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Duality invariance of cosmological perturbation spectra
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I show that cosmological perturbation spectra produced from quantum fluctuations in massless or self-
interacting scalar fields during an inflationary era remain invariant under a two parameter family of transfor-
mations of the homogeneous background fields. This relates slow-roll inflation models to solutions which may
be far from the usual slow-roll limit. For example, a scale-invariant spectrum of perturbations in a minimally
coupled, massless field can be produced by an exponential expansion witha}eHt, or by a collapsing universe
with a}(2t)2/3. @S0556-2821~99!02814-3#
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The spectrum of perturbations on large scales is a key
of any models of the early universe. During an inflationa
era quantum fluctuations on small scales become stret
beyond the horizon generating inhomogeneities on su
horizon scales that are otherwise inexplicable in the stand
big bang model@1–3#. Conventional models of slow-roll in
flation generally predict an almost scale-invariant spectr
of adiabatic density perturbations@4#. As major observa-
tional programs are now under way to produce detailed m
of these perturbations, it is important to investigate whet
one can uniquely reconstruct the inflationary history of
universe from the spectrum of inhomogeneities. This qu
tion has received considerable attention in recent years in
context of slow-roll inflation@5# where it has been realize
that there is a degeneracy in the spectrum of adiabatic
sity perturbations. This could be removed by a detection
the gravitational wave background on the same scale wh
in the slow-roll approximation, gives a direct record of t
evolution of the scale factor, and hence of the inflaton pot
tial.

By contrast there has been relatively little study of t
reconstruction of the evolution in the non-slow-roll case@6#.
Recently it has been discovered that the spectra of pertu
tions produced in so-called pre-big bang models of the e
universe@7#, based on solutions of the low energy strin
effective action, are invariant under SL(2,R) symmetry
transformations~including S-duality transformations! of the
background fields@8#. This raises the interesting question
what is the most general type of cosmological evolution t
yields a given perturbation spectrum.

I will consider linear perturbations,df(h,xi), about a
homogeneous background,f(h), in a homogeneous cosmo
ogy. For a minimally coupled massless field we can neg
any back-reaction upon the spacetime curvature to first or
and so perturbations obey the wave equation

d̈f13H ḋf2¹2df50, ~1!

where a dot denotes derivatives with respect to cosmic t
t, and 3H corresponds to the expansion rate of the homo
neous hypersurfaces. One can decompose the perturba
into independent wavemodesdfk(h)Qk(x

i), whereQk(x
i)

is the eigenfunction of the spatial Laplacian¹2 with eigen-
value2k2.
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The canonically normalized quantum field corresponds
the conformal field perturbationu5adf, where the scale
factor a5*Hdt. Perturbations obey the wave equation

uk91~k21m2!uk50, ~2!

which corresponds to an oscillator with a time depend
effective mass-squared

m252
a9

a
,

where a prime denotes a derivative with respect to confor
time h5*dt/a. During a conventional inflationary eram2 is
negative and decreases monotonically, leading to the am
fication of vacuum fluctuations. Modes on arbitrarily sm
scales (k2/um2u→`) are presumed to occupy the flat spac
time vacuum state (uk→e2 ikh/A2k). These vacuum fluctua
tions eventually lead to a specific spectrum of perturbati
on large scales (k2/m2→0), the form of which is determined
solely bym2(h).

Consider the most commonly studied case of a power-
expansion@9#, where the scale factor grows asa}tp, which
corresponds, in terms of the conformal time, to

a5a0S h

h0
D (122n)/2

, ~3!

where

n5
3

2
1

1

p21
. ~4!

Note thata→` as t→` only coincides with the limith
→` for p,1. During an inflationary expansion withp.1
there is an event horizon andh→0 from below asa→`.

The effective mass in Eq.~2! is

m252
n221/4

h2 . ~5!

