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Comment on ‘‘Hara’s theorem in the constituent quark model’’

P. Żenczykowski*
Department of Theoretical Physics, Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Krako´w, Poland

~Received 5 September 1997; published 25 May 1999!

It is pointed out that current conservationalonedoes not suffice to prove Hara’s theorem, as was claimed
recently. By explicit calculation, we show that the additional implicit assumption made in such ‘‘proofs’’ is
that of a sufficiently localized current.@S0556-2821~99!05201-7#

PACS number~s!: 11.40.2q, 13.30.2a, 14.20.Jn
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Weak radiative hyperon decays proved to be a challe
to our theoretical understanding. Despite many years of
oretical studies, a satisfactory description of these proce
is still lacking. In a recent review~see Ref.@1#! presenting
the current theoretical and experimental situation in t
field, attention was focused on the question of the validity
Hara’s theorem@2#. This question was originally posed b
the paper of Kamal and Riazuddin@3# who observed that in
the quark model Hara’s theorem is violated. There have b
several attempts to understand the origin and meaning of
quark model result@4–7#. Here we want to comment on Re
@6# wherein it is claimed that the argument made by Sero
Ref. @8# and discussed later in Ref.@9# is sufficient to prove
Hara’s theorem.

In Ref. @6# it is stated that the argument of Serot~upon
which the claim of Ref.@6# is based! reliesonly on the mul-
tipole decomposition of the electromagnetic current ma
element and on the conservation of electromagnetic curr
This statement should be treated with suspicion as in
standard proof of Hara’s theorem, it is the absence of m
less hadrons that—in addition to gauge invariance—is n
essary for the proof to go through~see, e.g., Ref.@1#!. Thus,
one may suspect that the argument of Serot uses a some
similar additionalhiddenassumption. Rather than trying t
identify such an implicit assumption, a large part of Ref.@6#
~see also Ref.@9#! is then concerned with the demonstrati
of how to satisfy electromagnetic current conservation in
tual calculations with composite states. Below we will de
onstrate through an explicit calculation what implicit a
sumption is being made in Serot-like arguments.

There are two conserved electromagnetic currents en
ing into the discussion of Hara’s theorem:

J5
m5F1~q2!c1S gm2

qngn

q2
qmD g5c2 ~1!

and

J58
m5F3~q2!c1ismnqng5c2 . ~2!

In the limit of exact SU~3! (m15m2), the coupling of
photon to currentJ58 vanishes due to its symmetry properti
~see Sec. 3.1. in Ref.@1#!. The only allowed current is then
that of Eq.~1!. According to Zeldovich and Perelomov@10#,
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expansion ofF1(q2) aroundq250 has to start with a term
proportional toq2. For a real photon, this entails a vanishin
current matrix element. However, as discussed in Ref.@9# for
a nonvanishingF1(0), oneobtains current matrix elemen
which is finite at q250 and a vanishing parity-violating
charge density. Thus, the form of Eq.~1! seems fully admis-
sible also forF1(0)Þ0. In Ref. @9# it is then claimed that
Serot managed to prove the vanishing of the relevant ma
element atq250 using conservation of the electromagne
current only. As remarked above, the proof of Serot mo
likely uses a hidden assumption. Let us therefore look at
proof in some detail.

In the nonrelativistic approximation, the currentJ5
m takes

the form ~see also Ref.@9#!:

J5~q!5
q3~s3q!

q2
5s2~s•q̂!q̂, ~3!

whereq̂5q/uqu and we have putF1(0)51. ForJ5(q) of Eq.
~3!, the transverse electric dipole is clearly nonzero.

On the other hand, the argument of Serot, which sta
with a general formula for the transverse electric dipo
seems to show that forq2→0, this multipole vanishes asq2

anyway. Since the argument of Serot is made in posit
space, in order to analyze it, we have to find the shape
currentJ5 from Eq. ~3! in position space. Let us therefor
consider

J5
«~r !5

1

~2p!3E d3qJ~q!e2 iqr2«q2
. ~4!

In Eq. ~4! we have introduced a small parameter («) to regu-
larize the emerging integrals.

The integral in Eq.~4! is composed of two pieces. Th
first @Fourier transform ofJ(1)«(q)[sexp(2«q2)] gives

J~1!«~r !5s•d«
3~r ! ~5!

with d«
3(r )5) i 51

3 d«(r i), whered«(r i) is a one-dimensiona
regularized delta function:

d«~r i !5
1

A4p«
exp@2r i

2/~4«!#. ~6!
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COMMENTS PHYSICAL REVIEW D 60 018901
Calculation of the second piece@Fourier transform of the
term J(2)«(q)[2(s•q̂)q̂exp(2«q2)] is more complicated
and is sketched in the Appendix. Together one obtains

J5
«~r !5J5

~1!«~r !1J5
~2!«~r !

5@s2~s• r̂ ! r̂ #d«
3~r !1

1

2pr 2
@s23~s• r̂ ! r̂ #d«~r !

2
1

4pr 3
@s23~s• r̂ ! r̂ #

3erfS r

2A«
D , ~7!

where erf(x)5(2/Ap)*0
xe2t2dt is the error function, r̂

5r /r , andr 5ur u.
The transverse electric dipole is defined as@6,9,11#

T1M
el 5

1

iqA2
E d3r $2q2~J5•r !1~¹•J5!@11~r•¹!#%

3 j 1~qr !Y1M~ r̂ !, ~8!

whereq5uqu.
One may check by direct calculation that currentJ5

«(r ) of
Eq. ~7! is conserved@as it should be because for its Fouri
transformJ5

«(q), we obviously have from Eq.~3!: q•J5
«(q)

50]:

¹•J5
«5S 2

2s• r̂

r
d«

3~r ! D 1S 2s• r̂

r
d«

3~r !2
s• r̂

pr 3
d«~r !D

1S s• r̂

pr 3
d«~r !D 50. ~9!

