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Pion scalar form factor and the sigma meson
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From recent analysis of thew scattering amplitude, it has been claimed that there exists a broad and light
o meson. However, if this meson really exists, it must also appear in other observables such as the pion scalar
form factor. With the use of unitarity and dispersion relations together with chiral perturbation theory, this
form factor is analyzed in the complex energy plane. The result agrees well with the empirical information in
the elastic region and reveals a resonance pol&sat445-i235 MeV. This gives further strong evidence for
the existence of ther meson[S0556-282(199)01113-3

PACS numbes): 14.40.Cs, 11.30.Rd, 11.55.Fv

It is still controversial whether a broad and light isosingletcomplex s plane with a unitarity cut starting at thew
scalar meson really exists. After having been omitted fronthreshold. In the elastic region the unitarity relation is given
the Particle Data Group for more than twenty years, thisy
scalar meson has reappeared in the last two editions of the
Particle Data Group under the enfiy(400—1200) oro [1]. IMF(s)=o(s)F*(s)ta(s), (2
This reintroduction is based upon several new theoretical
analyse$2—4], which have given support to the existence of Wherea(s) is the phase-space factor atffis the isosinglet
a broad and light scalar meson. In addition, there has alsecalarmm partial wave. This relation implies that the phase
recently been some experimental indicationsrqfroduction  of F will coincide with them phase shiftsg in accordance
from centralpp collisions[5]. with Watson'’s final-state theorefil0]. The first important

The theoretical evidence for the existence of thmeson inelastic effect starts at around 1 GeV and is due tokKe
comes mainly from model-dependent analysisraf scatter-  intermediate state. Since the main interest will be in energies
ing [2—4]. However, if this meson in fact exists, it must also well below this inelastic effect, in the following the form
appear in other processes containimg in the final state. factor will only be calculated using the elastic approxima-
Therefore, in order to further investigate whether thene-  tion.
son really exists, other processes should also be analyzed. The scalar form factor has been calculated to two loops in
The pion scalar form factor is such a process which can givE€hPT both by a dispersive analy$ikl] and more recently
further important information on the meson. This is some- by a full field theory calculatiofil2]. The result can be writ-
what similar to the well-known case of thg770) meson, ten as
where the information on this resonance can be obtained
both from 77 scattering and from the pion vector form fac- F(s)=FO(s)+FM(s)+FC)(s), 3
tor.

The pion scalar form factor has previously been calcuhereF () is the leading order resul® the one-loop cor-
lated using the inverse amplitude meth®dM) [6,7]. This  rection, andF® the additional two-loop correction. Since
method is based upon the combination of unitarity and disthe form factor will be normalized t6(0)=1 in the follow-
persion relations together with chiral perturbation theoryind, one has for the leading order tefi”=1. The one-
(ChPT) [8,9] and has been used in order to extend the rangé0p correction is given in terms of the single one-loop low-
of applicability of ChPT. In particular, the IAM has been energy constant; [9], whereas the two-loop correction
applied in order to account for possible resonances since thgontains the additional one-loop low-energy constdfts
method, contrary to ChPT, can produce resonance poles i}, andl} together with the two-loop low-energy constants
the complex energy plane. In this Brief Report, the scalarf, andrk, [12]. The superscript indicates that these low-
form factor is investigated further using the IAM and the energy constants depend on the renormalization sgale
result is analyzed in the complex energy plane in order tqvhereas the full form factor is scale-independent. Since

find possible resonance poles corresponding tastieeson.  ChPT is a perturbative expansion, the unitarity relatign
The pion scalar form factdF is given by the matrix ele-  will only be satisfied perturbatively

ment of the quark density,

ImF©)(s)=0,
(7'(p2)|uu+dd| 7l (py))=8F(s), 1) IMFD(s) = o(s)t30)(s),
where s=(p,—p;)?. This form factor is analytical in the ImF®)(s) = o(s)[ReF V(5)t3O(s) + RetdP(s)]. (4)
This perturbative unitarity will restrict the applicability of
*Electronic address: hannah@nordita.dk ChPT to the very low-energy region. However, with the use
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of the 1AM, the range of applicability of ChPT can be sub- 120° L e e LA e R —
stantially extended to also include resonance regions. The -
starting point for this method is to write down a dispersion 4g9s |-
relation for the inverse of the form factdi=1/F [6,7]. In
this dispersion relation the unitarity relatiqf) gives InT’
=—ImF/|F|?=—ot/F. Expanding this quantity to two
loops in ChPT gives Ifi=—o[t{O(1—ReF®))+Ret™)]
which can be used on the unitarity cut in the dispersion re- so° -
lation forI". The subtraction constants may also be evaluated i
by expanding the functiod’ to two-loop order ad*(?=1 40°
—F®+F®2_F@) Thus, neglecting possible zeros in the
form factor, one has the following dispersion relation:

