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The quadratic spinor Lagrangian is shown to be equivalent to the teleparallel-tetrad representation of Ein-
stein’s theory. An important consequence is that the energy-momentum density obtained from this quadratic
spinor Lagrangian is essentially the same as the “tensor” proposed MigM&0556-282(199)50412-9

PACS numbdis): 04.20.Fy, 04.20.Cv

INTRODUCTION sions. It turns out that the last three representations are es-
sentially equivalent.

The quadratic spinor Lagrangiai@SL) formulation of The Hilbert Lagrangian density for GR &= — \/—_gR.
general relativity GR) [1-5] has an appeal that goes beyond The traditional approach uses the metric coefficients in a
aesthetics. One of its most promising features concerneoordinate basis as the dynamic variables, &g
gravitational energy-momentum and its localization. =Ly(9,49,999). Because of the second derivatives, this is

Identifying a suitable energy-momentum expression fomot suitable for getting an energy-momentum density. How-
the gravitational field has long been an outstanding problenrgver a certain(noncovariant divergence can be removed
The usual approaches lead to reference frame dependelwithout affecting the equations of motidi7]) leading to
pseudotensors; it seemed that the best one could get wasEinstein’s Lagrangianlg= Lg(g,99) =Ly —div. One can
quasilocal expression. In contrast, in addition to links withnow apply the standard procedure and get the canonical
the Witten type spinor formulation and an associated positive€nergy-momentum density. It is known as the Einstein
energy proof, the QSL seems to yield a covariant energypseudotensorits value depends to a large extent on the co-
momentum densityf1]. This apparent covariance is here ordinate(“gauge”) choice. No satisfying technique has been
shown to be actually only cosmetic. found to separate the “physics” from the coordinate gauge.

In the earlier investigations, the role of the spinor field
used in this formulation had not been clarified. In this present
work, it is shown that, at least for a large class of QSLs
which we have considered, the spinor field is entirely an
extra gauge field, which simply serves to give an attractive An alternative is to use an orthonormal frarftetrad, a
appearance to the formulas. pioneer of this approach was Mier [6]. Let g,,

Using a certain particularly simple QSlith the aid ofa  =g,,e?,€°,, with g,p=diag(+1,-1,—1,—1), and regard
suitable gauge we show that the whole formulation is the Einstein-Hilbert Lagrangian as a functidi(e,de, dde)
equivalent to the teleparallgtetrad reformulation of GR  of the tetrade®, . A suitable total divergence can again be
used by Mder in 1961 [6]; consequently, the associated removed yielding
energy-momentum density coincides with the energy-
momentum “tensor” found by Mber. This objectis a ten- _ — oA
sor with regard to coordinate transformations, munot a Lw=Lu(e,7e)=Le—dw, @

tensor with regard to local Lorentz rotations of the frame. ) , L , —
Hence, the associated energy-momentum localization dé Lagrangian density which is first order in the derivatives of

pends on a choice of Lorentz gauge. Thus, we conclude thdf€ frame. Now the standard canonical energy-momentum
this QSL gives an energy-momentum density which actualhyf€nsity
depends on a choice of Lorentz gauge.

MQLLER'S TETRAD-TELEPARALLEL
REPRESENTATION

Recall that for Einstein’s general relativity there are vari- AL
ous representations, these inclydethe metric, using coor- N—gTH = 3 3,4~ 4Ly (2
dinate frames(ii) orthonormal frameg(ii) a teleparallel ge- 99,€%\

ometry, and(iv) the quadratic spinor formulation. Each
representation reveals some insight and has some utility. Wie a tensor(density under coordinate transformatiortsyt it
will briefly consider their relationships and compare the ten-depends on the choice of orthonormal franieorentz
sorial nature of their associated energy-momentum expregtauge. In other words, it is not “tensorial” with respect to
local “rotations” of the frame. An alternate geometric view-
point of this situation is to use a teleparallel formulation.
*Electronic address: r.tung@lancaster.ac.uk Geometry includes, in general, the idea of parallel, which
"Electronic address: nester@joule.phy.ncu.edu.tw is determined by a connectioA.priori the connection could
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be independent of the metric. Riemannian geométhe  here the covariant differentidD ¥ :=d¥ + »¥, includes the
standard type for GRhas a symmetric, metric compatible Clifford algebra valued connection one-for@x=3 y,,0?".
connection. Parallel transport is then determined entirely byThe Dirac matrix conventions arey(a¥sy=9ap, Yab
the metric. One alternative is a teleparallel geoméirk.a. =y, ¥, ¥s:=Y0Y1Y2Ys- We often omit the wedgé\; for
absolute parallel or Weitzenbk geometry{8]) which has a  discussions of such “Clifform” notation, s§@1—-23). This
connection with vanishing curvature. Parallel transport isQSL satisfies the spinor-curvature identity
then path independent. . o . o

