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Pion scalar form factor and the sigma meson

Torben Hannah*
Nordita, Blegdamsvej 17, DK-2100 Copenhagen O” , Denmark

~Received 9 December 1998; published 26 May 1999!

From recent analysis of thepp scattering amplitude, it has been claimed that there exists a broad and light
s meson. However, if this meson really exists, it must also appear in other observables such as the pion scalar
form factor. With the use of unitarity and dispersion relations together with chiral perturbation theory, this
form factor is analyzed in the complex energy plane. The result agrees well with the empirical information in
the elastic region and reveals a resonance pole atAs54452 i235 MeV. This gives further strong evidence for
the existence of thes meson.@S0556-2821~99!01113-3#

PACS number~s!: 14.40.Cs, 11.30.Rd, 11.55.Fv
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It is still controversial whether a broad and light isosing
scalar meson really exists. After having been omitted fr
the Particle Data Group for more than twenty years, t
scalar meson has reappeared in the last two editions o
Particle Data Group under the entryf 0(40021200) ors @1#.
This reintroduction is based upon several new theoret
analyses@2–4#, which have given support to the existence
a broad and light scalar meson. In addition, there has
recently been some experimental indications ofs production
from centralpp collisions @5#.

The theoretical evidence for the existence of thes meson
comes mainly from model-dependent analysis ofpp scatter-
ing @2–4#. However, if this meson in fact exists, it must als
appear in other processes containingpp in the final state.
Therefore, in order to further investigate whether thes me-
son really exists, other processes should also be analy
The pion scalar form factor is such a process which can g
further important information on thes meson. This is some
what similar to the well-known case of ther(770) meson,
where the information on this resonance can be obtai
both frompp scattering and from the pion vector form fa
tor.

The pion scalar form factor has previously been cal
lated using the inverse amplitude method~IAM ! @6,7#. This
method is based upon the combination of unitarity and d
persion relations together with chiral perturbation theo
~ChPT! @8,9# and has been used in order to extend the ra
of applicability of ChPT. In particular, the IAM has bee
applied in order to account for possible resonances since
method, contrary to ChPT, can produce resonance pole
the complex energy plane. In this Brief Report, the sca
form factor is investigated further using the IAM and th
result is analyzed in the complex energy plane in order
find possible resonance poles corresponding to thes meson.

The pion scalar form factorF is given by the matrix ele-
ment of the quark density,

^p i~p2!uūu1d̄dup j~p1!&5d i j F~s!, ~1!

where s5(p22p1)2. This form factor is analytical in the
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complex s plane with a unitarity cut starting at thepp
threshold. In the elastic region the unitarity relation is giv
by

ImF~s!5s~s!F* ~s!t0
0~s!, ~2!

wheres(s) is the phase-space factor andt0
0 is the isosinglet

scalarpp partial wave. This relation implies that the pha
of F will coincide with thepp phase shiftd0

0 in accordance
with Watson’s final-state theorem@10#. The first important
inelastic effect starts at around 1 GeV and is due to theKK̄
intermediate state. Since the main interest will be in energ
well below this inelastic effect, in the following the form
factor will only be calculated using the elastic approxim
tion.

The scalar form factor has been calculated to two loop
ChPT both by a dispersive analysis@11# and more recently
by a full field theory calculation@12#. The result can be writ-
ten as

F~s!5F (0)~s!1F (1)~s!1F (2)~s!, ~3!

whereF (0) is the leading order result,F (1) the one-loop cor-
rection, andF (2) the additional two-loop correction. Sinc
the form factor will be normalized toF(0)51 in the follow-
ing, one has for the leading order termF (0)51. The one-
loop correction is given in terms of the single one-loop lo
energy constantl 4

r @9#, whereas the two-loop correctio
contains the additional one-loop low-energy constantsl 1

r ,
l 2
r , and l 3

r together with the two-loop low-energy constan
r S2

r and r S3
r @12#. The superscriptr indicates that these low

energy constants depend on the renormalization scalem,
whereas the full form factor is scale-independent. Sin
ChPT is a perturbative expansion, the unitarity relation~2!
will only be satisfied perturbatively

ImF (0)~s!50,

ImF (1)~s!5s~s!t0
0(0)~s!,

ImF (2)~s!5s~s!@ReF (1)~s!t0
0(0)~s!1Ret0

0(1)~s!#. ~4!

This perturbative unitarity will restrict the applicability o
ChPT to the very low-energy region. However, with the u
©1999 The American Physical Society02-1
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of the IAM, the range of applicability of ChPT can be su
stantially extended to also include resonance regions.
starting point for this method is to write down a dispersi
relation for the inverse of the form factorG51/F @6,7#. In
this dispersion relation the unitarity relation~2! gives ImG
52ImF/uFu252st/F. Expanding this quantity to two
loops in ChPT gives ImG52s@ t (0)(12ReF (1))1Ret (1)#
which can be used on the unitarity cut in the dispersion
lation for G. The subtraction constants may also be evalua
by expanding the functionG to two-loop order asG (2)51
2F (1)1F (1)22F (2). Thus, neglecting possible zeros in th
form factor, one has the following dispersion relation:

1

F~s!
511a1s1a2s22

s3

p E
4Mp

2

`

ds8s~s8!

