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The quadratic spinor Lagrangian is equivalent to the teleparallel theory
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The quadratic spinor Lagrangian is shown to be equivalent to the teleparallel-tetrad representation of Ein-
stein’s theory. An important consequence is that the energy-momentum density obtained from this quadratic
spinor Lagrangian is essentially the same as the ‘‘tensor’’ proposed by Mo” ller. @S0556-2821~99!50412-8#

PACS number~s!: 04.20.Fy, 04.20.Cv
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INTRODUCTION

The quadratic spinor Lagrangian~QSL! formulation of
general relativity~GR! @1–5# has an appeal that goes beyo
aesthetics. One of its most promising features conce
gravitational energy-momentum and its localization.

Identifying a suitable energy-momentum expression
the gravitational field has long been an outstanding probl
The usual approaches lead to reference frame depen
pseudotensors; it seemed that the best one could get w
quasilocal expression. In contrast, in addition to links w
the Witten type spinor formulation and an associated posi
energy proof, the QSL seems to yield a covariant ener
momentum density@1#. This apparent covariance is he
shown to be actually only cosmetic.

In the earlier investigations, the role of the spinor fie
used in this formulation had not been clarified. In this pres
work, it is shown that, at least for a large class of QS
which we have considered, the spinor field is entirely
extra gauge field, which simply serves to give an attract
appearance to the formulas.

Using a certain particularly simple QSL~with the aid of a
suitable gauge! we show that the whole formulation i
equivalent to the teleparallel~tetrad! reformulation of GR
used by Mo” ller in 1961 @6#; consequently, the associate
energy-momentum density coincides with the ener
momentum ‘‘tensor’’ found by Mo” ller. This objectis a ten-
sor with regard to coordinate transformations, butis not a
tensor with regard to local Lorentz rotations of the fram
Hence, the associated energy-momentum localization
pends on a choice of Lorentz gauge. Thus, we conclude
this QSL gives an energy-momentum density which actu
depends on a choice of Lorentz gauge.

Recall that for Einstein’s general relativity there are va
ous representations, these include~i! the metric, using coor-
dinate frames,~ii ! orthonormal frames,~iii ! a teleparallel ge-
ometry, and ~iv! the quadratic spinor formulation. Eac
representation reveals some insight and has some utility.
will briefly consider their relationships and compare the te
sorial nature of their associated energy-momentum exp
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sions. It turns out that the last three representations are
sentially equivalent.

The Hilbert Lagrangian density for GR isLH52A2gR.
The traditional approach uses the metric coefficients in
coordinate basis as the dynamic variables, soLH
5LH(g,]g,]]g). Because of the second derivatives, this
not suitable for getting an energy-momentum density. Ho
ever a certain~noncovariant! divergence can be remove
~without affecting the equations of motion@7#! leading to
Einstein’s LagrangianLE5LE(g,]g)5LH2div. One can
now apply the standard procedure and get the canon
energy-momentum density. It is known as the Einst
pseudotensor; its value depends to a large extent on the c
ordinate~‘‘gauge’’! choice. No satisfying technique has be
found to separate the ‘‘physics’’ from the coordinate gau

MO” LLER’S TETRAD-TELEPARALLEL
REPRESENTATION

An alternative is to use an orthonormal frame~tetrad!, a
pioneer of this approach was Mo” ller @6#. Let gmn

5gabe
a

meb
n , with gab5diag(11,21,21,21), and regard

the Einstein-Hilbert Lagrangian as a functionLe(e,]e,]]e)
of the tetradea

m . A suitable total divergence can again b
removed yielding

LM5LM~e,]e!5Le2div, ~1!

a Lagrangian density which is first order in the derivatives
the frame. Now the standard canonical energy-momen
density

A2gTm
n5

]LM

]]mea
l

]nea
l2dn

mLM ~2!

is a tensor~density! under coordinate transformations,but it
depends on the choice of orthonormal frame~Lorentz
gauge!. In other words, it is not ‘‘tensorial’’ with respect to
local ‘‘rotations’’ of the frame. An alternate geometric view
point of this situation is to use a teleparallel formulation.

Geometry includes, in general, the idea of parallel, wh
is determined by a connection.A priori the connection could
©1999 The American Physical Society01-1
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be independent of the metric. Riemannian geometry~the
standard type for GR! has a symmetric, metric compatib
connection. Parallel transport is then determined entirely
the metric. One alternative is a teleparallel geometry~a.k.a.
absolute parallel or Weitzenbo¨ck geometry@8#! which has a
connection with vanishing curvature. Parallel transport
then path independent.