The tetrad formulation of GR can be represented in termsg, = 2D W . DY =2¥Q y:¥ +d[(D¥) ys¥ + ¥ y:DW¥],
of a teleparallel geometry. This leads to the standard telepar- 7)
allel equivalent of GR, which has been referred to by several
names including GRtele, GRand TEGR.(For further dis- whereQ =303y, =dw+ ww, is the Clifford algebra val-
cussion of this theory and its applications, $§6©—-17 and  ued curvature 2-form. For the special caBe= 9, which
the references contained thergifhe idea is to introduce a includes the orthonormal frame one-formy:=-y, 9%
new parallel transport law. This can be done via a simple= y,e®,dx*, the right-hand sidéRHS) of Eq. (7) expands to
constructionii) choose any orthonormal frame field, de- . L
fine it to be parallel. Then in this special Ofortho- PPQPN 1+ hyspQ o/ \ I\ HP
teleparallel frame, the connection coefficients vanish:

+d[D(0) v+ hdyD(I)],
Fabu::(v,u,eb)a:(); 3) [D(¢9)ysO+ ¢ ysD( lﬁ)](S)

consequently, the curvature vanishes in this and every othavhere we have introduced the convenigrodge dual basis
frame. However the geometry is not trivial, for the compo- 773"_' =*(9%\...). For a spinor fieldy, normalized ac-
nents of the torsion tensor, cording to

Ta,u.V:a,u,eav_avea,u.—i_rab,uebv_rabveb,u ) (4) lpw: 11 ¢75¢: 01 (9)
in the OT frame reduce to,e?,— 9, , which is generally & 98t
nonvanishing. Being a tensor, the torsion will also be non- —
vanishing in any other reference frame. L,=2D(¢9)ysD(9¢)

Using this type of geometry, Einstein's GR theory can be _ ab — —
obtained from a Lagrangian quadratic in torsion: =Q*A\ 73+ d[D(f9) ys I+ ¢ ysD(99)].
(10)

Lo=\—Q(ATe, T o4 ATOhuT,  —Ta TE ) (5) _ ,
T 9T T2 Bep a5 ) SinceQ®/\ ,,= — R*1, this QSL differs from the standard

Hilbert scalar curvature Lagrangian only by an exact differ-

The solutions to the field equations and the aSSOCiategntial. In the action, this corresponds to a boundary term
energy-momentum tensor are ndteleparallel gauge de- \hich does not affect the local equations of motj@d.
pendent. Hence, the physics is represented by a whole gauge

equivalence class of teleparallel geometfiEg8]. This can be
regarded just as @Gometimes quite usefugeometric refor-

mulati_on of _the usqal tetrad formulation of GR. The _La- From the form of the Lagrangiai10), the QSL action for
grangianLy is then just an alternate “more geometric” in- 5 extended region actually depends on thermalized
terpretation ofLy . However, a strong case has been madepinor field only through the boundary term, not locally. A
for regarding this formulation as much more fundamentalichange of the spinor field within the interior of the region
seeing it as a gauge theory for local translations, and in faclyjj| |eave the action unchanged. Consequently, the Dirac
the “correct” way to understand GR as a gauge theoryspinor fieldy has complete local gauge invariance subject to

SPINOR GAUGE INVARIANCE OF THE QSL

[9,13-16. the two restrictiong9). This six real parameter spinor gauge
freedom can be represented in the fafm U ¢y wherey, is
THE QUADRATIC SPINOR LAGRANGIAN a normalized Dirac spinor with constant components &nd

] ] ] .. is the Dirac spinor representation of a Lorentz transforma-
A few years agdusing some spinor-curvature identities jon. Thus, the gauge freedom of the normalized spinor field
[19]) we found some quadratic spinor actions for GB. s a kind of local Lorentz gauge freedom. Considering the
One of the simplestrecently, we learned tha_t a Lagrgnglan scalar curvature term in the Lagrangiéio), it can be rec-
of the same form was used long ago for anticommuting Maggnized that the theory also has the usual local Lorentz
jorana spinors in the context of supergraigg]) is depen-  ya,ge freedom associated with transformations of the ortho-
dent on a spinor valued one fori: normal frame. Hence, there appears to be two Lorentz gauge
freedoms here, but are they really independent?
_ _ — . Considering the covariant appearance of the boundary
S[\P’wab]_f L‘I’_j 2DV ysDW; ©®  term in Eq.(10), this seems doubtful. Usually, we regard a
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transformation of Lorentz frame as inducing associated

transformations on the components of all tensors and spinors. [d(¢9) + dFo]ys Tt iy d(IY) + 0Fy]

