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Duality invariance of cosmological perturbation spectra
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I show that cosmological perturbation spectra produced from quantum fluctuations in massless or self-
interacting scalar fields during an inflationary era remain invariant under a two parameter family of transfor-
mations of the homogeneous background fields. This relates slow-roll inflation models to solutions which may
be far from the usual slow-roll limit. For example, a scale-invariant spectrum of perturbations in a minimally
coupled, massless field can be produced by an exponential expansiomeweith, or by a collapsing universe
with ac(—1)%3, [S0556-282(99)02814-3

PACS numbd(s): 98.80.Cq

The spectrum of perturbations on large scales is a key test The canonically normalized quantum field corresponds to
of any models of the early universe. During an inflationarythe conformal field perturbatiom=ad¢, where the scale
era quantum fluctuations on small scales become stretchddctora= [Hdt. Perturbations obey the wave equation
beyond the horizon generating inhomogeneities on super-
horizon scales that are otherwise inexplicable in the standard U+ (K2 + u?)u=0, 2
big bang mode[1-3]. Conventional models of slow-roll in- ) ) ) )
flation generally predict an almost scale-invariant spectrunf/hich corresponds to an oscillator with a time dependent
of adiabatic density perturbatiori@]. As major observa- ©ffective mass-squared
tional programs are now under way to produce detailed maps
of these perturbations, it is important to investigate whether wl=-—,
one can uniquely reconstruct the inflationary history of the

universe from the spectrum of inhomogenesities. This Y€y here a prime denotes a derivative with respect to conformal

tion has received considerable attention in recent years in the - | = [dt/a. During a conventional inflationary eyz® is

context of slow-roll inflation[5] where it has been realized d . . .
| . . ) negative an r monotonically, leading to the ampli-
that there is a degeneracy in the spectrum of adiabatic de egative and decreases monotonically, leading to the amp

sity perturbations. This could be removed by a detection o ication of vacuum fluctuations. Modes on arbitrarily small
yp : y cales k?/|u?|—) are presumed to occupy the flat space-

the gravitational wave background on the same scale whic ik
in the slow-roll approximation, gives a direct record of theq.rme vacuum stateuf—e /@)' These vacuum fluctua}-
tions eventually lead to a specific spectrum of perturbations

teiglolunon of the scale factor, and hence of the inflaton poten(—)n large scalesk®/ 12— 0), the form of which is determined

B , , solely by u?(7).
y contrast there has been relatively little study of the ) :
reconstruction of the evolution in the non-slow-roll c46¢ Cons_|der the most commonly studied case ofpa poyver-law
Recently it has been discovered that the spectra of perturngpans'orfg]’ yvhere the scale factor grows ast?, which
tions produced in so-called pre-big bang models of the earl§0”eSpondS’ in terms of the conformal time, to
universe[7], based on solutions of the low energy string
effective action, are invariant under SLE, symmetry a=a,
transformationgincluding S-duality transformationsof the
background field§8]. This raises the interesting question of |, oq
what is the most general type of cosmological evolution that
yields a given perturbation spectrum. .

I will consider linear perturbationsd¢(n,x'), about a V=
homogeneous background( ), in a homogeneous cosmol-
ogy. For a minimally coupled massless field we can neglecfjote thata—o ast— only coincides with the limity
any back-reaction upon the spacetime curvature to first order,, . for p<1. During an inflationary expansion with>1
and so perturbations obey the wave equation there is an event horizon ang—0 from below asa— .
The effective mass in Eq2) is

Y

7o

(1-2v)12
) . (3

1

N| W

8¢p+3HEp—V264=0, (1)
, V-4

where a dot denotes derivatives with respect to cosmic time = 7" ®)
t, and H corresponds to the expansion rate of the homoge-
neous hypersurfaces. One can decompose the perturbatioNste that forv=*+1/2 the effective masg? vanishes and
into independent wavemodekh, (7) Qr(X'), where Q,(x') there is no particle production. This corresponds to a static
is the eigenfunction of the spatial Laplaci&® with eigen-  universe p=0) or a spatially flat Friedmann-Robertson-
value — k2. Walker (FRW) radiation dominated universe € 1/2). Dur-
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ing an inflationary expansion with>1 andv>3/2, u?— rather surprising at first sight since the scale invariance of the
—o as p— 0~ which leads to fluctuations on scales largerde Sitter spectrum can be understood as being due to the
than the horizon|k#|>1. However, it has previously been time-invariant nature of this solution, and a collapsing dust
noted[10] that a collapsing universe could in principle pro- universe seems to be far from static. However, there is an
duce large scale perturbations from small scale quanturimportant difference between the two cases. 810 (which
fluctuations) 5| also represents an effective event horizon inincludes conventional inflation models wigh>1) the scalar

