constraints 05Tab

E

[gmn(z)]azm]bzn2 1
2 habh

cdgmn(z)]cz
m]dzn ~written here

in terms of the Einstein metric!:
7-7
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05hbc]bTca
E [gmn~z!]azmhcd~]cdz

n1Gab
n ]cz

a]dzb!.
~3.17!

As we assume everywhere in the paper a flat gravitatio
backgroundhmn , Eq. ~3.17! implies

żm~ z̈m2zm9 !5O~hab!, z8m~ z̈m2zm9 !5O~hab!,
~3.18!

so that tangential projections ofz̈m2zm9 can be consistently
neglected in first-order contributions such as Eqs.~2.15!–
~2.17! even if one is working ‘‘off-shell.’’

Because of the logarithmic divergence entering Eq.~3.14!
we need to introduce, besides the invariant ultraviolet cu
scaled ~which can be thought of as the width of the cosm
string!, an arbitrary, finite, renormalization length scaleDR.
Then, we candefineprecisely the ‘‘infinite parts’’~IP! of
Aret(z) and ]mAret(z), i.e., the parts which blow up whend
→0, by replacing in Eqs.~3.13!, ~3.14! the logarithm by
log(DR/d), and by discarding any other finite contributio
To apply this definition to the three fieldsw, hmn , andBmn ,
we need to use the corresponding sources, Eq.~2.29!. For
instance, we have

IP„hmn
ret ~z!…5

1

Ag
2Smn

h logS DR

d D58Gm
1

Ag
Ũmn logS DR

d D ,

~3.19!

IP„w ret~z!…524aGm logS DR

d D . ~3.20!

Using the easily verified identities satisfied by the ver
operators,

UmnŨmn[UmnUmn2
1

2
U250, UmsŨns50,

UmnU8 mn50, ~3.21!

VmnVmn522~ ż2!2,

V̇mnV̇mn522z̈2ż212ż2ż8224~ z̈• ż!224~ ż8• ż!2,
~3.22!

we first see easily that the divergent contribution
IP(hmn)( żmżn1zm8zn8) and IP(hmn) żmzn8, to the constraints
~2.7! vanish. The use of the identities~3.21!, ~3.22! allows
also to simplify the expression of the terms linear in the fi
derivatives entering Eqs.~3.3!. We obtain

IP~]mw!522aGm~ z̈m2zm9 !
1

ż2
logS DR

d D , ~3.23!

IP~Uab]ahbm!528Gm~ z̈m2zm9 !logS DR

d D , ~3.24!

IP~Uab]mhab!50, ~3.25!
02351
al

ff

x

,

IP~Vab]mBab!58Gl~ z̈m2zm9 !logS DR

d D , ~3.26!

IP~Vab]aBbm!528Gl~ z̈m2zm9 !logS DR

d D . ~3.27!

We have now in hands all the results needed to derive
infinite contributions to the right-hand side of the strin
equations of motion~3.1!. More precisely, one obtains fo
each separate contribution in Eq.~3.2!

IP~Fm
w !524a2Gm2~ z̈m2zm9 !logS DR

d D , ~3.28!

IP~Fm
h !58Gm2~ z̈m2zm9 !logS DR

d D , ~3.29!

IP~Fm
B!524Gl2~ z̈m2zm9 !logS DR

d D ,

~3.30!

IP~Cm
w !58a2Gm2~ z̈m2zm9 !logS DR

d D ,

~3.31!

IP~Cm
h !528Gm2~ z̈m2zm9 !logS DR

d D .

~3.32!

Adding up all the terms leads to

IP~Fm!5C~ z̈m2zm9 !logS DR

d D , ~3.33!

with

C514a2Gm224Gl2. ~3.34!

The crucial point in the result~3.33! is that the divergent
contribution to the equations of motion is proportional to t
zeroth-order equations of motion. In our present perturba
treatment the formally infinite contribution~3.33! is of sec-
ond order inG and can be ignored. As we said above, th
property of perturbative on shell finiteness of the equatio
of motion proves their renormalizability but cannot, by itse
determine the physically correct value of the renormalizat
of m. At this point, we can, however, use the results of R
@18#, where we showed that the ‘‘bare’’~regularized but not
renormalized! string tensionm(d) appearing in the origina
ultraviolet-divergent action must depend on the UV cutoffd
according to

m~d!5mR1C logS DR

d D , ~3.35!

wheremR is the finite, renormalized tension, and where t
~‘‘beta function’’! coefficient C is precisely given by Eq.
~3.34!. @C contains only contributions coming from dila
7-8
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tonic, Cw514a2Gm2, and axionic, CB524Gl2, self-
interactions. The gravitational contribution vanishes~in
4-dimensions! @17,18#.#

Let us define the ‘‘renormalized’’ value of any ‘‘bare
~i.e., cutoff-dependent!, logarithmically divergent, quantity
Q(d) as its ‘‘finite part’’ ~FP!, i.e., the difference betwee
Q(d) and its ‘‘infinite part’’ @defined above as the term
} log(DR/d) in Q(d)]:

QR[FP„Q~d!…[ lim
d→0

@Q~d!2IP„Q~d!…#. ~3.36!

Using this definition, and formally inserting Eq.~3.35! into
the bare equations of motion~3.1!, namely,

1m~d!hmn~ z̈n2zn9!5FmR1C logS DR

d D Ghmn~ z̈n2zn9!

5Fm~d!5IP„Fm~d!…1F m
R

5C~ z̈m2zm9 !logS DR

d D1F m
R

1O~G2!, ~3.37!

we see that the terms proportional to logDR/d coming from
the renormalization ofm(d) and those coming from the
renormalization ofFm(d) are identical~even if we were
working off shell!, so that the equations of motion can b
rewritten in the renormalized form

mRhmn~ z̈n2zn9!5F m
R1O~G2!. ~3.38!

This simplification between the sameC log(DR/d)(z̈m2zm9 )
contributions on both sides of the equations of motion is d
to the fact that we have been working with the direct, Eul
Lagrange variational equationsdSs /dzm, i.e., with a form of
the equations of motion which is ready to receive an ad
tional ‘‘external force’’ dS8/dzm, as the variational deriva
tive of an additional pieceS8 in the action. Had we worked
with another form of the equations of motion, say,

Ẽm[gs
mn

dSs

dzn
[gmne22awEn[2m~d!~ z̈m2zm9!1F̃m,

~3.39!

with F̃m[gmne22awFn , the infinite part of thelinearized

field-contributionF̃m lin@]mAret# would have been identical to
hmnFn

lin@]mAret#, with Fn
lin given in Eq.~3.3! above. In such

a case, Eqs.~3.28!–~3.30! show that the infinite part ofF̃m lin

would not have matched the infinite contributio
IP„m(d)…( z̈m2zm9)5C log(DR/d)(z̈m2zm9). This apparent
discrepancy is, however, not at all a sign of inconsistency
the type of noncovariant perturbative equations of motion
have been using. Either one works on shell, and all the
mally infinite terms can be consistently neglected as bein
order G2, or one introduces an additional mechanical int
action of the string, e.g., through the addition of a new pie
02351
e
-

i-

f
e
r-
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-
e

S8(zm, . . . ) in the action, in which case the zeroth-orde
string ‘‘mass shell’’ is modified, and we must take into a
count the new infinite terms coming from the extra contrib
tion gmne22awdS8/dzn, in which gmne22aw5hmn2IP(hmn)
22ahmnIP(w)1finite.

Let us finally note that the logarithmic renormalizatio
~3.35!, ~3.36! introduce a dependence of the renormaliz
quantities upon an arbitrary, renormalization length sc
DR . @By definition, the bare~regularized! quantitiesm(d),
Q(d), do not depend on the choice ofDR .# For instance, we
see from Eqs.~3.33!, ~3.35! that

mR~DR8 !5mR~DR!2C logS DR8

DR
D , ~3.40!

F m
R~DR8 !5F m

R~DR!2C~ z̈m2zm9 !logS DR8

DR
D . ~3.41!

It is however, easily seen that the content of the renormali
equations of motion~3.38! is left invariant~at first order in
the field couplings! under a change ofDR. @This invariance
still holds in presence of an additional~finite! contribution
dS8/dzm to the equations of motion.# As we work only to
first order in the field couplings, note that the quantitym
appearing inC, Eq. ~3.35!, can formally be considered a
being a renormalized value, rather than the bare one, the
leading to the renormalization group equation]mR/] logDR
52C(mR). ~The nonrenormalizability of the gravitationa
interaction makes it delicate to extend this argument
higher orders inG. By contrast, if we consider only a canon
cally normalized axionic field, with couplingAGl
5Ap/2f a , C does not depend onm and the first-order renor
malization result is exact.!