80° |-

20° |

1 , [~
——=1+a;5+a,s"— — ds' o(s")
) am?
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t3(s")[1-ReFW(s") ]+ RetgM(s")
X ) FIG. 1. The phase of the scalar form factor in the elastic

s'3(s'—s—ie) . . .
region belowys=0.9 GeV. The experimentats phase shifts are

where three subtractions are used in order to make the didem Ref.[14] (circles, Ref.[15] (squares Ref.[16] (diamonds,

persion integral convergent. This relation can be simplifieqanOI Ref[17] (triangles.
by writing a dispersion relation for the functid®?). Using
perturbative unitarity(4) one finds this dispersion relation
will be exactly similar to the one given in E). Thus, the
IAM to two loops in the chiral expansion gives the form
factor as[6]

contain any poles on the unitarity cut and three subtractions
are used in order to suppress the high-energy part of the
dispersion integral. Without any poles E@) is just an iden-
tity, but with poles the output will in general be different
from the input. However, in the region where the 1AM is
1 applicable, the difference between the foffh and the form
] (6) (6) should be small. In fact, this method to remove possible
1-FO)(s)+FM2(s)—F@)(s) poles is equivalent to the subtraction of the poles on the
physical sheet from the original IAM6). This will be dis-

This expression for the form factor is formally equivalent to cussed in more detail elsewhdt)].
the [0,2] Padeapproximant applied on ChPT and will there-  The IAM to two loops depends on a number of low-
fore coincide with the chiral expansion up to two-loop order.energy constants which have to be determined phenomeno-
However, with the IAM the range of applicability of ChPT is |ogically. Unfortunately, the scalar form factor is not directly
substantially extended. This is based upon the fact that thgccessible to experiment. However, in the elastic region the
expanSiOI’l 01t/F Used in the IAM WOI’kS rather We” over a phase 0'|F is given by the’TTﬂ' 1=0 Sphase sh|ﬂ'§8' Wh|Ch
much larger region than the corresponding expansidi*df s known experimentally. Fitting these phase shifts up to 0.9
used in ChPT. In faCt, the former expansion works We”GeV [14_lﬂ and using the value of the pion scalar radius
throughout the elastic region, even when the form factor hag 2y=0.60 fn?[11,18, some of the low-energy constants in
a resonant charactgr]. _ the IAM to two loops have previously been determined with-

However, the IAM may generate poles on the physicalgyt taking possible poles into accoliél. Here, in order to
sheet which violate the analyticity requirement. These polesemove spurious poles, this fit is repeated with the form fac-
are caused by the high-energy part of the dispersion integrabr given by Eq.(7). The result is shown in Fig. 1 together
in Eq. (5). Since this part is not expected to be well approxi-yith the experimentairs phase shifts, from where it is ob-
mated, it may cause the right-hand side of E5).to vanish  seryed that the IAM agrees rather well with the main bulk of
and thereby generate spurious poles in the form factor. Thesge data all the way up to 0.9 GeV. Thus, the IAM satisfies
poles should in principle be removed without any significantyatson's final-state theoreiil0] quite well in the whole

influence in the region of applicability of the IAM. A rather g|astic region. This fit gives the following values for the
general method to remove possible poles and thereby restofgy-energy constants:

analyticity is to put the imaginary part of the IAM back into
a dispersion relation. With three subtractions the result can I%=1.53x10 "3,
be written as

F(s)=

re,=2.25x10 3, (8)
. s® (=  ImF(s')ds sz
F(s)=1+3(r%s+cs’+ —

———— (1
mJam2 s'3(s' —s—ie)

rss=7.60x10°°

where both the subtraction constants and lare calculated at the renormalization scale=M ,=770 MeV. Since the
from the IAM (6). Here, it is assumed that Fndoes not experimental data are not very consistent with each other,
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FIG. 3. The scalar form factdF|? in the complex energy plane
on the second Riemann sheet.

FIG. 2. The scalar form factdF|? in the complex energy plane
on the first Riemann sheet. The complex enekgis defined ac-
cording tos=(ReE+ilmE)?.