Note that forn561/2 the effective massm2 vanishes and
there is no particle production. This corresponds to a st
universe (p50) or a spatially flat Friedmann-Robertso
Walker ~FRW! radiation dominated universe (p51/2). Dur-
©1999 The American Physical Society07-1
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DAVID WANDS PHYSICAL REVIEW D 60 023507
ing an inflationary expansion withp.1 andn.3/2, m2→
2` as h→02 which leads to fluctuations on scales larg
than the horizon,ukhu.1. However, it has previously bee
noted@10# that a collapsing universe could in principle pr
duce large scale perturbations from small scale quan
fluctuations.uhu also represents an effective event horizon
a collapsing model withp,1 whereh→0 from below as
a→0. Any given comoving modek gets pushed outside ho
rizon asuhu decreases andkh→0 as t→02 for p,1. For
unu,1/2, i.e., 0,p,1/2, the effective mass-squaredm2 is
positive and becomes large ash→02 which strongly sup-
presses fluctuations on large scales (ukhu!1).

The general solution of the wave equation~2! during a
power-law expansion-contraction is@11#

uk~h!5Aukhu@u1H unu
(1)~ ukhu!1u2H unu

(2)~ ukhu!#, ~6!

whereH unu
( i ) are Hankel functions of orderunu. Choosing the

quantum vacuum state at early times on small scaleskh
→2`) then determines the spectrum of perturbations
large scales (kh→0)

Pu5
C2~ unu!k2~2kh!122unu

~2p!2
, ~7!

where the power spectrum is conventionally defined asPu

5k3uuk
2u/2p2, and the numerical coefficient

C~ unu![
2unuG~ unu!

23/2G~3/2!
. ~8!

The spectrum of scalar field perturbations produced on la
scales (ukhu@1) can therefore be written as

Pdf5S C~ unu!
n21/2D

2S H

2p D 2

~2kh!322unu. ~9!

In the limit of de Sitter expansion in flat Friedman
Robertson-Walker~FRW! spacetime,p→` andn→3/2, we
recover the famous resultPdf5(H/2p)2 at horizon crossing
(kh521) and the spectrum is independent of scale.

Notice, however, that the spectrumPu given in Eq.~7! is
invariant under the transformationn→ ñ52n or, equiva-
lently,

p→ p̃5
122p

223p
. ~10!

The perturbation spectrum produced during a power-law
flationary expansion withp.1 is indistinguishable from the
spectrum produced during a power-law collapsep̃,1, where
p̃ is given by Eq.~10!. There are two fixed points wherep̃
5p. These occur wherep51/3 or p51, which correspond
to n50 andunu→` respectively.

Thus one obtains a scale invariant spectrum of pertu
tions not just for de Sitter inflation in flat FRW spacetim
~wherep→`) but also forp52/3, which corresponds to
collapsing dust-dominated FRW universe. This result
02350
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rather surprising at first sight since the scale invariance of
de Sitter spectrum can be understood as being due to
time-invariant nature of this solution, and a collapsing d
universe seems to be far from static. However, there is
important difference between the two cases. Forn.0 ~which
includes conventional inflation models withp.1) the scalar
field perturbations become frozen in on large scales asH2

}h2n23 in Eq. ~9!. ThusPdf remains constant for any give
mode k as ukhu→0. But for n,0, the perturbations grow
outside the horizon withPdf}h24unu as ukhu→0. The am-
plitude of the perturbations as they cross outside the hori
(ukhu51) grows asH2}h2n23, and thus the amplitude o
modes already outside the horizon grows at precisely
same rate forn523/2 and at any given time the spectrum
scale-invariant on large scales (ukhu!1).

If one asks what is the most general cosmological evo
tion which will lead to an equivalent time-dependent ma
for the perturbations and a scale-invariant spectrum of p
turbations in massless fields, one obtains the simple solu

ã~h!5C1F S h

h1
D 21

1S h

h1
D 2G , ~11!

which describes a non-singular metric smoothly interpolat
between a collapsing dust solution at early times (h→2`)
and an exponentially expanding de Sitter solution at l
times (h→0).

One can go on to ask whether given any particular c
mological solutiona(h) one can write down the most gen
eral evolutionã(h) that would give rise to an equivalen
time-dependent mass-squared,m2, and hence perturbation
spectrumPu . The answer turns out to be that the same sp
trum of perturbations on large scales will be produced by
two parameter family of solutions

a~h!→ã~h!5Ca~h!E
h
*

h dh8

a2~h8!
. ~12!