Finally, we note that the axionic contributionCB5
24Gl2 to C agrees with the result of previous dynamic
calculations@22,24,11,14,15#, while the dilatonic contribu-
tion Cw514a2Gm2 disagrees with Ref.@24# which pro-
posed a vanishing dilatonic contributionCw .

IV. RENORMALIZED FORCE DENSITY AND THE
LOCAL BACK-REACTION APPROXIMATION

A. Renormalized equations of motion

In the previous section we have shown that the pertur
tive equations of motion~in absence of external fields! could
be written, at first order inG, in the renormalized form

mRhmn~ z̈n2zn9!5F m
R lin@]Aret#1O~G2!, ~4.1!

where the right-hand side~RHS!is the sum of three renor
malized contributions

F m
R lin@]Aret#5F m

w R lin@]w ret#1F m
h R lin@]hret#

1F m
B R lin@]Bret#, ~4.2!

with
7-9
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F m
wR lin~]w!5mahabUab~]mw!R22mahmaUab~]bw!R,

~4.3!

F m
hR lin~]h!5

m

2
Uab~]mhab!R2mUab~]ahbm!R,

~4.4!

F m
BR lin ~]B!5

l

2
Vab~]mBab!R1lVab~]aBbm!R.

~4.5!

Here (]mAret)
R, with Aret5(w ret,hmn

ret ,Bmn
ret ), denotes, as de

fined by Eq.~2.36!, the finite part of the logarithmically di-
vergent retarded integral~2.38!. Note that, due to the absenc
of external fields, the supplementary contributionCm to Fm ,
in Eq. ~3.3!, is negligible, being of orderG2 becausehmn

12aw5O(G) and (z̈m2zm9 )5O(G). @Both the infinite part
and the finite part ofCm areO(G2).#

The expressions~4.3!–~4.5! are linear ~nonlocal! func-
tions of the field derivatives. Following Dirac@16# it is useful
to decompose any fieldAret(x) in two parts:

Aret~x!5Asym~x!1Areac~x!, ~4.6!

Asym~x![
1

2
@Aret~x!1Aadv~x!#, ~4.7!

Areac~x![
1

2
Arad~x![

1

2
@Aret~x!2Aadv~x!#. ~4.8!

Note the definition of two fields,AreacandArad, differing by
a factor 2, associated to the differenceAret2Aadv. Both fields
play a special role in the discussion below. They are b
finite, as well as their derivatives, when considered at a p
x5z of the source. Therefore the contribution to the se
force corresponding toAreac is finite and does not need to b
renormalized. Hence, we shall dispense in the following w
the label R when consideringFR

m(Areac). To simplify the no-
tation we henceforth drop the label ‘‘lin’’ onFm , and freely
move indices byhmn because we shall consistently wo
only to first order inG. @As said above, in the present~first-
order, no-external-field! approximation, we could even for
mally dispense with renormalizingF m(Asym) because the di-
vergent contributions ~3.28!–~3.30! are O„G( z̈m2zm9 )…
5O(G2). But, for clarity we continue to work with
FR

m(Asym).#

B. Reactive part of the self-force

Let us first prove why, very generally, in the decompo
tion of the force corresponding to Eq.~4.6!,

FR
m~Aret!5FR

m~Asym!1F m~Areac![FR sym
m 1Freac

m ,
~4.9!

the termFreac
m can be considered as defining the full radiati

reaction force, responsible for draining out of the mechan
system on which it acts~the string in our case! the energy
lost to infinity in the form of waves of theA field. Indeed, for
02351
h
nt
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h

-

al

any field ~in the linear approximation! we can define a field
~pseudo! energy-momentum tensorTf

mn(A) which is qua-
dratic in ~the derivatives of! A. The total energy tensorTmn

5Ts
mn1Tf

mn ~whereTs
mn denotes the energy tensor of sour

including any possible field-interaction energy localized
the source! is conserved: 05]nTmn. This leads to the equa
tions of the source: ]nTs

mn5Fm(A) where Fm(A)[
2]nTf

mn(A) represents the spacetime~rather than world-
sheet! version of the force density acting on the source.@We
work here with the bare force density.# Let us consider, as a
formal simplification, the case where the coupling betwe
the source and the fieldA is ~adiabatically! turned off in the
far past and the far future.@This means, in particular, that an
possible field-interaction energy localized on the source v
ishes in the far past and the far future.# Then the energy-
momentum lost by the source during the entire interact
with the field, Ps lost

m 52*d3x@Ts
m0(1`)2Ts

m0(2`)#, can
be written as

Ps lost
m 52E d4x ]nTs

mn52E d4xFm~A!5Pf gained
m ,

~4.10!

where Pf gained
m 51*d3x@Tf

m0(1`)2Tf
m0(2`)# is the

energy-momentum gained by the field. When applying t
result to the usual interaction forceFm(Aret)5
2]nTf

mn(Aret) one has zero energy inAret in the far past, so
that Ps lost

m 5*d3x Tf
mn
„Aret(t51`)…. The field energy mo-

mentum tensorTf
mn(A) is quadratic in the field and can a

ways be written as the diagonal value of a symmetric q
dratic form Tf

mn(A)5Qmn(A,A). It is easy to see that the
generic structureFm(A)[2]nTf

mn(A)5SA•]A, whereSA is
a source term for the fieldA, and where the dot produc
denotes some contraction of indices, is generalized, w
considering Qmn to 2]nQmn(A1 ,A2)5 1

2 @SA1
•]A21SA2

•]A1#. We can apply this to the case whereA15Aret and
A25Arad5Aret2Aadv ~for which SA2

50) with the result

1

2
S•]Arad5S•]Areac5Fm~Areac!52]nQmn~Aret,Arad!,

~4.11!

whereS is the usual source, andFm(Areac) the result of re-
placingAret by Areac5

1
2 Arad in the usual force density. Inte

grating the latter formula over spacetime gives

2E d4x Fm~Areac!5E d3x@Qm0~Aret,Arad!u t51`

2Qm0~Aret,Arad!u t52`#. ~4.12!

Again, one has zero energy from the far past contribut
@becauseAret(2`)50], while the far future contribution is
simply, thanks toAadv(1`)50, Qm0(Aret,Aret)5Tf

m0(Aret)
so that
7-10
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2E d4x Fm~Areac!5E d3x Tf
m0
„Aret~1`!…

52E d4x Fm~Aret!5Ps lost
m .

~4.13!

This proves, for any field treated in the linear approximati
that the contribution to the self-force due toAreac contains,
when integrated over time, the full effect of radiation dam
ing, ensuring conservation with the energy-momentum
to radiation. The contributionFm(Areac) can be called the
‘‘reactive’’ part of the self-forceFm(Aret).

Summarizing the results at this point, the renormaliz
self-interaction force~returning now to the worldsheet dis
tributed force density! can be written as

FR
m5FPF m5FPFsym

m ~d!1Freac
m , ~4.14!

where FP denotes Hadamard’s finite part~‘‘Partie Finie’’!
operation@27# ~i.e., in our case, the result of subtracting
term } log(d/DR) from the ultraviolet-cutoff integralF m(d)
5*s0

s2dcds8@•••#1*s1dc

s01Lds8@•••#). Note that only the

symmetriccontribution, obtained by replacingAret by Asym
5 1

2 (Aret1Aadv) in the force density, needs to be renorm
ized ~and, as we said above, one can even formally dispe
with considering this renormalization!. This symmetric con-
tribution does not contribute, after integration over time,
the overall damping of the source. The finite reactive con
bution Freac

m [F m(Areac) embodies~on the average! the full
effect of radiation damping.

