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Reply to ‘‘Comment on ‘Hara’s theorem in the constituent quark model’ ’’
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In the preceding Comment, it is alleged that a ‘‘hidden loophole’’ in the proof of Hara’s theorem has been
found, which purportedly invalidates the conclusions of the paper commented upon. I show that there is no
such loophole in the constituent quark model, and that the ‘‘counterexample’’ presented in the Comment is not
gauge invariant.@S0556-2821~99!05301-1#

PACS number~s!: 11.30.Hv, 13.30.2a, 14.20.Jn
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In the previous Comment@1# on my paper@2#, it is
pointed out that the ‘‘hidden assumption’’ of sufficiently lo
calized current is tacitly made in my argument and th
claimed that this assumption is not valid in the constitu
quark model.

In the following, I show that:~a! this assumption is wel
known, ~b! the mathematical formulation of this assumpti
as used in the Comment@1# is incorrect,~c! the correct form
of this assumption is satisfied by the constituent qu
model, and~d! the electromagnetic~EM! current conserva-
tion is violated in the constituent quark model calculation
Kamal and Riazuddin~KR! @3# which current is used as
‘‘counterexample’’ in Ref.@1#.

~a! That ‘‘a sufficiently localized current’’ is a well-
known condition for the existence of the multipole expa
sion, can be seen in textbooks, see for example p. 54 of
@4#, @between Eqs.~7.23! and~7.24!#, where it emerges from
the demand that all surface terms vanish in integrations
parts leading to the multipole expansion of the EM Ham
tonian matrix element~ME!

H f i5H f i~q!52E dR «̂M•Jf i~R! exp~ iq•R!

5 (
J51

`

A2p~2J11!i J@l^C f uT̂JM
maguC i&1^C f uT̂JM

el uC i&#,

~1!

where M56 and q5uqu. Equivalently, the assumption i
that the EM Hamiltonian MEH f i(q) itself be a well-defined
~proper! integral.

~b! The mathematical formulation of the ‘‘implicit as
sumption’’ that was offered in Ref.@1# reads

J~R!•«̂1,R23, as R5uRu→`. ~2!

Strictly speaking, this inequality is meaningless, since
compares an operator valued (q-number! left-hand side with
an ordinary (c-number! function right-hand side. If we ac
cept this inequality as a statement about matrix eleme
then we can show that the conclusions drawn in Ref.@1# do
not follow from it. Specifically, this inequality, although vio
lated by the ‘‘counterexample’’ transverse current in Eq.~7!
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of Ref. @1#, is actuallynot the source of the unusual thresho
behavior inT̂1M

el , Eqs.~8!, ~12! in Ref. @1#. Rather, the real

‘‘culprit’’ is the singular behavior ofJ(R)•«̂1 asR→0.
To prove this assertion, note that the EM Hamiltoni

H f i(q), Eq. ~1!, with the ‘‘counterexample’’ EM current de
fined by Eq.~4! in Ref. @1#, is infinite as its stands. That fac
alone should have been enough to suggest that the su
quent conclusions would be questionable. To better de
this integral, a ‘‘regularization’’ procedure was introduce
into Eq. ~4! of Ref. @1# in the form of a Gaussian@as a
function of the new parameter«] multiplying the integrand.
But, rather than keeping the Gaussian regularization until
end of the calculation, it was removed too soon. This pro
dure led to the erroneous conclusions drawn in Ref.@1#. Spe-
cifically, the «→0 limit is taken under the integral sign i
Eq. ~11! in Ref. @1#, the relevant part being

a5 lim
«→0

qE
0

`

dr j 1~qr !erfS r

2A« D 5E
0

`

dz j1~z!. ~3!

A more careful calculation of the integral~3! leads to

a5S 2

qD E
0

`

dz j0~z!dS z

qD . ~4!

Note that the integral~4! receives its whole value from only
one point—the lower integration boundr 50—and not from
r→`, as implied by inequality~2! and claimed in Ref.@1#.

Manifestly, an object with a Dirac delta function singula
ity is localized. @This is not a proof that the physical EM
current hyperon matrix element~ME! is localized—that will
be checked in the next section#. So, currents of the type o
Eq. ~4! in Ref. @1#, if they exist, are a new and~very! short-
distance phenomenon. They must come from some h
energy extension of the standard model, since they do
exist in the Salam-Weinberg~SW! model.1 For single-quark
current operators, this can be seen from the relevant
Feynman rules. It is alleged in Ref.@1# that the effective
two-quark EM current operators~induced by theW6,Z0 ex-
change graphs! form such an ‘‘abnormal’’ current. We sha
show in point~d! below that this claim is incorrect becaus

1The SW model determines the form of the electroweak curre
in the constituent quark model.
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the said current isnot conserved. But, first we shall show th
the EM current hyperon matrix element in the constitu
quark model is sufficiently localized to have a normal thre
old behavior.