The constantC describes an arbitrary rescaling of the who
metric which does not change the essential physics of
solutions, but the constant of integrationh* describes a one
parameter family of different solutions.

For example, substituting in the power-law inflationa
solutions given in Eq.~3! one obtains

ã~h!5C1S h

h1
D 1/2F S h

h1
D n

1S h

h1
D 2nG . ~13!

Gravitational waves~transverse, traceless perturbations
the metric! in Einstein gravity obey the same wave equati
as a minimally coupled massless scalar field@1# and hence
the graviton spectrum is proportional toPdf . This is often
assumed to give an unambiguous record of the evolution
the cosmological scale factor,a(h). However an identical
spectrum of gravitational waves will be produced by the t
parameter family of solutions given in Eq.~12!.

This invariance of cosmological perturbation spectra h
already been noted in the context of superstring cosmol
where the perturbation spectra of fields in the low ene
7-2
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string effective action may be invariant under symmetries
the action. In the pre big bang scenario@7# the graviton and
dilaton fields are minimally coupled in the conformal Ei
stein frame where the metric evolves asa}t1/3. p51/3 is a
fixed point of the transformation given in Eq.~10! and the
graviton and dilaton spectra on large scales remain invar
under T-duality or S-duality transformations of the back
ground model. However the axion-type fields are minima
coupled in the conformally related axion frames@8,12#.
SL(2,Z) S-duality transformations of the power-law vacuu
solutions lead to a scale factor in the axion frame wh
evolves as given in Eq.~13! @8#. By constructing explicitly
SL(2,R) invariant perturbation variables it was shown th
both the axion and dilaton spectra remained invariant un
arbitrary SL(2,R) transformations@8#. Equation~12! gener-
alizes this result to arbitrary background solutions fora(h),
and to theories which may or may not have their origin
superstring theory.

The wave equation~2! for the perturbationu may be de-
rived from an effective action

S5
1

2E dhE d3x$u822u,iu,i2m2u2%, ~14!

with the corresponding Hamiltonian

H5
1

2E d3x$pu
21u,iu,i1m2u2%, ~15!

where the momentum canonically conjugate tou is pu5u8.
The actionSand HamiltonianH both remain invariant unde
the transformation given in Eq.~12! which leavesu(h) and
m2(h) invariant. It is interesting to compare this with a di
ferent invariance which has also recently been noted in
context of superstring cosmology@13#, and applied to gener
alized cosmological perturbations@14#. This is an invariance
of the effective action

Ŝ5
1

2E dhE d3xa2$df822df ,idf ,i%, ~16!

and corresponding Hamiltonian

Ĥ5
1

2E d3x$a22pdf
2 1a2df ,idf ,i%, ~17!

written in terms of the field perturbationdf and its conju-
gate momentumpdf5a2df8. The Lagrangian in Eq.~16!
differs from that in Eq.~14! by a total derivative

Ŝ5S2
1

2E dhE d3x
d

dh S a8

a
u2D , ~18!

which does not affect the equation of motion, Eq.~1!, but
does change the Hamiltonian

Ĥ5H1E d3xH a9

a
u22

1

2S a8

a
u2D 8J . ~19!
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f

nt

h

t
er

e

There is a duality invariance of the actionŜ and Hamiltonian
Ĥ under which the ‘‘pump field’’a2→ã25a22 is inverted
and the field perturbationdf is exchanged with its canonica
momentumpdf @14#. The HamiltonianĤ does not remain
invariant under the transformation in Eq.~12!, but neither
does the HamiltonianH remain invariant under the dualit
transformation in Ref.@14#. The effective action is only de
fined up to boundary terms and due to the explicit tim
dependence ofa(h), the Hamiltonian is not uniquely de
fined. Both transformations, however, represent symmet
of the equation of motion.