Under such a transformation, the Lagrangian boundary term = Ao+ S+ b Ive(dO+ wd
is a Lorentz invariant, but now we are contemplating inde- i ©0)ys Yt sl 0y
pendent transformations of the spinor and frame field. How = _Zl//wab/\ 77ab+575‘//wab/\ 92N 9P
does the boundary term behave?
The boundary term is + yspd 9N, (14)
(DEVaVS')’b’zD_EyaVSVbDw)ﬁa Hence, taking into account the spinor field normalization

_ _ conditions(9), the Lagrangiar{10) is equivalent to
NI+ (a5 yolh— ¥V Vs Yath) DI P,
11

L=(do?*+ 0?2 A w®) A\ g~ d(02A\ 7,,)
= w? N\ 0PN\ 9+ 0P Ad N Dapc. (15
Let us consider a gauge transformed spinor figle= U .

Then ¢’ =yU"1, Dy'=UDy and Dy’ =D(y)U L. The
gauge transformed boundary term then becomes

If we vary the connection independently, we fifwith no
source a relation (equivalent to vanishing torsipnwhich
shows that the connection is a particular linear combination
— — of d9. This relation is just the usual expression for the or-
(DU Ly UysU ™ typUg— U™ty U ysU by, thonormal framegRiemanniah connection coefficients .,
:%(Ccab_ Checa— Cand, where C%:=—dd%(e,,€). In-
serting these values into the RHS of E@5) gives an ex-
plicit form of the Mdler Lagrangian(1) for tetrad gravity:

XUD ) 9N\ 9%+ (yU~ 1y,UysU 1y,Uy

— U Ly UysU y,Ug) D92 SO, .. . . .
(12) Ly=(3Ca"CPc= CcCp T 2CpacllI)*1. (16)

The unitary transformations on the gammas induce LorentZhe equivalent covariant description in terms of teleparallel
transformations, U 1y,U=17.LS,, on the orthonormal geometry(5) readily follows, since the torsion 2-form

frame indices. Such a transformation is entirely equivalent to 1-a Y ea a 2. a b

applying the transformatiod’ °=L°,9? to the orthonormal 2 T8N =T%=D9%=d 9+ 0/ D>, (17)

frame alone. Hence, the boundary term really has one physi- . a .
cally independent Lorentz gauge freedom. reduces, in an OT frame, th3°. Hence, we have established

an equivalence between the QSL3) and the tetrad or
teleparallel representations of GR. As we have mentioned,
EQUIVALENCE OF THE LAGRANGIANS these latter representations were used byléfdo construct

Without losing any physics, we can confine our attention? 9ravitational energy-momentum density. Consequently, the

to representations where the spinor field and the orthonorm&Prresponding energy-momentum localization for the QSL

frame are tied together. A convenient choice fixing one of2nd the Mdier representations are also equivalent.

the Lorentz gauges id#=0; in other words, the compo-

nents ofy are constant in the present frame. This locks the =~ ENERGY-MOMENTUM QUASILOCALIZATION

spinor and the orthonormal frame together. The pair then still |1 is instructive to consider this point from the QSL ex-

retain the other Lorentz gauge freedom. For a general analysagsions. The energy-momentum density can be identified
sis, there may be some advantage in regarding this conditiqQyi, the Hamiltonian. The Hamiltonian can be constructed

as binding the orthonormal frame to the spinor field whichgom the action by choosing a timelike evolution vector field
(viewed as a geometric object, not as a set of compohenty guch that iydt=1 and splitting the action:S=[,

retains its Lorentz gauge freedom. However for our immedi'zfdtfi,\,c. Applied to £,,, this procedure leadi] to the

ate needs, it is more perspicuous to consider the condition 3B covariant QSL Hamiltonian 3-forfes] (i.e., the Noether
tying the spinor to the orthonormal frame, with the latter still translation generator alord) ’

retaining its own local Lorentz gauge freedom.
We could establish the equivalence by directly expanding

the Lagrangian H(N) = Z[D( ¢N) ’)/5D(191ﬂ) + D(lﬂﬁ) 75D(N¢)]