In Eq. ~9! the three terms in parentheses come from the th
terms on the right-hand side of Eq.~7!. Clearly, all three
terms in Eq.~7! are required for the cancellation of Eq.~9! to
work. Since¹•J5

«50, in the calculation of the electric dipol
in Eq. ~8!, only the first term of the integrand may give
nonzero result. However, according to the argument of R
@6,9# for smallq, this term is proportional toq2 after replac-
ing the spherical Bessel functionj 1(qr) by its approximation
for small arguments:1

3 qr. Consequently, the argumen
seems to show thatT1M

el vanishes in the long wavelengt
limit q2→0.

Unfortunately, the above argument is not correct wh
one uses currentJ5

« of Eq. ~7!. Let us calculate

J5
«~r !•r52

s• r̂

pr
d«~r !1

1

2pr 2
s• r̂ erfS r

2A«
D . ~10!

The first term on the right-hand side of Eq.~10!, being pro-
portional to delta function, is sufficiently localized in spa
to permit the replacement of the spherical Bessel functionj 1
by its approximation for small arguments, since only sm
01890
e
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n
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values ofqr are allowed (q→0 and r is small!. With the
second term, the situation is, however, different.

Introducing new variablez[qr, the contribution of the
second term in Eq.~10! to the transverse electric dipole
~for «→0)

T1M
el 5

i

2pA2
E

0

`

dz j1~z!E dV ẑs• ẑY1M~ ẑ!. ~11!

The right-hand side apparently does not depend onq. Using
(d/dz) j 0(z)52 j 1(z) and Y1M( ẑ)5A(3/4p)eM• ẑ, we cal-
culate

T1M
el 5

i

A6p
eM•s ~12!

a definitely nonvanishing result in agreement with Eq.~3!.
The origin of this nonzero result is clear from the abo
calculation: in Eq.~7! the third term of axial currentJ5

«(r ) is
not localized in space sufficiently well. Thus, the theorem
Serot is based not only on current conservation, but also
the assumption that the position-space current vanishe
infinity faster than 1/r 3. To forbid such a behavior corre
sponds in standard proofs of Hara’s theorem to assuming
absence of massless~infinite range! hadrons.

It is a different question whether the above-identified i
plicit assumption used by Serot should really be made. C
ventional wisdom certainly requires the electromagne
axial current of a baryon to be well localized in positio
space, which assumption—together with that of curr
conservation—leads to a vanishing parity-violating mat
element of the electromagnetic current at the real pho
point.

Results of strict quark model calculations of Kamal a
Riazuddin~KR! @3#, which indicated the nonvanishing of thi
matrix element@for SU(3)-related strangeness-changing cu
rent S1→p], were therefore treated with disbelief. How
ever, since Serot theorem is not based on current conse
tion only, one cannot conclude from the violation of Hara
theorem obtained in Ref.@3# that gauge invariance must b
broken in these calculations. In fact, by repeating KR cal
lations, one can convince oneself that gauge invariancis
preservedin Ref. @3#. Thus, it seems that it is rather the oth
assumption used by Serot: that of a sufficiently well loc
ized current, which is violated in the KR paper.

This tentative identification seems understandable if o
thinks of quark model prescription in position space. Inde
in the strict quark model, the initial and final states are d
scribed by sums of tensor products of plane-wave qu
states spreading all over position space. In the calculatio
KR, the intermediate quark~between the action of wea
Hamiltonian and the emission of a photon! may also propa-
gate to spatial infinity, reflecting total quark freedom.
should not come then as a surprise that the total electrom
netic current of the three-quark state contains a piece wh
is not sufficiently well localized.

To summarize let us repeat that the assumption of cur
conservationalonedoes not suffice to prove Hara’s theorem
1-2
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The current of Eq.~7! is definitely conserved and yet th
transverse electric dipole moment is nonzero. Thus, the c
siderations of Refs.@6,9# which concern the detailed mann
in which current conservation is realized for composite s
tems cannot by themselves provide us with a proof of Ha
theorem.

This work was partially supported by the KBN Grant N
2P0B23108. Discussions with M. Sadzikowski are gratefu
acknowledged.

APPENDIX

Calculation ofJ(2)«(r ) requires determination of the inte
gral

I ml~r !52
1

~2p!3E d3q
qmql

q2
e2 iq•r2«q2

~A1!

which may be evaluated as
01890
n-

-
’s

y

I ml~r !5
1

~2p!3

]2

]r m]r lE«

`

djE d3qe2jq22 iq•r

5
1

4p3/2

]2

]r m]r l

Ap

r
erfS r

2A«
D . ~A2!

Performing indicated differentiations, we obtain

I ml~r !52
1

4pr 3
~dml23r̂ mr̂ l ! erfS r

2A«
D

2
1

pr 2
r̂ mr̂ l

1

A4p«
expS 2

r 2

4e D
1

1

2pr 2
~dml2 r̂ mr̂ l !

1

A4p«
expS 2

r 2

4e D
2 r̂ mr̂ l

1

~4p«!3/2
expS 2

r 2

4e D . ~A3!

This leads to Eq.~7!.
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