The most cosmologically significant perturbation spe
trum produced during an inflationary era in the early u
verse is likely to be the primordial spectrum of adiaba
density perturbations on large scales induced by the pe
bations in the scalar field which drives inflation. To study t
evolution of this field requires us to include the se
interaction potential of the field and the back-reaction
metric fluctuations. Fortunately Mukhanov@15# has shown
that the wave equation for the gauge invariant field pertur
tion

u5aFdf1ḟ
c

HG , ~20!

wherec is the gauge-dependent curvature perturbation@16#,
can still be written in the form given in Eq.~2! but with a
time-dependent mass-squared

m252
z9

z
, ~21!

wherez5aḟ/H. Quite generally we can write

z5aA 3g

8pG
, ~22!

where the effective barotropic indexg[ḟ2/(V1ḟ2/2). In
the special case of power-law inflation driven by a sca
field with exponential potential,ḟ}H and henceg is a con-
stant and we havez}a.

Starting from any known solutionz(h) we obtain the
identical spectrum of perturbationsPu from the two param-
eter family of solutions

z~h!→ z̃~h!5Cz~h!E
h
*

h dh8

z2~h8!
, ~23!

which leavesm2 given in Eq.~21! invariant.
The gauge-invariant curvature perturbationz @3,16,4# is

related to the field perturbationu by

z5c1
H

ḟ
df5

u

z
. ~24!

This is usually evaluated in terms of the quantities at horiz
crossing. This is becausez becomes constant on supe
horizon scales for adiabatic perturbations. In this case thz
7-3
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acquires an implicit scale dependence due to the diffe
times at which different scales are evaluated. However
can also evaluatez at a fixed time, such as the end of infl
tion, in which case the scale dependence ofz is due solely to
the scale dependence ofu, andz contributes a scale indepen
dent factor. Thus under the transformation given by Eq.~23!
the curvature perturbation is rescaled by an overall fac
z/ z̃, but the spectral index

n[11
d lnPz

d ln k
, ~25!

remains invariant.
For instance, it is well known that the extreme slow-r

limit of inflation corresponding de Sitter expansion driven
a massless scalar field, wherez}h21, leads to a scale
invariant Harrison-Zel’dovich (n51) spectrum of curvature
perturbations. However substituting this familiar form f
z(h) into Eq. ~23! yields the most general evolution whic
gives a scale-invariant spectrum as

z̃~h!5C1F S h

h1
D 21

1S h

h1
D 2G . ~26!

This shows that it is in fact possible to produce a sca
invariant spectrum of curvature perturbations from inflati
that is far from the usual slow-roll limit.

Unfortunately it is not possible to uniquely determine t
form of the self-interaction potentialV(f) for a givenz(h),
such as that given in Eq.~26!. For example, both power-law
inflation @9# driven by an exponential potential, and natu
inflation @17# where the potential energy remains effective
constant, can give rise to a power-law spectrum of curva
perturbations withn5constant@18#. However it is possible
to test the consistency of the slow-roll approximation fo
v.
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r-
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d
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given z(h). The slow-roll approximation requires that th
effective barotropic index,g in Eq. ~22!, is small and slowly
varying, so that to zeroth order in the slow-roll paramet
@5#, the evolution ofz is determined by the growth of th
scale factora;h21. This implies thatz9z/z82'2. For the
general form ofz̃(h) which yields a scale-invariant spectru
of curvature perturbations, given in Eq.~26!, this slow-roll
condition is badly broken at early times foruh/h1u@1.

Even in the slow-roll limit, the spectrum of curvature pe
turbations is sufficient only to determine the inflation pote
tial up to a one parameter class of solutions@5#. The ampli-
tude of the gravitational wave perturbations is then requi
to fix the actual amplitude of the inflation potential. In th
paper I have demonstrated that if one allows behavior wh
may be far from the slow-roll limit there is a degenera
even in the spectrum of gravitational wave perturbatio
The general solution which yields an almost scale-invari
spectrum of gravitational waves interpolates between an
tially collapsing universe and a quasi–de Sitter expans
However, the asymptotic behavior at late times reprodu
the usual slow-roll result, so in practice this need not b
serious limitation for reconstructing the evolution in the co
text of conventional inflation models@5#.

On the other hand the transformation presented here
gests that it might be possible to use slow-roll techniques
analyze perturbations in models far from the usual slow-
limit if they can be related to slow-roll models. An examp
of this is provided by solutions to the low energy strin
effective action where perturbation spectra in general axi
dilaton cosmologies can be related to much simpler dilat
vacuum solutions by a duality transformation@8#.
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