The advantage of the above decomposition is to isol
very cleanly, the radiation damping force from the other no
cumulative, self-interactions. Its disadvantage is to write
nonlocal, butcausalself-force FPF m(Aret) as a sum of two
acausal ~meaning future-dependent! contributions. Indeed
both FP(Fsym

m ) andFreac
m are given by integrals whose sup

port is the intersection of the worldsheet with thetwo-sided
light cone with vertex located atzm. In principle one can
work directly with the full, causalFR

m ~as done, e.g., in Ref
@11#!, but this is computationally very intensive.@A simpli-
fication, used by the latter authors, and mentioned abov
that the self-forceF m(d) becomes, as is clear from Eq
~3.28!–~3.30!, finite asd→0 when evaluated on free-strin
trajectories, satisfyingz̈m2zm950.# We shall follow Refs.
@14,15# in working only with the~finite! reactive forceFreac

m

and in trying to define a simple local approximation for it

C. Local back-reaction terms in dimensional regularization

The reaction forceFreac
m is linear in ]mAreac(z), which is

itself given by the following integral:

]mAreac~z!5E
0

L

ds8Bm
z ~s8!, ~4.15!

with
02351
,

-
st

d

-
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e
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Bm
z ~s8!5

1

2 H F 1

uV• żu

d

dt8
S VmS~s8,t8!

V• ż
D GU

t85tret

2F 1

uV• żu

d

dt8
S VmS~s8,t8!

V• ż
D GU

t85tadv

J .

~4.16!

The integrandBm
z (s8) is the finite difference between tw

terms that blow up whens8→s @s being such thatz
5z(s,t)]. When s8 is well away froms ~say, for long,
horizon-sized strings! Bm

z (s8) is expected to decreas

roughly as the inverse spatial distanceuV• żu, i.e., roughly as
us82su21. In other words, a very rough representation
the typical behavior of Bm(s) is B(s8);„2(s8
2s)…21@ f „t2(s82s)…2 f „t1(s82s)…#, where the ‘‘ef-
fective source function’’f (t) is expected to oscillate ast
varies. If we think in terms of one Fourier mode, sayf (t)
5 f ve2 ivt, these considerations suggest that the field der
tive ]A is roughly given by an integral of the form

]A5E ds8B~s8!; i f ve2 ivtE
2`

1`

ds8
sinv~s82s!

~s82s!
.

~4.17!

The latter integral is equal top, so that one can finally re
place the oscillatory and decreasing integrandB(s8) by an
effective d-function, Beff(s8)5B(0)Dd(s82s), with ~in
our example! B(0)52 ḟ (0)5 iv f v and D5p/v, or, in
other words,]A5*ds8B(s8) is replaced byDB(0). The
analogous proposal of replacing the complicated, nonlo
integral~4.15! giving ]mAreacsimply by the local expression

@]mAreac#
local5DBm

z ~0!, ~4.18!

whereD is some length scale linked to the wavelength of t
main Fourier component of the radiation, was made by B
tye and Shellard@14,15# ~see also@23#!. In effect, this pro-
posal is equivalent to replacing thes8-extended source
S(t8,s8) by the s8-local effective sourceDS(t8,s)d(s8
2s). One of the main aims of the present paper is to stu
critically the consequences of this proposal.

Though this ‘‘local back reaction approximation’’ drast
cally simplifies the evaluation of the reaction forceFreac

m ,
there remains the nontrivial analytical task of computing
s8→0 limit of the difference between the two complicate
~and divergent! terms making upBm

z (s8). We found very
helpful in this respect to usedimensional regularization, i.e.,
to use, instead of the normal~singular! four dimensional
Green’s functions~2.30!, ~2.32!, their analytic continuation
to a spacetime of~formal! dimensionn542e. @We shall
keep computing the index algebra in 4-dimensions. This
allowed here because our use of dimensional regulariza
is, simply, a technical trick for computing the finite obje
Bm

z (s).# This technique is well known to be quite useful
quantum field theory, but it~or, at least, a variant of it! has
7-11
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also been shown long ago to be technically very conven
in the classical theory of point particles@28–31#.

Riesz @28# has shown that the retarded and advan
Green’s functions in dimensionn[42e read

G ret
adv

(n)
~x2y!5

1

Hn~2!
@2~x2y!2# (22n)/2u„2~x2y!2

…

3u„6~x02y0!…, ~4.19!

with Hn(2)52p (n22)/2G@(42n)/2# and

hG(n)~x2y!52dn~x2y!. ~4.20!

Note that, whene542n→0, the coefficient appearing in
Eq. ~4.19! becomes

1

Hn~2!
5

e

4p
@11O~e!#. ~4.21!

To save writing, we shall neglect in the following the fact
11O(e) in Eq. ~4.21! which plays no role in the terms w
consider. Then, we write the retarded solution of our mo
field equation~2.1! in dimensionn542e as

Aret~x!5eE ds8E
2`

tret
dt8S~V2!(22n)/2u~V2!,

~4.22!

whereV2[2@x2z(t8,s8)#2. ~Note the inclusion of a mi-
nus sign so thatV2.0 within the light cone!. Again neglect-
ing a factor 11O(e), the field derivative reads

]mAret~x!52eE ds8E
2`

tret
dt8SVm~V2!2n/2u~V2!.

~4.23!

Using some efficient tools of dimensional regularizati
~which are explained in Appendix A! we get our main tech-
nical results: the explicit expressions of the reactive fie
and its derivatives, in the local back reaction approximat

@Areac~z!# local5
D

ż2 F Ṡ2SS ż• z̈

ż2 D G , ~4.24!

@]mAreac~z!# local5
D

~ ż2!2 F1

3
S ẑm1Ṡ z̈m1S̈ żm

24Ṡ żmS ż• z̈

ż2 D 22S z̈mS ż• z̈

ż2 D
2S żmS z̈• z̈

ż2 D 2
4

3
S żmS ż• ẑ

ż2 D
16S żmS ż• z̈

ż2 D 2G . ~4.25!
02351
nt

d

l

,
n

Some simplifications occur if we introduce, instead of t
worldsheet densityS, the corresponding worldsheet scal
S[S/Ag. We find

@Areac~z!# local5DF2Ṡ2SS ż• z̈

ż2 D G , ~4.26!

@]mAreac~z!# local5
D

ż2 H SF2
1

3
ẑm2

2

3
żmS ż• ẑ

ż2 D
12żmS ż• z̈

ż2 D 2

2 żmS z̈• z̈

ż2 D G
2 z̈mṠ2 żmS̈J . ~4.27!

Note that Eqs.~4.24!, ~4.25! and Eqs.~4.26!, ~4.27! satisfy
the compatibility conditionżm]mA5Ȧ, but because of the
lack of worldsheet covariance~broken by the introduction of
D) the analog condition forz8 is not verified.

D. Dilaton radiation reaction

Let us first apply our results to the case of the dilaton fi
w, which has not been previously studied in the literatu
The corresponding~worldsheet scalar! source is then simply

Sw5
1

z82
Sw5

1

z82
aGmU522aGm. ~4.28!

Sw being a constant, the preceding formulas simplify ve
much:

@w reac~z!# local52aGmDS ż• z̈

ż2 D , ~4.29!

@]mw reac~z!# local52aGm
D

ż2 F1

3
ẑm1

2

3
żmS ż• ẑ

ż2 D
22żmS ż• z̈

ż2 D 2

1 żmS z̈• z̈

ż2 D G . ~4.30!

Inserting these results in the dilaton self-force~4.3!, we get

F m
w local5

4

3
a2Gm2DF ẑm2 żmS ż• ẑ

ż2 D 1zm8 S z8• ẑ

ż2 D G .

~4.31!

For notational simplicity, we henceforth drop the label ‘‘lo
cal’’ on the local approximations to the reactive forces. Co
sistently with our choice of conformal gauge@which, in the
case of the dilaton coupling, is the same as in flat space,
Eq. ~3.17!#, we see that the reaction force~4.31! is orthogo-
nal to the two worldsheet tangent vectors,żm andz8m:

żmF m
w[0[z8mF m

w . ~4.32!
7-12
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Let us now show that the putative, local approximation to
dilaton reaction force, Eq.~4.31! conveys some of the correc
physical characteristics expected from a radiation damp
force. In particular, let us check that the overall sign of E
~4.31! is the correct one. First, we remark that we can wo
iteratively and therefore consider that the reaction fo
~4.31!, and its integrated effects, can be evaluated on a
string trajectory. In other words, when evaluating the to
four momentum lost,Ps

lost5Psm
lin (2`)2Psm

lin (1`) @with,

say, the convenient definitionPsm
lin (t)[*0

Lds mRżm(s,t)],
by the string under the action ofFm5F m

w1F m
h 1F m

B ,

Psm
lost52E ds dtFm , ~4.33!

we can insert a free string trajectory on the right-hand side
Eq. ~4.33!.5 This being the case, we can now further restr
the worldsheet gauge by choosing atemporal conformal
gauge, i.e., such thatt5z0(t,s)5t. Geometrically, this
means that thet5const. sections of the worldsheet coinci
with x05const. space-time coordinate planes.~The choice
z05t is consistent for free string trajectories because
them z̈m2zm950.! In this gauge, we have

ż051, 2 ż2512v25z82, ż• ẑ5v• v̈, z8• ẑ5z8• v̈,
~4.34!

where we have introduced the 3-velocityv[ ż. The zero
component of Eq.~4.33! then reads

F w
051

4

3
a2Gm2D

v• v̈

12v2
. ~4.35!