The tetrad formulation of GR can be represented in te
of a teleparallel geometry. This leads to the standard tele
allel equivalent of GR, which has been referred to by seve
names including GRtele, GRi and TEGR.~For further dis-
cussion of this theory and its applications, see@6,9–17# and
the references contained therein.! The idea is to introduce a
new parallel transport law. This can be done via a sim
construction:~i! choose any orthonormal frame field,~ii ! de-
fine it to be parallel. Then in this special OT~ortho-
teleparallel! frame, the connection coefficients vanish:

Ga
bmª~¹meb!a50; ~3!

consequently, the curvature vanishes in this and every o
frame. However the geometry is not trivial, for the comp
nents of the torsion tensor,

Ta
mn5]mea

n2]nea
m1Ga

bmeb
n2Ga

bneb
m , ~4!

in the OT frame reduce to]mea
n2]nea

m , which is generally
nonvanishing. Being a tensor, the torsion will also be n
vanishing in any other reference frame.

Using this type of geometry, Einstein’s GR theory can
obtained from a Lagrangian quadratic in torsion:

LT5A2g~ 1
4 Ta

mnTa
mn1 1

2 TabmTbam2Ta
amTb

b
m!. ~5!

The solutions to the field equations and the associa
energy-momentum tensor are now~teleparallel! gauge de-
pendent. Hence, the physics is represented by a whole g
equivalence class of teleparallel geometries@18#. This can be
regarded just as a~sometimes quite useful! geometric refor-
mulation of the usual tetrad formulation of GR. The L
grangianLT is then just an alternate ‘‘more geometric’’ in
terpretation ofLM . However, a strong case has been ma
for regarding this formulation as much more fundamen
seeing it as a gauge theory for local translations, and in f
the ‘‘correct’’ way to understand GR as a gauge theo
@9,13–16#.

THE QUADRATIC SPINOR LAGRANGIAN

A few years ago~using some spinor-curvature identitie
@19#! we found some quadratic spinor actions for GR@1#.
One of the simplest~recently, we learned that a Lagrangia
of the same form was used long ago for anticommuting M
jorana spinors in the context of supergravity@20#! is depen-
dent on a spinor valued one formC:

S@C,vab#5E LC5E 2DC̄g5DC; ~6!
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here the covariant differential,DCªdC1vC, includes the
Clifford algebra valued connection one-formvª

1
4 gabv

ab.
~The Dirac matrix conventions areg (agb)5gab , gab
ªg [agb] , g5ªg0g1g2g3. We often omit the wedgè ; for
discussions of such ‘‘Clifform’’ notation, see@21–23#!. This
QSL satisfies the spinor-curvature identity

LC52DC̄g5DC[2C̄Vg5C1d@~DC̄!g5C1C̄g5DC#,
~7!

whereV5 1
4 Vabgab5dv1vv, is the Clifford algebra val-

ued curvature 2-form. For the special caseC5qc, which
includes the orthonormal frame one-formqªgaqa

5gaea
mdxm, the right-hand side~RHS! of Eq. ~7! expands to

c̄cVab`hab1c̄g5cVab`qa`qb

1d@D~ c̄q!g5qc1c̄qg5D~qc!#,
~8!

where we have introduced the convenient~Hodge! dual basis
ha . . .

ª*( qa`•••). For a spinor fieldc, normalized ac-
cording to

c̄c51, c̄g5c50, ~9!

we get

Lc52D~ c̄q!g5D~qc!

[Vab`hab1d@D~ c̄q!g5qc1c̄qg5D~qc!#.

~10!

SinceVab`hab52R*1, this QSL differs from the standar
Hilbert scalar curvature Lagrangian only by an exact diff
ential. In the action, this corresponds to a boundary te
which does not affect the local equations of motion@24#.

SPINOR GAUGE INVARIANCE OF THE QSL

From the form of the Lagrangian~10!, the QSL action for
an extended region actually depends on the~normalized!
spinor field only through the boundary term, not locally.
change of the spinor field within the interior of the regio
will leave the action unchanged. Consequently, the Di
spinor fieldc has complete local gauge invariance subjec
the two restrictions~9!. This six real parameter spinor gaug
freedom can be represented in the formc5Uc0 wherec0 is
a normalized Dirac spinor with constant components andU
is the Dirac spinor representation of a Lorentz transform
tion. Thus, the gauge freedom of the normalized spinor fi
is a kind of local Lorentz gauge freedom. Considering t
scalar curvature term in the Lagrangian~10!, it can be rec-
ognized that the theory also has the usual local Lore
gauge freedom associated with transformations of the or
normal frame. Hence, there appears to be two Lorentz ga
freedoms here, but are they really independent?