3
t0
0(0)~s8!@12ReF (1)~s8!#1Ret0

0(1)~s8!

s83~s82s2 i e!
, ~5!

where three subtractions are used in order to make the
persion integral convergent. This relation can be simplifi
by writing a dispersion relation for the functionG (2). Using
perturbative unitarity~4! one finds this dispersion relatio
will be exactly similar to the one given in Eq.~5!. Thus, the
IAM to two loops in the chiral expansion gives the for
factor as@6#

F~s!5
1

12F (1)~s!1F (1)2~s!2F (2)~s!
. ~6!

This expression for the form factor is formally equivalent
the @0,2# Padéapproximant applied on ChPT and will ther
fore coincide with the chiral expansion up to two-loop ord
However, with the IAM the range of applicability of ChPT
substantially extended. This is based upon the fact that
expansion oft/F used in the IAM works rather well over
much larger region than the corresponding expansion ofF* t
used in ChPT. In fact, the former expansion works w
throughout the elastic region, even when the form factor
a resonant character@7#.

However, the IAM may generate poles on the physi
sheet which violate the analyticity requirement. These po
are caused by the high-energy part of the dispersion inte
in Eq. ~5!. Since this part is not expected to be well appro
mated, it may cause the right-hand side of Eq.~5! to vanish
and thereby generate spurious poles in the form factor. Th
poles should in principle be removed without any significa
influence in the region of applicability of the IAM. A rathe
general method to remove possible poles and thereby re
analyticity is to put the imaginary part of the IAM back int
a dispersion relation. With three subtractions the result
be written as

F~s!511 1
6 ^r 2&s1cs21

s3

p E
4Mp

2

` ImF~s8!ds8

s83~s82s2 i e!
, ~7!

where both the subtraction constants and ImF are calculated
from the IAM ~6!. Here, it is assumed that ImF does not
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contain any poles on the unitarity cut and three subtracti
are used in order to suppress the high-energy part of
dispersion integral. Without any poles Eq.~7! is just an iden-
tity, but with poles the output will in general be differen
from the input. However, in the region where the IAM
applicable, the difference between the form~7! and the form
~6! should be small. In fact, this method to remove possi
poles is equivalent to the subtraction of the poles on
physical sheet from the original IAM~6!. This will be dis-
cussed in more detail elsewhere@13#.

The IAM to two loops depends on a number of low
energy constants which have to be determined phenom
logically. Unfortunately, the scalar form factor is not direct
accessible to experiment. However, in the elastic region
phase ofF is given by thepp I 50 Sphase shiftd0

0, which
is known experimentally. Fitting these phase shifts up to
GeV @14–17# and using the value of the pion scalar radi
^r 2&50.60 fm2 @11,18#, some of the low-energy constants
the IAM to two loops have previously been determined wi
out taking possible poles into account@6#. Here, in order to
remove spurious poles, this fit is repeated with the form f
tor given by Eq.~7!. The result is shown in Fig. 1 togethe
with the experimentalpp phase shifts, from where it is ob
served that the IAM agrees rather well with the main bulk
the data all the way up to 0.9 GeV. Thus, the IAM satisfi
Watson’s final-state theorem@10# quite well in the whole
elastic region. This fit gives the following values for th
low-energy constants:

l 4
r 51.5331023,

r S2
r 52.2531023, ~8!

r S3
r 57.6031025

at the renormalization scalem5M r5770 MeV. Since the
experimental data are not very consistent with each ot

FIG. 1. The phased0
0 of the scalar form factor in the elasti

region belowAs50.9 GeV. The experimentalpp phase shifts are
from Ref. @14# ~circles!, Ref. @15# ~squares!, Ref. @16# ~diamonds!,
and Ref.@17# ~triangles!.
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BRIEF REPORTS PHYSICAL REVIEW D 60 017502
there has not been assigned any error bars on these
energy constants. However, the obtained values ofl 4

r andr S3
r

agree rather well with the recent determination of these lo
energy constants using two-loop ChPT@12#. As for r S2

r , this
low-energy constant has so far only been estimated on
basis of the resonance saturation hypothesis@19# with a re-
sult @12# that is somewhat smaller than the value obtain
above. In the future, it might be possible to determine t
two-loop low-energy constant from independent observab
@20# and thereby check the value obtained here.

The scalar form factor can be defined in the whole co
plex s plane. Since it contains cuts starting at thepp thresh-
old, this will involve different Riemann sheets. In the elas
approximation there are two Riemann sheets, which are
fined according to the sign of the center of mass mome
q5As24Mp

2 /2. The first or physical sheet has positive va
ues of Imq, whereas the second or unphysical sheet
negative values of Imq. The form factor given by either Eq
~6! or Eq. ~7! can indeed be extended analytically to t
whole complexs plane. This analytic continuation will in
volve infinitely many Riemann sheets since the cut in
IAM comes from logarithmic functions. However, only tw
of these sheets correspond to the first and second Riem
sheet that the form factor should reproduce.