Assuming that the scaleD is constant, we can integrate b
parts and write for the total energy lost by the string

Ew
lost5

4

3
a2Gm2DE ds dtF v̇2

12v2
12

~v• v̇!2

~12v2!2G .

~4.36!

The integrand of Eq.~4.36! is positive definite, ensuring tha
the reaction force~4.31! has the correct sign for representin
a radiation damping force.

We can further check that the total 4-momentum lost
the string is, as it should, timelike. First, let us note that
relation

Urm]rw52]a~Aggab]bzmw!1w]a~Aggab]bzm!
~4.37!

shows that, as far as its integrated effects are concerned
dilaton reaction force~2.15! is equivalent to

5Strictly speaking the integral in Eq.~4.33! is infinite because free
string trajectories are periodic. The meaning of Eq.~4.33!, and simi-
lar integrals below is to give, after division by the total coordina
time spant, the time-averaged energy-momentum loss.
02351
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F m
w equiv.5amU]mw reac5

1

G
Sw]mw reac. ~4.38!

Inserting Eq.~4.25!, or better, Eq.~4.27! into Eq. ~4.38!
yields, after integration by parts, a total 4-momentum los

Pm
lostw5

4

3
a2Gm2DE dt dspm , ~4.39!

with integrand

pm5 żmF2S ż• z̈

ż2 D 2

2S z̈• z̈

ż2 D G12z̈mS ż• z̈

ż2 D . ~4.40!

The square ofpm reads

pmpm5
1

~ ż2!4
@12ż2~ ż• z̈!41~ ż2!3~ z̈2!224z̈2~ ż2!2~ ż• z̈!2#.

~4.41!

This is negative definite in the temporal gauget5t, showing
that uPw

lostu,Ew
lost, as physically expected.

E. Gravitational and axionic radiation reaction

We are going to see that the generalization of the dila
results to the case of the gravitational and axionic fields
nontrivial, and leads to physically nonsensical results. Le
first generalize Eq.~4.38!. The relations

Uab]ahbm52]a~Aggabham]bza!1ham]a~Aggab]bza!,
~4.42!

Vln]lBnm5]b~eab]aznBnm!2]b~eab]azn!Bnm ,
~4.43!

show that, as far as their integrated effects are concerned
gravitational and axionic reaction forces~2.16!, ~2.17! are
equivalent, respectively, to

F m
h equiv.5

1

2
mUab]mhab

reac, ~4.44!

F m
B equiv.5

1

2
lVab]mBab

reac. ~4.45!

It is important to note that, as in the dilaton case Eq.~4.38!,
these equivalent reaction forces are simple bilinear form
the vertex operators and the derivatives of the fields. T
can both be written as

F m
equiv.5

1

8G
S•]mAreac, ~4.46!

where, as in Eq.~2.34!, S denotes the source of the fieldA
5hab or Bab , and where the dot denotes a certain symm
ric bilinear form acting on symmetric or antisymmetric te
sors. With the normalization of Eq.~4.46! these bilinear
forms are, respectively,
7-13
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Uab5Uba : U•U[UabUab2
1

2
U2[UabŨab,

~4.47!

Vab52Vba : V•V[VabVab. ~4.48!

One can recognize here the quadratic forms defined by
residues of the gauge-fixed propagators of theh andB fields.
Note that if we wish to rewrite the scalar reaction for
~4.38! in the same format~4.46! as the tensor ones we hav
to define the dot product for scalar sources as

Sw•Sw[8Sw
2 . ~4.49!

Using this notation, and the results above on the reac
fields, it is possible to compute in a rather streamlined w
the total 4-momentum lost under the action of the local
action force:

Pm
lost52

1

8GE E ds dt S•@]mAreac#
local. ~4.50!

The calculation is simple if one uses the form~4.27!. Let us
note that the worldsheet-scalar sources (S5S/Ag) for the
three fields we consider (w, h andB) satisfy

S•S5const, ~4.51!

S•Ṡ50. ~4.52!

Indeed, if we introduce the scalarized vertex operators~with
conformal dimension zero! Û[U/Ag, Ûab[Uab /Ag and
V̂ab[Vab /Ag, it is easily seen that

w: Û•Û[8Û25132,

h: Ûab•Ûab[ÛabÛab2
1

2
Û250, ~4.53!

B: V̂ab•V̂ab522.

The relations~4.51!, ~4.52! simplify very much the evalua
tion of Pm

lost. In particular, the constancy ofS•S allows one

to integrate by parts onẑm , etc. without having to differen-
tiate theS•S factors. By some simple manipulations, usi
also the consequence

Ṡ•Ṡ1S•S̈50, ~4.54!

of Eq. ~4.52!, we get

Pm
lost5

1

8GE E ds dtE żmH ~Ṡ•Ṡ!1~S•S!F1

3
u̇21

1

12
ḟ2G

1
1

3
z̈m~S•S!ḟJ . ~4.55!

Here we introduced a special notation for the conformal f
tor ~Liouville field!,
02351
he

n
y
-

-

ds25ef~2dt21ds2!, ef5Ag5z8252 ż2,
~4.56!

and we defined theunit time like vectorum5e2f/2żm, and its
first derivative

u̇m5
d

dt
~e2f/2żm!, u̇252

z̈2

ż2
1

1

4
ḟ2.0. ~4.57!

Let us now prove the remarkable result that the contribut
proportional toṠ•Ṡ in Eq. ~4.55! vanishes for all three fields
when evaluated~as we are iteratively allowed to do! on a
free string trajectory:

E E ds dt żm~Ṡ•Ṡ!50. ~4.58!

Indeed, for the scalar caseÛ522 andÛ
˙

50, while for the
other fields a straightforward calculation gives

Û
˙

abÛ
˙ ab2

1

2
Û
˙ 252hhf, ~4.59!

V̂̇abV̂̇ab51hhf, ~4.60!

when taking into account the vanishing of terms proportio
to the worldsheet derivatives ofhhzm52 z̈m1zm9. ~These
results have a nice geometrical interpretation linked to
Gauss-Codazzi relations.! Integrating by parts, we see tha
the contribution~4.58! is proportional to**ds dt(hhżm)f
which vanishes, again because of the free string equation
motion.

Finally, remembering the constancy ofS•S, we get the
very simple result

Pm
lost5

1

3
D

S•S

8G E E ds dt pm , ~4.61!

where the integrand

pm5 żmS u̇21
1

4
ḟ2D1 z̈mḟ ~4.62!

is easily seen to coincide with the one which appeared ab
Eq. ~4.40!, in our direct calculation of the dilaton reaction
Let us recall that the present calculation applies uniformly
all three fields if we define the dot product between dilato
vertex operators with an extra factor 8, see Eq.~4.49!.

The conclusion is that the local approximation to ba
reaction for the three fieldsw, h and B leads to energy-
momentum losses which are proportional to the same qu
tity **d2s pm with coefficients respectively given by@using
Eqs.~4.53! above#

D

3

Sw•Sw

8G
5

D

3
~aGm!2~Û !251

4

3
DGa2m2, ~4.63!
7-14
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D

3

Sh•Sh

8G
5

D

3

~4Gm!2

8G
ÛabÛ̃ab50, ~4.64!

D

3

SB•SB

8G
5

D

3

~4Gl!2

8G
V̂abV̂ab52

4

3
DGl2. ~4.65!

The result~4.63! coincides with Eq.~4.39! above~for which
we have verified that the overall sign is correct!. We there-
fore conclude that the ‘‘local reaction approximation’’~4.18!
yields ~i! a vanishing, net energy-momentum loss for th
gravitational field, and~ii ! the wrong sign~antidamping! for
the axionic field. The latter result disagrees with Re
@14,15# ~see the Appendix! which claimed to obtain positive
damping. It is for clarifying this important sign question th
we have presented above a streamlined calculation sho
that the overall sign can simply be read from the contract
of the vertex operators of the fields. Indeed, finally the phy
cal energy-loss sign is simply determined by the ea
checked~andsignature independent! signs in Eqs.~4.53!.