a collapsing model witlp<1 where —0 from below as field perturbations become frozen in on large scalesias
a—0. Any given comoving mod& gets pushed outside ho- =« #?"~2in Eq. (9). ThusPs, remains constant for any given
rizon as| | decreases anky—0 ast—0~ for p<1. For modek as|k»n|—0. But for <0, the perturbations grow
|v|<1/2, i.e., 0<p<1/2, the effective mass-squared is  outside the horizon wittPs, 74" as|k#n|—0. The am-
positive and becomes large gs—0~ which strongly sup- plitude of the perturbations as they cross outside the horizon

presses fluctuations on large scalfs{<1). (|kn|=1) grows asH?x72~3, and thus the amplitude of
The general solution of the wave equatit®) during a modes already outside the horizon grows at precisely the
power-law expansion-contraction [i$1] same rate fow= —3/2 and at any given time the spectrum is
scale-invariant on large scalelk | <1).
u(m) =Ik7l[u H (kgD +u_HZ(k7)],  (6) If one asks what is the most general cosmological evolu-

0 ) _ tion which will lead to an equivalent time-dependent mass
whereH{;} are Hankel functions of ordgw|. Choosing the  for the perturbations and a scale-invariant spectrum of per-

quantum vacuum state at early times on small scaes ( turbations in massless fields, one obtains the simple solution
— —») then determines the spectrum of perturbations on
(1
7

large scalesKn—0)

) () which describes a non-singular metric smoothly interpolating
between a collapsing dust solution at early timegs«— )
and an exponentially expanding de Sitter solution at late

-1

2
[

7

a(n)=Cy , (11)

 C2(|w)k3(— k)t 2"
- (2m)?

u

where the power spectrum is conventionally definedPgs

=k3|u2|/27r%, and the numerical coefficient times (7—0). , ,
One can go on to ask whether given any particular cos-
Z\V\F(M) mological solutiona(#) one can write down the most gen-
Clv)= s (8  eral evolutiona(») that would give rise to an equivalent

3/ :
2571 (312) time-dependent mass-squarge?, and hence perturbation

pectruniP,. The answer turns out to be that the same spec-
rum of perturbations on large scales will be produced by the
two parameter family of solutions

_ C(|V|))2( H )2 e3-20 ’
Pou| g [35) Ckn* @ at)~a(n=Catn) [ 27
W*a(n)

The spectrum of scalar field perturbations produced on larg
scales [k#n|>1) can therefore be written as

(12

In the limit of de Sitter expansion in flat Friedmann- ] _ )

Robertson-WalkefFRW) spacetimep—c andv—3/2, we  1he constanC describes an arbitrary rescaling of the whole

recover the famous resm5¢=(H/2w)2 at horizon crossing Metric which does not change the essential physics of the

(kp=—1) and the spectrum is independent of scale. solutions, but the constant of integratigy describes a one
Notice, however, that the spectruRy given in Eq.(7) is ~ Parameter family of different solutions.

invariant under the transformation—v=—v or, equiva- For examplei substituting in t_he power-law inflationary
lently solutions given in Eq(3) one obtains

SR

7

The perturbation spectrum produced during a power-law in- Gravit_ati_ona_l Wa\(e$tran_sverse, traceless perturbations_ of
; . . ST the metrig in Einstein gravity obey the same wave equation

flationary expansion W|t.rp>1 is |nd|st|ngwsh§ble from the as a minimally coupled massless scalar figl$l and hence

spectrum produced during a power-law collapsel, where  the graviton spectrum is proportional Ry, This is often

p is given by Eq.(10). There are two fixed points whepe  assumed to give an unambiguous record of the evolution of