(18

L,=2D (1) ysD(94) A notable feature of this QSL Hamiltonian is that it is al-
_ _ ready asymptoticallD(1/r#); consequently, its integral will
=2[d(¢y)) + ¢ySw]ys[d(F¢)+ o3y, (13 be finite and its variation will have a®(1/r®) boundary
term which will vanish asymptotically, so there is no need
usingdy¢=0, however an indirect calculation is more effi- for any further boundary term adjustment. In fact, the Hamil-
cient. We consider the boundary term on the RHS of theonian expressior{18) could have been obtained from the
Lagrangian(10). With the gauge choicéd#=0 in the present usual(linear in the Einstein tenspHamiltonian by adding a
frame, we find certain total differentialalthough important for the value of
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energy-momentum, such a total differential does not effecConsider any Lagrangian, quadratic in the derivatives of
the equations of motignas the following identity reveals: some fieldW (spinor or otherwisg which differs from the
Hilbert Lagrangian only by an exact differential:

HINY=20 NG, * 97+ 2d[ M y=D (9
(N)=2¢yN G, * 0"+ 2d[ yNysD (9 4)) e (OWm—Re 144 ). -

+D(9) ysu]. 19
(9) yshy] 19 ThenW is necessarily a pure local gauge field — since the

This identity also shows that the derivatives ipfitself are  action depends oW onlythrough a boundary term. In prac-
not so important — up to an exact differentig(N) is al- tice, we only succeeded in getting the scalar curvature in this
gebraic iny — rather that these factors arrange for the cor-type of identity by using spinor fields. All the spinor curva-
rect quadratic connection terms. ture identities[19], involving the scalar curvaturéhe Hil-

The Hamiltonian(18) looks covariant, but what does it bert Lagrangian which we found, differed from Eq(13)
mean physically? When the constraint equations are sati@nly by torsion terms, which would make no contribution to
fied, the value of the Hamiltonian is given by the boundarythe field equations in the sourceless cdfer the case with

term. In thed =0 gauge, the Hamiltonian boundary term is sources which couple to the Riemannian connection, we can
recover Einstein’s theory by suppressing the torsion using a

_ - Lagrange multiplier term.Hence, all QSLs leading to Ein-
YNysD(94)+ D () ysHy stegiJn’s ?heory a[?e essentially equivalent to the pa?ticular one
— NCT discussed here.
=NYLyeys(dd+od)+(dd+do)ys el It is well known that the Mber energy-momentum “ten-
sor” and the associated superpotential depends on the local
Lorentz frame gauge. The total energy-momentum within a
(20 finite region actually depends only on the integral of the
Hence, with the normalization®), we find that the value of Superpotential over the boundary — hence, it depends on the
the boundary term is local frame only through the values on the boundary. Simi-
larly, the spinor field is purely a local gauge field; only its
@\ g ap= NS/ 7= NCFabd5§{,‘énef, (22) value on the t_JOl_Jndary i_nfluences th_e calculation of energy-
momentum within a region. From either representation, we
a well known expression for the superpotenfiaf] associ- Once again see energy-momentum as quasil@&P7, de-
ated with Mbler’s energy-momentum “tensor.” This super- pending on the fields and the gauge choice on the boundary.
potential is a tensor with respect to coordinate transforma- We have shown that the role of the spinor field in the QSL
tions, but is not tensorial with respect to the local Lorentzrepresentation is essentially cosmetic; it allows a neat alter-
gauge freedom. Without some gauge fixing condition thenate version of the tetrad or teleparallel representation of GR.
Mdller energy-momentum “tensor,” and likewise, the QSL (Actually, the representations are not quite equivalent be-
formulation does notdetermine a well defined gravitational cause of the two to one relation between the spinor and
energy localization. Miter realized the need for some Lor- frame gauge groupsThis is not to say that the QSL repre-
entz gauge condition, and even proposed [@jéwhich did ~ sentation is useless. The QSLs can essentially replace an
not prove to be so satisfactonMore recently, a gauge con- orthonormal frame with a spinor fieldhis works because a
dition has been proposed which would determine cegpay  normalized spinor field determines an orthonormal frame up
cial orthonormal frameg28]. However, both of these con- to an overall constant Lorentz transformatiomhich may
ditions dependlike typical gauge conditionsn the solution have some advantages. One is that, like any other new rep-
of a partial differential equation; hence, the gauge fixed Lorfesentation, the QSL suggests certain generalizatmgs, to
entz frames are inherently nonlocal. Using such gauge fixedomplex self-dual representation®9]. This present work
frames will not yield a trudocal energy momentum density. does not preclude the possibility that a QSL would lead to a
representation with genuinely new features. That could hap-
DISCUSSION pen if it was not directly connected to the Hilbert scalar

curvature Lagrangian.
In summary, we have demonstrated that a particular QSL

== NcZ)’S e 9°— NchpEabcdwab/\ 99
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