F. Gauge invariance and mass-shell-only positivity

Why is the ‘‘local back reaction approximation’’ giving
physically unacceptable answers in the cases of gravitati
and axionic fields but a physically acceptable one in the c
of the dilatonic field? The basic reason for this differen
betweenhmn andBmn on one side, andw on the other is the
gauge invarianceof the former. Indeed, a gauge symmet
~here hmn→hmn1]mjn1]njm , Bmn→Bmn1]mAn2]nAm!
means that some of the components ofhmn andBmn are not
real physical excitations. This is associated with the fact t
some of the components ofhmn and Bmn ~namely h0i and
B0i) have kinetic terms with thewrong sign, i.e., that they
~formally! carry negative energy. Therefore, approximati
radiation damping is very delicate for gauge fields. A slig
violation of gauge invariance by the approximation proc
dure can lead to antidamping~the literature of gravitationa
radiation damping is full of such errors, see, e.g.,@21#!. A
more precise way of seeing why the local back reaction
proximation is dangerous in this respect is the following.

We have proven above that an exact expression for
4-momentum of the source lost to radiation is given~for w,
hmn and Bmn , and more generally for any linearly couple
field! by an expression of the form

Pm
lost52kE d4x J~x!•]mAreac~x!, ~4.66!

whereJ(x) is the source ofA(x)

hA~x!52J~x!, ~4.67!

and wherek is a positivecoefficient which depends on th
normalization of the kinetic terms ofA(x) @4pk51/8G
when using the above normalizations, the extra factorp
compensating for our present way of writing the field equ
tion (4.67)]. The spacetime sourceJ(x) is linked to our
previous string distributed sources by J(x)
54p*d2s Sd4(x2z). The dot product in Eq.~4.66! is the
symmetric bilinear form defined in Eqs.~4.47!, ~4.48!, ~4.49!
02351
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above for the three casesh, B and w. Introducing Fourier
transforms, with the conventions

J~p!5E d4x e2 ipxJ~x!, ~4.68!

Greac~x!5
1

2
@Gret~x!2Gadv~x!#5E d4p

~2p!4
Greac~p!e1 ipx,

~4.69!

the energy loss~4.66! reads

Pm
lost52kE d4p

~2p!4
ipmGreac~p!J~2p!•J~p!. ~4.70!

To see the positivity properties ofPm
lost we need to insert the

explicit expression of the Fourier transform ofGreac.
The Fourier decomposition of the retarded and advan

Green functions (hG52d4) read

G ret
adv

~x!5E d4p

~2p!4

eipx

p22~p06 ih!2
5E d4p

~2p!4

eipx

p27 ihp0
,

~4.71!

whereh is any positive infinitesimal. Using the formula

1

x2a6 ih
5P

1

x2a
7 ipd~x2a!, ~4.72!

whereP denotes the principal part, one finds

Greac~p!5
1

2
@Gret~p!2Gadv~p!#5 ip sign~p0!d~p2!.

~4.73!

Inserting Eq.~4.73! into Eq. ~4.70! one gets

Pm
lost51kpE d4p

~2p!4
sign~p0!pmd~p2!J~2p!•J~p!

51kE
V1

dp̃pmJ* ~p!•J~p!, ~4.74!

where V1 denotes the positive mass shellp051Ap2 and
dp̃5(2p)23d3p/2p0 the natural integration measure o
V1 . Here, we have used the reality of the source:J* (x)
5J(x)⇒J* (p)5J(2p).

As in the case of Eq.~4.33! and its kin, the meaning o
Eq. ~4.74! is formal when evaluated on a~periodic! free
string trajectory. However, it is, as usual, easy to convert
~4.74! in a result for the average rate of 4-momentum loss
using Fermi’s golden rule:

@d~p02nv!#25
1

2p
d~p02nv!E dt. ~4.75!

One then recovers known results for the average energy
diation from periodic string motions@2,9#.
7-15
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ALESSANDRA BUONANNO AND THIBAULT DAMOUR PHYSICAL REVIEW D 60 023517
The integrand in the last result has the good sign~i.e.,
defines a vector within the future directed light cone! if the
dot productJ* (p)•J(p).0. This is clearly the case for
scalar source, but for the gauge fieldshmn andBmn one has
integrands

Jhmn* ~p!Jh
mn~p!2

1

2
uJhl

l ~p!u2 ~4.76!

and

JBmn* ~p!JB
mn~p!, ~4.77!

which are not explicitly positive because of the wrong si
of the mixed componentsJ0i . As is well known this poten-
tial problem is cured by one consequence of gauge inv
ance, namely some conservation conditions which mus
satisfied by the source. In our case the gravitational sou
Jmn

h (x)}T̃mn(x) must satisfy]nJ̃mn
h 50, while the axionic

source must satisfy]nJmn
B (x)50. In the Fourier domain this

gives pnJ̃mn
h (p)50 or pnJmn

B (p)50. These transversality
constraints are just enough to ensure that the integra
~4.76!, ~4.77! are positivewhen evaluated on the mass sh
V1 . What happens in the ‘‘local back reaction approxim
tion’’ is that one replaces the Green functionGreac(x) by a
distributional kernelGloc(x) with support~in x space! local-
ized atx50. Its Fourier transformGloc(p) is no longer lo-
calized on the light conep250, and therefore the delicat
compensations ensuring the positivity of the integran
~4.76!, ~4.77! do not work anymore. This explains why th
local back reaction approximation is prone to giving unre
able expressions for the damping due togaugefields. On the
other hand, in the case of a scalar field the crucial sou
integrandJ* (p)J(p) in Eq. ~4.74! remains positive-definite
even off the correct mass shell. This explains why, in
case of the dilatonic field, the local back reaction approxim
tion might ~as it was found above to do! define a physically
acceptable approximation to the exact, nonlocal damping
fects.

V. IMPROVED DILATONIC REACTION AS SUBSTITUTE
TO GRAVITATIONAL REACTION

As the main motivation of the present study is to find
physically reasonable, and numerically acceptable, appr
mation to gravitational radiation damping, the results of
previous section would seem to suggest that the local b
reaction approach fails to provide such an approximati
However, we wish to propose a more positive interpretati
Indeed, both the direct verification of Sec. IV D, and t
argument~in Fourier space! of Sec. IV F shows that the loca
back reaction approximation can make sense when applie
scalar fields. On the other hand, Damour and Vilenkin@9# in
a recent study of dilaton emission by cosmic strings h
found that, in spite of their genuine physical differenc
gravitational radiation and dilatonic radiation from strin
are globally rather similar. For the samples of cuspy or kin
loops explored in Ref.@9#, the global energy losses into the
fields turned out to be roughly proportional to each oth
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Even when considering in more detail the physically imp
tant problem of the amount of radiation from cusps, it w
found that~despite an expected difference linked to the s
2 transversality projection! both radiations were again
roughly similar.

Let us also recall that this similarity, or better brothe
hood, between gravitational and dilatonic couplings is te
nically apparent in the similarity of their vertex operato
~which are both subsumed in the formzmn]azm]azn with a
generic symmetric polarization tensorzmn) and is a very im-
portant element of superstring theory. This leads us to p
pose to use, after a suitable normalization, the physic
acceptable local dilatonic back reaction force as asubstitute
for the gravitational radiation one. In other words, we pr
pose to use as ‘‘approximation’’ to gravitational radiatio
damping a local reaction force of the form~in conformal
gauge!

Fm5
4

3
Gm2DF ẑm2 żmS ż• ẑ

ż2 D 1zm8 S z8• ẑ

ż2 D G . ~5.1!

We note also that, though there are more differences betw
axionic and gravitational radiations than between the d
tonic and gravitational ones, they are still roughly similar
many ways~as witnessed again by the brotherhood of th
vertex operatorszmn]azm]azn with now a generic asymmet
ric polarization tensor! so that one can hope to be able also
represent in an acceptable manner axionic radiation dam
by a force of the type~5.1! with the replacementGm2

→Gl2 and another, suitable choice ofD. ~Actually, due to
their sign error, this last proposal agrees with the pract
proposition made in Refs.@14,15#.!