=p. These occur wherp=1/3 or p=1, which correspond the cosmological scale factoa(n). However an identical

to v=0 and|v|—~ respectively. spectrum of gravitational waves will be produced by the two
Thus one obtains a scale invariant spectrum of perturbggarameter family of solutions given in E(L2).

tions not just for de Sitter inflation in flat FRW spacetime  This invariance of cosmological perturbation spectra has

(wherep—) but also forp=2/3, which corresponds to a already been noted in the context of superstring cosmology

collapsing dust-dominated FRW universe. This result iswhere the perturbation spectra of fields in the low energy

7 1/2]
~ 1-2p a(n)=Cyq| —
p%p—m. (10 71

1) . } . (13)
71
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string effective action may be invariant under symmetries ofthere is a duality invariance of the acti®rand Hamiltonian

the action. In the pre big bang scenafid the graviton and
dilaton fields are minimally coupled in the conformal Ein-
stein frame where the metric evolvesast®. p=1/3 is a
fixed point of the transformation given in E¢LO) and the

graviton and dilaton spectra on large scales remain invariarl

under T-duality or S-duality transformations of the back-

ground model. However the axion-type fields are minimally

coupled in the conformally related axion framgg,12].
SL(2Z) Sduality transformations of the power-law vacuum
solutions lead to a scale factor in the axion frame whic
evolves as given in Eq13) [8]. By constructing explicitly
SL(2R) invariant perturbation variables it was shown that
both the axion and dilaton spectra remained invariant und
arbitrary SL(2R) transformationg8]. Equation(12) gener-
alizes this result to arbitrary background solutionsd0t),
and to theories which may or may not have their origin in
superstring theory.

The wave equatio2) for the perturbatioru may be de-
rived from an effective action

1
S= EJ dnf d3{u’?—u,u;—p?u?, (14
with the corresponding Hamiltonian
1 3 2 2,2
H=§ dx{mg+uu;+ uut, (15

where the momentum canonically conjugateuts = ,=u’.
The actionSand Hamiltoniar?{ both remain invariant under
the transformation given in Eq12) which leavesu(#) and
w?(n) invariant. It is interesting to compare this with a dif-
ferent invariance which has also recently been noted in th
context of superstring cosmolog$3], and applied to gener-
alized cosmological perturbatiof$4]. This is an invariance
of the effective action

c 1 3y 52 12
S=5 | dn | d°xa{6¢'"—5¢ 564}, (16)
and corresponding Hamiltonian
» 1 3 -2,_2 2
H= E d X{a ’7T§¢+a 5¢,i5¢,i}! (17)

written in terms of the field perturbatiofi¢ and its conju-
gate momentunw5¢=a26¢’. The Lagrangian in Eq(16)
differs from that in Eq(14) by a total derivative

S=S 1Jd de* d

which does not affect the equation of motion, Ef), but
does change the Hamiltonian

a’
—Uu
a

2], (18)

14 1
22—z

- a a’
H=H+ J d3x{
a 2

Y

a (19

H under which the “pump field"a?—a?=a"? is inverted
and the field perturbatiof¢ is exchanged with its canonical
momentumm 5, [14]. The Hamiltonian’ does not remain
variant under the transformation in E@L2), but neither
oes the Hamiltoniari{ remain invariant under the duality
transformation in Ref[14]. The effective action is only de-
fined up to boundary terms and due to the explicit time-
dependence o&(#), the Hamiltonian is not uniquely de-

pfined. Both transformations, however, represent symmetries

of the equation of motion.
The most cosmologically significant perturbation spec-

drum produced during an inflationary era in the early uni-

verse is likely to be the primordial spectrum of adiabatic
density perturbations on large scales induced by the pertur-
bations in the scalar field which drives inflation. To study the
evolution of this field requires us to include the self-
interaction potential of the field and the back-reaction of
metric fluctuations. Fortunately Mukhan¢5] has shown
that the wave equation for the gauge invariant field perturba-
tion

4

u=a 5¢+¢ﬁ, (20)

where s is the gauge-dependent curvature perturbatid,
can still be written in the form given in Eq2) but with a
time-dependent mass-squared

"

2_ _°
M S (21)
wherez=ag/H. Quite generally we can write
e
| 3y
Z=a %, (22)

where the effective barotropic index= ¢2/(V+ ¢2/2). In
the special case of power-law inflation driven by a scalar
field with exponential potentiak}bocH and hencey is a con-
stant and we havexa.