~c! As already stated in point~a! above, the sufficient
condition for localizability is the existence of the Fouri
transform~FT! in Eq. ~1!, i.e., at least absolute-integrabilit
(a51)2 @5# of Jf i(R)•«̂1 :

E dRuJf i~R!•«̂1ua5E dRu^C f uJ~R!•«̂1uC i&ua,`;

a51,2. ~5!

Hence we see that the hyperon wave functionsuC i , f& play an
important role in deciding localizability. The complete h
peron wave functionuC& factors into the center-of-mas
~c.m.! plane wave and the internal~quark! wave function
~WF! uF&

uC i~Pi !&.exp„i ~Pi•X2Eit !…uF~r,l!&, ~6!

where (Ei ,Pi) is the initial-state hyperon four-momentu
andr,l are the three-body Jacobi coordinates describing
motion of the three constituent quarks in the hyperon rela
to its c.m. co-ordinateX. The internal wave functionsuF i , f&
are bound-state ones and therefore normalizable, wherea
c.m. plane waves produce a~nonsquare-integrable!
momentum-conserving Dirac delta function in all mome
tum space matrix elements,

2H f i~q!5E dR «̂1•Jf i~R! exp~ iq•R!

5~2p!3d~P82q2P! E dR ^F f uJ~R!•«̂1uF i&

3exp~ iq•R!, ~7!

which we systematically dropped from the displayed eq
tions in our previous publications. Thus we see that the or
nal integral in the criterion Eq.~5! is singular due to this
trivial c.m. motion. It is the remaining~form! factor
*dR ^F f uJ(R)•«̂1uF i& exp(iq•R), with ‘‘the c.m. motion
taken out’’ that must be a well-defined Fourier transform

2Absolute integrability ensures the existence of the~direct! Fou-
rier transform, but not that of the inverse one. To ensure the e
tence of both, one needs square-integrability (a52).
cs

01890
t
-

e
e

the

-

-
i-

E dRu^F f uJ~R!•«̂1uF i&u,`, ~8!

which is the final form of the localizablity criterion. Th
physical meaning of this requirement is clear: the hype
probability distribution weighted by the EM current must b
sufficiently close to its c.m. to yield a finite expectation val
integral. This condition is satisfied by the hyperon in t
constituent quark model because of the normalizability of
internal ~quark! wave functionsuF i , f&; confinement makes
the quark probability density only more localized and t
integral faster converging. The EM current operator is
most a polynomial in the momenta~gradients! and spin op-
erators which cannot overcome the exponential decay of
internal wave functions. Consequently, the hyperon EM c
rent ME is localized in the constituent quark model, as a
vertised.

~d! Finally, we turn to the question of EM current conse
vation in the constituent quark model calculation of Kam
and Riazuddin@3#, which is used as a ‘‘counterexample’’ i
Ref. @1#. First note that there is full agreement between
KR paper@3# and Refs.@2,6# on the question of gauge in
variance of thecovariant amplitude described by the Feyn
man diagrams in Figs. 1, 2 of Ref.@3# ~cf. Figs. 1, 2 in Ref.
@6#!. However,this does not mean that the result of its no
relativistic reduction is also gauge invariant. The nonrelativ-
istic reduction of the parity violating part of the Feynma
amplitude leads KR to the current

J.~s13s2!, ~9!

shown in Eq.~13! of Ref. @3#. The EM current~9! is only the
two-body part of the complete EM current. By itself it isnot
conserved, see Eq.~15! in Ref. @2#, or Eqs.~3.6!–~3.9! in
Ref. @6#. To convince oneself explicitly of this fact, compa
the EM current Eq.~9! with the corresponding manifestl
conserved current,

J.q̂3„~s13s2!3q̂…5~s13s2!2q̂~s13s2!•q̂.
~10!

One can see that the current~9! is just the first term on the
right-hand side of Eq.~10!—there is no term proportional to
the three-momentum transferq̂. Consequently, the curren
~9! is not transverse toq in momentum space, i.e.,it is not
conserved. Since the two-body term constitutes the who
EM current in the KR calculation, we have proven our la
contention: that the calculation in Ref.@3# is not gauge in-
variant.

Thus, we have shown that the objections raised in Ref.@1#
are invalid.

The author would like to thank F. Myhrer and K. Ku
bodera for reading the manuscript and for valuable co
ments.
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