It remains to clarify the choice ofD in Eq. ~5.1!. Up to
now we have implicitly assumed thatD was constant. There
are, however, several reasons for suggesting a non-con
D. The first reason concerns energy-momentum losses a
ciated with cusps. To see things better, let us use a temp
gauget5t and concentrate on the energy loss implied
Eq. ~5.1!. One finds simply

Elost52
4

3
Gm2E E ds dt D

v• v̈

12v2
, ~5.2!

wherev(s,t)[ ż(s,t). At a cuspv2(s,t)51. As v2(s,t)
<1 everywhere, near a cusp one will havev2(s,t)51
2(as21bst1ct2)1O„(s1t)3

… where the parenthesis i
a positive definite quadratic form. This shows that, ifD is
constant, the integralElost;**ds dt(12v2)21 is logarith-
mically divergent~as we explicitly verified on specific string
solutions!. As the real energy loss to gravitational or dil
tonic radiation from~momentary! cusps is finite, this shows
that Eq.~5.1! overestimates the importance of back react
due to cusps. In other words, if one tries to complete
equations of motion of a string by adding the force~5.1! with
D5 const, this reaction force will prevent the appearance
real cusps. As the calculations of Ref.@11#, using the ‘‘ex-
act’’ nonlocal gravitational radiation, find that cusps a
weakened but survive, it is clear that one must someh
7-16
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soften the ‘‘local’’ force ~5.1! if we wish to represent ad
equately the physics of cusps. At this point it is important
note that the proposal~5.1! lacks worldsheet covariance
which means, on the one hand, thatD has introduced a loca
coordinate length or time scale on the worldsheet, rather t
an invariant interval and, on the other hand, that one m
specify a particular time-slicing of the worldsheet. As t
ratio between coordinate lengths and times and proper in
vals is locally given by the square root of the conform
factor ef5z8252 ż2 (512v2 in temporal gauge!, it is
natural to think that a better measure of the coordinate in
val D to use in Eq.~5.1! might vary along the worldshee
because it incorporates some power ofef. This might~if this
power is positive! prevent the logarithmic divergence of th
integral~5.2!. At this stage, a purely phenomenological pr
posal is to takeD in Eq. ~5.1! of the form

D~s,t!5 f ~2 ż2!h2l, ~5.3!

wheref is a dimensionless factor,h is a positive power, and
l the wavelength of the radiatively dominant mode emit
by the string. We introduced a factor two for convenien
because, in the case of loops for which the fundame
mode is dominant, the wavelength isL/2 where L is the
invariant length of the loop. On the other hand, if we co
sider a loop carrying mainly high-frequency excitations,
an infinite string, it is clear thatD should not be related to th
total length L, but to a length linked to the scale of th
principal modes propagating on the string.

Let us briefly comment on the lack of worldsheet cova
ance of Eq.~5.1! and on its consequences. Eq.~5.1! emerged
as a local approximation to an integral which had the sa
formal expression in all conformal gauges. The ‘‘local ba
reaction approximation’’ procedure has, among other thin
violated the formal symmetry betweent ands on the world-
sheet. From the formal point of view this loss of symmetry
certainly unpleasant and it would be nicer to be able to w
a local force density which respects the symmetry of
worldsheet conformal gauges, and does as well as Eq.~5.1!
in entailing a positive energy loss quantitatively compara
to the result~5.2! ~which will be seen below to be an ad
equate representation of the actual energy loss!. We failed to
find such a covariant local force density. This is why w
propose to use Eq.~5.1!, despite its formal imperfections, a
a substitute to the exact, nonlocal gravitational radiat
damping. From this point of view, the asymmetry betweet
ands in Eq. ~5.1! can be interpreted as a sign that the pur
local expression~5.1! tries its best to incorporate the, in re
ality, global damping effects by selecting special time sl
ings of the worldsheet (t5const lines, and their orthogona
trajectories!. A natural physical choice of special time slice
@necessary to define properly the meaning of Eq.~5.1!# is to
consider the spatial sections associated to the~instantaneous!
center of mass-frame of the string.@Note that the numerica
calculations below of the energy loss~5.2! are performed in
the string center of mass frame.# For a free Nambu-Goto
string in flat space, this definition is compatible with using
worldsheet gauge which is both conformal and temporal~i.e.,
t}Pm

stringzm). Therefore, in such a case, the~orthogonal!
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worldsheet vector field]/]t is well defined~both in direc-
tion and in normalization!, which means thatFm , Eq.~5.1! is
well defined, on the worldsheet, as a spacetime vector loc
orthogonal to the worldsheet. We shall admit that the defi
tion of Fm can be smoothly extended to the case where
~Nambu! string moves in a curved background spaceti
~say a Friedmann universe!. When working in the approxi-
mation of a flat background the expression~5.1! can be used
directly as right-hand side of the standard, flat-space, con
mal gauge string equations of motion:hmn( z̈n2z9n)5Fm .
@Note that we use here a flat-space worldsheet gauge,
~2.7! with gmn→hmn .# Note finally that the actual numerica
simulations of a string network introduce a particular tim
slicing and one might also decide~for pragmatic reasons! to
use it to define thet5const slices of Eq.~5.1! ~i.e., to ne-
glect the Lorentz-transformation effects associated to
center of mass-motion of the strings!.

A first check of the physical consistency of the propo
~5.3! consists in verifying that, despite the nonconstancy
D, the integrated energy loss~5.2! will be positive for all
possible loop trajectories. Integrating by parts Eq.~5.2! one
finds

Elost5
4

3
Gm2f ~2l!E E ds dt~12v2!h

3F v̇• v̇

12v2
12~12h!

~v• v̇!2

~12v2!2G . ~5.4!

This is manifestly positive~and finite! as long as 0,h,1.
Assuming this to be the case, the question is then: Are th
values off andh ~after having decided on a precise defin
tion of l) such that the corresponding damping force~5.1!
gives a reasonably accurate description of the ‘‘exact’’
fects of energy loss to gravitational radiation? We did not
to answer this question in full generality. For simplicity, w
fixed the powerh to the valueh5 1

2 ~which seems intuitively
preferred as it evokes a Lorentz contraction factor aris
because we look at string elements ‘‘moving’’ with relati
istic speeds!. Then we compared the energy loss due to E
~5.1! to the energy radiated in gravitational waves as~com-
puted@using Eq.~4.74!# in the literature~both energy losses
being evaluated in the rest frame of a free string!. As a
sample of loop trajectories we consider Burden loops@33#

z~t,s!5
1

2
@a~u!1b~v !#, ~5.5!

a5
L

2p F 1

m
cos~mu!eW31

1

m
sin~mu!eW1G , ~5.6!

b5
L

2p F1

n
cos~nv !eW32

1

n
sin~nv !eW18G , ~5.7!

where

u5
2p

L
~t2s!, v5

2p

L
~t1s!,
7-17
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eW185 cosceW11 sinceW2 . ~5.8!

This family of solutions depends on the overall scaleL,
which is the total invariant length of the loop (M5mL), on
two integersm andn, and on the anglec. Our parameterc
coincides with the anglec in @33#, denotedw in @2#. The
actual oscillation period of the loop isT5L/(2mn) which
leads us to choosing 2l52T5L/mn in Eq. ~5.3!. With this
choice we computed the energy loss~5.2!. The calculation is
simplified by noting, on the one hand, that, for this family
loops, v• v̈52(2p/L)2@(m21n2)/2#v2, and on the other
hand that the worldsheet integral in Eq.~5.2! can be rewrit-
ten in terms of an average over linear combinations of
two angles 2pm(t2s)/L and 2pn(t1s)/L. This yields
simply for the average rate of energy loss

Gm,n[
Ėlost

Gm2
5

4

3
f
m21n2

2mn
g, ~5.9!

where

g54E
0

p

dxE
0

p

dyF2A12v21
1

A12v2G , ~5.10!

with

v25
1

2 F12
1

2
~11 cosc! cosx2

1

2
~12 cosc! cosyG .

~5.11!

We plot in Fig. 1Gm,n as a function of the anglec, for the
nominal value f 51 and for the two cases (m,n)5(1,1),
(m,n)5(1,3). ~As said above there is a simple scaling la
for the dependence onm andn.! If one compares this figure
with the figures published in@33,2# ~Fig. 7.6, p. 205 there!
one sees that they give a roughly adequate numerical re
sentation of energy losses to gravitational radiation if

f .0.8. ~5.12!