Starting from any known solutioz(») we obtain the
identical spectrum of perturbatiorig, from the two param-
eter family of solutions

!

23 =can [
n n n 7]*22(7],),

(23)

which leavesu? given in Eq.(21) invariant.
The gauge-invariant curvature perturbation3,16,4 is
related to the field perturbatiam by

u

S (24)

(=gt = 59
¢

This is usually evaluated in terms of the quantities at horizon
crossing. This is becausg becomes constant on super-
horizon scales for adiabatic perturbations. In this casezthe
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acquires an implicit scale dependence due to the differerdiven z(#). The slow-roll approximation requires that the
times at which different scales are evaluated. However oneffective barotropic indexy in Eq. (22), is small and slowly
can also evaluaté¢ at a fixed time, such as the end of infla- varying, so that to zeroth order in the slow-roll parameters
tion, in which case the scale dependencé if due solely to  [5], the evolution ofz is determined by the growth of the
the scale dependence wfandz contributes a scale indepen- scale factora~ %~ 1. This implies thatz’z/z'%2. For the

dent factor. Thus under the transformation given by 8)  general form o&(») which yields a scale-invariant spectrum
the curvature perturbation is rescaled by an overall factopt cyrvature perturbations, given in E(R6), this slow-roll
z/z, but the spectral index condition is badly broken at early times fop/7,|>1.
dinp Evgn in _the slqu-roll limit, the spectrum of curvature per-
4 (25)  turbations is sufficient only to determine the inflation poten-
dink tial up to a one parameter class of soluti¢ss The ampli-
tude of the gravitational wave perturbations is then required
to fix the actual amplitude of the inflation potential. In this
paper | have demonstrated that if one allows behavior which
may be far from the slow-roll limit there is a degeneracy
even in the spectrum of gravitational wave perturbations.
The general solution which yields an almost scale-invariant
spectrum of gravitational waves interpolates between an ini-
tially collapsing universe and a quasi—de Sitter expansion.
However, the asymptotic behavior at late times reproduces

n=1+

remains invariant.

For instance, it is well known that the extreme slow-roll
limit of inflation corresponding de Sitter expansion driven by
a massless scalar field, wherec 71, leads to a scale-
invariant Harrison-Zel'dovichrf=1) spectrum of curvature
perturbations. However substituting this familiar form for
z(7) into Eq. (23 yields the most general evolution which
gives a scale-invariant spectrum as

7\t [ 7)\2 the usual slow-roll result, so in practice this need not be a
2(p)=Cq | —| +|— 26 serious limitation for reconstructing the evolution in the con-
(7) 1
m 7 text of conventional inflation mode[$].

This shows that it is in fact possible to produce a scale- On the other hand the transformation presented here sug-

invariant spectrum of curvature perturbations from inflation9€StS that it m|ght_ be possmle to use slow-rall techniques to
that is far from the usual slow-roll limit. analyze perturbations in models far from the usual slow-roll

Unfortunately it is not possible to uniquely determine theI|m|t if they can be related to slow-roll models. An example

form of the self-interaction potentid(¢) for a givenz(#), of th'TQ’ IS pr_owded by solut|on§ to the IOV\.’ energy string
such as that given in EG26). For example, both power-law effectlve action where perturbation spectra in general axion-
inflation [9] driven by an exponential potential, and naturaldllaton cosmqlog|es can be-related to mugh simpler dilaton-
inflation [17] where the potential energy remains effectively vacuum solutions by a duality transformatii.

constant, can give rise to a power-law spectrum of curvature D.W. would like to thank John Barrow, Ed Copeland,
perturbations witi=constan{18]. However it is possible Andrew Liddle, Jim Lidsey and Karim Malik for helpful
to test the consistency of the slow-roll approximation for acomments.
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