Considering the covariant appearance of the bound
term in Eq.~10!, this seems doubtful. Usually, we regard
1-2
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transformation of Lorentz frame as inducing associa
transformations on the components of all tensors and spin
Under such a transformation, the Lagrangian boundary t
is a Lorentz invariant, but now we are contemplating ind
pendent transformations of the spinor and frame field. H
does the boundary term behave?

The boundary term is

~Dc̄gag5gbc2c̄gag5gbDc!qa

`qb1~ c̄gag5gbc2c̄gbg5gac!Dqa`qb.

~11!

Let us consider a gauge transformed spinor fieldc85Uc.

Then c̄85c̄U21, Dc85UDc and Dc̄85D(c̄)U21. The
gauge transformed boundary term then becomes

~Dc̄U21gaUg5U21gbUc2c̄U21gaUg5U21gb

3UDc!qa`qb1~ c̄U21gaUg5U21gbUc

2c̄U21gbUg5U21gaUc)Dqa`qb.
~12!

The unitary transformations on the gammas induce Lore
transformations, U21gaU5gcL

c
a , on the orthonormal

frame indices. Such a transformation is entirely equivalen
applying the transformationq8c5Lc

aqa to the orthonormal
frame alone. Hence, the boundary term really has one ph
cally independent Lorentz gauge freedom.

EQUIVALENCE OF THE LAGRANGIANS

Without losing any physics, we can confine our attent
to representations where the spinor field and the orthonor
frame are tied together. A convenient choice fixing one
the Lorentz gauges isdc50; in other words, the compo
nents ofc are constant in the present frame. This locks
spinor and the orthonormal frame together. The pair then
retain the other Lorentz gauge freedom. For a general an
sis, there may be some advantage in regarding this cond
as binding the orthonormal frame to the spinor field wh
~viewed as a geometric object, not as a set of compone!
retains its Lorentz gauge freedom. However for our imme
ate needs, it is more perspicuous to consider the conditio
tying the spinor to the orthonormal frame, with the latter s
retaining its own local Lorentz gauge freedom.

We could establish the equivalence by directly expand
the Lagrangian

Lc52D~ c̄q!g5D~qc!

52@d~ c̄q!1c̄qv#g5@d~qc!1vqc#, ~13!

using dc50, however an indirect calculation is more ef
cient. We consider the boundary term on the RHS of
Lagrangian~10!. With the gauge choicedc50 in the present
frame, we find
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@d~ c̄q!1c̄qv#g5qc1c̄qg5@d~qc!1vqc#

[c̄~dq1qv!g5qc1c̄qg5~dq1vq!c

[2c̄cvab`hab1c̄g5cvab`qa`qb

1c̄g5cdqa`qa . ~14!

Hence, taking into account the spinor field normalizati
conditions~9!, the Lagrangian~10! is equivalent to

L[~dvab1va
c`vcb!`hab2d~vab`hab!

[va
c`vcb`hab1vab`dqc`habc . ~15!

If we vary the connection independently, we find~with no
source! a relation ~equivalent to vanishing torsion! which
shows that the connection is a particular linear combinat
of dq. This relation is just the usual expression for the o
thonormal frame~Riemannian! connection coefficientsvabc
5 1

2 (Ccab2Cbca2Cabc), where Ca
bcª2dqa(eb ,ec). In-

serting these values into the RHS of Eq.~15! gives an ex-
plicit form of the Mo” ller Lagrangian~1! for tetrad gravity:

LM5~ 1
4 Ca

bcCa
bc2Cc

cbCa
ab1 1

2 CbacC
abc!*1. ~16!

The equivalent covariant description in terms of telepara
geometry~5! readily follows, since the torsion 2-form

1
2 Ta

mndxm`dxn5Ta
ªDqa

ªdqa1va
b`qb, ~17!

reduces, in an OT frame, todqa. Hence, we have establishe
an equivalence between the QSL~13! and the tetrad or
teleparallel representations of GR. As we have mention
these latter representations were used by Mo” ller to construct
a gravitational energy-momentum density. Consequently,
corresponding energy-momentum localization for the Q
and the Mo” ller representations are also equivalent.

ENERGY-MOMENTUM QUASILOCALIZATION

It is instructive to consider this point from the QSL e
pressions. The energy-momentum density can be ident
with the Hamiltonian. The Hamiltonian can be construct
from the action by choosing a timelike evolution vector fie
N such that i Ndt51 and splitting the action:S5*L
5*dt* i NL. Applied toLc , this procedure leads@1# to the
4-covariant QSL Hamiltonian 3-form@25# ~i.e., the Noether
translation generator alongN)

H~N!52@D~ c̄N” !g5D~qc!1D~ c̄q!g5D~N” c!#.
~18!