FIG. 1. Dimensionless energy loss rate Burden loops w
(m,n)5(1,1) and (1,3).
02351
e

re-

The fact that our present ‘‘best fit’’ value of the factorf leads
to values ofD which are numerically comparable toL @when
(m,n)5(1,1)] rather than to a smaller fraction ofL should
not be considered as physically incompatible with the idea
using a local approximation to back reaction. Indeed, on
other hand, the rough justification of the local approximati
given in Sec. IV suggestedD;p/v;l/2, i.e., something
like L/4, and, on the other hand, numerical computatio
show that the energy lost to dilaton waves~with coupling
a51) is smaller than that lost to gravitational waves by
factor of order 3 or so~part of which is simply due to the fac
that there are two independent tensor modes against one
lar mode!. Therefore, as we useD only as aneffectivepa-
rameter to model gravitational damping it is normal to e
up with an increased value ofD/L.

Clearly, more work would be needed to confirm that t
modified local dilaton reaction~5.1! can be used as a phe
nomenological representation of gravitational reaction. O
main purpose here was to clarify the crucial sign proble
associated to gauge fields, and to give a first bit of evide
indicating that Eq.~5.1! deserves seriously to be consider
as an interesting candidate for mimicking, in a computatio
ally nonintensive way, the back reaction of gravitational
diation. We are aware that several important issues will n
to be further studied before being able to use Eq.~5.1! in a
network simulation. Some numerically adequate definition
l will have to be provided beyond a case by case definiti
which in the case of long loops decorated by a regular ar
of kinks, as in Ref.@11#, would be something like 2l
;L/N whereN is the total number of kinks. We note in thi
respect that a Burden loop withm51 andn@1 provides a
simple model of a long, circular loop decorated by a trav
ling pattern of small transverse oscillations. However,
local approximation~5.1! cannot be expected to be accura
in this case, because the radiation from purely left-moving
right-moving modes is known to be suppressed@2#. This sup-
pression is not expected to hold in the more physical gen
case where the transverse oscillations move both ways.
accuracy of the local approximation~5.1! should therefore be
tested only in such more generic cases.

The explicit expression~5.1! must be rewritten in the tem
poral, but not necessarily conformal, worldsheet gauges u
in numerical simulations, and the higher time derivatives
Fm must be eliminated by using~as is standard in electrody
namics @34# and gravitodynamics@32#! the lowest-order
equations of motion.~These last two issues have alrea
been treated in Refs.@14,15#.! Finally, we did not try to
explore whetherh51/2 is the phenomenologically preferre
value. To study this point one should carefully compare
effects of Eq.~5.1! on the weakening of cusps and kinks wi
the results based on the exact, nonlocal reaction force@11#.
~The facts that the curves in Fig. 1 are flatter than the co
sponding figures in@33,2# suggest that a smaller value ofh
might give a better fit.!

VI. CONCLUSIONS

In this paper we studied the problem of the radiation
action on cosmic strings caused by the emission of grav

h
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tional, dilatonic and axionic fields. We assume the abse
of external fields. We use a straightforward perturbative
proach and work only to first order inG. Our main results are
the following.

Using the results of Refs.@17,18# for the renormalization
of the string tensionm, we write down the explicit form, a
linear order inG, of the renormalized equations of motion
a string interacting with its own~linearized! gravitational,
dilatonic and axionic fields.~Within our framework, we veri-
fied the on shell finiteness of the bare equations of mot
which is equivalent to their renormalizability.!

We have extended a well-known result of Dirac by pro
ing for general linearized fields that, in the decomposit
~4.14! of the renormalized self-force, only the time
antisymmetric contributionF m

reac5Fm(Areac), whereAreac(x)
is the half-retarded minus half-advanced field, contribu
after integration over time, to the overall damping of t
source.~This result had been assumed without proof in p
vious work on the topic.! The ‘‘reactive’’ self-forceF m

reac is
manifestly finite ~and independent of the renormalizatio
length scaleDR), and is nonlocal.

We have critically examined the proposal of Battye a
Shellard @14,15# ~based on an analogy with the Abraham
Lorentz-Dirac treatment of self-interacting point charges! to
approximate the nonlocal integral~4.15! entering the reactive
self-forceF m

reac by the local expression~4.18!. For this pur-
pose we found very convenient to usedimensional continu-
ation, a well known technique in quantum field theory. W
found that the local back reaction approximation gives a
damping for the axionic field, and a vanishing net ener
momentum loss for the gravitational one. We argued that
ultimate origin of these physically unacceptable results co
from trying to apply the local back reaction approximation
gaugefields. The nonpositivity of the local approximation
the damping comes from combining the modification of t
field Green functions implicit in the local back reactio
method, with the delicate sign compensations ensured
shell only, by the transversality constraints of the source
gauge fields.

By contrast, we find that the local approximation to t
dilatonic reaction force has the correct sign for describin
radiation damping. In the case of a nongauge field such
the scalar dilaton there are no delicate sign compensat
taking place, and the coarse approximation of the field Gr
function, implicit in the local back reaction method, can~and
does! lead to physically acceptable results.

Taking into account the known similarity between t
gravitational and dilatonic radiations~e.g., @9#!, we propose
to use as effective substitute to the exact~nonlocal! gravita-
tional radiation damping the ‘‘dilatonlike’’ local reactio
force ~5.1!, with a suitably ‘‘redshifted’’ effective lengthD,
Eq. ~5.3!. This force is to be used in the right-hand side
the standard, flat-space conformal-world-sheet-gauge s
equations of motion, witht-slicing linked, say, to the globa
center-of-mass frame of the string. The numerical calcu
tions exhibited in Fig. 1 give some evidence indicating th
Eq. ~5.1! deserves seriously to be considered as an inter
ing candidate forphenomenologically approximating, in a
computationally nonintensive way, the back reaction
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gravitational radiation.@We recall that the exact, nonloca
approach to gravitational back reaction, defined by E
~4.14!, is numerically so demanding that there is little pro
pect to implementing it in full string-network calculations#
More work is needed@e.g., by comparing the dynamical evo
lution of a representative sample of cosmic string loops
der the exact renormalized self-force~4.14! and our proposed
~5.1!# to confirm that our proposed substitute~5.1! is a phe-
nomenologically acceptable representation of gravitatio
reaction~or of the combined dilatonic-gravitational reactio
as string theory suggests that the dilaton is a mod
independent partner of the Einstein graviton!.

It will be interesting to see what are the consequence
considering the effective reaction force, Eq.~5.1!, in full-
scale network simulations~done for several different value
of Gm) of gravitational radiation. Until such simulation
~keeping track of the damping of small scale structure
long strings! are performed, one will not be able to give an
precise prediction for the amount and spectrum of stocha
gravitational waves that the forthcoming Laser Interferom
ric Gravitational Wave Observatory~LIGO! or VIRGO net-
work of interferometric detectors, possibly completed
cryogenic bar detectors, might observe.
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APPENDIX

In this Appendix we will give some details on the deriv
tion of Eqs.~4.24!, ~4.25! using dimensional continuation.

A nice feature of analytic continuation is that it allow
one to work ‘‘as if’’ many singular terms were regular. Fo
instance, the factors (V2)(22n)/2 and (V2)2n/2 that appear in
Eqs.~4.22!, ~4.23! blow up on the light cone (V250) when
n54. However, if we take the real part ofe542n large
enough@even so large as corresponding to negative val
for Re(n)], theseV-dependent factors become finite, an
actuallyvanishing, on the light cone. This remark allows on
to deal efficiently with theV-dependent factors appearing
Eqs. ~4.22!, ~4.23!. We are here interested in the contrib
tions toAret(z) and]mAret(z) coming from a small neighbor
hoodz85z(t8,s8) of z5z(t,s) on the worldsheet. Let us
for simplicity, denotev[V2. We first remark that when
(t8,s8)→(t,s), v52„z(t,s)2z(t8,s8)…2 admits an ex-
pansion in powers oft82t ands82s of the form

v5v21v31v41•••, ~A1!

with v252 ż2@(t82t)22(s82s)2#, and

v35O„~t82t!31~t82t!2~s82s!1~t82t!~s82s!2

1~s82s!3
…,etc. ~A2!