In Fig. 2 the absolute square of the form factor~7! is
shown in the complex energy plane on the first Riema
sheet. On the real axis the result agrees very well with
result of a dispersive analysis@11,18#, where the scalar form
factor has been determined in terms of the experime
pp/KK̄ phase shifts. Furthermore, the form factor~7! is
analytic in the whole complex energy plane with the corr
cut structure starting at thepp threshold. This is different
from the original IAM ~6! which generates a pole on th
negatives axis. However, this pole is removed by using t
form ~7! without any significant influence on the result in th
region shown in Fig. 2.

From this figure it is also observed that around 0

FIG. 2. The scalar form factoruFu2 in the complex energy plane
on the first Riemann sheet. The complex energyE is defined ac-
cording tos5(ReE1 i ImE)2.
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20.5 GeV the form ofuFu2 is somewhat reminiscent of
resonant structure. However, in order to investigate whe
this form is really associated with a resonance, one ha
consider the second Riemann sheet. On this sheet resona
are characterized by poles in the complex energy pla
where the mass (MR) and width (GR) of the resonance can
be related to the position of the pole by

Aspole5MR2 i
GR

2
. ~9!

In Fig. 3 the absolute square of the form factor~7! is shown
in the complex energy plane on the second Riemann sh
One finds thatuFu2 indeed generates two complex conjugat
poles corresponding to a broad and light resonance. In f
the position of these poles is the same for the two exp
sions of the form factor given by Eq.~6! and Eq.~7!, respec-
tively. From the position of the pole, the mass and width
this s meson is given by

Ms5445 MeV, Gs5470 MeV. ~10!

This compares rather well with the valuesMs5470 MeV
and Gs5500 MeV obtained in Ref.@2#. However, rather
different values forMs andGs have also been obtained wit
other theoretical models@3,4#. Therefore, it is important to
reduce the model dependence when the mass and wid
thes meson are determined. The IAM is based solely on
use of unitarity and dispersion relations together with ChP
Therefore, within this approach, any model dependence
the mass and width of thes meson is due to higher orde
terms in the chiral expansion together with the present
certainties in the values of the low-energy constants.

The IAM is in fact a systematic approach which can
applied to any given order in the chiral expansion. Ori
nally, this method was applied to the scalar form factor in
one-loop approximation@7# with a result that is formally
equivalent to the@0,1# Padéapproximant applied on ChPT
In this case the IAM depends on the single one-loop lo
energy constantl 4

r which can be determined from the rat

FIG. 3. The scalar form factoruFu2 in the complex energy plane
on the second Riemann sheet.
2-3
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BRIEF REPORTS PHYSICAL REVIEW D 60 017502
FK /Fp @9,20#. With this low-energy constants fixed, th
IAM to one loop agrees rather well with the empirical info
mation up to about 0.5 GeV. The one-loop approximat
also contains a pole on the negatives axis. However, this
pole can be removed by using the method discussed p
ously without any significant influence on the result in t
elastic region. Extending this result to the whole comp
energy plane, one finds that the IAM to one loop also g
erates a resonance pole, where the corresponding mas
width of this resonance are given by

Ms5463 MeV, Gs5393 MeV. ~11!

Comparing these values with the values obtained from
IAM to two loops ~10!, it is observed that the masses a
very similar, whereas the difference in the widths is som
what larger. However, this difference is not significant co
pared to the large uncertainty in the width of thes meson
given by the Particle Data Group@1#. In view of this the
convergence of the IAM is satisfactory for both the mass a
width of the s meson. Hence, the corrections to the valu
given in Eq. ~10! due to even higher orders in the chir
expansion are expected to be of little importance. Ther
also an uncertainty in the obtained values forMs and Gs

coming from the uncertainties in the values of the lo
energy constants. However, this effect should also be ra
small and could be estimated when the values of the l
energy constants in the IAM are determined more accurat
.
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The IAM is not restricted to the scalar form factor but th
method is in fact quite general and has been applied to o
processes as well. In particular, the IAM has been applie
pp scattering where it also generates a resonance pole
responding to thes meson@21#. In fact, the mass and width
of the s resonance obtained frompp scattering, Ms

5440 MeV andGs5490 MeV, agree very well with the
values obtained in Eq.~10!. This strongly supports the con
sistency of the IAM and gives additional evidence for t
existence of thes meson.

To summarize, the pion scalar form factor has been c
culated by the use of unitarity and dispersion relations
gether with the chiral expansion. In order to satisfy the a
lyticity requirement, possible poles on the physical sheet
removed from this IAM. The result agrees well with both th
experimentalpp phase shifts and a dispersive analysis in
whole elastic region. Making an analytic continuation of t
scalar form factor to the complex energy plane, one find
resonance pole corresponding to a broad and light scalar
son. The values for the mass and width of thiss meson are
obtained in a rather model independent way, contrary to p
vious determinations where different theoretical models w
applied. Indeed, any model dependence in the obtained
ues forMs andGs should be rather small compared to th
present uncertainty in these quantities. All this gives furth
strong evidence for the existence of the controversial br
and lights meson.
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