—0.5 GeV the form oflF|? is somewhat reminiscent of a
resonant structure. However, in order to investigate whether
there has not been assigned any error bars on these Iowhis form is really associated with a resonance, one has to
energy constants. However, the obtained valud§ ahdry;  consider the second Riemann sheet. On this sheet resonances
agree rather well with the recent determination of these loware characterized by poles in the complex energy plane,
energy constants using two-loop ChPIP]. As forrs,, this  where the massMy) and width (Cr) of the resonance can
low-energy constant has so far only been estimated on thiee related to the position of the pole by
basis of the resonance saturation hypothEs® with a re-
sult [12] that is somewhat smaller than the value obtained \/s_= Mo i E 9
above. In the future, it might be possible to determine this pole™ ™R T o
two-loop low-energy constant from independent observables
[20] and thereby check the value obtained here. In Fig. 3 the absolute square of the form factéy is shown
The scalar form factor can be defined in the whole comin the complex energy plane on the second Riemann sheet.
plex s plane. Since it contains cuts starting at the thresh- ~ One finds thatF|* indeed generates two complex conjugated
old, this will involve different Riemann sheets. In the elastic Poles corresponding to a broad and light resonance. In fact,
approximation there are two Riemann sheets, which are débe position of these poles is the same for the two expres-
fined according to the sign of the center of mass moment&ions of the form factor given by E(6) and Eq.(7), respec-
q= \/S_WZ;/Z_ The first or physical sheet has positive Va|_t|\{ely. From the p.osmon of the pole, the mass and width of
ues of Ing, whereas the second or unphysical sheet hadliS & meson is given by
negative values of liap The form factor given by either Eq. _ _
(6) or Eg. (7) can indeed be extended analytically to the M,=445 MeV, I',=470 MeV. (10
whole complexs plane. This analytic continuation will in-  This compares rather well with the valuds,=470 MeV
volve infinitely many Riemann sheets since the cut in theand I',=500 MeV obtained in Ref[2]. However, rather
IAM comes from logarithmic functions. However, only two (different values foM, andT", have also been obtained with
of these sheets correspond to the first and second Riemaggher theoretical modelg3,4]. Therefore, it is important to
sheet that the form factor should reproduce. reduce the model dependence when the mass and width of
In Fig. 2 the absolute square of the form fact@ is  the o meson are determined. The IAM is based solely on the
shown in the complex energy plane on the first Riemannse of unitarity and dispersion relations together with ChPT.
sheet. On the real axis the result agrees very well with thq’herefore1 within this approach, any model dependence in
result of a dispersive analydi$1,18, where the scalar form  the mass and width of the meson is due to higher order
factor has been determined in terms of the experimentakrms in the chiral expansion together with the present un-
7w/KK phase shifts. Furthermore, the form faci@) is  certainties in the values of the low-energy constants.
analytic in the whole complex energy plane with the correct The IAM is in fact a systematic approach which can be
cut structure starting at thew threshold. This is different applied to any given order in the chiral expansion. Origi-
from the original IAM (6) which generates a pole on the nally, this method was applied to the scalar form factor in the
negatives axis. However, this pole is removed by using the one-loop approximatiori7] with a result that is formally
form (7) without any significant influence on the result in the equivalent to th¢0,1] Padeapproximant applied on ChPT.
region shown in Fig. 2. In this case the IAM depends on the single one-loop low-
From this figure it is also observed that around 0.4energy constanit; which can be determined from the ratio

017502-3



BRIEF REPORTS PHYSICAL REVIEW D 60 017502

F/F, [9,20. With this low-energy constants fixed, the  The IAM is not restricted to the scalar form factor but this
IAM to one loop agrees rather well with the empirical infor- method is in fact quite general and has been applied to other
mation up to about 0.5 GeV. The one-loop approximationprocesses as well. In particular, the IAM has been applied to
also contains a pole on the negatisexis. However, this 77 scattering where it also generates a resonance pole cor-
pole can be removed by using the method discussed previesponding to ther meson[21]. In fact, the mass and width
ously without any significant influence on the result in theof the & resonance obtained fromra scattering, M,
elastic region. Extending this result to the whole complex_440 Mev andl',=490 MeV, agree very well with the
energy plane, one finds that the IAM to one loop also genyaes obtained in Eq10). This strongly supports the con-

er."a‘ttﬁso? tLe_sorgaggeemré(;Ie, where tT)e corresponding mass aligyency of the 1AM and gives additional evidence for the
Wi IS Tes are given by existence of ther meson.

M,=463 MeV, I',=393 MeV. (11) To summarize, the pion scalar form factor has been cal-
culated by the use of unitarity and dispersion relations to-

Comparing these values with the values obtained from thg@ether with the chiral expansion. In order to satisfy the ana-
IAM to two loops (10), it is observed that the masses arelyticity requirement, possible poles on the physical sheet are
very similar, whereas the difference in the widths is some+emoved from this IAM. The result agrees well with both the
what larger. However, this difference is not significant com-experimentalr 7 phase shifts and a dispersive analysis in the
pared to the large uncertainty in the width of themeson whole elastic region. Making an analytic continuation of the
given by the Particle Data Groud]. In view of this the scalar form factor to the complex energy plane, one finds a
convergence of the IAM is satisfactory for both the mass andesonance pole corresponding to a broad and light scalar me-
width of the ¢ meson. Hence, the corrections to the valuesson. The values for the mass and width of thisneson are
given in Eq.(10) due to even higher orders in the chiral obtained in a rather model independent way, contrary to pre-
expansion are expected to be of little importance. There igious determinations where different theoretical models were
also an uncertainty in the obtained values Ky, andI",  applied. Indeed, any model dependence in the obtained val-
coming from the uncertainties in the values of the low-ues forM, andI', should be rather small compared to the
energy constants. However, this effect should also be rathgresent uncertainty in these quantities. All this gives further
small and could be estimated when the values of the lowstrong evidence for the existence of the controversial broad
energy constants in the IAM are determined more accuratelyand lighte meson.
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