Then we can formally expand theV-dependent factors o
Eqs.~4.22!, ~4.23! in powers oft82t ands82s as follows:
7-19
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T@vau~v!#5Fv2
a1av2

a21~v31v41••• !

1
a~a21!

2
v2

a22~v31••• !21••• G
3@u~v2!1d~v2!~v31v41••• !

1d8~v2!~v31••• !21•••#.

Here and below, the symbolT will be used to denote a~for-
mal! Taylor expansion of any quantity following it. This ex
pansion is valid~at any finite order! when Re(a) is large
enough, and is therefore valid~by analytic continuation! in
our case wherea5(22n)/2 or 2n/2. A technically very
useful aspect of the above expansion is that all the te
containingd(v2) or its derivatives givevanishingcontribu-
tions @becausev2

a2kd ( l )(v2) vanishes if Re(a) is large
enough, so that, by analytic continuation,v2

a2kd ( l )(v2)50
for all values ofa]. The net effect is that the contributio
coming from a small string segment2D/2,(s82s),D/2
arounds ~with D being much smaller that the local radius
curvature of the worldsheet! can be simply~and correctly!
written as the following expansion:

@Aret~z!#D[eE
s2D/2

s1D/2

ds8E
2`

t1
dt8Sv (22n)/2u~v!

5eE
s2D/2

s1D/2

ds8E
2`

t1
dt8T~Sv (22n)/2!u~v2!

5eE
s2D/2

s1D/2

ds8E
2`

t2uDsu
dt8T~Sv (22n)/2!.

Here, we have introduced an arbitrary upper limitt1, sub-
mitted only to the constraintt ret,t1,tadv ~for instancet1
could bet), and which replaces the missing theta functi
u(z02z80) by selecting the retarded portion of the oth
theta functionu(v). As above, the symbolT denotes a for-
mal Taylor expansion. The expansionT(Sva) is simply ob-
tained by multiplying the expansion~A1! of v with that of
S(t8,s8), namely

T@S~t8,s8!#5S~t,s!1~t82t!Ṡ1~s82s!S81•••.
~A3!

Similarly we have

@]mAret~z!#D52eE
s2D/2

s1D/2

ds8E
2`

t2uDsu
dt8T~SVmv2n/2!,

~A4!

as well as corresponding expressions for the advanced fi

@Aadv~z!#D5eE
s2D/2

s1D/2

ds8E
t1uDsu

1`

dt8T~Sv (22n)/2!,

~A5!
02351
s

lds

@]mAadv~z!#D52eE
s2D/2

s1D/2

ds8E
t1uDsu

1`

dt8T~SVmv2n/2!.

~A6!

As a check, we first computed the ultraviolet divergent co
tributions toAret(z) and]mAret(z). We find

Aret~z!52
1

ż2 S 2

e D2S, ~A7!

]mAret~z!5
1

~ ż2!2 S 2

e D F2S z̈m1Szm9

14Szm8 S z8•z9

ż2 D 14S żmS ż• z̈

ż2 D
12S8zm8 22Ṡ żmG . ~A8!

As it should, Eq.~A8! yields exactly the same divergences
we found in Sec. III by introducing a cut-offd in the s8
integration in four dimensions. More precisely, Eq.~A8! co-
incides with Eq.~3.11! if we change 2/e→ log 1/d. Let us
note that, in the present approach, the renormalization s
DR would enter by being introduced as a dimensio
preserving factor in the dimensionful coupling constants, l
Newton’s constantG, sayG(n)5G(n54)DR

a .
Our main interest is to compute the ‘‘local approxim

tions’’ to the reaction field

Areac~x!5
1

2
@Aret~x!2Aadv~x!#, ~A9!

and its derivatives. Dimensional continuation gives an e
cient tool for computing these. Indeed, combining the pre
ous expansions we can write

Areac~x!52eE
2D/2

D/2

ds8E
t1uDsu

1`

dt8u~V0
2!

3T(t82t)odd~S„V2!(22n)/2
…, ~A10!

]mAreac~x!522eE
2D/2

D/2

ds8E
t1uDsu

1`

dt8u~V0
2!

3T(t82t)odd„SVm~V2!2n/2
…, ~A11!

where T(t82t)odd denotes the part of the Taylor expansio
which is odd int82t. Moreover, as we know in advanc
~and easily check! that thes8-integrands in Eqs.~A10! and
~A11! are regular ats850, we can very simply write the
result of the local approximation~4.18! @with a correspond-
ing definition for Areac

local(z)] by replacings85s in the inte-
grands of Eqs.~A10!, ~A11!

@Areac~z!# local52eDE
t

1`

dt8T(t82t)odd
s85s

@S~V2!(22n)/2#,

~A12!
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@]mAreac~z!# local

522eDE
t

1`

dt8T(t82t)odd
s85s

@SVm~V2!2n/2#. ~A13!

Here,T(t82t)odd
s85s denotes the operation of replacings8 by s

and keeping only the odd terms in the remaining Taylor
pansion int82t. This simplifies very much the computatio
of the reactive terms~making it only a slight generalization
of the well known point-particle results, as given for a ge
eral source in, e.g.@31#!. Indeed, inserting the following ex
pansions:

Vm~t8,s!.2~t82t!żm2
1

2
~t82t!2z̈m2

1

6
~t82t!3 ẑm ,

~A14!

S~t8,s!.S~t,s!1~t82t!Ṡ1
1

2
~t82t!2S̈,

~A15!

V2~t8,s!.2 ż2~t82t!2F11~t82t!S ż• z̈

ż2 D
1

1

4
~t82t!2S z̈• z̈

ż2 D 1
1

3
~t82t!2S ẑ• ż

ż2 D G ,

~A16!

in Eqs.~A12!, ~A13! we get our main results

@Areac~z!# local5
D

ż2 F Ṡ2SS ż• z̈

ż2 D G , ~A17!

@]mAreac~z!# local5
D

~ ż2!2 F1

3
S ẑm1Ṡ z̈m1S̈ żm

24Ṡ żmS ż• z̈

ż2 D 22S z̈mS ż• z̈

ż2 D
2S żmS z̈• z̈

ż2 D 2
4

3
S żmS ż• ẑ

ż2 D
r
e,

02351
-

-

16S żmS ż• z̈

ż2 D 2G . ~A18!

These results were also obtained~as a check! from Eqs.
~A10!, ~A11! without using in advance the simplification o
putting s85s in the integrand.

We have also performed a direct check on these fi
expressions by comparing them to the well known poi
particle case@29–31#. Indeed, we have seen above thatAreac

local

and ]mAreac
local could be thought of as being generated by t

effective sourceSeff.(t8,s8)5d(s82s)DS(t8,s), i.e., a
source along the world-lineLs , defined bys85s. For any
given value ofs, by transforming the coordinate timet8 into
the proper times5*ef/2dt8 alongLs and by renormalizing
in a suitable way the sourceDS(t8,s)[ef/2S̃(s) @so that
the stringy spacetime source*d2s8Seff.(t8,s8)d4(x
2z(s8)# transforms into the standard point-particle sour
*ds S̃(s)d4

„x2z(s)…, we recovered from Eqs.~A17!, ~A18!
known point-particle results@31#. This check is powerful
enough to verify the correctness of all the coefficients in E
~A17!, ~A18!.

In order to compare directly our expressions with wh
was derived by Battye and Shellard in@14,15#, let us write
Eq. ~A18! for the axion field. We get

Hlmn5
4GlD

~ ż2!2 F1

3
ẑ[lVmn]1 z̈[lV̇mn]1 ż[lV̈mn]

24ż[lV̇mn]S ż• z̈

ż2 D 22z̈[lVmn]S ż• z̈

ż2 D G , ~A19!

whereK [lmn]5Klmn1Kmnl1Knlm. Note that, when identi-
fying the basiccontravarianttensorszm andVmn, the tensor
Hlmn ~and the force densityF m) must be identical in our
conventions and in the ones of Refs.@14,15# ~who use the
opposite signature!. However, our result Eq.~A19! differs,
after the substitutionGl→ f a/8, in many terms from the sec
ond Eq.~31! of Ref. @15#. Whatever the corrections are th
we could think of doing on the second term in their Eq.~31!
~which is dimensionally wrong, probably by a copying err
leading to a forgotten overdot on one of the two terms!, we
saw no way of reconciling their result with ours~even after
expanding explicitlyVmn5 żmzn82 żnzm8).
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