A notable feature of this QSL Hamiltonian is that it is a
ready asymptoticallyO(1/r 4); consequently, its integral will
be finite and its variation will have anO(1/r 3) boundary
term which will vanish asymptotically, so there is no ne
for any further boundary term adjustment. In fact, the Ham
tonian expression~18! could have been obtained from th
usual~linear in the Einstein tensor! Hamiltonian by adding a
certain total differential~although important for the value o
1-3
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energy-momentum, such a total differential does not eff
the equations of motion!, as the following identity reveals:

H~N![2c̄cNmGmn* qn12d@c̄N” g5D~qc!

1D~ c̄q!g5N” c#. ~19!

This identity also shows that the derivatives ofc itself are
not so important — up to an exact differentialH(N) is al-
gebraic inc — rather that these factors arrange for the c
rect quadratic connection terms.

The Hamiltonian~18! looks covariant, but what does
mean physically? When the constraint equations are s
fied, the value of the Hamiltonian is given by the bounda
term. In thedc50 gauge, the Hamiltonian boundary term

c̄N” g5D~qc!1D~ c̄q!g5N” c

5Ncc̄@gcg5~dq1vq!1~dq1qv!g5gc#c

52Ncc̄g5cdqc2Ncc̄ceabcdv
ab`qd.

~20!

Hence, with the normalizations~9!, we find that the value of
the boundary term is

vab` i Nhab5Ncvab`habc5NcGab
ddabc

e f dhe f , ~21!

a well known expression for the superpotential@27# associ-
ated with Mo” ller’s energy-momentum ‘‘tensor.’’ This super
potential is a tensor with respect to coordinate transform
tions, but is not tensorial with respect to the local Loren
gauge freedom. Without some gauge fixing condition
Mo” ller energy-momentum ‘‘tensor,’’ and likewise, the QS
formulation does notdetermine a well defined gravitationa
energy localization. Mo” ller realized the need for some Lo
entz gauge condition, and even proposed one@6# ~which did
not prove to be so satisfactory!. More recently, a gauge con
dition has been proposed which would determine certainspe-
cial orthonormal frames@28#. However, both of these con
ditions depend~like typical gauge conditions! on the solution
of a partial differential equation; hence, the gauge fixed L
entz frames are inherently nonlocal. Using such gauge fi
frames will not yield a truelocal energy momentum density

DISCUSSION

In summary, we have demonstrated that a particular Q
is equivalent to the tetrad-teleparallel version of Einstei
GR theory. The corresponding energy-momentum densit
equivalent to Mo” ller’s 1961 ‘‘tensor.’’

Our analysis raises a question. First, to what extent is
conclusion dependent on the particular choice of QSL~13!?
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Consider any Lagrangian, quadratic in the derivatives
some fieldW ~spinor or otherwise!, which differs from the
Hilbert Lagrangian only by an exact differential:

LW5~DW!2[2R* 11d~ . . . !. ~22!

ThenW is necessarily a pure local gauge field — since
action depends onW onlythrough a boundary term. In prac
tice, we only succeeded in getting the scalar curvature in
type of identity by using spinor fields. All the spinor curva
ture identities@19#, involving the scalar curvature~the Hil-
bert Lagrangian! which we found, differed from Eq.~13!
only by torsion terms, which would make no contribution
the field equations in the sourceless case.~For the case with
sources which couple to the Riemannian connection, we
recover Einstein’s theory by suppressing the torsion usin
Lagrange multiplier term.! Hence, all QSLs leading to Ein
stein’s theory are essentially equivalent to the particular
discussed here.

It is well known that the Mo” ller energy-momentum ‘‘ten-
sor’’ and the associated superpotential depends on the l
Lorentz frame gauge. The total energy-momentum withi
finite region actually depends only on the integral of t
superpotential over the boundary — hence, it depends on
local frame only through the values on the boundary. Sim
larly, the spinor field is purely a local gauge field; only i
value on the boundary influences the calculation of ener
momentum within a region. From either representation,
once again see energy-momentum as quasilocal@26,27#, de-
pending on the fields and the gauge choice on the bound

We have shown that the role of the spinor field in the Q
representation is essentially cosmetic; it allows a neat a
nate version of the tetrad or teleparallel representation of G
~Actually, the representations are not quite equivalent
cause of the two to one relation between the spinor
frame gauge groups.! This is not to say that the QSL repre
sentation is useless. The QSLs can essentially replace
orthonormal frame with a spinor field~this works because a
normalized spinor field determines an orthonormal frame
to an overall constant Lorentz transformation! which may
have some advantages. One is that, like any other new
resentation, the QSL suggests certain generalizations~e.g., to
complex self-dual representations! @29#. This present work
does not preclude the possibility that a QSL would lead t
representation with genuinely new features. That could h
pen if it was not directly connected to the Hilbert sca
curvature Lagrangian.
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